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We introduce a weakly symmetric ring which is a generalization
of a symmetric ring and a strengthening of both a GWS ring
and a weakly reversible ring, and investigate properties of the
class of this kind of rings. A ring R is called weakly symmetric
if for any a, b, c ∈ R, abc being nilpotent implies that Racrb
is a nil left ideal of R for each r ∈ R. Examples are given to
show that weakly symmetric rings need to be neither semicom-
mutative nor symmetric. It is proved that the class of weakly
symmetric rings lies also between those of 2-primal rings and
directly finite rings. We show that for a nil ideal I of a ring R,
R is weakly symmetric if and only if R/I is weakly symmetric.
If R[x] is weakly symmetric, then R is weakly symmetric, and
R[x] is weakly symmetric if and only if R[x;x−1] is weakly sym-
metric. We prove that a weakly symmetric ring which satisfies
Köthe’s conjecture is exactly an NI ring. We also deal with
some extensions of weakly symmetric rings such as a Nagata
extension, a Dorroh extension.

1. Introduction

Throughout, all rings are associative with identity. In the se-

quel, the symbols J(R) and nil(R) will stand for the Jacobson radical
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and the set of all nilpotent elements of a ring R, respectively. Sym-

metric rings are defined by Lambek in [9]. A ring R is called sym-

metric if abc = 0 implies acb = 0 for all a, b, c ∈ R. In [13], Ouyang

and Chen discussed weak symmetric rings. A ring R is called weak

symmetric if abc ∈ nil(R) implies acb ∈ nil(R) for all a, b, c ∈ R.

It is proved in [13] that all symmetric rings are weak symmetric.

The class of weak symmetric rings is also studied in [6]. Generalized

weakly symmetric rings (or GWS, for short) are studied in [15]. A

ring R is called GWS if abc = 0 implies that bac is nilpotent for all a,

b, c ∈ R. Clearly, abc = 0 implies bac is nilpotent for all a, b, c ∈ R
if and only if abc = 0 implies acb is nilpotent for all a, b, c ∈ R.

In [2], Chakraborty and Das called a ring R right (respectively,

left) nil-symmetric if abc = 0 (respectively, cab = 0) implies acb = 0

for all nilpotent a, b ∈ R and c ∈ R and the ring R is nil-symmetric if

it is both right and left nil-symmetric. In [7], nil-symmetric rings are

weakend to weak nil-symmetric rings. A ring R is called weak right

nil-symmetric if abc = 0 implies acb = 0 for all nilpotent a, b, c ∈ R
and it is called weak left nil-symmetric if abc = 0 implies cab = 0 for

all nilpotent a, b, c ∈ R, and R is called weak nil-symmetric if it is

both weak right nil-symmetric and weak left nil-symmetric. As an

another generalization of a symmetric ring, according to [1] and also

[12], a ring R is called semicommutative if for all a, b ∈ R, ab = 0

implies aRb = 0. This is equivalent to the definition that any left

(right) annihilator over R is an ideal of R. In [3], semicommutativity

of rings is generalized to nil-semicommutativity of rings. It is said

that a ring R is nil-semicommutative if for every a, b ∈ R, ab being

nilpotent implies that aRb is a nil subset of R. Every semicommuta-

tive ring is nil-semicommutative. According to Cohn [5], a ring R is

called reversible if ab = 0 implies ba = 0 for all a, b ∈ R. In [10], R is
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said to be weakly reversible if ab = 0 implies braR is a nil right ideal

of R, equivalently, ab = 0 implies Rbra is a nil left ideal of R for all

a, b, r ∈ R. In [15], a ring R is said to be quasi-reversible if ab = 0

implies bRa ⊆ J(R) for all a, b ∈ R, and in [8], R is called central

reversible if being ab = 0 implies that ba is central.

Symmetric rings were introduced by Lambek to unify sheaf rep-

resentations of commutative rings and reduced rings [9], and this con-

cept was generalized by some authors as mentioned above. Motivated

by these versions of symmetric rings and reversible rings contexts, in

this paper we introduce weakly symmetric rings which are weaker

than symmetric rings and stronger than both GWS rings and weakly

reversible rings, and investigate their properties. We also prove that

the class of weakly symmetric rings has a position between those of

2-primal rings and directly finite rings. Some characterizations of

weakly symmetric rings are obtained in terms of nil left ideals and

nil right ideals. The set of all nilpotent elements of a corner ring of

a weakly symmetric ring is determined, and so weakly symmetricity

of a corner ring is investigated. We give a characterization of an NI

ring in terms of weakly symmetric rings, that is a ring is NI if and

only if it is weakly symmetric and satisfies Köthe’s conjecture. We

also observe relations between a ring and some of its extensions such

as a Nagata extension and a Dorroh extension in terms of weakly

symmetricity.

In what follows, Z and Zn, where n is a positive integer denote

the ring of integers and the ring of integers modulo n, respectively.

Also Mn(R) denotes the ring of all n× n matrices and Tn(R) stands

for the ring of all n × n upper triangular matrices over a ring R for

a positive integer n. We write R[x] and R[x;x−1] for the polynomial

ring and the Laurent polynomial ring over R, respectively.
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2. Weakly Symmetric Rings

This section is devoted to study on weakly symmetric rings.

The position of the class of weakly symmetric rings among some

classes of rings such as symmetric rings, nil-semicommutative rings,

GWS rings, weakly reversible rings, 2-primal rings and directly finite

rings is determined. Some properties of weakly symmetric rings are

investigated and characterizations of these rings are obtained.

DEFINITION 2.1. A ring R is said to be weakly symmetric if

for all a, b, c, r ∈ R, abc being nilpotent implies that Racrb is a nil

left ideal of R, equivalently, abc being nilpotent implies that acrbR

is a nil right ideal of R.

Commutative rings, Boolean rings, symmetric rings are weakly

symmetric. It is known that every symmetric ring is reversible. When

we deal with the weakly case, every weakly symmetric ring is weakly

reversible. In fact, if R is a weakly symmetric ring and ab = 0, where

a, b ∈ R, then 1ab = 0 and so R1bra is a nil left ideal of R for all

r ∈ R. Hence Rbra is a nil left ideal.

PROPOSITION 2.2. The class of weakly symmetric rings is

closed under isomorphisms, subrings and finite direct products.

Proof. Follows by definitions. �

COROLLARY 2.3. Let R be a ring. If R[x] is weakly symmetric,

then R is weakly symmetric.

Proof. If R[x] is weakly symmetric, then R is weakly symmetric

since it is isomorphic to a subring of R[x]. �

Note that homomorphic images of weakly symmetric rings need

not be weakly symmetric as shown below.

EXAMPLE 2.4. Let R and S = R/I denote the rings in ([15],
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Example 2.11). Then R is a noncommutative principal ideal domain,

so it is weakly symmetric but S is not GWS. Since weakly symmetric

rings are GWS (see Proposition 2.11), S is not a weakly symmetric

ring.

PROPOSITION 2.5. Let R be a ring and I an ideal of R with

I ⊆ nil(R). Then R is weakly symmetric if and only if R/I is weakly

symmetric.

Proof. Assume that R is weakly symmetric. Let R̄ := R/I and

ā, b̄, c̄ ∈ R̄ with āb̄c̄ nilpotent in R̄. There exists a positive integer m

such that (abc)m ∈ I. By hypothesis, abc is a nilpotent element of

R. By assumption, Racrb is a nil left ideal of R for all r ∈ R. Hence

R̄āc̄r̄b̄ is a nil left ideal of R̄.

Suppose now that R̄ is weakly symmetric and a, b, c ∈ R with

abc nilpotent in R. Then āb̄c̄ is nilpotent in R̄. For any r ∈ R, by

hypothesis, R̄āc̄r̄b̄ is a nil left ideal of R̄. Hence for any s ∈ R, there

exists a positive integer n such that (sacrb)n ∈ I. By hypothesis,

(sacrb)n is nilpotent, and so sacrb is nilpotent for each s ∈ R. Thus

Racrb is a nil left ideal of R. This completes the proof. �

Recall that a ring R is called NI if all nilpotent elements of R

form an ideal.

COROLLARY 2.6. Let R be an NI ring. Then R and R/nil(R)

are weakly symmetric.

Proof. Since R is an NI ring, R/nil(R) is reduced, and so it is

weakly symmetric. On the other hand, R is also weakly symmetric

by Proposition 2.5. �

In the next diagram we summarize implications among afore-

mentioned classes of rings, and then we prove some of them, so we

determine the position of the class of weakly symmetric rings.
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reduced +3 symmetric +3

��

semicommutative

��
nil-semicommutative

��
GWS weakly symmetric +3

��

ks weak symmetric

weakly reversible +3 quasi-reversible

PROPOSITION 2.7. Every nil-semicommutative ring is weakly

symmetric.

Proof. Assume that R is a nil-semicommutative ring. Let a,

b, c ∈ R with abc nilpotent. By assumption, a(bc) being nilpotent

implies that aRbc is a nil subset of R. Hence (acb)c is nilpotent.

Again by assumption, (acb)Rc is nil, and so (acbac)1 is nilpotent. It

follows that (acbac)R1 is nil. Then acbacb is nilpotent. This implies

that acb is nilpotent. Thus acRb is nil, so 1(acrb) is nilpotent for all

r ∈ R. Therefore 1Racrb is nil. This completes the proof. �

Since every symmetric ring is semicommutative, we have the

following corollary.

COROLLARY 2.8. Every symmetric ring is weakly symmetric.

Let R be a ring and s, t be central in R. Consider the ring

H(s,t)(R) =



a 0 0

c d e

0 0 f

 ∈M3(R) | a, c, d, e, f ∈ R, a− d = sc, d− f = te

.

Then H(s,t)(R) is a subring of M3(R). Note that any element A of

H(s,t)(R) has the form


sc+ te+ f 0 0

c te+ f e

0 0 f

.
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LEMMA 2.9. Let R be a ring, and let s, t be central in R.

Then the set of all nilpotent elements of H(s,t)(R) is nil(H(s,t)(R)) =

a 0 0

c d e

0 0 f

 ∈ H(s,t)(R) | a, d, f ∈ nil(R), c, e ∈ R

.

Proof. Let A =


a 0 0

c d e

0 0 f

∈ nil(H(s,t)(R)) be nilpotent. There

exists a positive integer n such that An = 0. Then an = dn = fn = 0.

Conversely, assume that an = 0, dm = 0 and fk = 0 for some positive

integers n,m, k. Let p = max{n,m, k}. Then A2p = 0. �

EXAMPLE 2.10. Let R be a reduced ring. Since H(0,0)(R)

is nil-semicommutative, by Proposition 2.7, H(0,0)(R) is weakly sym-

metric.

PROPOSITION 2.11. Every weakly symmetric ring is GWS.

Proof. Let R be a weakly symmetric ring and a, b, c ∈ R with

abc = 0. Then 1a(bc) is nilpotent. So R(bc)ra is a nil left ideal for

each r ∈ R. In particular, bca is nilpotent. Again, invoking weakly

symmetricity, Rbarc is nil for each r ∈ R. It follows that bac is

nilpotent. �

PROPOSITION 2.12. Every weakly symmetric ring is directly

finite.

Proof. Let R be a weakly symmetric ring. Since GWS rings

are directly finite, by Proposition 2.11, R is directly finite. �

Recall that a ring is said to be 2-primal if the prime radical

coincides with the set of all nilpotent elements of the ring. By the

following theorem, the class of 2-primal rings lies strictly between the

classes of symmetric rings and weakly symmetric rings.
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THEOREM 2.13. Every 2-primal ring is weakly symmetric.

Proof. Every 2-primal ring is NI. By Corollary 2.6, R is weakly

symmetric. �

As in [15], recall that a ring R is nil-regular if each nilpotent

element is regular, that is, for any nilpotent a ∈ R, there exists b ∈ R
such that a = aba.

PROPOSITION 2.14. Let R be a ring. Then the following

statements are equivalent.

(1) R is a nil-regular weakly symmetric ring.

(2) R is a nil-regular GWS ring.

(3) R is a reduced ring.

Proof. (1) =⇒ (2): Clear from the fact that every weakly

symmetric ring is GWS.

(2) ⇐⇒ (3): It is proved in ([15], Proposition 3.1).

(3) =⇒ (1): Obvious. �

There are weakly symmetric rings but not semicommutative as

the following example shows.

EXAMPLE 2.15. Let F be a field. Then the ring T3(F ) is

weakly symmetric which is not semicommutative.

In the next we give some characterizations of weakly symmetric

rings.

THEOREM 2.16. Let R be a ring. Then the following condi-

tions are equivalent.

(1) R is weakly symmetric.

(2) For any a, b, c ∈ R, whenever abc is nilpotent, Rcba is a nil

left ideal.
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(3) For any a, b, c ∈ R, whenever abc is nilpotent, Rbrac is a nil

left ideal for r ∈ R.

(4) For any a, b, c ∈ R, whenever abc is nilpotent, Rcrba is a nil

left ideal for r ∈ R.

(5) For any a, b, c ∈ R, whenever abc is nilpotent, Rcbra is a nil

left ideal for r ∈ R.

Proof. (1) =⇒ (3): Let a, b, c ∈ R with abc nilpotent. By (1),

Racrb is a nil left ideal for each r ∈ R. Hence 1(acr)b is nilpotent.

By (1) again, Rbsacr is a nil left ideal for each r, s ∈ R. In particular,

Rbsac is a nil left ideal for each s ∈ R.

(3) =⇒ (1): Let a, b, c ∈ R such that abc is nilpotent. The

element abc being nilpotent implies that Rbrac is a nil left ideal for

each r ∈ R. Hence (br)(ac)1 is nilpotent. Thus R(ac)t(br) is a nil

left ideal. So 1(ac)b is nilpotent. By (3), Racrb is a nil left ideal for

any r ∈ R.

(1) =⇒ (2): Assume that R is weakly symmetric. Let a, b,

c ∈ R with abc nilpotent. Then 1(ab)c being nilpotent implies that

Rcr(ab) is a nil left ideal for each r ∈ R. By letting r = 1, cab is

nilpotent. By assumption, Rcbsa is a nil left ideal for each s ∈ R.

Hence Rcba is a nil left ideal.

(2) =⇒ (4): Assume that a, b, c ∈ R with abc nilpotent. Then

Rcba is a nil left ideal of R. So rcba is nilpotent for each r ∈ R. By

(2), nilpotency of rc(ba) implies that Rbacr is a nil left ideal of R.

Again by (2), nilpotency of 1(ba)(cr) implies that Rcrba is a nil left

ideal of R.

(4) =⇒ (5): Let a, b, c ∈ R with abc nilpotent. By (4), Rcrba

is a nil left ideal for each r ∈ R. Then cba is nilpotent. By (4),

nilpotency of (cb)1a implies Rar(cb) is a nil left ideal for each r ∈ R.
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Then a1(cb) is nilpotent. By (4), Rcbra is a nil left ideal for each

r ∈ R.

(5) =⇒ (1): Let a, b, c ∈ R with abc nilpotent. By (5), nilpo-

tency of 1a(bc) implies Rbcar is a nil left ideal for each r ∈ R. In

particular, bca is nilpotent. The condition (5) implies that Racrb is

a nil left ideal for each r ∈ R. This completes the proof. �

THEOREM 2.17. Let R be a ring. Then the following are

equivalent.

(1) R is weakly symmetric.

(2) If a ∈ R is nilpotent, then Rara is a nil left ideal for all

r ∈ R.

(3) If a ∈ R is nilpotent, then araR is a nil right ideal for all

r ∈ R.

Proof. (1) =⇒ (2): Let a ∈ R with an = 0 for some positive

integer n. For any r ∈ R, we have 0 = rnan = rn−1(ra)an−1. By (1),

rn−1an−1(sa)(ra) is nilpotent for each s ∈ R. Hence rn−2(ra)an−2

(sara) is nilpotent. By (1), it implies that rn−2(sara)(sa)(ra)an−2 is

nilpotent for each s ∈ R. Again by (1), rn−2an−2(sara)2 is nilpotent.

Nilpotency of rn−3(ra)an−3(sara)2 and (1) imply that rn−3(sara)2(sa)

(ra)an−3 is nilpotent. By invoking (1) again, we have that rn−3an−3

(sara)3 is nilpotent. Continuing in this way, we may have that sara

is nilpotent for each s ∈ R. Hence Rara is a nil left ideal for each

r ∈ R.

(2) ⇐⇒ (3): Clear.

(2) =⇒ (1): Let a, b, c ∈ R with abc nilpotent in R. By (2),

R(abc)r(abc) is a nil left ideal for all r ∈ R. In particular, R(rb)(abc)

(rb)(abc) is a nil left ideal for all r ∈ R. Then (abcrb)2 is nilpotent

for all r ∈ R. Hence crbab, acrbab, abacrb and bacrba are nilpotent.
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By (2), R(bacrba)s(bacrba) is a nil left ideal for all r, s ∈ R. We

replace s by cr to get (bacrba)(cr)(bacrba) is nilpotent. It follows

from the equality (bacrba)(cr)(bacrba) = b(acrb)(acrb)(acrb)a that

acrb is nilpotent. By (2), R(acrb)s(acrb) is a nil left ideal for all

s ∈ R. Thus R(acrb) is a nil left ideal of R for all r ∈ R. �

In [14], feckly reduced rings are introduced and studied. A ring

R is called feckly reduced if R/J(R) is a reduced ring. Note that if R

is feckly reduced, then all nilpotent elements of R belong to J(R). In

[4], a ring R is called J-reduced if all nilpotent elements of R belong

to J(R). So every feckly reduced ring is J-reduced. In the next result

we show that the class of weakly symmetric rings is also a source of

examples for J-reduced rings.

PROPOSITION 2.18. Every weakly symmetric ring is J-reduced.

Proof. Let R be a weakly symmetric ring and a ∈ R with a

nilpotent. By Theorem 2.17, Rara is a nil left ideal for each r ∈ R.

In particular ra is nilpotent for each r ∈ R. Then 1− ra is invertible

for each r ∈ R. Hence a ∈ J(R). �

In [16], a ring R is defined to be quasi-normal if ae = 0 implies

eaRe = 0 for nilpotent a and idempotent e in R. It is proved that R

is quasi-normal if and only if eR(1− e)Re = 0 for each idempotent e

and, in [15], R is said to be weakly quasi-normal if eR(1−e)Re ⊆ J(R)

for each e2 = e ∈ R.

PROPOSITION 2.19. Every weakly symmetric ring is weakly

quasi-normal.

Proof. Let e2 = e ∈ R. Then (1 − e)e is nilpotent. By hy-

pothesis, R(1 − e)re is a nil left ideal of R for every r ∈ R. So

R(1− e)re ⊆ J(R). Since J(R) is an ideal, eR(1− e)Re ⊆ J(R). �
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In the next, we determine the set of all nilpotent elements of a

weakly symmetric ring, and then we deal with corner rings of weakly

symmetric rings.

PROPOSITION 2.20. Let R be a ring and e an idempotent

of R. If R is weakly symmetric, then the following conditions are

satisfied.

(1) For all a ∈ nil(R), eae ∈ nil(eRe).

(2) nil(eRe) = enil(R)e.

Proof. (1) We first note that for any x and y ∈ R, xy being

nilpotent implies yx is nilpotent. For any x, y, z ∈ R, by hypothesis,

xyz being nilpotent implies Rxzry is a nil left ideal for every r ∈ R.

In particular, xzy is nilpotent. Consider the following cases:

CASE 1: Let n = 2. Let a ∈ R with a2 = 0. Then Rearea is a

nil left ideal for each r ∈ R. In particular, (eRe)(eae)(ere)(eae) is a

nil left ideal of eRe.

CASE 2: Let n = 3. So a3 = 0 and 0 = ea3e = (ea)(aa)e. Then

(ea)(ea)a is nilpotent. Hence (eae)(ea)a being nilpotent implies that

(eae)a(ea) is nilpotent. We have (eae)(eae)(ea) is nilpotent. Thus

e(eae)2(ea) being nilpotent implies eae(eae)2 is nilpotent. It follows

that eae is nilpotent in eRe.

Let a ∈ nil(R) with an = 0, where n > 3. Then eane =

(ea)an−1e is nilpotent. Hence (ea)e(an−1) = (eae)(ean−2)a is nilpo-

tent. By hypothesis,

(eae)a(ean−2) = (eae)(eae)(ean−3)a

is nilpotent. Similarly, (eae)(eae)(eae)(ean−3) is nilpotent. Continu-

ing on this way, eae is nilpotent in eRe.

(2) It is clear from (1). �
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COROLLARY 2.21. If R is a weakly symmetric ring, then eRe

is weakly symmetric for all e2 = e ∈ R.

Consider the following subring Vn(R) of Mn(R), where n is a

positive integer:

Vn(R) =





a1 a2 a3 . . . an−1 an

0 a1 a2 . . . an−2 an−1

0 0 a1 . . . an−3 an−2

...
...

...
. . .

...
...

0 0 0 . . . a1 a2

0 0 0 . . . 0 a1


| ai ∈ R, 1 ≤ i ≤ n


.

PROPOSITION 2.22. Let R be a ring and n a positive integer.

Then the following statements are equivalent.

(1) R is weakly symmetric.

(2) Tn(R) is weakly symmetric.

(3) Vn(R) is weakly symmetric.

Proof. (1) =⇒ (2): Suppose that R is weakly symmetric. To

prove Tn(R) is weakly symmetric, let A = (aij), B = (bij), C =

(cij) ∈ Tn(R) with ABC = (dij) nilpotent. Then dii = aiibiicii is

nilpotent for 1 ≤ i ≤ n. By hypothesis, Raiiciirbii is a nil left ideal

for every r ∈ R. Let (tij)(aij)(cij)(eij)(bij) ∈ Tn(R)ACEB, where

T = (tij), E = (eij) ∈ Tn(R). Let (tiiaiiciieiibii)
sii = 0 and s =

max{sii}. Then
(
(tij)(aij)(cij)(eij)(bij)

)sn
= 0. Hence Tn(R)ACEB

is a nil left ideal of Tn(R) for any E ∈ Tn(R).

(2) =⇒ (1): If Tn(R) is a weakly symmetric ring, then R is

weakly symmetric since R is isomorphic to a subring of Tn(R) and

weakly symmetric property is preserved under isomorphism of rings.
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(2)⇐⇒ (3): Clear by the fact that weakly symmetric property

of rings are preserved under subrings and isomorphisms. �

Let R be a ring and M an R-R-bimodule. The trivial extension

of R by M is the ring T (R,M) = R⊕M with the usual addition and

the following multiplication (r,m)(s,m′) = (rs, rm′+ms). This ring

is isomorphic to the matrix ring

{[
r m

0 r

]
| r ∈ R,m ∈M

}
with the

usual matrix operations.

COROLLARY 2.23. Let R be a ring. Then T (R,R) is weakly

symmetric if and only if so is R.

Proof. Assume that T (R,R) is weakly symmetric. Then R

is weakly symmetric since weakly symmetric property for rings are

preserved under subrings and isomorphisms. The converse is clear

from Proposition 2.22. �

Recall that a ring is called abelian if all idempotents are central.

Although symmetric rings are abelian, there are weakly symmetric

rings that are not abelian and vice versa as shown below.

EXAMPLE 2.24. (1) Let R = T2(Z2). Since Z2 is a commuta-

tive ring, it is weakly symmetric. By Proposition 2.22, R is weakly

symmetric. But R is not abelian because A =

[
1 1

0 0

]
is an idempo-

tent element of R which is not central.

(2) Let R =

{[
a b

c d

]
| a, b, c, d ∈ Z, a ≡ d (mod 2), b ≡ c ≡ 0 (mod 2)

}
.

Note that zero and identity are only idempotents of R and R is not

a GWS ring by ([15], Example 2.12). Therefore R is not weakly

symmetric by Proposition 2.11.

THEOREM 2.25. Let D be a domain and S a subring of

M2(D). Assume that S is weakly symmetric.
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(1) If

[
1 1

0 0

]
∈ S, then S is the ring of upper triangular matrices

over D or every element of S has the form

[
x y

z t

]
, where

x+ z = y + t.

(2) If

[
0 0

1 1

]
∈ S, then S is the ring of lower triangular matrices

over D or every element of S has the form

[
x y

z t

]
, where

x+ z = y + t.

Proof. (1) Assume that S is not a ring of upper triangular

matrices over D. Let S′ =

{[
x y

z t

]
∈ S | x + z = y + t

}
.We first note

that S′ is a subring of S.

If S′ = S, there is nothing to do. Otherwise assume that

S′ 6= S. Let

[
x y

z t

]
∈ S with a = x + z − (y + t) nonzero. Then[

1 1

0 0

][
x y

z t

]
=

[
x + z y + t

0 0

]
,

[
x + z y + t

0 0

][
1 1

0 0

]
=

[
x + z x + z

0 0

]
and[

x + z x + z

0 0

]
−

[
x + z y + t

0 0

]
=

[
0 a

0 0

]
∈ S. Let

[
r s

u v

]
∈ S be an arbi-

trary element. Assume that u 6= 0. Then by hypothesis,

[
0 a

0 0

][
1 1

0 0

]
= 0 =⇒

[
r s

u v

][
1 1

0 0

][
r s

u v

][
0 a

0 0

]
=

[
0 ra(r + u)

0 ua(r + u)

]

is nilpotent. So ua(r + u) = 0. Since ua is nonzero, r = −u. On the

other hand,

[
0 a

0 0

]2

= 0.

Again by hypothesis,

[
r s

−r v

][
0 a

0 0

][
r s

−r v

][
0 a

0 0

]
=

[
0 −r2a2

0 r2a2

]
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is nilpotent. Hence ra = 0 and so ua = 0. Since a 6= 0, u = 0. That

is (2, 1) entry of every matrix in S is zero. This is a contradiction.

Thus S has the stated form.

(2) A similar discussion as in (1) completes the proof. �

Even though some subrings of full matrix rings over weakly

symmetric rings are weakly symmetric, full matrix rings need not be

weakly symmetric.

EXAMPLE 2.26. Consider the ring R in Example 2.24(2).

Then R is a subring of M2(Z). If M2(Z) is weakly symmetric, then

R must be weakly symmetric as a subring of M2(Z) and so it must

be GWS. This is not the case by ([15], Example 2.12). Hence M2(Z)

is not weakly symmetric.

We close this section by a result related to Köthe’s Conjecture.

Recall the Köthe’s conjecture: The sum of two nil right ideals in any

ring R is nil.

THEOREM 2.27. The following hold for a ring R.

(1) If R is a weakly symmetric ring and a ∈ R is nilpotent, then

aR and Ra are nil.

(2) R is weakly symmetric and Köthe’s conjecture holds for R if

and only if R is an NI ring.

Proof. (1) It follows from Theorem 2.17.

(2) ⇐=: This implication is clear by definitions and Corollary 2.6.

=⇒: Let a, b ∈ R be nilpotent elements. By (1), aR and bR are

nil. Hence aR+ bR is nil as aR and bR are contained in the ideal of

nilpotent elements. Thus a+ b is nilpotent. �



A NIL APPROACH TO SYMMETRICITY OF RINGS 353

3. Extensions of Weakly Symmetric Rings

In this section, we consider some extensions of weakly sym-

metric rings and characterize this class of rings in terms of its ex-

tensions. Let R be a commutative ring, M be an R-module, and

α be an endomorphism of R. Let R ⊕ M be a direct sum of R

and M . Define componentwise addition and multiplication given by

(r1;m1)(r2;m2) = (r1r2;α(r1)m2 + r2m1), where r1, r2 ∈ R and m1,

m2 ∈ M . This extension is called Nagata extension of R by M and

α, and denoted by N [R;M ;α] (see [11]).

THEOREM 3.1. If R is a commutative ring, then the Nagata

extension N [R;R;α] is weakly symmetric.

Proof. Assume that R is a commutative ring. Note that for

any a ∈ R, a is nilpotent in R if and only if (a;x) is nilpotent in

N [R;R;α] for any x ∈ R. Let (a;n), (b;m), (c; k) ∈ N [R;R;α] with

(a;n)(b;m)(c; k) nilpotent in N [R;R;α]. Then abc ∈ R is nilpotent.

Since R is commutative, Racrb is a nil left ideal for every r ∈ R.

Hence N [R;R;α](a;n)(c; k)(x; y)(b;m) is a nil left ideal of N [R;R;α]

for all (x; y) ∈ N [R;R;α]. �

Given rings R and S, where S has an R-R-bimodule structure

and all a ∈ R and x, y ∈ S are satisfied the following conditions:

(ax)y = a(xy), (xy)a = x(ya), (xa)y = x(ay). The ideal extension

of R by S (also known as the Dorroh extension) D(R,S) is the ring

that has the abelian group structure of R⊕S and multiplication given

by (r1, s1)(r2, s2) = (r1r2, r1s2 + r2s1 + s1s2), where r1, r2 ∈ R and

s1, s2 ∈ S.

THEOREM 3.2. A ring R is weakly symmetric if and only if

D(Z, R) is weakly symmetric.

Proof. Necessity: Let (n, r), (m, s), (k, t) ∈ D(Z, R) with (n, r)



354 B. Ungor, H. Kose, Y. Kurtulmaz and A. Harmanci

(m, s)(k, t) nilpotent. Then

(n, r)(m, s)(k, t) = (nmk, nmt+ (ns+mr + rs)(k1 + t)) (∗)

is nilpotent. Hence nmk = 0. It follows that n = 0 or m = 0 or

k = 0. To get rid of confusion, for any integer x, in the proof, x will

also denote the element x1 of the ring R. We divide the proof some

cases as the following.

CASE I. Let n = 0. By (*), we have r(m1 + s)(k1 + t) ∈ R

is nilpotent. By hypothesis, Rr(k1 + t)a(m1 + s) is a nil left ideal

of R for each a ∈ R. Note that an element (x, y) ∈ D(Z, R) is

nilpotent if and only if y is nilpotent and x = 0. We claim that

D(Z, R)(0, r)(k, t)(u, a)(m, s) is a nil left ideal of D(Z, R). Because,

for any (v, b), (u, a) ∈ D(Z, R),

(v, b)(0, r)(k, t)(u, a)(m, s) =
(
0, (v1 + b)r(k1 + t)(u1 + a)(m1 + s)

)
is nilpotent.

CASE II. m = 0 and CASE III. k = 0. In either cases, we reach

similarly that D(Z, R)(n, r)(k, t)(u, a)(m, s) is a nil left ideal for each

(u, a) ∈ D(Z, R).

Sufficiency: Assume that D(Z, R) is weakly symmetric. Then

R is weakly symmetric since R is isomorphic to the subring {(0, r) |
r ∈ R} ⊆ D(Z, R) which is weakly symmetric as a subring of weakly

symmetric ring D(Z, R). �

Let R be a ring and S a multiplicatively closed subset of R

consisting of the identity 1 and some central regular elements, that is,

for any element s ∈ S and r ∈ R, sr = 0 implies that r = 0 and s is in

the center of R. Consider the ring S−1R = {s−1r | s ∈ S, r ∈ R}. We

end this paper by obtaining a characterization of weakly symmetricity

of the ring S−1R.
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THEOREM 3.3. Let R be a ring. Then R is weakly symmetric

if and only if S−1R is weakly symmetric.

Proof. Necessity: Let s−11 r1, s
−1
2 r2, s

−1
3 r3 ∈ S−1R with (s−11 r1)

(s−12 r2)(s
−1
3 r3) nilpotent. Then (s−11 r1)(s

−1
2 r2)(s

−1
3 r3) = (s1s2s3)

−1

(r1r2r3) is nilpotent. So r1r2r3 is nilpotent. By hypothesis, Rr1r3tr2

is a nil left ideal of R for each t ∈ R. Let s−1a ∈ S−1R. For any

s−14 r4 ∈ S−1R, (s−14 r4)(s
−1
1 r1)(s

−1
3 r3)(s

−1a)(s−12 r2) = (s4s1s3ss2)
−1

(r4r1r3ar2) is nilpotent since (s4s1s3ss2)
−1 is central and r4r1r3ar2 is

nilpotent. Hence S−1R(s−11 r1)(s
−1
3 r3)(s

−1a)(s−12 r2) is a nil left ideal

of S−1R.

Sufficiency: Assume that S−1R is weakly symmetric. Then R

is weakly symmetric since R is isomorphic to the subring {1r | r ∈ R}
of S−1R which is weakly symmetric.

COROLLARY 3.4. Let R be a ring. Then R[x] is weakly sym-

metric if and only if R[x;x−1] is weakly symmetric.

Proof. Assume that R[x;x−1] is weakly symmetric. This way is

clear since R[x] is isomorphic to a subring of weakly symmetric ring

R[x;x−1]. Conversely, let S = {1, x, x2, . . . }. Clearly S is a multi-

plicatively closed subset of R[x]. Note that R[x;x−1] = S−1R[x]. It

follows that R[x;x−1] is weakly symmetric by Theorem 3.3. �
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