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Abstract

We consider a finite-dimensional G-module V of a p-group G over a field  of characteristic
p. We describe a generating set for the corresponding Hilbert Ideal. In case G is cyclic, this yields
that the algebra [ ] V G of coinvariants is a free module over its subalgebra generated by G-module
generators of V*. This subalgebra is a quotient of a polynomial ring by pure powers of its variables.
The coinvariant ring was known to have this property only when G was cyclic of prime order [M.
Sezer, Decomposing modular coinvariants, J. Algebra 423 (2015), 87–92]. In addition, we show
that if G is the Klein 4-group and V does not contain an indecomposable summand isomorphic to
the regular module, then the Hilbert Ideal is a complete intersection, extending a result of the second
author and Shank [M. Sezer and R. J. Shank, Rings of invariants for modular representations of the
Klein four group, Trans. Amer. Math. Soc. 368 (2016), 5655–5673].

1. Introduction

Let  be a field of positive characteristic p and V a finite-dimensional -vector space, and
£ ( )G VGL a finite group. Then the induced action on V* extends to the symmetric algebra
[ ] ( ) V S V*≔ by the formula s s( ) = -f f 1◦ for s Î G and Î [ ]f V . The ring of fixed points
[ ] V G is called the ring of invariants, and is the central object of study in invariant theory.

Another object which is often studied is the Hilbert Ideal, , which is defined to be the ideal of
[ ] V generated by invariants of positive degree, in other words

= [ ] [ ]+  V V .G

In this article, we study the quotient [ ] [ ]/ V VG ≔ which is called the algebra of coinvariants.
An equivalent definition is [ ] [ ] Ä [ ]  V VG V G≔ , which shows that this object is, in a sense,
dual to [ ] V G.

As [ ] V G is a finite-dimensional G-module, it is generally easier to handle than the ring of
invariants. On the other hand, much information about [ ] V G is encoded in [ ] V G. For example,
Steinberg [13] famously showed that ( [ ] ) = V Gdim G ∣ ∣ if and only if ( )G V, is a complex reflec-
tion group. Combined with the theorem of Chevalley [2], Shephard and Todd [11], this shows that
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( [ ] ) = V Gdim G ∣ ∣ if and only if [ ] V G is a polynomial ring. Smith [12] later generalized this by
showing that ( [ ] ) = V Gdim G ∣ ∣ if and only if G is a (pseudo)-reflection group, where  is any
field. Further, the polynomial property of [ ] V G is equivalent to the Poincaré duality property of
[ ] V G, by Kane [6] and Steinberg [13].
Before we continue, we fix some terminology. Let ¼x x, , n0 be a basis for V*. We will say xi is

a terminal variable if the vector space spanned by the other variables is a G-submodule of V*.
Note that if G is a p-group, then ¹V 0G and there is a choice of a basis for V that contains a fixed
point. Then the dual element corresponding to the fixed point is a terminal variable in the basis
consisting of dual elements of this basis. For any Î [ ]f V , we define the norm

( ) =
Î

N f h.G

h G f·

For every terminal variable xi, we choose a polynomial ( )N xi in [ ] V G which, when viewed as a
polynomial in xi is monic of minimal positive degree. While ( )N xi is not unique in general, its
degree is well defined. Since ( )N xG

i is monic of degree [ ]G G: xi , the degree of ( )N xi is bounded
above by this number. By ‘degree of xi’, we understand degree of ( )N xi as a polynomial in xi and
denote it by ( )xdeg i . We will show that the degree of a terminal variable is always a p-power.

The algebras of modular coinvariants for cyclic groups of order p were studied by the second
author [8], and previously by the second author and Shank [9]. Note that there is a choice of basis such
that an indecomposable representation of a p-group is afforded by an upper triangular matrix with 1s on
the diagonal and the bottom variable is a terminal variable. In [8], the following was proven.

PROPOSITION 1.1. Let G be a cyclic group of order p and V a G-module that contains +k 1
non-trivial summands. Choose a basis ¼x x x, , , n0 1 in which the variables ¼x x x, , , k0 1 are the
bottom variables of the respective Jordan blocks, and let A be the G-subalgebra of [ ] V gener-
ated by ¼+x x, ,k n1 . Denote the image of xi in [ ] V G by Xi. Then

(1) The Hilbert Ideal of [ ] V G is generated by ( ) ( ) ¼ ( )N x N x N x, , ,G G G
k0 1 , and polynomials in A.

(2) [ ] V G has dimension divisible by +pk 1.
(3) [ ] V G is free as a module over its subalgebra  generated by ¼X X X, , , k0 1 .
(4) @ [ ¼ ]/( ¼ )  t t t t, , , ,k

p
k
p

0 0 , where ¼t t, , k0 are independent variables.

The goal of this article is to generalize the above, as far as possible, to the case of all finite
p-groups. In particular, we show in section two:

THEOREM 1.2. Let G be a finite p-group and V a G-module that contains +k 1 non-trivial sum-
mands. Choose a basis ¼x x x, , , n0 1 in which the variables ¼x x x, , , k0 1 coming from each sum-
mand are terminal variables. Let di denote ( )xdeg i for £ £i k0 . Retain the notation in the
proposition above, then

(1) There is a choice for polynomials ( ) ( ) ¼ ( )N x N x N x, , , k0 1 such that the Hilbert Ideal of [ ] V G

is generated by ( ) ( ) ¼ ( )N x N x N x, , , k0 1 , and polynomials in A.
(2) [ ] V G has dimension divisible by = di

k
i0 .

Suppose in addition that one has = ( ( ))d N xdegi
G

i for £ £i k0 . Then we have:

(3) [ ] V G is free as a module over its subalgebra  generated by ¼X X X, , , k0 1 .
(4) @ [ ¼ ]/( ¼ )  t t t t, , , ,k

d
k
d

0 0
k0 , where ¼t t, , k0 are independent variables.
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In Section 3, we describe the situation for a p-group, where the complete intersection property
of the Hilbert Ideal corresponding to a module is inherited from the Hilbert Ideal of the indecom-
posable summands of the module. The final section is devoted to applications of our main results
to cyclic p-groups and the Klein 4-group. It turns out that for a cyclic p-group, the bottom vari-
ables xi of Jordan blocks satisfy ( ) = ( ( ))x N xdeg degi

G
i . Consequently, (3) and (4) above hold for

a cyclic p-group. Additionally, for the Klein 4-group, we show that the Hilbert Ideal correspond-
ing to a module is a complete intersection as long as the module does not contain the regular module
as a summand. This generalizes a result of the second author and Shank [10], where the complete
intersection property was established for indecomposable modules only.

This article was composed during a visit of the second author to the University of Aberdeen,
funded by the Edinburgh Mathematical Society’s Research Support Fund. We would like to thank
the society for their support.

2. Main results

Throughout this section, we let G be a finite p-group,  a field of characteristic p and V a
G-module, which may be decomposable. As trivial summands do not contribute to the coinvari-
ants, we assume no direct summand of V is trivial. Let ¼x x x x, , , , n0 1 2 be a basis of V* and
assume that x0 is a terminal variable. Then ¼x x x, , , n1 2 generate a G-subalgebra which we denote
by A. We can define a nonlinear action of ( +), on [ ] V as follows:

= + ( )t x x t; 2.10 0·

= > ( )t x x ifor any 0. 2.2i i·

The terminality of x0 ensures this commutes with the action of G. It is well known that any
action of the additive group of an infinite field of prime characteristic is determined by a locally
finite iterative higher derivation. This is a family of -linear maps D [ ]  [ ] V V:i , ³i 0 satis-
fying the following properties:

(1) D = [ ]id V
0 .

(2) For all >i 0 and Î [ ]a b V, , one hasD( ) = å D ( )D ( )+ =ab a bi
j k i

j k .
(3) For all Î [ ]b V , there exists ³i 0 such thatD( ) =b 0i .

(4) For all i j, , one has ( )D D = D+ +j i i j

j
i j◦ .

The equivalence of the group action and the l.f.i.h.d. is given by the formula

å= D( ) ( )
³

t b t b . 2.3
i

i i

0

·

See [3, 14], for more details on l.f.i.h.d.’s.
Let Î [ ]f V G be homogeneous of degree d in x0. We write

= + + +-
-f f x f x f ,d

d
d

d
0 1 0

1
0
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where Îf Ai . We have

å= ( + ) + ( + ) + + = D( ) ( )-
-

³

t f f x t f x t f t f . 2.4d
d

d
d

i

i i
0 1 0

1
0

0

· 

That is to say that D( )fi is the coefficient of ti in the above expression. As the action of G com-
mutes with the action of , we see thatD( ) Î [ ]f Vi G for all ³i 0.

REMARK 2.1.
(1) ClearlyD = ¶

¶x
1

0
. So the previous paragraph generalizes [8, Lemma 1].

(2) Equation (2.4) gives that ( )D ( ) = -x xj i i

j
i j

0 0 provided ³i j. Then, from Lucas’s theorem [5]

on binomial coefficients in characteristic p, we see that we can think ofDp j
as ‘Differentiation

by x p
0

j

’: if the coefficient of p j in the base p expansion of m is a, then we have

D ( ) =
ì
í
ïï
îïï

>
=

-
x ax a

a

0;

0 0.
p m

m p

0
0

j
j

For later use, we also note the following consequence: for a homogeneous Î [ ]f V , D ( )fj

contains a non-zero constant if and only if the monomial x j
0 appears in f .

(3) In [4], a G-equivariant map is constructed from polynomials whose x0-degree is at most epr

( < < )e p0 to polynomials whose x0-degree is at most pr. This map turns out to be a non-
zero scalar multiple ofD( - )e p1 r

.

We have the following statement generalizing [8, Lemma 2]:

LEMMA 2.2. Let Î [ ]f V be a homogeneous polynomial of degree d in x0. Write
= + + +-

-f f x f x fd
d

d
d

0 1 0
1

0 , where Îf Ai . Then we have

å(- ) D ( ) =
=

x f f1 .
i

d
i i i

0
0 0

Proof. Write = ( ¼ )f f x x x x, , , , n0 1 2 . For any Î t , we have

= ( ¼ ) = ( + ¼ )t f f t x t x t x f x t x x x, , , , , , , .n n0 1 0 1 2· · · ·

As this holds for all t it also holds when t is replaced by (- )x0 , and hence by Equation (2.3), we
have å (- ) D ( ) = (- ) = ( ¼ ) == x f x f f x x x f1 0, , , ,i

d i i i
n0 0 0 1 2 0· as required. □

We also note that the degree of a terminal variable is a p-power.

LEMMA 2.3. For any terminal variable Îx V0 *, ( )xdeg 0 is a power of p.

Proof. Let d denote the degree of x0 and suppose Î [ ]f V G is monic as a polynomial in x0 of
degree = + + +-

-d d p d p dr
r

r
r

1
1

0 with £ <d p0 i and ¹d 0r . If ¹d 0j for some <j r ,
then D ( ) Î [ ]f Vp Gj

has degree - >d p 0j as a polynomial in x0 and its leading coefficient is
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in . Similarly, if =d 0j for <j r and >d 1r , thenD ( ) Î [ ]f Vp Gr
has degree - >d p 0r in x0

and its leading coefficient is in . Both cases violate the minimality of d . □

LEMMA 2.4. Let d denote the degree of x0. ThenD ( ) Í j for <j d .

Proof. Let Î [ ]f V . From the second assertion of Remark 2.1, we get that D ( )fj contains a non-
zero constant if and only if the monomial x j

0 appears in f . Therefore, by the minimality of d , we
haveD ( [ ] ) Í+  Vj G for <j d . Now the result follows from property (2) of l.f.i.h.d.’s. □

From this point on, we adopt the notation of the introduction. This means that ¼x x x x, , , , k0 1 2

are terminal variables coming from different summands, and = [ ¼ ]+ +A x x x, , ,k k n1 2 . For each
= ¼i k0, , let =d pi

ri be the degree of xi. Since setting variables outside of a summand to zero
sends invariants to invariants of the summand, we may also assume that ( )N xi depends only on
variables that come from the summand that contains xi. We denote byDi the l.f.i.h.d. associated to
xi. We use reverse lexicographic order with >x xi j whenever £ £i k0 and + £ £k j n1 .

THEOREM 2.5.  is generated by ( ) ¼ ( )N x N x, , k0 and polynomials in A. Moreover, the lead
term ideal of is generated by ¼x x x, , ,p p

k
p

0 1

r r rk0 1
and monomials in A.

Proof. Let Î [ ]f V G. Since ( )N x0 is monic in x0, we may perform polynomial division and write
= ( ) +f qN x r0 where r has x0-degree<pr0, and it is easily shown that Î [ ]q r V, G. Then divid-

ing r by ( )N x1 yields another invariant remainder ¢r that has x1-degree <pr1. Since x0-degree of
( )N x1 is zero, it follows that x0-degree of ¢r is still<pr0. Thus, by repeating the process with each

terminal variable, and replacing f with the final remainder we assume that xi-degree of f is <pri

for £ £i k0 .
Let i be minimal such that f has non-zero degree <d pri in the terminal variable xi. We apply

Lemma 2.2 withD = Di to see that

( )å= - (- ) D ( )
=

f f x f1 ,
j

d
j

i
j

i
j

0
1

where f0 is the ‘constant term’ of f , that is, Î [ ¼ ]+f x x, ,i n0 1 . So from the previous lemma, we
get that Î f0 since <d pri. Moreover, since Di decreases xi-degrees and does not increase
degrees in any other variable, the xi-degree of each D ( )fi

j in the expression above is strictly less
than d , and the xl-degree for every < £i l k remains strictly less than prl. Thus, by induction on
degree, f can be expressed as a [ ] V -combination of elements of  whose degrees in the terminal
variables ¼x x, , i0 are all zero, and degrees in the remaining terminal variables xl for < £i l k are
strictly less than prl, respectively. Repeating the same argument with the remaining terminal vari-
ables gives us that f can be written as a [ ] V -combination of elements of Ç A together with
( ) ¼ ( )N x N x, , k1 as required. The first assertion of the theorem follows.
Note that the leading monomial of ( )N xi is xi

pri
for £ £i k0 . So it remains to show that all

other monomials in the lead term ideal of  lie in A. Recall that by Buchberger’s algorithm a
Gröbner basis is obtained by reduction of S-polynomials of a generating set by polynomial div-
ision, see [1, Section 1.7]. By the first part,  has a generating set consisting of ( )N xi for
£ £i k0 and polynomials in A. But the S-polynomial of two polynomials in A is also in A, and

via polynomials in A, it also reduces to a polynomial in A. Finally, the S-polynomial of ( )N xi and
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a polynomial in A and the S-polynomial of a pair ( )N xi and ( )N xj with £ ¹ £i j k0 reduce to
zero since their leading monomials are pairwise relatively prime. □

COROLLARY 2.6. The vector space dimension of [ ] V G is divisible by =£ £
å =d pi k i

r
0

i
k

i0 .

Proof. The set of monomials that are not in the lead term ideal of  form a vector space basis for
[ ] V G. Let L denote this set of monomials. By the previous theorem, a monomial ÎM A lies in L

if and only if ¼Mx x, ,a
k
a

0
k0 lies in L for £ <a p0 i

ri and £ £i k0 . It follows that the size of the
set L is divisible by å =p ri

k
i0 . □

The following generalizes the content of [8, Theorem 5] partially for a p-group.

THEOREM 2.7. Let xi be a terminal variable of degree d , and write ( ) = + å =
-N x x f xi i

d
j
d

j i
j

0
1 ,

where xi-degree of fj is zero for £ £ -j d0 1. Then + Î x fi
d

0 .

Proof. Consider = ( ) -N N x xi i
d. This is a polynomial of degree <e d in xi. By Lemma 2.2,

å(- ) D ( ) =
=

x N f1 ,
j

e
j

i
j

i
j

0
0

¯

since f0 is the constant term of N̄ . Now recall that D ( )xi
j

i
d is the coefficient of t j in ( + ) =x ti

d

+x ti
d d (note that d is a p-power by Lemma 2.3). Thus, D ( ) =x 0j

i
d for all < <j d0 . AsDi

j is a
linear map for all j it follows thatD ( ( )) = D ( )N x Ni

j
i i

j ¯ for all < <j d0 . Therefore,

å(- ) D ( ( )) = -
=

x N x f N1 .
j

e
j

i
j j

i
1

0
¯

As D ( ( )) Î N xi
j

i for all <j d by Lemma 2.4, we get that - Î f N0
¯ . Therefore

+ = ( ) - + Î x f N x N fi
d

i0 0
¯ as required. □

LEMMA 2.8. Suppose that for each = ¼i k0, , we have Î xi
di . Then [ ] V G is free as a module

over its subalgebra  generated by ¼X X X, , , k0 1 , and @ [ ¼ ]/( ¼ )  t t t t, , , ,k
d

k
d

0 0
k0 , where ¼t t, , k0

are independent variables.

Proof. The hypothesis on the xi is equivalent to =X 0i
di in [ ] V G. Let ¼t t, , k0 be independent vari-

ables and consider the natural surjective ring homomorphism from [ ¼ ] t t, , k0 to [ ¼ ] X X, , k0 . Since
=X 0i

di , the kernel of this map contains ( ¼ )t t, ,d
k
d

0
k0 . If this ideal is not all the kernel, then  must

contain a polynomial in ¼x x, , k0 such that no monomial in this polynomial is divisible by xi
di for

£ £i k0 . This is a contradiction with the description of the lead term ideal in Theorem 2.5.
Secondly, let L denote the set of monomials in [ ] V that are not in the lead term ideal of .

Then the set of images of monomials in L¢ = L È A generate [ ] V G over  . Further, they generate
freely because ¼ Î LMx x, ,a

k
a

0
k0 for all Î L¢M and £ <a d0 i i and £ £i k0 , and the images of

monomials in L form a vector space basis for [ ] V G. □

Proof of Theorem 1.2. The first two assertions of the theorem are contained in Theorem 2.5 and its
corollary. Next assume that = ( ( ))d N xdegi

G
i for £ £i k0 . So we can take ( ) = ( )N x N xi

G
i .

Then from Theorem 2.7, it follows that Î xi
di for £ £i k0 since the constant term of ( )N xG

i (as
a polynomial in xi) is zero. Now the third and the fourth assertions follow from Lemma 2.8. □
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3. Complete intersection property of

In this section, we show that if the Hilbert Ideals of two modules are generated by fixed points and
powers of terminal variables, then so is the Hilbert Ideal of the direct sum. As an incidental result,
we prove that the degree of a terminal variable does not change after taking direct sums. We con-
tinue with the notation and the convention of the previous section. Let V1 and V2 be arbitrary
G-modules. We choose a basis ¼ ¼x x y y, , , , ,n m1,1 ,1 1,1 ,11 1

for V1* and ¼ ¼x x y y, , , , ,n m1,2 ,2 1,2 ,22 2
for

V2* such that ¼ ¼x x x x, , , , ,n n1,1 ,1 1,2 ,21 2
are fixed points. Note that both [ ] V1 and [ ] V2 are subrings

of [ Å ] V V1 2 , and we identify

[ Å ] = [ ¼ ¼ ¼ ¼ ] V V x x x x y y y y, , , , , , , , , , , .n n m m1 2 1,1 ,1 1,2 ,2 1,1 ,1 1,2 ,21 2 1 2

Note that if yi j, is a terminal variable in Vj* for some £ £i m1 j, £ £j1 2, then it is also a ter-
minal variable in ÅV V1 2* *.

LEMMA 3.1. Assume the notation of the previous paragraph. Let Îy Vi j j, * be a terminal variable.
Then the degrees of yi j, in Vj* and ÅV V1 2* * are equal.

Proof. Since [ ] Í [ Å ] V V Vj
G G

1 2 , we have that the degree of yi j, in Vj* is bigger than its degree
in ÅV V1 2* *. On the other hand, the restriction map [ Å ]  [ ] V V VG

j
G

1 2 given f f Vj∣ preserves
any power of the form yi j

d
, . This gives the reverse inequality. □

We denote the Hilbert Ideals [ Å ] [ Å ]+ V V V VG
1 2 1 2 , [ ] [ ]+ V VG

1 1 and [ ] [ ]+ V VG
2 2 with , 1

and 2, respectively.

THEOREM 3.2. Assume that 1 and 2 are generated by the powers of the variables in V1* and
V2*, respectively, and that the variables ¼ ¼y y y y, , , , ,m m1,1 ,1 1,2 ,21 2

are terminal variables. Then  is
generated by the union of the generating sets for 1 and2.

Proof. Assume that 1 is generated by ¼ ¼x x y y, , , , ,n
d

m
d

1,1 ,1 1,1 ,1
m

1
1,1

1

,1 and 2 is generated by
¼ ¼x x y y, , , , ,n

d
m
d

1,2 ,2 1,2 ,2
m

2
1,2

2

,2 . We show that di j, is equal to the degree of the variable yi j, for
£ £i m1 j and £ £j1 2. For simplicity, we set = =i j 1 and denote the degree of y1,1 with d .

Since 1 is generated by monomials, each monomial in a polynomial in 1 is divisible by one of
its monomial generators. So we get £d d1,1 . On the other hand, since y d

1,1
1,1 is a member of 1 there

is a positive degree invariant with a monomial that divides y d
1,1

1,1. So by the minimality of d , we get
£d d1,1 as well. By Lemma 3.1, di j, is also equal to the degree of yi j, in [ Å ] V V G

1 2 . We claim
that the union of the generating sets for 1 and 2 generate . Otherwise, there exists a poly-
nomial f in that contains a non-constant monomial £ £ £ £ yi m j i j

e
1 ,1 2 ,j

i j, with £ <e d0 i j i j, , . LetDi j,

denote the derivation with respect to the terminal variable yi j, . Then applying Di j
e
,
i j, successively

to f for £ £ £ £i m j1 , 1 2j yields an invariant with a non-zero constant. This is a contradiction
by Lemma 2.4 since <e di j i j, , . □

We end this section with an example which shows that the degree of a terminal variable may
be strictly less than the degree of its norm:

EXAMPLE 3.3. Let s t= á ñH , be the Klein 4-group,  a field of characteristic 2 and ³m 2. Let
W ( )- m be a vector space of dimension = +m n2 1 over . Choose a basis { ¼x x x y, , , , ,m1 2 1

¼ }+y y, , m2 1 of V*. One can define an action of H on V in such a way that its action on V* is given
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by s s t t( ) = + ( ) = ( ) = + ( ) =-y y x x x y y x x x, , ,j j j j j j j j j j1 using the convention that =x0

=+x 0m 1 .
The variables ¼ +y y y, , , m1 2 1 are terminal. One can readily check that

+ + + + +y x y x y x y x y y x2
2

2 2 1 2 2 1 1 3 1 3

is invariant under H (note the last term is zero if =m 2), so y2 has degree 2. On the other hand,
y2 is not fixed by either s or t , which means ( )N yH

2 has degree 4. It is interesting to note that
+ + + Î x y x y x y y x1 2 2 1 1 3 1 3 , so we still have Î y2

2 .

4. Cyclic p-groups and the Klein 4-group

In this section, we apply the results of the previous sections to cyclic p-groups and the Klein 4-
group. Let =G Z pr denote a cyclic group of order pr. Fix a generator s of G. There are pr indecom-
posable G-modules ¼V V, , p1 r over , and each indecomposable module Vi is afforded by s-1 acting
via a Jordan block of dimension i with ones on the diagonal. For an arbitrary G-module V ,
we write

= ( £ £ )
=

V V n p iwith 1 for all ,
i

k

n i
r

0
i⨁

where each Vni
is spanned as a vector space by ¼e e, ,i n i1, ,i . Then the action of s-1 is given by

s ( ) = +-
+e e ej i j i j i

1
, , 1, for £ <j n1 i and s ( ) =- e en i n i

1
, ,i i . Note that the fixed point space V G is

-linearly spanned by ¼e e, ,n n k,0 ,k1
. The dual Vni

* is isomorphic to Vni
. Let ¼x x, ,i n i1, ,i denote the

corresponding dual basis, then we have

[ ] = [ £ £ £ £ ] V x j n i k1 , 0 ,j i i, ∣

and the action of s is given by s ( ) = + -x x xj i j i j i, , 1, for < £j n1 i and s ( ) =x xi i1, 1, for
£ £i k0 . Notice that the variables xn i,i for £ £i k0 are terminal variables. We follow the nota-

tion of Section 2 and denote xn i,i with xi. We show that Theorem 1.2 applies completely to G by
computing ( )xdeg i explicitly for £ £i k0 . For each £ £i k0 , let ai denote the largest integer
such that > -n pi

a 1i .

LEMMA 4.1. We have ( ) =x pdeg i
ai. In particular, we may take ( ) = ( )N x N xi

G
i .

Proof. From [7, Lemma 3], we get that ( )xdeg i is at least pai. On the other hand, since
³ > -p n pa

i
a 1i i , a Jordan block of size ni has order pai. That is, this block affords a faithful

module of the subgroup of G of size pai. It follows that the orbit of xi has pai elements and so
that the orbit product ( )N xG

i is a monic polynomial that is of degree pai in xi. □

Applying Theorem 1.2, we obtain the following.
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PROPOSITION 4.2. Assume the notation of Theorem 1.2 with specialization =G Z pr. We have an
isomorphism

[ ¼ ] @ [ ¼ ]/( ¼ ) X X t t t t, , , , , , .k k
p

k
p

0 0 0

a ak0

Moreover, [ ] V G is free as a module over [ ¼ ] X X, , k0 . □

Now let H denote the Klein 4-group and =p 2. For each indecomposable H -module V , there
exists a basis of V* with one of the terminal variables xi satisfying ( ) = [ ]x H Hdeg :i xi , see [10].
In this source, it is also proven that with the exception of the regular module, each basis consists
of fixed points and the terminal variables, and the Hilbert Ideal of every such module is generated
by fixed points and the powers of the terminal variables. So we have by Theorems 1.2 and 3.2:

PROPOSITION 4.3. Let V be a H -module containing +k 1 indecomposable summands. There is a
basis { ¼ }x x x, , , n0 1 of V* in which ¼x x x, , , k0 1 are terminal variables, each coming from one
summand, such that [ ] V H is free as a module over its subalgebra  generated by the images

¼X X X, , , k0 1 of the terminal variables. Moreover, @ [ ¼ ]/( ¼ )  t t t t, , , ,k
a

k
a

0 0
k0 , where ¼t t, , k0 are

independent variables, and for each i, we have =a 2i or 4.

PROPOSITION 4.4. Let V be a H -module such that V does not contain the regular module H as
a summand. Then there exists a basis of V* such that [ ] [ ]+ V VH is generated by powers of basis
elements. In particular, [ ] [ ]+ V VH is a complete intersection.
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