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Abstract. Let C(n) be a complete intersection monomial curve in the 4-
dimensional affine space. In this paper we study the complete intersection

property of the monomial curve C(n + wv), where w > 0 is an integer and

v ∈ N4. Also we investigate the Cohen-Macaulayness of the tangent cone of
C(n + wv).

1. Introduction

Let n = (n1, n2, . . . , nd) be a sequence of positive integers with gcd(n1, . . . , nd) =
1. Consider the polynomial ring K[x1, . . . , xd] in d variables over a field K. We shall
denote by xu the monomial xu1

1 · · ·x
ud

d of K[x1, . . . , xd], with u = (u1, . . . , ud) ∈ Nd

where N stands for the set of non-negative integers. The toric ideal I(n) is the kernel
of the K-algebra homomorphism φ : K[x1, . . . , xd]→ K[t] given by

φ(xi) = tni for all 1 ≤ i ≤ d.

Then I(n) is the defining ideal of the monomial curve C(n) given by the parametriza-
tion x1 = tn1 , . . . , xd = tnd . The ideal I(n) is generated by all the binomials xu−xv,
where u−v runs over all vectors in the lattice kerZ(n1, . . . , nd) see for example, [16,
Lemma 4.1]. The height of I(n) is d−1 and also equals the rank of kerZ(n1, . . . , nd)
(see [16]). Given a polynomial f ∈ I(n), we let f∗ be the homogeneous summand
of f of least degree. We shall denote by I(n)∗ the ideal in K[x1, . . . , xd] generated
by the polynomials f∗ for f ∈ I(n).

Deciding whether the associated graded ring of the local ring K[[tn1 , . . . , tnd ]]
is Cohen-Macaulay constitutes an important problem studied by many authors,
see for instance [1], [6], [14]. The importance of this problem stems partially
from the fact that if the associated graded ring is Cohen-Macaulay, then the
Hilbert function of K[[tn1 , . . . , tnd ]] is non-decreasing. Since the associated graded
ring of K[[tn1 , . . . , tnd ]] is isomorphic to the ring K[x1, . . . , xd]/I(n)∗, the Cohen-
Macaulayness of the associated graded ring can be studied as the Cohen-Macaulayness
of the ring K[x1, . . . , xd]/I(n)∗. Recall that I(n)∗ is the defining ideal of the tan-
gent cone of C(n) at 0.

The case that K[[tn1 , . . . , tnd ]] is Gorenstein has been particularly studied. This
is partly due to the M. Rossi’s problem [13] asking whether the Hilbert function
of a Gorenstein local ring of dimension one is non-decreasing. Recently, A. Oneto,
F. Strazzanti and G. Tamone [12] found many families of monomial curves giving
negative answer to the above problem. However M. Rossi’s problem is still open
for a Gorenstein local ring K[[tn1 , . . . , tn4 ]]. It is worth to note that, for a com-
plete intersection monomial curve C(n) in the 4-dimensional affine space (i.e. the
ideal I(n) is a complete intersection), we have, from [14, Theorem 3.1], that if
the minimal number of generators for I(n)∗ is either three or four, then C(n) has

2010 Mathematics Subject Classification. 14M10, 14M25, 13H10.
Key words and phrases. Monomial curve, Complete intersection, Tangent cone.

1



2 A. KATSABEKIS

Cohen-Macaulay tangent cone at the origin. The converse is not true in general,
see [14, Proposition 3.14].

In recent years there has been a surge of interest in studying properties of the
monomial curve C(n+wv), where w > 0 is an integer and v ∈ Nd, see for instance
[4], [7] and [18]. This is particularly true for the case that v = (1, . . . , 1). In
fact, J. Herzog and H. Srinivasan conjectured that if n1 < n2 < · · · < nd are
positive numbers, then the Betti numbers of I(n + wv) are eventually periodic in
w with period nd − n1. The conjecture was proved by T. Vu [18]. More precisely,
he showed that there exists a positive integer N such that, for all w > N , the
Betti numbers of I(n + wv) are periodic in w with period nd − n1. The bound
N depends on the Castelnuovo-Mumford regularity of the ideal generated by the
homogeneous elements in I(n). For w > (nd − n1)2 − n1 the minimal number of
generators for I(n + w(1, . . . , 1)) is periodic in w with period nd − n1 (see [4]).
Furthermore, for every w > (nd−n1)2−n1 the monomial curve C(n+w(1, . . . , 1))
has Cohen-Macaulay tangent cone at the origin, see [15]. The next example provides
a monomial curve C(n+w(1, . . . , 1)) which is not a complete intersection for every
w > 0.

Example 1.1. Let n = (15, 25, 24, 16), then I(n) is a complete intersection on the
binomials x51 − x32, x23 − x34 and x1x2 − x3x4. Consider the vector v = (1, 1, 1, 1).
For every w > 85 the minimal number of generators for I(n + wv) is either 18, 19
or 20. Using CoCoA ([3]) we find that for every 0 < w ≤ 85 the minimal number
of generators for I(n+wv) is greater than or equal to 4. Thus for every w > 0 the
ideal I(n + wv) is not a complete intersection.

Given a complete intersection monomial curve C(n) in the 4-dimensional affine
space, we study (see Theorems 2.6, 3.2) when C(n+wv) is a complete intersection.
We also construct (see Theorems 2.8, 2.9, 3.4) families of complete intersection
monomial curves C(n + wv) with Cohen-Macaulay tangent cone at the origin.

Let ai be the least positive integer such that aini ∈
∑

j 6=i Nnj . To study the

complete intersection property of C(n + wv) we use the fact that after permuting
variables, if necessary, there exists (see [14, Proposition 3.2] and also Theorems 3.6
and 3.10 in [10]) a minimal system of binomial generators S of I(n) of the following
form:

(A) S = {xa1
1 − x

a2
2 , x

a3
3 − x

a4
4 , x

u1
1 xu2

2 − x
u3
3 xu4

4 }.
(B) S = {xa1

1 − x
a2
2 , x

a3
3 − x

u1
1 xu2

2 , xa4
4 − x

v1
1 x

v2
2 x

v3
3 }.

In section 2 we focus on case (A). We prove that the monomial curve C(n) has
Cohen-Macaulay tangent cone at the origin if and only if the minimal number of
generators for I(n)∗ is either three or four. Also we explicitly construct vectors
vi, 1 ≤ i ≤ 22, such that for every w > 0, the ideal I(n + wvi) is a complete
intersection whenever the entries of n + wvi are relatively prime. We show that
if C(n) has Cohen-Macaulay tangent cone at the origin, then for every w > 0
the monomial curve C(n + wv1) has Cohen-Macaulay tangent cone at the origin
whenever the entries of n + wv1 are relatively prime. Additionally we show that
there exists a non-negative integer w0 such that for all w ≥ w0, the monomial curves
C(n + wv9) and C(n + wv13) have Cohen-Macaulay tangent cones at the origin
whenever the entries of the corresponding sequence (n+wv9 for the first family and
n+wv13 for the second) are relatively prime. Finally we provide an infinite family
of complete intersection monomial curves Cm(n + wv1) with corresponding local
rings having non-decreasing Hilbert functions, although their tangent cones are not
Cohen-Macaulay, thus giving a positive partial answer to M. Rossi’s problem.

In section 3 we study the case (B). We construct vectors bi, 1 ≤ i ≤ 22, such
that for every w > 0, the ideal I(n + wbi) is a complete intersection whenever
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the entries of n +wbi are relatively prime. Furthermore we show that there exists
a non-negative integer w1 such that for all w ≥ w1, the ideal I(n + wb22)∗ is a
complete intersection whenever the entries of n + wb22 are relatively prime.

2. The case (A)

In this section we assume that after permuting variables, if necessary, S = {xa1
1 −

xa2
2 , x

a3
3 − x

a4
4 , x

u1
1 xu2

2 − x
u3
3 xu4

4 } is a minimal generating set of I(n). First we will
show that the converse of [14, Theorem 3.1] is also true in this case.

Let n1 = min{n1, . . . , n4} and also a3 < a4. By [6, Theorem 7] a monomial curve
C(n) has Cohen-Macaulay tangent cone if and only if x1 is not a zero divisor in the
ring K[x1, . . . , x4]/I(n)∗. Hence if C(n) has Cohen-Macaulay tangent cone at the
origin, then I(n)∗ : 〈x1〉 = I(n)∗. Without loss of generality we can assume that
u2 ≤ a2. In case that u2 > a2 we can write u2 = ga2+h, where 0 ≤ h < a2. Then we
can replace the binomial xu1

1 xu2
2 −x

u3
3 xu4

4 in S with the binomial xu1+ga1

1 xh2−x
u3
3 xu4

4 .
Without loss of generality we can also assume that u3 ≤ a3.

Theorem 2.1. Suppose that u3 > 0 and u4 > 0. Then C(n) has Cohen-Macaulay
tangent cone at the origin if and only if the ideal I(n)∗ is either a complete inter-
section or an almost complete intersection.

Proof. (⇐=) If the minimal number of generators of I(n)∗ is either three or four,
then C(n) has Cohen-Macaulay tangent cone at the origin.

(=⇒) Let f1 = xa1
1 − x

a2
2 , f2 = xa3

3 − x
a4
4 , f3 = xu1

1 xu2
2 − x

u3
3 xu4

4 . We distinguish
the following cases

(1) u2 < a2. Note that xa4+u4
4 − xu1

1 xu2
2 xa3−u3

3 ∈ I(n). We will show that
a4 + u4 ≤ u1 + u2 + a3 − u3. Suppose that u1 + u2 + a3 − u3 < a4 + u4,
then xu2

2 xa3−u3
3 ∈ I(n)∗ : 〈x1〉 and therefore xu2

2 xa3−u3
3 ∈ I(n)∗. Since

{f1, f2, f3} is a generating set of I(n), the monomial xu2
2 xa3−u3

3 is di-
vided by at least one of the monomials xa2

2 and xa3
3 . But u2 < a2 and

a3 − u3 < a3, so a4 + u4 ≤ u1 + u2 + a3 − u3. Let G = {f1, f2, f3, f4 =
xa4+u4
4 − xu1

1 xu2
2 xa3−u3

3 }. We will prove that G is a standard basis for
I(n) with respect to the negative degree reverse lexicographical order with
x3 > x4 > x2 > x1. Note that u3 + u4 < u1 + u2, since u3 + u4 ≤
u1 + u2 + a3 − a4 and also a3 − a4 < 0. Thus LM(f3) = xu3

3 xu4
4 . Fur-

thermore LM(f1) = xa2
2 , LM(f2) = xa3

3 and LM(f4) = xa4+u4
4 . Therefore

NF(spoly(fi, fj)|G) = 0 as LM(fi) and LM(fj) are relatively prime, for
(i, j) ∈ {(1, 2), (1, 3), (1, 4), (2, 4)}. We compute spoly(f2, f3) = −f4, so
NF(spoly(f2, f3)|G) = 0. Next we compute spoly(f3, f4) = xu1

1 xu2
2 xa3

3 −
xu1
1 xu2

2 xa4
4 . Then LM(spoly(f3, f4)) = xu1

1 xu2
2 xa3

3 and only LM(f2) divides
LM(spoly(f3, f4)). Also ecart(spoly(f3, f4)) = a4 − a3 = ecart(f2). Then
spoly(f2, spoly(f3, f4)) = 0 and NF(spoly(f3, f4)|G) = 0. By [8, Lemma
5.5.11] I(n)∗ is generated by the least homogeneous summands of the ele-
ments in the standard basis G. Thus the minimal number of generators for
I(n)∗ is least than or equal to 4.

(2) u2 = a2. Note that xa4+u4
4 − xu1+a1

1 xa3−u3
3 ∈ I(n). We will show that

a4 + u4 ≤ u1 + a1 + a3 − u3. Clearly the above inequality is true when
u3 = a3. Suppose that u3 < a3 and u1 + a1 + a3 − u3 < a4 + u4, then
xa3−u3
3 ∈ I(n)∗ : 〈x1〉 and therefore xa3−u3

3 ∈ I(n)∗. Thus xa3−u3
3 is di-

vided by xa3
3 , a contradiction. Consequently a4 + u4 ≤ u1 + a1 + a3 − u3.

We will prove that H = {f1, f2, f5 = xu1+a1
1 − xu3

3 xu4
4 , f6 = xa4+u4

4 −
xu1+a1
1 xa3−u3

3 } is a standard basis for I(n) with respect to the negative de-
gree reverse lexicographical order with x3 > x4 > x2 > x1. Here LM(f1) =
xa2
2 , LM(f2) = xa3

3 , LM(f5) = xu3
3 xu4

4 and LM(f6) = xu4+a4
4 . Therefore
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NF(spoly(fi, fj)|H) = 0 as LM(fi) and LM(fj) are relatively prime, for
(i, j) ∈ {(1, 2), (1, 5), (1, 6), (2, 6)}. We compute spoly(f2, f5) = −f6, there-
fore NF(spoly(f2, f5)|H) = 0. Furthermore spoly(f5, f6) = xu1+a1

1 xa3
3 −

xu1+a1
1 xa4

4 and also LM(spoly(f5, f6)) = xu1+a1
1 xa3

3 . Only LM(f2) divides
LM(spoly(f5, f6)) and ecart(spoly(f5, f6)) = a4 − a3 = ecart(f2). Then
spoly(f2, spoly(f5, f6)) = 0 and therefore NF(spoly(f5, f6)|H) = 0. By [8,
Lemma 5.5.11] I(n)∗ is generated by the least homogeneous summands of
the elements in the standard basis H. Thus the minimal number of gener-
ators for I(n)∗ is least than or equal to 4. �

Corollary 2.2. Suppose that u3 > 0 and u4 > 0.

(1) Assume that u2 < a2. Then C(n) has Cohen-Macaulay tangent cone at the
origin if and only if a4 + u4 ≤ u1 + u2 + a3 − u3.

(2) Assume that u2 = a2. Then C(n) has Cohen-Macaulay tangent cone at the
origin if and only if a4 + u4 ≤ u1 + a1 + a3 − u3.

Theorem 2.3. Suppose that either u3 = 0 or u4 = 0. Then C(n) has Cohen-
Macaulay tangent cone at the origin if and only if the ideal I(n)∗ is a complete
intersection.

Proof. It is enough to show that if C(n) has Cohen-Macaulay tangent cone at the
origin, then the ideal I(n)∗ is a complete intersection. Suppose first that u3 = 0.
Then {f1 = xa1

1 − x
a2
2 , f2 = xa3

3 − x
a4
4 , f3 = xu4

4 − x
u1
1 xu2

2 } is a minimal generating
set of I(n). If u2 = a2, then {f1, f2, xu4

4 −x
u1+a1
1 } is a standard basis for I(n) with

respect to the negative degree reverse lexicographical order with x3 > x4 > x2 > x1.
By [8, Lemma 5.5.11] I(n)∗ is a complete intersection. Assume that u2 < a2. We
will show that u4 ≤ u1 + u2. Suppose that u4 > u1 + u2, then xu2

2 ∈ I(n)∗ : 〈x1〉
and therefore xu2

2 ∈ I(n)∗. Thus xu2
2 is divided by xa2

2 , a contradiction. Then
{f1, f2, f3} is a standard basis for I(n) with respect to the negative degree reverse
lexicographical order with x3 > x4 > x2 > x1. Note that LM(f1) = xa2

2 , LM(f2) =
xa3
3 and LM(f3) = xu4

4 . By [8, Lemma 5.5.11] I(n)∗ is a complete intersection.
Suppose now that u4 = 0, so necessarily u3 = a3. Then {f1, f2, f4 = xa4

4 − x
u1
1 xu2

2 }
is a minimal generating set of I(n). If u2 = a2, then {f1, f2, xa4

4 − x
a1+u1
1 } is a

standard basis for I(n) with respect to the negative degree reverse lexicographical
order with x3 > x4 > x2 > x1. Thus, from [8, Lemma 5.5.11], I(n)∗ is a complete
intersection. Assume that u2 < a2, then a4 ≤ u1 + u2 and also {f1, f2, f4} is a
standard basis for I(n) with respect to the negative degree reverse lexicographical
order with x3 > x4 > x2 > x1. From [8, Lemma 5.5.11] we deduce that I(n)∗ is a
complete intersection. �

Remark 2.4. In case (B) the minimal number of generators of I(n)∗ can be arbi-
trarily large even if the tangent cone of C(n) is Cohen-Macaulay, see [14, Proposi-
tion 3.14].

Given a complete intersection monomial curve C(n), we next study the complete
intersection property of C(n+wv). Let M be a non-zero r×s integer matrix, then
there exist an r×r invertible integer matrix U and an s×s invertible integer matrix
V such that UMV = diag(δ1, . . . , δm, 0, . . . , 0) is the diagonal matrix, where δj for
all j = 1, 2, . . . ,m are positive integers such that δi|δi+1, 1 ≤ i ≤ m − 1, and m
is the rank of M . The elements δ1, . . . , δm are the invariant factors of M . By
[9, Theorem 3.9] the product δ1δ2 · · · δm equals the greatest common divisor of all
non-zero m×m minors of M .

The following proposition will be useful in the proof of Theorem 2.6.

Proposition 2.5. Let B = {f1 = xb11 −x
b2
2 , f2 = xb33 −x

b4
4 , f3 = xv11 x

v2
2 −x

v3
3 x

v4
4 } be

a set of binomials in K[x1, . . . , x4], where bi ≥ 1 for all 1 ≤ i ≤ 4, at least one of v1,
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v2 is non-zero and at least one of v3, v4 is non-zero. Let n1 = b2(b3v4 +v3b4), n2 =
b1(b3v4 + v3b4), n3 = b4(b1v2 + v1b2), n4 = b3(b1v2 + v1b2). If gcd(n1, . . . , n4) = 1,
then I(n) is a complete intersection ideal generated by the binomials f1, f2 and f3.

Proof. Consider the vectors d1 = (b1,−b2, 0, 0), d2 = (0, 0, b3,−b4) and d3 =
(v1, v2,−v3,−v4). Clearly di ∈ kerZ(n1, . . . , n4) for 1 ≤ i ≤ 3, so the lattice

L =
∑3

i=1 Zdi is a subset of kerZ(n1, . . . , n4). Consider the matrix

M =


b1 0 v1
−b2 0 v2

0 b3 −v3
0 −b4 −v4

 .

It is not hard to show that the rank of M equals 3. We will prove that L is
saturated, namely the invariant factors δ1, δ2 and δ3 of M are all equal to 1. The
greatest common divisor of all non-zero 3 × 3 minors of M equals the greatest
common divisor of the integers n1, n2, n3 and n4. But gcd(n1, . . . , n4) = 1, so
δ1δ2δ3 = 1 and therefore δ1 = δ2 = δ3 = 1. Note that the rank of the lattice
kerZ(n1, . . . , n4) is 3 and also equals the rank of L. By [17, Lemma 8.2.5] we have
that L = kerZ(n1, . . . , n4). Now the transpose M t ofM is mixed dominating. Recall
that a matrix P is mixed dominating if every row of P has a positive and negative
entry and P contains no square submatrix with this property. By [5, Theorem 2.9]
I(n) is a complete intersection on the binomials f1, f2 and f3. �

Theorem 2.6. Let I(n) be a complete intersection ideal generated by the binomials
f1 = xa1

1 − x
a2
2 , f2 = xa3

3 − x
a4
4 and f3 = xu1

1 xu2
2 − x

u3
3 xu4

4 . Then there exist vectors
vi, 1 ≤ i ≤ 22, in N4 such that for all w > 0, the toric ideal I(n + wvi) is a
complete intersection whenever the entries of n + wvi are relatively prime.

Proof. By [11, Theorem 6] n1 = a2(a3u4 + u3a4), n2 = a1(a3u4 + u3a4), n3 =
a4(a1u2 + u1a2), n4 = a3(a1u2 + u1a2). Let v1 = (a2a3, a1a3, a2a4, a2a3) and B =
{f1, f2, f4 = xu1+w

1 xu2
2 −x

u3
3 xu4+w

4 }. Then n1+wa2a3 = a2(a3(u4+w)+u3a4), n2+
wa1a3 = a1(a3(u4+w)+u3a4), n3+wa2a4 = a4(a1u2+(u1+w)a2) and n4+wa2a3 =
a3(a1u2 + (u1 +w)a2). By Proposition 2.5 for every w > 0, the ideal I(n+wv1) is
a complete intersection on f1, f2 and f4 whenever gcd(n1 +wa2a3, n2 +wa1a3, n3 +
wa2a4, n4 + wa2a3) = 1. Consider the vectors v2 = (a2a3, a1a3, a1a4, a1a3), v3 =
(a2a4, a1a4, a2a4, a2a3), v4 = (a2a4, a1a4, a1a4, a1a3), v5 = (a2(a3 + a4), a1(a3 +
a4), 0, 0) and v6 = (0, 0, a4(a1+a2), a3(a1+a2)). By Proposition 2.5 for every w > 0,
I(n+wv2) is a complete intersection on f1, f2 and xu1

1 xu2+w
2 −xu3

3 xu4+w
4 whenever

the entries of n + wv2 are relatively prime, I(n + wv3) is a complete intersection
on f1, f2 and xu1+w

1 xu2
2 − x

u3+w
3 xu4

4 whenever the entries of n +wv3 are relatively
prime, and I(n+wv4) is a complete intersection on f1, f2 and xu1

1 xu2+w
2 −xu3+w

3 xu4
4

whenever the entries of n + wv4 are relatively prime. Furthermore for all w > 0,
I(n+wv5) is a complete intersection on f1, f2 and xu1

1 xu2
2 −x

u3+w
3 xu4+w

4 whenever
the entries of n + wv5 are relatively prime, and I(n + wv6) is a complete inter-
section on f1, f2 and xu1+w

1 xu2+w
2 − xu3

3 xu4
4 whenever the entries of n + wv6 are

relatively prime. Consider the vectors v7 = (a2(a3 + a4), a1(a3 + a4), a2a4, a2a3),
v8 = (a2(a3 + a4), a1(a3 + a4), a4(a1 + a2), a3(a1 + a2)), v9 = (0, 0, a2a4, a2a3),
v10 = (a2a4, a1a4, a4(a1 + a2), a3(a1 + a2)), v11 = (a2a3, a1a3, a4(a1 + a2), a3(a1 +
a2)), v12 = (a2(a3 + a4), a1(a3 + a4), a1a4, a1a3), v13 = (0, 0, a1a4, a1a3), v14 =
(a2a4, a1a4, 0, 0) and v15 = (a2a3, a1a3, 0, 0). Using Proposition 2.5 we have that
for all w > 0, I(n + wvi), 7 ≤ i ≤ 15, is a complete intersection whenever the
entries of n + wvi are relatively prime. For instance I(n + wv9) is a complete
intersection on the binomials f1, f2 and xu1+w

1 xu2
2 − xu3

3 xu4
4 . Consider the vec-

tors v16 = (a3u4 + u3a4, a3u4 + u3a4, a4(u1 + u2), a3(u1 + u2)), v17 = (0, a3u4 +
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u3a4, u2a4, u2a3), v18 = (a3u4 + u3a4, 0, u1a4, u1a3), v19 = (a2u4, a1u4, 0, a1u2 +
u1a2), v20 = (a2u3, a1u3, a1u2 + u1a2, 0), v21 = (a2(a4 + u4), a1(a4 + u4), 0, a1u2 +
u1a2) and v22 = (a2(u3 + u4), a1(u3 + u4), a1u2 + u1a2, a1u2 + u1a2). It is easy to
see that for all w > 0, the ideal I(n +wvi), 16 ≤ i ≤ 22, is a complete intersection
whenever the entries of n + wvi are relatively prime. For instance I(n + wv16) is
a complete intersection on the binomials f2, f3 and xa1+w

1 − xa2+w
2 . �

Example 2.7. Let n = (93, 124, 195, 117), then I(n) is a complete intersection on
the binomials x41 − x32, x33 − x54 and x91x

3
2 − x23x74. Here a1 = 4, a2 = 3, a3 = 3,

a4 = 5, u1 = 9, u2 = 3, u3 = 2 and u4 = 7. Consider the vector v1 = (9, 12, 15, 9).
For all w ≥ 0 the ideal I(n+wv1) is a complete intersection on x41−x32, x33−x54 and
x9+w
1 x32 − x23xw+7

4 whenever gcd(93 + 9w, 124 + 12w, 195 + 15w, 117 + 9w) = 1. By
Corollary 2.2 the monomial curve C(n + wv1) has Cohen-Macaulay tangent cone
at the origin. Consider the vector v4 = (15, 20, 20, 12) and the sequence n+ 9v4 =
(228, 304, 375, 225). The toric ideal I(n + 9v4) is a complete intersection on the
binomials x41− x32, x33− x54 and x211 x

3
2− x23x224 . Note that x251 − x23x224 ∈ I(n+ 9v4),

so x23x
22
4 ∈ I(n+ 9v4)∗ and also x23 ∈ I(n+ 9v4)∗ : 〈x4〉. If C(n+ 9v4) has Cohen-

Macaulay tangent cone at the origin, then x23 ∈ I(n + 9v4)∗ a contradiction. Thus
C(n + 9v4) does not have a Cohen-Macaulay tangent cone at the origin.

Theorem 2.8. Let I(n) be a complete intersection ideal generated by the binomials
f1 = xa1

1 − x
a2
2 , f2 = xa3

3 − x
a4
4 and f3 = xu1

1 xu2
2 − x

u3
3 xu4

4 . Consider the vector
d = (a2a3, a1a3, a2a4, a2a3). If C(n) has Cohen-Macaulay tangent cone at the
origin, then for every w > 0 the monomial curve C(n + wd) has Cohen-Macaulay
tangent cone at the origin whenever the entries of n + wd are relatively prime.

Proof. Let n1 = min{n1, . . . , n4} and also a3 < a4. Without loss of generality
we can assume that u2 ≤ a2 and u3 ≤ a3. By Theorem 2.6 for every w > 0, the
ideal I(n+wd) is a complete intersection on f1, f2 and f4 = xu1+w

1 xu2
2 −x

u3
3 xu4+w

4

whenever the entries of n + wd are relatively prime. Note that n1 + wa2a3 =
min{n1+wa2a3, n2+wa1a3, n3+wa2a4, n4+wa2a3}. Suppose that u3 > 0 and u4 >
0. Assume that u2 < a2. By Corollary 2.2 it holds that a4 +u4 ≤ u1 +u2 +a3−u3
and therefore

a4 + (u4 + w) ≤ (u1 + w) + u2 + a3 − u3.
Thus, from Corollary 2.2 again C(n + wd) has Cohen-Macaulay tangent cone at
the origin. Assume that u2 = a2. Then, from Corollary 2.2, we have that a4 +u4 ≤
u1 +a1 +a3−u3 and therefore a4 +(u4 +w) ≤ (u1 +w)+a1 +a3−u3. By Corollary
2.2 C(n + wd) has Cohen-Macaulay tangent cone at the origin.

Suppose now that u3 = 0. Then {f1, f2, f5 = xu4+w
4 − xu1+w

1 xu2
2 } is a minimal

generating set of I(n +wd). If u2 = a2, then {f1, f2, xu4+w
4 − xu1+a1+w

1 } is a stan-
dard basis for I(n+wd) with respect to the negative degree reverse lexicographical
order with x3 > x4 > x2 > x1. Thus I(n + wd)∗ is a complete intersection and
therefore C(n+wd) has Cohen-Macaulay tangent cone at the origin. Assume that
u2 < a2, then u4 ≤ u1+u2 and therefore u4+w ≤ (u1+w)+u2. The set {f1, f2, f5}
is a standard basis for I(n+wd) with respect to the negative degree reverse lexico-
graphical order with x3 > x4 > x2 > x1. Thus I(n+wd)∗ is a complete intersection
and therefore C(n + wd) has Cohen-Macaulay tangent cone at the origin.
Suppose that u4 = 0, so necessarily u3 = a3. Then {f1, f2, xa4+w

4 − xu1+w
1 xu2

2 } is a
minimal generating set of I(n + wd). If u2 = a2, then {f1, f2, xa4+w

4 − xu1+a1+w
1 }

is a standard basis for I(n+wd) with respect to the negative degree reverse lexico-
graphical order with x3 > x4 > x2 > x1. Thus I(n+wd)∗ is a complete intersection
and therefore C(n +wd) has Cohen-Macaulay tangent cone at the origin. Assume
that u2 < a2, then a4 ≤ u1 + u2 and therefore a4 + w ≤ (u1 + w) + u2. The
set {f1, f2, xa4+w

4 − xu1+w
1 xu2

2 } is a standard basis for I(n + wd) with respect to
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the negative degree reverse lexicographical order with x3 > x4 > x2 > x1. Thus
I(n+wd)∗ is a complete intersection and therefore C(n+wd) has Cohen-Macaulay
tangent cone at the origin. �

Theorem 2.9. Let I(n) be a complete intersection ideal generated by the binomials
f1 = xa1

1 − x
a2
2 , f2 = xa3

3 − x
a4
4 and f3 = xu1

1 xu2
2 − x

u3
3 xu4

4 . Consider the vectors
d1 = (0, 0, a2a4, a2a3) and d2 = (0, 0, a1a4, a1a3). Then there exists a non-negative
integer w0 such that for all w ≥ w0, the monomial curves C(n + wd1) and C(n +
wd2) have Cohen-Macaulay tangent cones at the origin whenever the entries of the
corresponding sequence (n + wd1 for the first family and n + wd2 for the second)
are relatively prime.

Proof. Let n1 = min{n1, . . . , n4} and a3 < a4. Suppose that u2 ≤ a2 and
u3 ≤ a3. By Theorem 2.6 for all w ≥ 0, I(n + wd1) is a complete intersec-
tion on f1, f2 and f4 = xu1+w

1 xu2
2 − xu3

3 xu4
4 whenever the entries of n + wd1

are relatively prime. Remark that n1 = min{n1, n2, n3 + wa2a4, n4 + wa2a3}.
Let w0 be the smallest non-negative integer greater than or equal to u3 + u4 −
u1 − u2 + a4 − a3. Then for every w ≥ w0 we have that a4 + u4 ≤ u1 + w +
u2 + a3 − u3, so u3 + u4 < u1 + w + u2. Let G = {f1, f2, f4, f5 = xa4+u4

4 −
xu1+w
1 xu2

2 xa3−u3
3 }. We will prove that for every w ≥ w0, G is a standard basis

for I(n + wd1) with respect to the negative degree reverse lexicographical order
with x3 > x4 > x2 > x1. Note that LM(f1) = xa2

2 , LM(f2) = xa3
3 , LM(f4) =

xu3
3 xu4

4 and LM(f5) = xa4+u4
4 . Therefore NF(spoly(fi, fj)|G) = 0 as LM(fi) and

LM(fj) are relatively prime, for (i, j) ∈ {(1, 2), (1, 4), (1, 5), (2, 5)}. We compute
spoly(f2, f4) = −f5, so NF(spoly(f2, f4)|G) = 0. Next we compute spoly(f4, f5) =
xu1+w
1 xu2

2 xa3
3 − xu1+w

1 xu2
2 xa4

4 . Then LM(spoly(f4, f5)) = xu1+w
1 xu2

2 xa3
3 and only

LM(f2) divides LM(spoly(f4, f5)). Also ecart(spoly(f4, f5)) = a4 − a3 = ecart(f2).
Then spoly(f2, spoly(f4, f5)) = 0 and NF(spoly(f4, f5)|G) = 0. Thus the minimal
number of generators for I(n+wd1)∗ is either three or four, so from [14, Theorem
3.1] for every w ≥ w0, C(n+wd1) has Cohen-Macaulay tangent cone at the origin
whenever the entries of n + wd1 are relatively prime.

By Theorem 2.6 for all w ≥ 0, I(n + wd2) is a complete intersection on f1, f2
and f6 = xu1

1 xu2+w
2 − xu3

3 xu4
4 whenever the entries of n+wd2 are relatively prime.

Remark that n1 = min{n1, n2, n3 + wa1a4, n4 + wa1a3}. For every w ≥ w0 the set
H = {f1, f2, f6, xa4+u4

4 − xu1
1 xu2+w

2 xa3−u3
3 } is a standard basis for I(n+wd2) with

respect to the negative degree reverse lexicographical order with x3 > x4 > x2 > x1.
Thus the minimal number of generators for I(n + wd2)∗ is either three or four, so
from [14, Theorem 3.1] for every w ≥ w0, C(n+wd2) has Cohen-Macaulay tangent
cone at the origin whenever the entries of n + wd2 are relatively prime. �

Example 2.10. Let n = (15, 25, 24, 16), then I(n) is a complete intersection on
the binomials x51−x32, x23−x34 and x1x2−x3x4. Here a1 = 5, a2 = 3, a3 = 2, a4 = 3,
ui = 1, 1 ≤ i ≤ 4. Note that x44−x1x2x3 ∈ I(n), so, from Corollary 2.2, C(n) does
not have a Cohen-Macaulay tangent cone at the origin. Consider the vector d1 =
(0, 0, 9, 6). For every w > 0 the ideal I(n + wd1) is a complete intersection on the
binomials x51−x32, x23−x34 and xw+1

1 x2−x3x4 whenever gcd(15, 25, 24+9w, 16+6w) =
1. By Theorem 2.9 for every w ≥ 1, the monomial curve C(n + wd1) has Cohen-
Macaulay tangent cone at the origin whenever gcd(15, 25, 24 + 9w, 16 + 6w) = 1.

The next example gives a family of complete intersection monomial curves sup-
porting M. Rossi’s problem, although their tangent cones are not Cohen-Macaulay.
To prove it we will use the following proposition.

Proposition 2.11. [2, Proposition 2.2] Let I ⊂ K[x1, x2, . . . , xd] be a monomial
ideal and I = 〈J,xu〉 for a monomial ideal J and a monomial xu. Let p(I) denote
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the numerator g(t) of the Hilbert Series for K[x1, x2, . . . , xd]/I. Then p(I) = p(J)−
tdeg(x

u)p(J : 〈xu〉).

Example 2.12. Consider the family n1 = 8m2+6, n2 = 20m2+15, n3 = 12m2+15
and n4 = 8m2 + 10, where m ≥ 1 is an integer. The toric ideal I(n) is minimally
generated by the binomials

x51 − x22, x23 − x34, x2m
2

1 x2 − x3x2m
2

4 .

Consider the vector v1 = (4, 10, 6, 4) and the family n′1 = n1 + 4w, n′2 = n2 + 10w,
n′3 = n3 + 6w, n′4 = n4 + 4w where w ≥ 0 is an integer. Let n′ = (n′1, n

′
2, n
′
3, n
′
4),

then for all w ≥ 0 the toric ideal I(n′) is minimally generated by the binomials

x51 − x22, x23 − x34, x2m
2+w

1 x2 − x3x2m
2+w

4

whenever gcd(n′1, n
′
2, n
′
3, n
′
4) = 1. Let Cm(n′) be the corresponding monomial curve.

By Corollary 2.2 for all w ≥ 0, the monomial curve Cm(n′) does not have Cohen-
Macaulay tangent cone at the origin whenever gcd(n′1, n

′
2, n
′
3, n
′
4) = 1. We will

show that for every w ≥ 0, the Hilbert function of the ring K[[tn
′
1 , . . . , tn

′
4 ]] is

non-decreasing whenever gcd(n′1, n
′
2, n
′
3, n
′
4) = 1. It suffices to prove that for every

w ≥ 0, the Hilbert function of K[x1, x2, x3, x4]/I(n′)∗ is non-decreasing whenever
gcd(n′1, n

′
2, n
′
3, n
′
4) = 1. The set

G = {x51 − x22, x23 − x34, x2m
2+w

1 x2 − x3x2m
2+w

4 , x2m
2+w+3

4 − x2m
2+w

1 x2x3,

x2m
2+w+5

1 x3 − x2x2m
2+w+3

4 , x4m
2+2w+5

1 − x4m
2+2w+3

4 }
is a standard basis for I(n′) with respect to the negative degree reverse lexicograph-
ical order with x4 > x3 > x2 > x1. Thus I(n′)∗ is generated by the set

{x22, x23, x4m
2+2w+3

4 , x2m
2+w

1 x2x3, x
2m2+w
1 x2 − x3x2m

2+w
4 , x2x

2m2+w+3
4 }.

Also 〈LT(I(n′)∗)〉 with respect to the aforementioned order can be written as,

〈LT(I(n′)∗)〉 = 〈x22, x23, x4m
2+2w+3

4 , x2x
2m2+w+3
4 , x3x

2m2+w
4 , x2m

2+w
1 x2x3〉.

Since the Hilbert function of K[x1, x2, x3, x4]/I(n′)∗ is equal to the Hilbert function
of K[x1, x2, x3, x4]/〈LT(I(n′)∗)〉, it is sufficient to compute the Hilbert function of
the latter. Let

J0 = 〈LT(I(n′)∗)〉, J1 = 〈x22, x23, x4m
2+2w+3

4 , x2x
2m2+w+3
4 , x3x

2m2+w
4 〉,

J2 = 〈x22, x23, x4m
2+2w+3

4 , x2x
2m2+w+3
4 〉, J3 = 〈x22, x23, x4m

2+2w+3
4 〉.

Remark that Ji = 〈Ji+1, qi〉, where q0 = x2m
2+w

1 x2x3, q1 = x3x
2m2+w
4 and q2 =

x2x
2m2+w+3
4 . We apply Proposition 2.11 to the ideal Ji for 0 ≤ i ≤ 2, so

p(Ji) = p(Ji+1)− tdeg(qi)p(Ji+1 : 〈qi〉). (2.1)

Note that deg(q0) = 2m2 + w + 2, deg(q1) = 2m2 + w + 1 and deg(q2) = 2m2 +

w + 4. In this case, it holds that J1 : 〈q0〉 = 〈x2, x3, x2m
2+w

4 〉, J2 : 〈q1〉 =

〈x22, x3, x2m
2+w+3

4 , x2x
3
4〉 and J3 : 〈q2〉 = 〈x2, x23, x2m

2+w
4 〉. We have that

p(J3) = (1− t)3(1 + 3t+ 4t2 + · · ·+ 4t4m
2+2w+2 + 3t4m

2+2w+3 + t4m
2+2w+4).

Substituting all these recursively in Equation (2.1), we obtain that the Hilbert series
of K[x1, x2, x3, x4]/J0 is

1 + 3t+ 4t2 + · · ·+ 4t2m
2+w + 3t2m

2+w+1 + t2m
2+w+2 + t2m

2+w+3 + t4m
2+2w+2

1− t
.

Since the numerator does not have any negative coefficients, the Hilbert function
of K[x1, x2, x3, x4]/J0 is non-decreasing whenever gcd(n′1, n

′
2, n
′
3, n
′
4) = 1.
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3. The case (B)

In this section we assume that after permuting variables, if necessary, S = {xa1
1 −

xa2
2 , x

a3
3 −x

u1
1 xu2

2 , xa4
4 −x

v1
1 x

v2
2 x

v3
3 } is a minimal generating set of I(n). Proposition

3.1 will be useful in the proof of Theorem 3.2.

Proposition 3.1. Let B = {f1 = xb11 − xb22 , f2 = xb33 − xc11 x
c2
2 , f3 = xb44 −

xm1
1 xm2

2 xm3
3 } be a set of binomials in K[x1, . . . , x4], where bi ≥ 1 for all 1 ≤ i ≤ 4,

at least one of c1, c2 is non-zero and at least one of m1, m2 and m3 is non-zero. Let
n1 = b2b3b4, n2 = b1b3b4, n3 = b4(b1c2 + c1b2), n4 = m3(b1c2 + b2c1) + b3(b1m2 +
m1b2). If gcd(n1, . . . , n4) = 1, then I(n) is a complete intersection ideal generated
by the binomials f1, f2, f3.

Proof. Consider the vectors d1 = (b1,−b2, 0, 0), d2 = (−c1,−c2, b3, 0) and d3 =
(−m1,−m2,−m3, b4). Clearly di ∈ kerZ(n1, . . . , n4) for 1 ≤ i ≤ 3, so the lattice

L =
∑3

i=1 Zdi is a subset of kerZ(n1, . . . , n4). Let

M =


b1 −c1 −m1

−b2 −c2 −m2

0 b3 −m3

0 0 b4

 ,

then the rank of M equals 3. We will prove that the invariant factors δ1, δ2 and δ3
of M are all equal to 1. The greatest common divisor of all non-zero 3× 3 minors
of M equals the greatest common divisor of the integers n1, n2, n3 and n4. But
gcd(n1, . . . , n4) = 1, so δ1δ2δ3 = 1 and therefore δ1 = δ2 = δ3 = 1. Note that
the rank of the lattice kerZ(n1, . . . , n4) is 3 and also equals the rank of L. By [17,
Lemma 8.2.5] we have that L = kerZ(n1, . . . , n4). Now the transpose M t of M is
mixed dominating. By [5, Theorem 2.9] the ideal I(n) is a complete intersection
on f1, f2 and f3. �

Theorem 3.2. Let I(n) be a complete intersection ideal generated by the binomials
f1 = xa1

1 − x
a2
2 , f2 = xa3

3 − x
u1
1 xu2

2 and f3 = xa4
4 − x

v1
1 x

v2
2 x

v3
3 . Then there exist

vectors bi, 1 ≤ i ≤ 22, in N4 such that for all w > 0, the toric ideal I(n + wbi) is
a complete intersection whenever the entries of n + wbi are relatively prime.

Proof. By [11, Theorem 6] n1 = a2a3a4, n2 = a1a3a4, n3 = a4(a1u2 + u1a2),
n4 = v3(a1u2 + a2u1) + a3(a1v2 + v1a2). Let b1 = (a2a3, a1a3, a1u2 + u1a2, a2a3)
and consider the set B = {f1, f2, f4 = xa4+w

4 − xv1+w
1 xv2

2 x
v3
3 }. Then n1 + wa2a3 =

a2a3(a4+w), n2+wa1a3 = a1a3(a4+w), n3+w(a1u2+u1a2) = (a4+w)(a1u2+u1a2)
and n4 + wa2a3 = v3(a1u2 + a2u1) + a3(a1v2 + (v1 + w)a2). By Proposition 3.1
for every w > 0, the ideal I(n + wb1) is a complete intersection on f1, f2 and
f4 whenever the entries of n + wb1 are relatively prime. Consider the vectors
b2 = (a2a3, a1a3, a1u2 + u1a2, a1a3), b3 = (a2a3, a1a3, a1u2 + u1a2, a1u2 + u1a2),
b4 = (0, 0, 0, a3(a1 +a2)), b5 = (0, 0, 0, a1u2 +a2u1 +a2a3) and b6 = (0, 0, 0, a1u2 +
a2u1 + a1a3). By Proposition 3.1 for every w > 0, I(n + wb2) is a complete
intersection on f1, f2 and xa4+w

4 − xv11 x
v2+w
2 xv33 whenever the entries of n + wb2

are relatively prime, I(n + wb3) is a complete intersection on f1, f2 and xa4+w
4 −

xv11 x
v2
2 x

v3+w
3 whenever the entries of n+wb3 are relatively prime, and I(n+wb4)

is a complete intersection on f1, f2 and xa4
4 − x

v1+w
1 xv2+w

2 xv3
3 whenever the entries

of n + wb4 are relatively prime. Furthermore for every w > 0, I(n + wb5) is
a complete intersection on f1, f2 and xa4

4 − x
v1+w
1 xv22 x

v3+w
3 whenever the entries

of n + wb5 are relatively prime, and I(n + wb6) is a complete intersection on
f1, f2 and xa4

4 − xv11 x
v2+w
2 xv3+w

3 whenever the entries of n + wb6 are relatively
prime. Consider the vectors b7 = (a2a3, a1a3, a1u2 + u1a2, a3(a1 + a2)), b8 =
(a2a3, a1a3, a1u2 +u1a2, a1u2 +u1a2 + a2a3), b9 = (a2a3, a1a3, a1u2 +u1a2, a1u2 +
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u1a2 + a1a3), b10 = (0, 0, 0, a1u2 + a2u1 + a3(a1 + a2)), b11 = (a2a3, a1a3, a1u2 +
u1a2, 0), b12 = (0, 0, 0, a2a3), b13 = (0, 0, 0, a1a3), b14 = (0, 0, 0, a1u2 + a2u1) and
b15 = (a2a3, a1a3, a1u2 +u1a2, a1u2 +u1a2 +a3(a1 +a2)). Using Proposition 3.1 we
have that for all w > 0, the ideal I(n+wbi), 7 ≤ i ≤ 15, is a complete intersection
whenever the entries of n + wbi are relatively prime. Finally consider the vectors
b16 = (a3a4, a3a4, a4(u1+u2), v3(u1+u2)+a3(v1+v2)), b17 = (0, a3a4, a4u2, u2v3+
a3v2), b18 = (a3a4, 0, a4u1, u1v3+v1a3), b19 = (a2a4, a1a4, a2a4, a2v3+a1v2+v1a2),
b20 = (a2a4, a1a4, a1a4, a1v3 + a1v2 + v1a2), b21 = (a2a4, a1a4, a4(a1 + a2), v3(a1 +
a2) + a1v2 + v1a2) and b22 = (0, 0, a4(a1 + a2), v3(a1 + a2) + a3(a1 + a2)). It is
easy to see that for all w > 0, the ideal I(n + wbi), 16 ≤ i ≤ 22, is a complete
intersection whenever the entries of n + wbi are relatively prime. For instance
I(n+wb22) is a complete intersection on the binomials f1, xa3

3 − x
u1+w
1 xu2+w

2 and
xa4
4 − x

v1+w
1 xv2+w

2 xv3
3 . �

Example 3.3. Let n = (231, 770, 1023, 674), then I(n) is a complete intersection
on the binomials x101 − x32, x73 − x111 x62 and x114 − x1x82x3. Here a1 = 10, a2 = 3,
a3 = 7, a4 = 11, u1 = 11, u2 = 6, v1 = 1, v2 = 8 and v3 = 1. Consider the
vector b22 = (0, 0, 143, 104), then for all w ≥ 0 the ideal I(n + wb22) is a com-
plete intersection on x101 − x32, x73 − x11+w

1 x6+w
2 and x114 − x1+w

1 x8+w
2 x3 whenever

gcd(231, 770, 1023 + 143w, 674 + 104w) = 1. In fact, I(n+wb22) is minimally gen-
erated by x101 − x32, x73 − x11+w

1 x6+w
2 and x114 − x11+w

1 x5+w
2 x3. Remark that 231 =

min{231, 770, 1023 + 143w, 674 + 104w}. The set {x101 − x32, x73 − x11+w
1 x6+w

2 , x114 −
x11+w
1 x5+w

2 x3} is a standard basis for I(n + wb22) with respect to the negative
degree reverse lexicographical order with x4 > x3 > x2 > x1. So I(n + wb22)∗ is a
complete intersection on x32, x73 and x114 , and therefore for every w ≥ 0 the mono-
mial curve C(n +wb22) has Cohen-Macaulay tangent cone at the origin whenever
gcd(231, 770, 1023 + 143w, 674 + 104w) = 1. Let b16 = (77, 77, 187, 80). For every
w ≥ 0, I(n + wb16) is a complete intersection on x10+w

1 − x3+w
2 , x73 − x111 x62 and

x114 −x1x82x3 whenever gcd(231+77w, 770+77w, 1023+187w, 674+80w) = 1. Note
that 231+77w = min{231+77w, 770+77w, 1023+187w, 674+80w}. For 0 ≤ w ≤ 5
the set {x10+w

1 − x3+w
2 , x73 − x111 x

6
2, x

11
4 − x11+w

1 x5−w2 x3} is a standard basis for
I(n +wb16) with respect to the negative degree reverse lexicographical order with
x4 > x3 > x2 > x1. Thus I(n + wb16)∗ is minimally generated by {x3+w

2 , x73, x
11
4 },

so for 0 ≤ w ≤ 5 the monomial curve C(n+wb16) has Cohen-Macaulay tangent cone
at the origin whenever gcd(231+77w, 770+77w, 1023+187w, 674+80w) = 1. Sup-
pose that there is w ≥ 6 such that C(n+wb16) has Cohen-Macaulay tangent cone
at the origin. Then x82x3 ∈ I(n+wb16)∗ : 〈x1〉 and therefore x82x3 ∈ I(n+wb16)∗.
Thus x82x3 is divided by x3+w

2 , a contradiction. Consequently for every w ≥ 6 the
monomial curve C(n + wb16) does not have Cohen-Macaulay tangent cone at the
origin whenever gcd(231 + 77w, 770 + 77w, 1023 + 187w, 674 + 80w) = 1.

Theorem 3.4. Let I(n) be a complete intersection ideal generated by the binomials
f1 = xa1

1 − x
a2
2 , f2 = xa3

3 − x
u1
1 xu2

2 and f3 = xa4
4 − x

v1
1 x

v2
2 x

v3
3 . Consider the vector

d = (0, 0, a4(a1 + a2), v3(a1 + a2) + a3(a1 + a2)). Then there exists a non-negative
integer w1 such that for all w ≥ w1, the ideal I(n+wd)∗ is a complete intersection
whenever the entries of n + wd are relatively prime.

Proof. By Theorem 3.2 for all w ≥ 0, the ideal I(n + wd) is minimally generated
by G = {f1, f4 = xa3

3 − xu1+w
1 xu2+w

2 , f5 = xa4
4 − xv1+w

1 xv2+w
2 xv33 } whenever the

entries of n+wd are relatively prime. Let w1 be the smallest non-negative integer
greater than or equal to max{a3−u1−u2

2 , a4−v1−v2−v3
2 }. Then a3 ≤ u1 + u2 + 2w1

and a4 ≤ v1 + v2 + v3 + 2w1. It is easy to prove that for every w ≥ w1 the set
G is a standard basis for I(n + wd) with respect to the negative degree reverse
lexicographical order with x4 > x3 > x2 > x1. Note that LM(f1) is either xa1

1



COMPLETE INTERSECTION 11

or xa2
2 , LM(f4) = xa3

3 and LM(f5) = xa4
4 . By [8, Lemma 5.5.11] I(n + wd)∗ is

generated by the least homogeneous summands of the elements in the standard
basis G. Thus for all w ≥ w1, the ideal I(n + wd)∗ is a complete intersection
whenever the entries of n + wd are relatively prime. �

Proposition 3.5. Let I(n) be a complete intersection ideal generated by the bino-
mials f1 = xa1

1 − x
a2
2 , f2 = xa3

3 − x
u1
1 xu2

2 and f3 = xa4
4 − x

v1
1 x

v2
2 , where v1 > 0 and

v2 > 0. Assume that a2 < a1, a3 < u1 + u2, v2 < a2 and a1 + v1 ≤ a2 − v2 + a4.
Then there exists a vector b in N4 such that for all w ≥ 0, the ideal I(n +wb)∗ is
almost complete intersection whenever the entries of n + wb are relatively prime.

Proof. From the assumptions we deduce that v1 + v2 < a4. Consider the vec-
tor b = (a2a3, a1a3, a1u2 + u1a2, a2a3). For every w ≥ 0 the ideal I(n + wb) is
a complete intersection on f1, f2 and f4 = xa4+w

4 − xv1+w
1 xv22 whenever the en-

tries of n + wb are relatively prime. We claim that the set G = {f1, f2, f4, f5 =
xa1+v1+w
1 − xa2−v2

2 xa4+w
4 } is a standard basis for I(n + wb) with respect to the

negative degree reverse lexicographical order with x3 > x2 > x1 > x4. Note that
LM(f1) = xa2

2 , LM(f2) = xa3
3 , LM(f4) = xv1+w

1 xv22 and LM(f5) = xa1+v1+w
1 . Also

spoly(f1, f4) = −f5. It suffices to show that NF(spoly(f4, f5)|G) = 0. We compute
spoly(f4, f5) = xa2

2 x
a4+w
4 − xa1

1 x
a4+w
4 . Then LM(spoly(f4, f5)) = xa2

2 x
a4+w
4 and

only LM(f1) divides LM(spoly(f4, f5)). Moreover ecart(spoly(f4, f5)) = a1 − a2 =
ecart(f1). So spoly(f1, spoly(f4, f5)) = 0 and also NF(spoly(f4, f5)|G) = 0. Thus

(1) If a1 + v1 < a2 − v2 + a4, then I(n + wb)∗ is minimally generated by
{xa2

2 , x
a3
3 , x

v1+w
1 xv22 , x

a1+v1+w
1 }.

(2) If a1 + v1 = a2 − v2 + a4, then I(n + wb)∗ is minimally generated by
{xa2

2 , x
a3
3 , x

v1+w
1 xv22 , f5}. �

References

[1] F. Arslan, P. Mete, M. Sahin, Gluing and Hilbert functions of monomial curves, Proc. Amer.

Math. Soc. 137 (2009) 2225-2232.
[2] D. Bayer, M. Stillman, Computation of Hilbert functions, J. Symbolic Comput. 14 (1992)

31-50.

[3] CoCoATeam, CoCoA: A system for doing computations in commutative algebra, available
at http://cocoa.dima.unige.it.

[4] R. Conaway, F. Gotti, J. Horton, C. O’Neill, R. Pelayo, M. Pracht, B. Wissman, Minimal

presentations of shifted numerical monoids, Internat. J. Algebra Comput. 28 (2018) 53-68.
[5] K. Fischer, J. Shapiro, Mixed matrices and binomial ideals, J. Pure Appl. Algebra 113 (1996)

39-54.

[6] A. Garcia, Cohen-Macaulayness of the associated graded of a semigroup ring, Comm. Algebra
10 (1982) 393-415.

[7] P. Gimenez, H. Srinivasan, A note on Gorenstein monomial curves, Bull. Braz. Math. Soc.

(N.S.) 4 (2014) 671-678.
[8] G.-M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra, Springer-Verlag,

2002.

[9] N. Jacobson, Basic Algebra I, Second edition, W. H. Freeman and Company, New York, 1985.
[10] A. Katsabekis, I. Ojeda, An indispensable classification of monomial curves in A4(K), Pacific

J. Math. 268 (2014) 95-116.
[11] J. Kraft, Singularity of monomial curves in A3 and Gorenstein monomial curves in A4, Canad.

J. Math. 37 (1985) 872-892.

[12] A. Oneto, F. Strazzanti, G. Tamone, One-dimensional Gorenstein local rings with decreasing
Hilbert function, J. Algebra 489 (2017) 91-114.

[13] M. Rossi, Hilbert functions of Cohen-Macaulay local rings, Commutative Algebra and its

Connections to Geometry, Contemporary Math 555 (2011), AMS, 173-200.
[14] T. Shibuta, Cohen-Macaulayness of almost complete intersection tangent cones, J. Algebra

319 (2008) 3222-3243.

[15] D.I. Stamate, Betti numbers for numerical semigroup rings, in: Multigraded Algebra and
Applications-NSA 24, 2016, Springer Proceedings in Mathematics and Statistics, 238 (eds.

V. Ene and E. Miller) (Springer, Cham, 2018).



12 A. KATSABEKIS
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