COMPLETE INTERSECTION MONOMIAL CURVES AND THE
COHEN-MACAULAYNESS OF THEIR TANGENT CONES

ANARGYROS KATSABEKIS

ABSTRACT. Let C(n) be a complete intersection monomial curve in the 4-
dimensional affine space. In this paper we study the complete intersection
property of the monomial curve C(n + wv), where w > 0 is an integer and
v € N%. Also we investigate the Cohen-Macaulayness of the tangent cone of

C(n+wv).
1. INTRODUCTION
Let n = (n1,na,...,ngq) be a sequence of positive integers with ged(ny,...,ng) =
1. Consider the polynomial ring K[z1, ..., z4] in d variables over a field K. We shall
denote by x" the monomial z{* - - -2y of K|[z1,...,z4], with u = (u1,...,uq) € N

where N stands for the set of non-negative integers. The toric ideal I(n) is the kernel
of the K-algebra homomorphism ¢ : K[z1,...,z4 — KJt] given by

d(x;) =t™ forall 1<i<d.

Then I(n) is the defining ideal of the monomial curve C(n) given by the parametriza-
tion zy =™, ..., x4 = t"¢. Theideal I(n) is generated by all the binomials x" —xV,
where u— v runs over all vectors in the lattice keryz(ni, ..., nq) see for example, [16,
Lemma 4.1]. The height of I(n) is d—1 and also equals the rank of kerz(nq,...,nq)
(see [16]). Given a polynomial f € I(n), we let f. be the homogeneous summand
of f of least degree. We shall denote by I(n), the ideal in K[x1,...,x4] generated
by the polynomials f, for f € I(n).

Deciding whether the associated graded ring of the local ring K[[t"™,.. ., t"4]]
is Cohen-Macaulay constitutes an important problem studied by many authors,
see for instance [1], [6], [14]. The importance of this problem stems partially
from the fact that if the associated graded ring is Cohen-Macaulay, then the
Hilbert function of K[[t™,...,¢"]] is non-decreasing. Since the associated graded
ring of K[[t",...,t™]] is isomorphic to the ring Klz1,...,2z4]/I(n)., the Cohen-
Macaulayness of the associated graded ring can be studied as the Cohen-Macaulayness
of the ring K[z1,...,z4]/I(n).. Recall that I(n). is the defining ideal of the tan-
gent cone of C'(n) at 0.

The case that K[[t",...,t"4]] is Gorenstein has been particularly studied. This
is partly due to the M. Rossi’s problem [13] asking whether the Hilbert function
of a Gorenstein local ring of dimension one is non-decreasing. Recently, A. Oneto,
F. Strazzanti and G. Tamone [12] found many families of monomial curves giving
negative answer to the above problem. However M. Rossi’s problem is still open
for a Gorenstein local ring K{[[t™,...,t"]]. It is worth to note that, for a com-
plete intersection monomial curve C'(n) in the 4-dimensional affine space (i.e. the
ideal I(n) is a complete intersection), we have, from [14, Theorem 3.1], that if
the minimal number of generators for I(n), is either three or four, then C'(n) has
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Cohen-Macaulay tangent cone at the origin. The converse is not true in general,
see [14, Proposition 3.14].

In recent years there has been a surge of interest in studying properties of the
monomial curve C(n +wv), where w > 0 is an integer and v € N%, see for instance
[4], [7] and [18]. This is particularly true for the case that v = (1,...,1). In
fact, J. Herzog and H. Srinivasan conjectured that if n; < ny < --- < ng are
positive numbers, then the Betti numbers of I(n 4+ wv) are eventually periodic in
w with period ng — ny. The conjecture was proved by T. Vu [18]. More precisely,
he showed that there exists a positive integer N such that, for all w > N, the
Betti numbers of I(n + wv) are periodic in w with period ng — n;. The bound
N depends on the Castelnuovo-Mumford regularity of the ideal generated by the
homogeneous elements in I(n). For w > (ng — n1)? — n; the minimal number of
generators for I(n 4+ w(1,...,1)) is periodic in w with period ng — n; (see [4]).
Furthermore, for every w > (ng —n1)? —n1 the monomial curve C(n+w(1,...,1))
has Cohen-Macaulay tangent cone at the origin, see [15]. The next example provides
a monomial curve C'(n+w(1,...,1)) which is not a complete intersection for every
w > 0.

Example 1.1. Let n = (15, 25,24, 16), then I(n) is a complete intersection on the
binomials #f — 23, 22 — 23 and x129 — x324. Consider the vector v = (1,1,1,1).
For every w > 85 the minimal number of generators for I(n + wv) is either 18, 19
or 20. Using CoCoA ([3]) we find that for every 0 < w < 85 the minimal number
of generators for I(n+ wv) is greater than or equal to 4. Thus for every w > 0 the
ideal I(n 4+ wv) is not a complete intersection.

Given a complete intersection monomial curve C(n) in the 4-dimensional affine
space, we study (see Theorems 2.6, 3.2) when C(n+wv) is a complete intersection.
We also construct (see Theorems 2.8, 2.9, 3.4) families of complete intersection
monomial curves C(n + wv) with Cohen-Macaulay tangent cone at the origin.

Let a; be the least positive integer such that a;n; € Z#i Nn;. To study the
complete intersection property of C'(n+ wv) we use the fact that after permuting
variables, if necessary, there exists (see [14, Proposition 3.2] and also Theorems 3.6
and 3.10 in [10]) a minimal system of binomial generators S of I(n) of the following
form:

(A) S ={ay" — 5% a5® —wyt, 2y wy® — xg’ay' ).

(B) S ={a7" — a5 a3 —ayay®, 2" — ay wyay’ ).

In section 2 we focus on case (A). We prove that the monomial curve C'(n) has
Cohen-Macaulay tangent cone at the origin if and only if the minimal number of
generators for I(n), is either three or four. Also we explicitly construct vectors
vi, 1 < i < 22, such that for every w > 0, the ideal I(n + wv;) is a complete
intersection whenever the entries of n + wv; are relatively prime. We show that
if C(n) has Cohen-Macaulay tangent cone at the origin, then for every w > 0
the monomial curve C(n + wvy) has Cohen-Macaulay tangent cone at the origin
whenever the entries of n + wv; are relatively prime. Additionally we show that
there exists a non-negative integer wg such that for all w > wp, the monomial curves
C(n + wvg) and C(n + wvyz) have Cohen-Macaulay tangent cones at the origin
whenever the entries of the corresponding sequence (n+wvy for the first family and
n + wvyg for the second) are relatively prime. Finally we provide an infinite family
of complete intersection monomial curves Cy,(n + wvy) with corresponding local
rings having non-decreasing Hilbert functions, although their tangent cones are not
Cohen-Macaulay, thus giving a positive partial answer to M. Rossi’s problem.

In section 3 we study the case (B). We construct vectors b;, 1 < ¢ < 22, such
that for every w > 0, the ideal I(n 4+ wb;) is a complete intersection whenever
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the entries of n + wb; are relatively prime. Furthermore we show that there exists
a non-negative integer w; such that for all w > wy, the ideal I(n + wbayy), is a
complete intersection whenever the entries of n + whbss are relatively prime.

2. THE CASE (A)

In this section we assume that after permuting variables, if necessary, S = {«7* —
x9?, x5® — xyt xtwy? — xy®xy*} is a minimal generating set of I(n). First we will
show that the converse of [14, Theorem 3.1] is also true in this case.

Let ny = min{ny,...,n4} and also a3 < a4. By [6, Theorem 7] a monomial curve
C(n) has Cohen-Macaulay tangent cone if and only if x; is not a zero divisor in the
ring K[z1,...,24]/I(n).. Hence if C(n) has Cohen-Macaulay tangent cone at the
origin, then I(n), : (x1) = I(n),. Without loss of generality we can assume that
ug < ag. In case that us > ag we can write us = gas+h, where 0 < h < as. Then we
can replace the binomial 2 #42 —x43z4* in S with the binomial z{* 9% 2k —x43 244,
Without loss of generality we can also assume that ug < ag.

Theorem 2.1. Suppose that us > 0 and ugy > 0. Then C(n) has Cohen-Macaulay
tangent cone at the origin if and only if the ideal I(n), is either a complete inter-
section or an almost complete intersection.

Proof. (<) If the minimal number of generators of I(n), is either three or four,
then C'(n) has Cohen-Macaulay tangent cone at the origin.

(=) Let f1 =27 — 232, fo = 25° — a3, f3 = x w3? — x5°xy*. We distinguish
the following cases

(1) ug < ap. Note that x*™" — 21 24225*7"* € I(n). We will show that
as + ug < up + us + az — uz. Suppose that w1 + us + ag — uz < aq + ugq,
then 23225 " € I(n). : (x1) and therefore z5?x5* ™ “* € I(n),. Since
{f1, f2, fs} is a generating set of I(n), the monomial z5%z5* “* is di-
vided by at least one of the monomials 5% and z5°. But us < a2 and
az —uz < ag, 80 ag + ug < uy + ug + az —uz. Let G = {f1, fo, f3, fa =
(T — g ah?a§? "}, We will prove that G is a standard basis for
I(n) with respect to the negative degree reverse lexicographical order with
r3 > x4 > To > x1. Note that ug + ug < uy; + us, since uz + ug <
u1 + uz + ag — a4 and also ag — aqg < 0. Thus LM(f3) = z5%xy*. Fur-
thermore LM(f1) = 3%, LM(f2) = x3* and LM(fy) = 2{**t*4. Therefore
NF (spoly(fi, f;)|G) = 0 as LM(f;) and LM(f;) are relatively prime, for
(i,7) € {(1,2),(1,3),(1,4),(2,4)}. We compute spoly(fa, f3) = —f4, so
NF (spoly(fz, f3)|G) = 0. Next we compute spoly(fs, f4) = x]*z3%x5® —
xytry?xy®. Then LM(spoly(fs, fa)) = x7 x5%x5® and only LM(f2) divides
LM(spoly(fs, f4)). Also ecart(spoly(fs, f1)) = a4 — ag = ecart(fz). Then
spoly(fa, spoly(fs, f4)) = 0 and NF(spoly(fs, f4)|G) = 0. By [8, Lemma
5.5.11] I(n), is generated by the least homogeneous summands of the ele-
ments in the standard basis G. Thus the minimal number of generators for
I(n), is least than or equal to 4.

(2) uz = az. Note that z*™"* — 2117912537 ¢ J(n). We will show that
a4 +ug < uy + a; + az — ug. Clearly the above inequality is true when
ug = ag. Suppose that uz < az and u; + a; + ag — uz < aq + ug, then
57" € I(n), : (x1) and therefore z5°™“* € I(n),. Thus z5*~"® is di-
vided by z3°, a contradiction. Consequently a4 + w4 < u1 + a1 + ag — us.
We will prove that H = {f1, fo, f5 = 27" — af32}*, fo = af T —
g T34 s a standard basis for I(n) with respect to the negative de-
gree reverse lexicographical order with z3 > x4 > 29 > x1. Here LM(f1) =
23?, LM(fy) = 2§, LM(f5) = x§*z}* and LM(fs) = x§**t*. Therefore
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NF (spoly(fi, f;)|H) = 0 as LM(f;) and LM(f;) are relatively prime, for
(1,7) € {(1,2),(1,5),(1,6), (2,6)}. We compute spoly(fa, f5) = —fs, there-
fore NF(spoly(fQ,f5)| ) = 0. Furthermore bpoly(f5 fo) = a1 ags —
g% and also LM(spoly(fs, f6)) = 24T 253, Only LM(f2) divides
LM(spoly(fs, f6)) and ecart(spoly(fs, f¢)) = as — ag = ecart(fz). Then
spoly(fa, spoly(fs, fs)) = 0 and therefore NF (spoly(fs, f6)|H) = 0. By [8,
Lemma 5.5.11] I(n), is generated by the least homogeneous summands of
the elements in the standard basis H. Thus the minimal number of gener-
ators for I(n), is least than or equal to 4. O

Corollary 2.2. Suppose that uz > 0 and ug > 0.

(1) Assume that uz < az. Then C(n) has Cohen-Macaulay tangent cone at the
origin if and only if ag + ug < uy 4+ uo + az — ug.

(2) Assume that ug = az. Then C(n) has Cohen-Macaulay tangent cone at the
origin if and only if ag + ug < uy + a1 + a3 — us.

Theorem 2.3. Suppose that either us = 0 or ugy = 0. Then C(n) has Cohen-
Macaulay tangent cone at the origin if and only if the ideal I(n), is a complete
intersection.

Proof. Tt is enough to show that if C'(n) has Cohen-Macaulay tangent cone at the
origin, then the ideal I(n), is a complete intersection. Suppose first that uz = 0.
Then {f1 = 7' — 252, fo = 5% — xy*, f3s = x4* — 2] 25?} is a minimal generating
set of I(n). If ug = as, then {f1, fo, 2}* — 2% 7} is a standard basis for I(n) with
respect to the negative degree reverse lexicographical order with xs > x4 > x9 > ;.
By [8, Lemma 5.5.11] I(n), is a complete intersection. Assume that us < as. We
will show that ug < uy + us. Suppose that us > uy + uQ, then 252 € I(n), : (x1)
and therefore 3% € I(n),. Thus z3?* is divided by z5?, a contradiction. Then
{f1, f2, f3} is a standard basis for I(n) with respect to the negative degree reverse
lexicographical order with x3 > x4 > x2 > x1. Note that LM(f1) = 232, LM(f2) =

x5® and LM(f3) = zy*. By [8, Lemma 5.5.11] I(n), is a complete intersection.
Suppose now that ug = 0, so necessarily us = as. Then {f1, fo, fa = zj* — ] 252}
is a minimal generating set of I(n). If ug = ag, then {fi, f2,2§* — z{* 71} is a
standard basis for I(n) with respect to the negative degree reverse lexicographical
order with x3 > x4 > x9 > 1. Thus, from [8, Lemma 5.5.11], I(n), is a complete
intersection. Assume that us < ag, then a4 < uy + ug and also {f1, fo, f4} is a
standard basis for I(n) with respect to the negative degree reverse lexicographical
order with x3 > x4 > x2 > x1. From [8, Lemma 5.5.11] we deduce that I(n), is a
complete intersection. O

Remark 2.4. In case (B) the minimal number of generators of I(n), can be arbi-
trarily large even if the tangent cone of C'(n) is Cohen-Macaulay, see [14, Proposi-
tion 3.14].

Given a complete intersection monomial curve C'(n), we next study the complete
intersection property of C(n+wv). Let M be a non-zero r X s integer matrix, then
there exist an r x r invertible integer matrix U and an s X s invertible integer matrix
V such that UMV = diag(d1,...,6m,0,...,0) is the diagonal matrix, where d; for
all j = 1,2,...,m are positive integers such that 6;|0;41, 1 < i < m — 1, and m
is the rank of M. The elements é1,...,d,, are the invariant factors of M. By
[9, Theorem 3.9] the product d1d2 - - - d,, equals the greatest common divisor of all
non-zero m X m minors of M.

The following proposition will be useful in the proof of Theorem 2.6.

Proposition 2.5. Let B = {fl =ab —al fo=abr ol fy = a2V a2 — 2t alt} be
a set of binomials in K[x1,...,x4], whereb; > 1 for all1 <i <4, at least one of vy,
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vy is non-zero and at least one of vs, vq is non-zero. Let ng = ba(bzvg+v3by), no =
bl(b3v4 + ’U3b4), ng = b4(b11}2 + Ule), Nng = b3(b11}2 + 111[)2). [f gcd(nl, .. ,n4) =1,
then I(n) is a complete intersection ideal generated by the binomials f1, fo and f3.

Proof. Consider the vectors d; = (b1, —b2,0,0), do = (0,0,b3,—bys) and ds =

(v1,v2, —vs, —vy). Clearly d; € kerz(ni,...,nq) for 1 < i < 3, so the lattice
L= 2?21 7Zd; is a subset of kery(ni,...,ns). Consider the matrix
bl 0 U1
o 71)2 0 (%)
M= 0 b3 —vV3
0 —b4 —U4

It is not hard to show that the rank of M equals 3. We will prove that L is
saturated, namely the invariant factors d;, do and d3 of M are all equal to 1. The
greatest common divisor of all non-zero 3 x 3 minors of M equals the greatest
common divisor of the integers m1, na, ng and ny. But ged(ng,...,n4) = 1, so
010203 = 1 and therefore 7 = 6 = d3 = 1. Note that the rank of the lattice
kerz(ni,...,n4) is 3 and also equals the rank of L. By [17, Lemma 8.2.5] we have
that L = kerz(ny,...,n4). Now the transpose M* of M is mixed dominating. Recall
that a matrix P is mixed dominating if every row of P has a positive and negative
entry and P contains no square submatrix with this property. By [5, Theorem 2.9]
I(n) is a complete intersection on the binomials f1, fo and f3. U

Theorem 2.6. Let I(n) be a complete intersection ideal generated by the binomials
fi=ait —x3?, fo=a5® —ay* and f3 = x]'xy? —x53xy*. Then there exist vectors
vi, 1 < i < 22, in N* such that for all w > 0, the toric ideal I(n + wv;) is a

complete intersection whenever the entries of n 4+ wv; are relatively prime.

Proof. By [11, Theorem 6] n; = as(asug + uzaq), ne = a1(aszug + usaq), ng =
as(ar1us + urasz), ng = az(aiug + uiaz). Let vi = (asas, a1as, azaq, azas) and B =
{fi,fa, fa= acll“erng —xgsxﬁfﬁw}. Then ny +wasas = as(as(us+w)+usay), no+
wajaz = a1 (az(ugtw)+usay), ng+wasay = ag(aius+(u1+w)ag) and ng+wasas =
as(ajuz + (u1 +w)az). By Proposition 2.5 for every w > 0, the ideal I(n+wvy) is
a complete intersection on f1, fo and f4 whenever ged(ny +wasas, ne +wayas, ng +
wWaaa4, M4 + wagag) = 1. Consider the vectors Vo = (agag,alag, a1a47a1a3), V3 =
(a2a4,a1a4, a2a4,a2a3), vy = (a2a4, a1ay4,0104, a1a3), Vs = (ag(ag + 0,4), al(ag +
a4),0,0) and vg = (0,0, as(a;+az),asz(ai1+az)). By Proposition 2.5 for every w > 0,

I(n+wvsy) is a complete intersection on f1, fo and xll“acgﬁw — :zrg%ff“w whenever
the entries of n + wvy are relatively prime, I(n 4+ wvs) is a complete intersection

on fi, fo and ' Tzl — xé‘”wx? whenever the entries of n + wvs are relatively

prime, and I(n+wvy) is a complete intersection on fi, fo and z}* x> T —z3 T Y
whenever the entries of n 4+ wvy, are relatively prime. Furthermore for all w > 0,
I(n+wvs) is a complete intersection on f1, fo and z}* 242 — 25372} ™" whenever
the entries of n + wvs are relatively prime, and I(n + wvg) is a complete inter-
section on f1, f and (' Tzt — 2482 whenever the entries of n + wvg are
relatively prime. Counsider the vectors vy = (az(as + a4),a1(as + a4), azaq, asas),
vs = (a2(as + a4),a1(ag + ag),as(ay + a2),a3(a; + a2)), vg = (0,0, aza4, azas),
vio = (aga4, a1a4, as(ar + a2),as(ar + a2)), vii = (azas, aras, as(ar + az), az(a; +
az)), viz = (az(as + aa),a1(as + as),a1a4,a1a3), viz = (0,0,a1a4,a1a3), V14 =
(aza4,a1a4,0,0) and vi5 = (azas,a1a3,0,0). Using Proposition 2.5 we have that
for all w > 0, I(n 4+ wv;), 7 < i < 15, is a complete intersection whenever the
entries of n 4+ wv; are relatively prime. For instance I(n + wvg) is a complete
intersection on the binomials fi, fo and @' T"“x4? — z4*z4*. Consider the vec-

tors vig = (asua + usaa, azug + usas, as(ur + u2), az(ur + u2)), vir = (0,azus +
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U3a4, u2a47u2a3), Vig = (CL3’U,4 + ugaq, 0, uay4, U1a3>, Vig = (CLQU4, aiuyg, 0, a1us +
u1a2), Voo = (aus, aius, ajug + uias,0), vor = (az(as +us), a1(as + u4), 0, ar1uz +
ujag) and voo = (ag(us + ug), a1 (us + uq), arus + uiaz, ajus + uras). It is easy to
see that for all w > 0, the ideal I(n + wv;), 16 < i < 22, is a complete intersection
whenever the entries of n 4+ wv; are relatively prime. For instance I(n + wvig) is

a complete intersection on the binomials fo, f3 and 2§ ™% — z5>T*. O

Example 2.7. Let n = (93,124,195,117), then I(n) is a complete intersection on
the binomials = — 23, 23 — 25 and 223 — 232]. Here a1 = 4, ax = 3, a3 = 3,
ag =5, u1 =9, ug = 3, ug = 2 and ug = 7. Consider the vector v; = (9,12, 15,9).
For all w > 0 the ideal I(n+wvy) is a complete intersection on ] —x3, ¥3 — x5 and
{3 — 222977 whenever ged(93 4 9w, 124 + 12w, 195 + 15w, 117 + 9w) = 1. By
Corollary 2.2 the monomial curve C'(n + wvy) has Cohen-Macaulay tangent cone
at the origin. Consider the vector v4 = (15,20, 20, 12) and the sequence n+ 9v, =
(228,304, 375,225). The toric ideal I(n 4 9v4) is a complete intersection on the
binomials x} — 23, 23 — 23 and 2323 — 23232, Note that 235 — 23232 € I(n+ 9vy),
so 22232 € I(n+9vy), and also 23 € I(n+9vy). : (x4). If C(n+ 9vy) has Cohen-
Macaulay tangent cone at the origin, then 2% € I'(n + 9v4). a contradiction. Thus

C(n + 9vy4) does not have a Cohen-Macaulay tangent cone at the origin.

Theorem 2.8. Let I(n) be a complete intersection ideal generated by the binomials

fi =it — 232, fo =23 — a3 and f3 = x)'xy® — x5*xy*. Consider the vector
d = (a2as,aqas,a2a4,a2a3). If C(n) has Cohen-Macaulay tangent cone at the

origin, then for every w > 0 the monomial curve C(n + wd) has Cohen-Macaulay
tangent cone at the origin whenever the entries of n 4+ wd are relatively prime.

Proof. Let n; = min{ny,...,ns} and also a3 < ay. Without loss of generality
we can assume that us < ao and uz < az. By Theorem 2.6 for every w > 0, the
ideal T(n+wd) is a complete intersection on fi, fo and f4 = affﬁwx;‘z —z35® xﬁf“w
whenever the entries of n + wd are relatively prime. Note that ni + wasasz =
min{m +waszas, net+waas, N3 +wasay, n4+wa2a3}. Suppose that ug > 0 and ug >
0. Assume that us < as. By Corollary 2.2 it holds that a4 +uq < w1 +us +ag —us
and therefore
ag + (ug + w) < (u1 +w) + ua + az — us.

Thus, from Corollary 2.2 again C'(n + wd) has Cohen-Macaulay tangent cone at
the origin. Assume that us = as. Then, from Corollary 2.2, we have that a4 +ug <
u1 +ay +as —ug and therefore ag + (ug +w) < (u; +w)~+a; +as —ug. By Corollary
2.2 C(n + wd) has Cohen-Macaulay tangent cone at the origin.

Suppose now that uz = 0. Then {f1, fa, f5 = z4*T* — 2?22} is a minimal
generating set of I(n+wd). If ug = ag, then {f1, fo, 2{* T — 2?79 T1 i5 a stan-
dard basis for I(n+wd) with respect to the negative degree reverse lexicographical
order with 3 > x4 > x3 > 1. Thus I(n + wd). is a complete intersection and
therefore C'(n+ wd) has Cohen-Macaulay tangent cone at the origin. Assume that
ug < ag, then ug < ug4wus and therefore ug+w < (uy +w)+us. The set {f1, fo, f5}
is a standard basis for I(n+wd) with respect to the negative degree reverse lexico-
graphical order with x5 > x4 > x5 > 1. Thus I(n+wd), is a complete intersection
and therefore C'(n 4+ wd) has Cohen-Macaulay tangent cone at the origin.
Suppose that us = 0, so necessarily uz = az. Then {fy, fo,z3* ™" — 2% 22} is a
minimal generating set of I(n + wd). If uy = ag, then {fi, fo, x§* " — gttty
is a standard basis for I(n+wd) with respect to the negative degree reverse lexico-
graphical order with x5 > x4 > x5 > 1. Thus I(n+wd), is a complete intersection
and therefore C'(n + wd) has Cohen-Macaulay tangent cone at the origin. Assume
that ug < ag, then ay < uy + ug and therefore ay + w < (u; + w) + ug. The
set {f1, fo, 2{* T — 27242} is a standard basis for I(n + wd) with respect to
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the negative degree reverse lexicographical order with x3 > x4 > 22 > x1. Thus
I(n+wd). is a complete intersection and therefore C'(n+wd) has Cohen-Macaulay
tangent cone at the origin. (|

Theorem 2.9. Let I(n) be a complete intersection ideal generated by the binomials
fi =it — 232, fo = a5® —xy* and f3 = )" xy? — x5*xyt. Consider the vectors
d; = (0,0, aza4,a2a3) and ds = (0,0, a1a4,ara3). Then there exists a non-negative
integer wo such that for all w > wg, the monomial curves C(n + wd;) and C(n +
wdy) have Cohen-Macaulay tangent cones at the origin whenever the entries of the
corresponding sequence (m + wdy for the first family and n + wds for the second)

are relatively prime.

Proof. Let n; = min{ny,...,n4} and a3 < ay4. Suppose that us < as and
uz < az. By Theorem 2.6 for all w > 0, I(n + wd;) is a complete intersec-
tion on fi, fo and fy = 2} TVak? — 2¥32}* whenever the entries of n + wdy
are relatively prime. Remark that ny = min{ni, ns,ng + wasas,ny + wasas}.
Let wg be the smallest non-negative integer greater than or equal to usg + ug —
u1 — uo + a4 — az. Then for every w > wy we have that a4 + ug < u; + w +
uz + az — us, SO Uz + ug < up + w4+ ua. Let G = {f1, fo, fa, 5 = a:Z”““ —
a:qfﬁwx;”zg?’_"?’}. We will prove that for every w > wg, G is a standard basis
for I(n 4+ wd;) with respect to the negative degree reverse lexicographical order
with 3 > x4 > x2 > x1. Note that LM(f1) = 252, LM(f2) = z3*, LM(fy) =
ryryt and LM(fs) = 2§*T". Therefore NF(spoly(fi, f;)|G) = 0 as LM(f;) and
LM(f;) are relatively prime, for (i,5) € {(1,2),(1,4),(1,5),(2,5)}. We compute
spoly(fa, fa) = —f5, so NF(spoly(fa, f4)|G) = 0. Next we compute spoly(fa, f5) =
gttt T Wal2 % Then LM(spoly(fs, f5)) = o T z22%* and only
LM(f2) divides LM(spoly(fs, f5)). Also ecart(spoly(fs, f5)) = ag — az = ecart(f2).
Then spoly( fa, spoly(fa, f5)) = 0 and NF(spoly(fs, f5)|G) = 0. Thus the minimal
number of generators for I(n + wdy). is either three or four, so from [14, Theorem
3.1] for every w > wyp, C'(n+ wd;) has Cohen-Macaulay tangent cone at the origin
whenever the entries of n + wd; are relatively prime.

By Theorem 2.6 for all w > 0, I(n + wdz) is a complete intersection on fi, fa
and fo = o 22T — 242 24* whenever the entries of n 4+ wds are relatively prime.
Remark that ny = min{ny, na, ng + wayaq, ng + wayaz}. For every w > wy the set
H = {f1, f2, fo, o3* T — 21252724373} is a standard basis for I(n + wdy) with
respect to the negative degree reverse lexicographical order with z3 > x4 > z2 > x7.
Thus the minimal number of generators for I(n + wdy). is either three or four, so
from [14, Theorem 3.1] for every w > wp, C(n+ wds) has Cohen-Macaulay tangent
cone at the origin whenever the entries of n 4+ wds are relatively prime. O

Example 2.10. Let n = (15,25,24,16), then I(n) is a complete intersection on
the binomials x?—mg, x%—xi and 129 —x3x4. Here ay =5, a9 =3, a3 = 2, ag = 3,
u; = 1,1 <i < 4. Note that 2] — x12223 € I(n), so, from Corollary 2.2, C(n) does
not have a Cohen-Macaulay tangent cone at the origin. Consider the vector d; =
(0,0,9,6). For every w > 0 the ideal I(n + wd;) is a complete intersection on the
binomials 5 — 3, £3—2% and 2V 29 — 2324 whenever ged(15, 25, 24+9w, 16-+6w) =
1. By Theorem 2.9 for every w > 1, the monomial curve C'(n + wd;) has Cohen-
Macaulay tangent cone at the origin whenever ged(15, 25,24 + 9w, 16 4 6w) = 1.

The next example gives a family of complete intersection monomial curves sup-
porting M. Rossi’s problem, although their tangent cones are not Cohen-Macaulay.
To prove it we will use the following proposition.

Proposition 2.11. [2, Proposition 2.2] Let I C Klx1,2o,...,24] be a monomial
ideal and I = (J,x%) for a monomial ideal J and a monomial x*. Let p(I) denote
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the numerator g(t) of the Hilbert Series for K[x1,xa,...,2q4)/I. Then p(I) = p(J)—
t4sC0p( ]+ (x1)).

Example 2.12. Consider the family n, = 8m2?+6, no = 20m2+15, n3 = 12m?+15
and ny = 8m? + 10, where m > 1 is an integer. The toric ideal I(n) is minimally
generated by the binomials

s — x%,x% — xi,x% To — IgIEZm .

Consider the vector vi = (4,10, 6,4) and the family n} = n; 4+ 4w, ny = ny + 10w,
nh = n3 + 6w, nj = ng + 4w where w > 0 is an integer. Let n’ = (nf, nh, ns,n}),
then for all w > 0 the toric ideal I(n’) is minimally generated by the binomials

2 — 2l 2 — a2 x?m TWry — zgxim2+7"

whenever ged(n}, nb, n4,n}) = 1. Let C,,(n’) be the corresponding monomial curve.
By Corollary 2.2 for all w > 0, the monomial curve Cy,(n’) does not have Cohen-
Macaulay tangent cone at the origin whenever ged(n},nb,n4,n)) = 1. We will
show that for every w > 0, the Hilbert function of the ring K[[tnll, e ,t"il]] is
non-decreasing whenever ged(n, nj,n5,ny) = 1. It suffices to prove that for every
w > 0, the Hilbert function of K|[x1,z2,x3,24]/I(n'), is non-decreasing whenever
ged(nf, nh,nk,n}y) = 1. The set

2 3 2m? +w 2m24+w _2m?4+w+3 2m? 4w
G= {x1 x27173 Ty, Ty L2 — T3Ty » Ly — I T2T3,
2m2+w+5 2om2+w+3 _ 4m?42w+5 Am242w+3
x] T3 — ToTj , ] -y }

is a standard basis for I(n’) with respect to the negative degree reverse lexicograph-
ical order with x4 > x5 > a2 > 1. Thus I(n’), is generated by the set

2 4m? +2w+3 2m2+w 2m2+w 2m2+w 2m2+w+3
{23, 23, 7} x] XoX3, X7 To — T3T] , Lok }.

Also (LT(I(n’).)) with respect to the aforementioned order can be written as,

2 2 2 2
(LT(I(n'))) = (23, 23, 23" T2 apad™ 008 g™ 00 2™ W agay).

Since the Hilbert function of K[x1, 22, 3, z4]/I(n’). is equal to the Hilbert function
of K[y, x2,x3,24]/(LT(I(n').)), it is sufficient to compute the Hilbert function of
the latter. Let

2 2
Jo = (LT(I(n'),)), J; = (J:Q,xg,x4m FROAD oA TWES At

)

J2 <$2,l‘§,l‘4m +2w+3 x2xim +w+3> J3 <$2,$§,l‘4m +2w+3>
Remark that J; = (J;41,q;), where qo = x%m T3, g1 = x3x2m T and go =
x2xim2+w+3. We apply Proposition 2.11 to the ideal J; for 0 < i < 2, so
p(Ji) = p(Jis1) — 989 p(Jipy < (q:)). (2.1)

Note that deg(qo) = 2m? + w + 2, deg(q1) = 2m? + w + 1 and deg(gz) = 2m?
w + 4. In this case, it holds that J; : (o) = <x2,w3,xim toy Ty {qr)

<$2,$37xim Tt poxd) and Js (o) = (xg,xg,xim %) We have that

p(J3) = (1— t)3(1 43442+ ppdm® +2w+2 + gpdm® +2w+3 + t4m2+2w+4)_

Substituting all these recursively in Equation (2.1), we obtain that the Hilbert series
of Ky, x2,3,24]/Jo is

+

1 + 3t + 4t2 RS 4t2m2+w + 3t2m2+w+1 + t2m2+w+2 + t2m2+w+3 + t4m2+2w+2
1-1¢ ’
Since the numerator does not have any negative coefficients, the Hilbert function
of K[x1,x2,x3,24]/Jy is non-decreasing whenever ged(n},nb, nk,n}) = 1.
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3. THE casE (B)

In this section we assume that after permuting variables, if necessary, S = {z7* —
x9?, w5 — )t xy?, xy* —x'xs?xs® b is a minimal generating set of I(n). Proposition

3.1 will be useful in the proof of Theorem 3.2.

Proposition 3.1. Let B = {f; = 2t — a2, fo = 2 — a§as2, f3 = 2b —
x" ey xy?} be a set of binomials in K(x1,...,x4], where b; > 1 for all 1 <i <4,
at least one of c1, co is non-zero and at least one of my, mo and ms is non-zero. Let
ny = bobsby, no = b1bszby, n3 = b4(b102 + Clbg), ng = m3(b102 + bzcl) + bg(blmz +
mby). If ged(ny, ..., ng) = 1, then I(n) is a complete intersection ideal generated
by the binomials f1, fa, f3.

Proof. Consider the vectors d; = (b1, —b2,0,0), do = (—c1, —c2,b3,0) and d3 =
(—my,—mg, —mg,by). Clearly d; € kerz(ni,...,nq) for 1 < i < 3, so the lattice
L= Z§:1 7d; is a subset of kerz(ny,...,ny). Let

b1 —C1 —my
o —b2 —C9 —My
M= 0 bg —ms ’
0 0 ba

then the rank of M equals 3. We will prove that the invariant factors d1, d2 and d3
of M are all equal to 1. The greatest common divisor of all non-zero 3 x 3 minors
of M equals the greatest common divisor of the integers ni, no, ng and ny. But
ged(ng,...,ng) = 1, s0 0192935 = 1 and therefore §; = d2 = d3 = 1. Note that
the rank of the lattice kerz(nq,...,n4) is 3 and also equals the rank of L. By [17,
Lemma 8.2.5] we have that L = kerz(ni,...,n4). Now the transpose M* of M is
mixed dominating. By [5, Theorem 2.9] the ideal I(n) is a complete intersection
on f1, fo and fs. O

Theorem 3.2. Let I(n) be a complete intersection ideal generated by the binomials
fi =it — 232, fo = 25® — xtxy? and f3 = xyt — 2t xy?xs®. Then there exist
vectors by, 1 < i <22, in N* such that for all w > 0, the toric ideal I(n + wb;) is

a complete intersection whenever the entries of n + wb; are relatively prime.

Proof. By [11, Theorem 6] n1 = asasaq, no = ajasaq, ng = as(ajus + uias),
ng = vs(ajug + aguy) + az(a1ve + viaz). Let by = (asas, aras, ajus + ujag, azag)
and consider the set B = {f1, fa, fa = xZ“‘w — x7f1+wm52 z5®}. Then ny + wazas =
asaz(agtw), netwajasz = ajaz(as+w), ng+w(ajustuias) = (ag+w)(ajustuias)
and nyg + wasaz = vs(ajus + asuy) + asz(ajve + (v1 + w)az). By Proposition 3.1
for every w > 0, the ideal I(n + wb;) is a complete intersection on fi, fo and
f1 whenever the entries of n + wb; are relatively prime. Consider the vectors
by = (a2a3,a1a3, a1u2 + uias, a1asz), by = (azas, a1as, a1ug + u1a2, a1ug + u1a2),
by = (O, 0,0, a3(a1 +a2)), bs = (0, 0,0, arus +asuq +a2a3) and bg = (0, 0,0,arus +
asuy + ajaz). By Proposition 3.1 for every w > 0, I(n + wbsy) is a complete

intersection on f1, fo and z*™" — x{ 25> 2% whenever the entries of n + whsy

are relatively prime, I(n + wbs) is a complete intersection on f;, fo and x§*** —

V2?28 whenever the entries of n + wbg are relatively prime, and I(n + wby)

is a complete intersection on fi, fo and xj* — xll’ﬁwxgﬁwxg?’ whenever the entries
of n + wby are relatively prime. Furthermore for every w > 0, I(n + wbs) is
a complete intersection on fi, fo and z{* — 2T 25? 253" whenever the entries
of n + wbs are relatively prime, and I(n + wbg) is a complete intersection on
f1, f2 and x§* — 2V 22TV whenever the entries of n + wbg are relatively
prime. Consider the vectors by = (asas,aias, ajus + uias,az(a; + az)), bg =

(aza3, aras, a1us +uraz, aus +uras + asas), by = (asas, a1as, a1us +uiaz, ajus +
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Urag + a1a3>, b = (0, 0,0,a1us + asu; + ag(al + a2)>, b1 = (a2a3,a1a3, ai1uo +
uiaz, 0), b12 = (O, O7 O, a2a3), b13 = (O, O7 O, a1a3), b14 = (O, O7 0, ajusg + agul) and
bis = (agas, aias, ajus +ujas, ajus +ujas +as(a; +az)). Using Proposition 3.1 we
have that for all w > 0, the ideal I(n+wb;), 7 <14 < 15, is a complete intersection
whenever the entries of n 4+ wb; are relatively prime. Finally consider the vectors
bis = (azas, azas, as(ui+usz), v3(us +uz)+az(vi+v2)), bir = (0, azas, asug, ugvs+
azvz), big = (aza4, 0, asur, u1vs+viaz), big = (aza4, ara4, azay, azvz+ajve+viaz),
bgo = (a2a4, a1a4,a104,01V3 4+ a1v2 + ’()1(12), b21 = (a2a4, a1aq, a4(a1 + az), vg(a1 +
a2) “+ ai1vg + Ulag) and b22 = (0,0,&4(&1 + a2)71}3(a1 + CLQ) + CLg(al + 0,2)). It is
easy to see that for all w > 0, the ideal I(n + wb;), 16 < i < 22, is a complete
intersection whenever the entries of n + wb; are relatively prime. For instance

I(n+wbyy) is a complete intersection on the binomials fy, z3° — % Tz ** and
aq v1tw, v2tw, U3
xyt —x] T Ve gt O

Example 3.3. Let n = (231,770,1023,674), then I(n) is a complete intersection
on the binomials 21° — 23, 2] — 112§ and 2}! — x12823. Here a; = 10, as = 3,
a3 =7, a4 = 11, uy = 11, ug = 6, vy = 1, vo = 8 and v3 = 1. Consider the
vector bay = (0,0,143,104), then for all w > 0 the ideal I(n + wbayy) is a com-
plete intersection on 1% — 23, 2] — #1'"25™ and z}' — 272525 whenever
ged(231,770,1023 + 143w, 674 4+ 104w) = 1. In fact, I(n + wbayy) is minimally gen-
erated by 10 — 23, 27 — 2125t and 2}' — 27172525, Remark that 231 =
min{231, 770, 1023 + 143w, 674 4+ 104w}. The set {x]® — 23, 27 — a1 a5t 2}t —
e TSt a3} is a standard basis for I(n 4 wbaoy) with respect to the negative
degree reverse lexicographical order with x4 > x5 > z2 > 1. So I(n 4 wbas), is a
complete intersection on x3, x5 and x}!, and therefore for every w > 0 the mono-
mial curve C'(n + whas) has Cohen-Macaulay tangent cone at the origin whenever
ged(231,770,1023 + 143w, 674 + 104w) = 1. Let byg = (77,77,187,80). For every
w > 0, I(n 4 whbyg) is a complete intersection on z19% — 237 27 — 212§ and
il — 212823 whenever ged (231 + 77w, 770+ 77w, 1023+ 187w, 674+80w) = 1. Note
that 231+ 77w = min{231+4 77w, 7704 77w, 1023+ 187w, 674+80w}. For 0 <w <5
the set {x19T — 3% o7 — 212§ xi' — 2125 a3} is a standard basis for
I(n + wbig) with respect to the negative degree reverse lexicographical order with
T4 > 3 > Ty > 1. Thus I(n+ wbyg), is minimally generated by {z3"*, 2], 21},
so for 0 < w < 5 the monomial curve C(n+wbig) has Cohen-Macaulay tangent cone
at the origin whenever ged(231+ 77w, 770+ 77w, 1023 + 187w, 6744 80w) = 1. Sup-
pose that there is w > 6 such that C'(n + wbyg) has Cohen-Macaulay tangent cone
at the origin. Then 2823 € I(n+ wb1g). : (z1) and therefore x§z3 € I(n+wbig)..
Thus x5z3 is divided by m%‘“", a contradiction. Consequently for every w > 6 the
monomial curve C(n + wbyg) does not have Cohen-Macaulay tangent cone at the

origin whenever ged(231 + 77w, 770 4+ 77w, 1023 4+ 187w, 674 + 80w) = 1.

Theorem 3.4. Let I(n) be a complete intersection ideal generated by the binomials
fi =it — 232, fo=a5® — 2 xs? and f3 = xyt — 2t ey2xs®. Consider the vector
d = (0,0,a4(ay + az),vs(ar + az) + as(ay + az)). Then there exists a non-negative
integer wy such that for all w > wy, the ideal I(n+ wd). is a complete intersection

whenever the entries of n + wd are relatively prime.

Proof. By Theorem 3.2 for all w > 0, the ideal I(n + wd) is minimally generated
by G = {fi,f1 = 25 — 2TVt f = 2§t — 2P T2 k) whenever the
entries of n 4+ wd are relatively prime. Let w; be the smallest non-negative integer
greater than or equal to max{®—4l—42 @i—tizr2—2sl Then az < uy + ug + 2wy
and a4 < v1 + vy + v3 + 2w;. It is easy to prove that for every w > w; the set
G is a standard basis for I(n + wd) with respect to the negative degree reverse
lexicographical order with x4 > 23 > xa > 1. Note that LM(f;) is either x{*
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or x5%, LM(f4) = 5% and LM(f5) = z3*. By [8, Lemma 5.5.11] I(n + wd), is
generated by the least homogeneous summands of the elements in the standard
basis G. Thus for all w > w;, the ideal I(n 4+ wd), is a complete intersection
whenever the entries of n + wd are relatively prime. O

Proposition 3.5. Let I(n) be a complete intersection ideal generated by the bino-
mials fi = x]' — 32, fo = 5% — 2 x3? and f3 = xy* — 27 xy?, where vy > 0 and
vg > 0. Assume that as < ay, az < U1 + us, vo < as and a1 + v1 < as — Vg + aq.
Then there exists a vector b in N* such that for all w > 0, the ideal I(n + wb), is
almost complete intersection whenever the entries of n + wb are relatively prime.

Proof. From the assumptions we deduce that v; + vo < a4. Consider the vec-

tor b = (agas,aras,aius + uraz,azas). For every w > 0 the ideal I(n + wb) is

a complete intersection on fi, fo and fy = x{*T — 2V T2L? whenever the en-

tries of n + wb are relatively prime. We claim that the set G = {f1, f2, f4, f5 =
pP T 32720t g g standard basis for I(n 4 wb) with respect to the
negative degree reverse lexicographical order with 3 > z2 > z1 > z4. Note that
LM(f1) = 252, LM(f) = 25§, LM(fy) = 2"t 2%? and LM(f;5) = 27T, Also
spoly(f1, fa) = —f5. It suffices to show that NF(spoly(fs, f5)|G) = 0. We compute
spoly(fi, f5) = a%a%4 % — 221g% . Then LM(spoly(fi, f5)) — 2824+ and
only LM( f1) divides LM(spoly(f4, f5)). Moreover ecart(spoly(fs, f5)) = a1 — as =

ecart(f1). So spoly(f1,spoly(fs, f5)) = 0 and also NF(spoly(fs, f5)|G) = 0. Thus

(1) If a1 + v1 < ag — vy + a4, then I(n 4+ wb), is minimally generated by
{x;2 , z337 1.7111 +wx7212 , x<111+v1+w}.
(2) If a1 + v1 = ag — vy + a4, then I(n 4+ wb), is minimally generated by

{x;2»$gs7x11)1+w$527f5}~ (]
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