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In this paper, we consider the multistage stochastic lot sizing problem with controllable processing times 

under nervousness considerations. We assume that the processing times can be reduced in return for 

extra cost (compression cost). We generalize the static and static-dynamic uncertainty strategies to elim- 

inate setup oriented nervousness and control quantity oriented nervousness. We restrict the quantity 

oriented nervousness by introducing a new concept called promised production amounts , and considering 

new range constraints and a nervousness cost function. We formulate the problem as a second-order cone 

mixed integer program (SOCMIP), and apply the conic strengthening. We observe the continuous mixing 

set substructure in our formulation that arises due the controllable processing times. We reformulate 

the problem by using an extended formulation for the continuous mixing set and solve the problem by 

a branch-and-cut approach. The computational experiments indicate that the reformulation reduces the 

root gaps and this helps to solve the problem in less computation times. Moreover, in our computational 

experiments we investigate the impact of new restrictions, specifically the additional cost of eliminating 

the setup oriented nervousness, on the total costs and the system nervousness. Our computational re- 

sults clearly indicate that we could significantly reduce the nervousness costs and generate more stable 

production schedules with a relatively small increase in the total cost. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Demand uncertainty is one of the major challenges in stochastic

ot sizing problems. There are two extreme strategies used in mod-

ling this problem: static and dynamic uncertainty strategies. In

he static uncertainty strategy, the production schedule is decided

t the beginning of the planning horizon and implemented without

ny revision. In the dynamic uncertainty strategy, production deci-

ions are taken dynamically as response to demand realizations.

t is possible to find less costly production plans under dynamic

ncertainty strategy since more information is obtained until the

ime of the decision. On the other hand, under this strategy, the

roduction plan is not known in advance, which could cause fre-

uent revisions. 

Uncertainty of a production plan or frequent revisions in a pro-

uction schedule cause a problem in the system which is called

system nervousness” or “planning instability”. Nervousness is one

f the most important performance measures in the inventory con-

rol theory ( De Kok and Inderfurth, 1997 ). The nervousness on the

op level of production systems propagates throughout the system
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ince schedule changes at one level of the production system may

ead to adjustments at other levels of the system ( De Kok and In-

erfurth, 1997 ). Hence, if the system is not flexible with respect

o revisions, nervousness may be a big problem for the whole sys-

em, and implementing the revisions may cost more (or may be

arder) than implementing a non-optimal production schedule (in

erms of cost) that causes less nervousness in the system ( Kilic and

arim, 2011 ). 

Although nervousness is mostly considered as a problem for a

roduction system, nervousness of one system may affect other

ystems related to that. Besides, nervousness may arise not only

n production systems but also in transportation and procurement

ystems. For example, changes in the ordering plan of a buyer may

egatively influence its relation with its supplier (or transporter),

ince decisions of the buyer may alter the ones of the supplier (or

ransporter). 

In this paper, we introduce a new multistage stochastic lot

izing problem to control the nervousness of the production (or

rdering/buying) schedules. We eliminate the setup oriented ner-

ousness, which is caused by changes in the production periods

cancellation of a production decision or deciding to produce in

 period that is not considered as a production period before),

nd reduce quantity oriented nervousness that is related to the

https://doi.org/10.1016/j.cor.2018.01.021
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modifications (increase or decrease) in the decided production

amounts by introducing new restrictions. 

In the classical scenario tree formulation of the stochastic lot

sizing problem, setup and production decisions are taken for each

scenario separately. Thus, a decision for a period depends on the

demand realization in that period, and hence the resulting solu-

tion may lead to both setup and quantity oriented nervousness.

In this study, in order to eliminate setup oriented nervousness

we take setup decisions for each period, independently from the

demand realizations, and to reduce quantity oriented nervousness

we restrict the production amounts under different scenarios to

be within an interval of promised production (or order) amount for

the corresponding period. In other words, the promised production

amount for each period is decided in advance, and the actual pro-

duction amount of a period under any scenario is restricted to be

in some certain range of this promised production amount. Since

promised production amounts are decided beforehand, one can

use these values in arrangements before the production, purchas-

ing or transportation starts. The promised production amounts can

be seen as capacity reservations for future periods. For example,

a producer can adjust other levels of the system, or a buyer can

inform its supplier (or transporter) and reserve capacities for

future periods by using these values (see, e.g., van Norden and

van de Velde, 2005 ). Note that, when the promised production

amounts are known, one can compute the range that contains all

the possible actual production (or order) amounts under different

scenarios for each period. 

Another way of preventing large deviations from the promised

production amount is to penalize the difference between the actual

production amounts and the promised production amount. This

penalty cost can be motivated from the following example. Con-

sider a buyer-supplier system where the buyer informs the sup-

plier about its promised order amounts for the future periods. The

buyer has the flexibility of changing its actual ordering amount

within some range of the promised order amounts. On the other

hand, the supplier has a right to penalize the difference between

the actual and the promised order amounts to protect itself from

large deviations. In this case, the buyer has to consider this penalty

cost as a part of its total cost function. Note that, by using a convex

penalty function the supplier can prevent large deviations from the

promised order amounts. In this study, we will consider a convex

cost function to penalize the differences between the promised and

the actual production amounts under each scenario. We will call

this penalty cost the nervousness cost from now on. More specifi-

cally, we assume that the nervousness cost is a convex increasing

power function in the form of x p / q for p / q ≥ 1 which is known to

be conic quadratic representable ( Ben-Tal and Nemirovski, 2001 ). 

In our formulation, we generalize the static and static dynamic

uncertainty strategies of Bookbinder and Tan (1988) . In the static-

dynamic uncertainty strategy, the replenishment periods are de-

termined at the beginning of the planning horizon, and replenish-

ment amounts are decided at the beginning of these periods. Thus,

this strategy causes only quantity oriented nervousness. Note that

static uncertainty strategy does not cause any nervousness since

the production schedule is fixed at the beginning. In our formu-

lation, we include both of these strategies as special cases. To the

best of our knowledge, this is the first study that considers the

static-dynamic uncertainty strategy in the multistage stochastic lot

sizing problem. 

In most of the studies on the lot sizing problems, processing

times (or capacities) are assumed to be constant. In practice, the

processing time of a job can be controlled (and reduced) by chang-

ing the machine speed, allocating extra manpower, subcontracting,

overloading, consuming additional money or energy, and these

options are available in many real life production and inventory

systems. In this study, we assume that the processing times can be
educed in return for extra cost (compression cost). For example,

ncreasing a machining speed in a production system will reduce

he processing time at the expense of an additional tool con-

umption cost and may also increase the energy consumption of

he facility. On the other hand, by reducing the processing times,

r increasing the capacities, one can produce more in a period

nd consequently, might eliminate the number of production

eriods. As a result, controllable processing times can be seen as

n alternative to holding inventory: instead of producing before

nd holding inventory, we have an option to produce more in

ubsequent periods by reducing the processing times. 

In a buyer-supplier system, where the supplier has limited ca-

acities, reducing the processing times can be conceived as order-

ng more than the capacity of the supplier. In this case, the sup-

lier might use subcontracting, outsourcing, or overtime to satisfy

he demand of the buyer, but may charge more than the usual cost

or the product. Similarly, in a customer-transporter system, if the

ustomer orders more than the capacity of a truck, the transporter

ight overload trucks (up to some limit), and may charge extra

ost due to increased fuel consumption and/or carbon emission. 

Overall, we consider a system where processing times can be

educed or capacities can be increased. Besides, we assume that

hese actions become harder and cost more for larger amounts.

ote that this is a reasonable assumption since it is unlikely to re-

uce the processing time to zero (or making the resource capacity

nfinite) in a real life system. Thus, we assume that the compres-

ion cost function is a convex function of the compression amount

nd has the same structure as the nervousness cost function. 

Recently, Koca et al. (2015) study the stochastic lot sizing prob-

em with controllable processing times and convex compression

ost functions. We consider the same compression cost function

s that study and apply a similar conic strengthening technique.

ut, the authors consider the problem under a static uncertainty

trategy with α service level constraints, whereas in this paper,

e study the multistage stochastic lot sizing problem under a dy-

amic uncertainty strategy with a different objective function, e.g.,

e search for a minimum cost production plan that causes less

ervousness in the system. Moreover, in this study we exploit the

ixing set substructure that arises due to the controllable process-

ng times option. 

The effect of new restrictions and controllable processing times

n a production schedule is illustrated in the following example. 

Example. Consider a 4-period problem instance where the de-

and of each period is given on the scenario tree in Fig. 1 . As-

ume that all nodes defined for a period have the same prob-

bility. For example, probability of realizing the demand repre-

ented by one of the nodes in period 3 is 0.25 ( = 1 / 4 ). Suppose

hat setup cost is 30 0 0, unit production and inventory holding

osts are 5 and 1 for each period, respectively. Cost parameters for

ach node are obtained by multiplying the corresponding param-

ter for the period of the node with the node probability. For ex-

mple, setup, unit production, and inventory holding costs in node

 are 30 0 0 × 0 . 25 = 750 , 5 × 0 . 25 = 1 . 25 , and 1 × 0 . 25 = 0 . 25 , re-

pectively. Suppose that the capacity of each period is 800 time

nits and the normal processing time is 1 time unit for each item.

et x i be the production amount in a period if demand represented

y node i is realized. 

The optimal solution of the classical scenario tree formulation

f this problem instance is to produce in the following amounts:

 0 = 784 , x 2 = 212 , x 4 = 800 , x 6 = 743 , x 7 = 88 , x 10 = 497 , x 11 =
68 , x 13 = 800 and x 14 = 557 . Total expected cost of this solution is

875 (for setup) + 8010 (for production) + 631 . 5 (for inventory) =
6516 . 5 . Note that according to this solution production decisions

epend on the scenario realizations, and there exists a production

ecision for every period under different scenarios. 
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Fig. 1. Example. 
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Now suppose that setup decisions are taken for each period

not for each node separately) and the production amounts should

atisfy the following range constraints : 

x 0 = z 0 
 . 2 z 2 ≤ x i ≤ 1 . 8 z 2 i = 1 , 2 

 . 2 z 3 ≤ x i ≤ 1 . 8 z 3 i = 3 , . . . , 6 

 . 2 z 4 ≤ x i ≤ 1 . 8 z 4 i = 7 , . . . , 14 

here the new decision variable z t is the promised production

mount for period t . The solution of this problem is to produce

n all periods the following amounts: 

 = (509 , 84 , 430 , 89 , 688 , 89 , 800 , 190 , 89 , 303 , 800 , 636 , 89 , 

800 , 557) . 

he promised production amounts are z = (509 , 239 , 445 , 445) .

otal expected cost of this solution is 120 0 0 (for setup) + 8077 . 5

for production) + 152 . 75 (for inventory) = 20230 . 25 . Note that

he total cost is increased due to new restrictions on the produc-

ion decisions. The cost difference can be conceived as the cost of

liminating setup oriented nervousness and reducing the quantity

riented nervousness. 

Now suppose that processing times can be reduced, or capac-

ties can be increased. Assume that processing times can be re-

uced by at most 0.6 at each period, and the compression cost

or each node is given by the function 0.001 × (total compres-

ion amount in each node) 2 . In this case the optimal solution

s to produce in periods 1 and 3 the following amounts: x 0 =
96 , x 3 = 194 , x 4 = 1285 , x 5 = 868 , and x 6 = 1743 ; and the opti-

al promised production amounts are z 1 = 796 and z 3 = 969 . To-

al expected cost is 60 0 0 (for setup) + 9092 . 5 (for production)

 1308 . 75 (for inventory) + 1129 . 1 (for reducing the processing

imes) = 17530 . 35 (< 20230 . 25) . Note that by allowing the con-

rollable processing times, we could produce more in several nodes

nd eliminate two production periods. In this way, we get rid of

he setup cost for two periods, but pay more for inventory and also

or reducing the processing times. It can be observed from this ex-

mple that we add new restrictions to the problem for reducing

he system nervousness, and we enlarge the solution space by in-

roducing controllable processing times in this problem context for

he first time. 
The contributions of this paper are threefold: 

• To the best of our knowledge, this is the first study that consid-

ers the system nervousness in multistage stochastic lot sizing

problem. We propose a new approach to eliminate the setup

oriented nervousness and control the quantity oriented ner-

vousness. 
• We introduce a new concept called promised production

amounts to reduce the quantity oriented nervousness. 
• To the best of our knowledge, this is the first study that con-

siders the multistage stochastic lot sizing problem with control-

lable processing times. We observe the continuous mixing set

substructure in our formulation that arises due to this assump-

tion. We reformulate the problem by using the extended formu-

lation for continuous mixing set, and use the valid inequalities

developed for mixing sets. 

The rest of the paper is organized as follows. In the next sec-

ion, we review the related literature. In Section 2 , we formulate

he problem as a SOCMIP and strengthen this formulation by conic

trengthening. In Section 3 , we show that the continuous mix-

ng set is a relaxation of the lot sizing problem with controllable

rocessing times. We propose extended formulations and valid in-

qualities based on mixing and continuous mixing set relaxations

f our formulation. We test these formulations and inequalities in

ection 4 , and in Section 5 , conclusions and future research direc-

ions are discussed. 

. Literature review 

In this section, we briefly review the related literature. 

.1. Multistage stochastic lot sizing problem 

When demand follows a finite discrete probability distribution,

 scenario tree can be constructed to represent the possible de-

and realizations for each period. In a scenario tree, each stage

orresponds to a time period, and any path from the root node

o a leaf node represents a scenario. The dependency between the

emand of different periods can be easily formulated in a scenario

ree. However, the tree size grows exponentially with the number

f possible demand realizations; for example, for 10 periods and 2

ossible demand realizations for each period, the number of nodes

s 1023. Escudero and Kamesam (1995) consider the multistage

tochastic lot sizing problem with two suppliers ((capacitated) in-

ouse production and (uncapacitated) vendor supply) and different

ecourse options: simple (production decisions are the same for all

cenarios), partial (in-house production decisions are the same for

ll scenarios) and full (all decisions may be different for different

cenarios). The authors assume there is no setup cost and propose

 heuristic solution method by clustering the time horizon into

hree stages: first two stages are periods 1 and 2, respectively, and

he remaining time periods are assumed as stage 3. 

Ahmed et al. (2003) consider the multistage stochastic capac-

ty expansion model and draw an equivalence between this prob-

em and the multistage stochastic uncapacitated lot sizing prob-

em. The authors formulate the stochastic uncapacitated lot sizing

roblem as a facility location problem and show that the Wagner-

hitin property ( Wagner and Whitin, 1958 ) does not hold for this

roblem. Brandimarte (2006) formulates the multi-item stochastic

apacitated lot sizing problem as a facility location problem, and

evelops a fix-and-relax heuristic by partitioning the setup vari-

bles according to the time index. Tang et al. (2012) develop a La-

rangian relaxation heuristic for the multistage stochastic lot sizing

roblem with nonlinear cost functions. Cristobal et al. (2009) con-

ider the stochastic dynamic programming approach to solve large
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scale planning problems, and the authors test their approach on

the multistage stochastic lot sizing problem instances. 

Guan et al. (2006b) develop a family of valid inequalities, called

( Q, S Q ), for the stochastic uncapacitated lot sizing problem and

Guan et al. (2006a) show that these inequalities are sufficient for

describing the convex hull of the set of solutions for the two pe-

riod problem. Di Summa and Wolsey (2008) prove that these in-

equalities are also mixing inequalities and extend these results to

the constant capacitated case. Guan et al. (2009) develop valid in-

equalities employed in a branch-and-cut method for a multistage

(capacitated) stochastic lot sizing problem. 

Halman et al. (2009) show that multistage stochastic lot sizing

problem is NP-hard when the problem is uncapacitated, produc-

tion and inventory costs are linear and there are two possible de-

mand scenarios for each period. Guan (2011) develop polynomial

time (in the tree size) dynamic programming algorithms for the

problem when backlogging is possible and/or capacities are vary-

ing between periods. 

2.2. System nervousness 

System nervousness is caused by the changes in the produc-

tion plans. Nervousness at an upper level of the supply chain af-

fects all the supply chain and it causes lack of coordination in the

production systems. If the system is not flexible, i.e., if revisions

cannot be handled easily, nervousness becomes a bigger problem

and in these systems, it may be more appropriate to look for a

more stable production plan, in which revisions are not needed

( Heisig, 2001 ). 

There are few studies in the literature that consider ner-

vousness. In early studies on this subject, simulation of the

systems is used to test different strategies and to investigate

the impact of parameter settings ( Blackburn et al., 1986; Kadi-

pasaoglu and Sridharan, 1997 ). Kropp et al. (1983) incorporate

nervousness to the total cost function and solve the problems

heuristically. Inderfurth (1994) , De Kok and Inderfurth (1997) , and

Heisig (2001) consider system nervousness caused by inventory

policies such as ( s, S ), ( s, nQ ), ( R, S ) policies and develop different

measures for nervousness. However, in all of these studies, the

systems are assumed as stationary. According to these stud-

ies, the ( s, S ) policy, which is the optimal policy for stationary

systems ( Scarf, 1960 ), performs worst in terms of system ner-

vousness, since a production decision for each period is taken at

the beginning of that period according to the revised inventory

level. Pujawan (2004) considers a case study of nervousness in a

manufacturing company and emphasizes that nervousness is an

important issue in practice. 

In recent studies, new nervousness measures are consid-

ered for nonstationary systems. Kilic and Tarim (2011) develop

a method for measuring cost of system nervousness in non-

stationary systems under ( s, S ) and ( R, S ) policies and conclude

that the ( R, S ) policy performs better in terms of nervousness.

Tunc et al. (2016) develop an MIP formulation for the lot sizing

problem under a generalized ( R, S ) policy where the ordering cost

functions are piecewise concave. Tunc et al. (2013) introduce a

method for evaluating the costs of setup and quantity oriented

nervousness by comparing static, dynamic and static-dynamic

uncertainty strategies. Note that static uncertainty strategy is

nervousness free since all the production decisions are taken

at the beginning of the planning horizon. On the other hand,

the dynamic uncertainty strategy causes both setup oriented

and quantity oriented nervousness. As a combination of these two

strategies, static-dynamic uncertainty strategy causes only quantity

oriented nervousness. The authors conclude that, setup oriented

nervousness can be avoided by a small cost increase in the system

whereas it is harder to avoid quantity oriented nervousness. 
A rolling horizon is frequently applied to the systems when

t is not possible to have an accurate forecast for the demand of

urther periods ( Baker, 1977 ). Determining the length of the plan-

ing interval is one of the issues of the rolling horizon approach.

s a production plan for a given period may change as much

s this interval length, this method may cause system nervous-

ess ( Inderfurth, 1994 ). Simpson (2001) compares several lot sizing

ules with respect to different aspects including nervousness in ex-

ensive rolling horizon simulation tests. Kazan et al. (20 0 0) evalu-

te different algorithms under the rolling horizon when there exist

ost terms associated with setup and quantity oriented nervous-

ess. 

In this study, we restrict quantity oriented nervousness by im-

osing range constraints on the production decisions. The idea is

ery similar to the restricted recourse concept of Vladimirou and

enios (1997) . Vladimirou and Zenios (1997) search for recourse

obust solutions for two stage stochastic linear programs by inves-

igating different formulations in which variability of the second

tage decisions is restricted via some additional constraints. The

uthors develop solution procedures for these formulations by us-

ng the primal-dual interior point method. 

.3. Controllable processing times 

Controllable processing times are well studied in the con-

ext of scheduling. Earlier studies on this subject assume lin-

ar compression costs, although as it is stated in recent stud-

es, in many applications reducing the processing times gets

arder (and more expensive) as the compression amount increases

 Aktürk et al., 2009 ). Thus, considering a convex compression cost

unction is more realistic since a convex function represents in-

reasing marginal costs and may limit higher usage of the re-

ource due to environmental issues. A detailed review on schedul-

ng with controllable processing times can be found in Shabtay and

teiner (2007) . 

As reducing the processing time of a job is equivalent to in-

reasing the production capacity, controllable processing times can

e seen as an alternative to subcontracting or overloading. There

re studies in the literature that consider the lot sizing prob-

em with subcontracting or outsourcing ( Atamtürk and Hochbaum,

001; Helber et al., 2013; Merzifonluo ̆glu et al., 2007 ). However, in

ll of these studies costs of these options are assumed as either

inear or concave. Koca et al. (2015) is the only study that consid-

rs the lot sizing problem with convex compression cost functions.

. Problem definition and formulation 

Suppose that demand follows a discrete distribution and pos-

ible demand realizations are represented by a scenario tree T =
(V, E) with T stages and n nodes. Let t ( i ) be the time period of

ode i ∈ V and π i be the probability associated with the state rep-

esented by node i . The set of nodes defined for period t is denoted

y V t . The unique predecessor of node i is given by i − and demand

epresented by node i is denoted by d i . Assume that 0 is the root

ode. Let P ( i, j ) be the path from node i to node j and V ( u ) be the

et of descendants of node u , including u . 

Let f t be the setup cost for period t , and c i and h i be the unit

roduction and inventory holding costs for node i , respectively. We

ssume that all the cost parameters defined for each node include

he probability of the node. For example, if the probability of re-

lizing the demand represented by node i is 0.5 and the unit pro-

uction cost for period t ( i ) is 2 units, then we assume that the unit

roduction cost for that node is c i = 2 × 0 . 5 = 1 . But note that as

he setup decisions are taken for periods, not for nodes separately,

etup costs do not include node probabilities. 
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Fig. 2. Cost of nervousness. 
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We assume that the capacity in period t is C t time units. Pro-

essing time without any compression is p time units, and pro-

essing time of any item can be reduced by at most β ( < p ) time

nits. Without loss of generality, we assume that p = 1 . If pro-

essing times in node i are decreased by r i time units in total,

hen the compression cost is given by γi (r i ) = κi r 
e/d 
i 

where κ i ≥ 0

nd e ≥ d > 0. Note that γ is a convex function of the compression

mount r and this function can represent the increasing marginal

ost of decreasing the processing times in larger amounts. 

In the classical scenario tree formulation of the lot sizing prob-

em, even though optimal production decisions for each node are

nown, we may not know the exact production amount in a pe-

iod until the demand of the period is realized. This situation

auses both setup and quantity oriented nervousness in the sys-

em. In this study, we want to find a minimum cost solution for

he problem which results in less nervousness in the system. In

ther words, we have two different objectives: we still want to

nd a minimum cost production plan for the system and we want

o decrease the system nervousness by considering additional con-

traints on the production decisions. 

In order to reduce the setup oriented nervousness, we consider

etup decisions for periods rather than deciding for each node

eparately. Thus, we determine the production periods at the

eginning of the planning horizon, and in this way we eliminate

he setup oriented nervousness from our formulation. Moreover,

e control quantity oriented nervousness by restricting produc-

ion amounts under different scenarios and penalizing different

roduction decisions for the same time period. We define two

ypes of decisions related to production amounts ( exact production

mounts for each node and promised production amounts for each

eriod), and assume that there is a nervousness cost depending

n the relation of these two decisions. 

Let y t be the setup variable which is equal to 1 if there exists

 production in period t and 0 otherwise. Let x i be the production

mount in node i and z t be the promised production amount in

eriod t . We relate the promised production amount for a period

nd the production decisions for each node defined for that period

y the range parameters λt ≤ 1 and δt ≥ 1: λt z t ≤ x i ≤ δt z t for i ∈ V t .

n other words, the production amount of any node defined for

eriod t should be in the interval [ λt z t , δt z t ]. The inequalities can

e rewritten as λt ( i ) z t ( i ) ≤ x i ≤ δt ( i ) z t ( i ) for i ∈ V . 

Accuracy of promised production amounts ( z ) is controlled

y the parameters λt and δt . When these parameters get close

o 1, the interval [ λt z t , δt z t ] shrinks and z t ( i ) becomes closer

o the exact production/order amount x . Moreover, in this case,
i u  
roduction amounts for different nodes also get closer to

ach other and quantity oriented nervousness decreases since

t z t ≤ x i ≤ δt z t should hold for all i ∈ V t . 

Suppose that g i ( x i , z t ( i ) ) denotes the nervousness (or penalty)

ost for node i given that x i units are produced in node i and z t ( i ) 
nits are promised to be produced in period t ( i ). To be more gen-

ral, we assume the system is flexible enough for letting the pro-

uction amount in the interval [ λ′ 
t z t , δ

′ 
t z t ] without any penalty cost

here λt ≤ λ′ 
t ≤ 1 and 1 ≤ δ′ 

t ≤ δt . In other words, we assume that

f x i ∈ [ λ′ 
t z t , δ

′ 
t z t ] then no nervousness cost is incurred. But if the

roduction amount is not in this range, then a nervousness cost

hich is a convex function of the minimum distance between the

roduction amount and this interval is incurred. Note that, we can

revent larger distances between each production amount and this

nterval by a convex nervousness cost function. To this end, we

efine x 1 i and x 2 i as x 1 i = [ λ′ 
t(i ) 

z t(i ) − x i ] 
+ and x 2 i = [ x i − δ′ 

t(i ) 
z t(i ) ] 

+ 

here [ a ] + = max { a, 0 } and assume that the nervousness cost is

iven by the function 

 i 

(
x i , z t(i ) 

)
= μ1 i x 

a 1 /b 1 
1 i 

+ μ2 i x 
a 2 /b 2 
2 i 

here μ1 i , μ2 i ≥ 0 are nervousness cost coefficients, and

 1 ≥ b 1 > 0, a 2 ≥ b 2 > 0. The cost function g i is illustrated in

ig. 2 . 

We assume that λ′ , δ′ , and the cost parameters are determined

ccording to the flexibility of the system. For example, if the sys-

em is very sensitive to changes in the production amounts, then it

s appropriate to set λ′ and δ′ close to 1, and μ1 i , μ2 i , a 1 / b 1 , a 2 / b 2 
o large values. On the other hand, if it is easy to adapt the sys-

em for changes, then one can set λ′ = λ, δ′ = δ and get rid of the

ervousness cost. Thus, we cover various special cases for differ-

nt parameter settings, and we will explore some of these special

ases in Section 5 . 

In our formulation we control and reduce system nervousness

n different ways. Since we take setup decisions for each period,

ndependent from scenario realizations, we exclude setup oriented

ervousness. Note that, if λt(i ) = 0 , it is still possible to have a

olution where y t(i ) = 1 but x i = 0 , but the converse is not pos-

ible. Furthermore, due to the promised production amounts, a

et of newly introduced constraints, and parameters λ and δ, we

eep the production decisions under different scenarios within

ome certain range of the promised production amounts. Still we

ight obtain different production decisions under different scenar-

os, but we guarantee that the amounts are within some prede-

ermined range of the promised production amounts whose val-

es are known beforehand. Finally, by penalizing the differences
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between the promised production amounts and the actual produc-

tion decisions, we reduce quantity oriented nervousness. 

In addition to the variables defined above, let s i be the inven-

tory on hand at the end of period t ( i ) for node i . We assume that

all the realized demand should be satisfied, thus backordering or

shortages are not allowed. Note that, we have three types of re-

course actions to hedge against demand uncertainty: production,

inventory, and compression amounts are defined for each node

separately. 

The problem can be formulated as the following: 

(LSI) min 

T ∑ 

t=1 

f t y t + 

∑ 

i ∈ V 
( c i x i + h i s i ) + 

∑ 

i ∈ V 

(
μ1 i x 

a 1 /b 1 
1 i 

+ μ2 i x 
a 2 /b 2 
2 i 

)

+ 

∑ 

i ∈ V 
κi r 

e/d 
i 

(1)

s.t. s i − + x i = d i + s i i ∈ V (2)

x i ≤ C t(i ) y t(i ) + r i i ∈ V (3)

r i ≤ βx i i ∈ V (4)

λt(i ) z t(i ) ≤ x i ≤ δt(i ) z t(i ) i ∈ V (5)

x 1 i ≥ λ′ 
t(i ) z t(i ) − x i i ∈ V (6)

x 2 i ≥ x i − δ′ 
t(i ) z t(i ) i ∈ V (7)

s 0 − = 0 (8)

x i , x 1 i , x 2 i , s i , r i ≥ 0 i ∈ V (9)

y t ∈ { 0 , 1 } , z t ≥ 0 t = 1 , . . . , T (10 )

In the objective function (1) , we minimize the total (expected)

setup, production, inventory holding, nervousness and compression

costs. Constraints (2) are the classical demand satisfaction (inven-

tory balance) constraints for each node i : total amount due to pro-

duction in node i , and inventory left from the unique parent of

node i should be equal to the total demand in node i , and final

inventory level at node i . We assume that the initial inventory s 0 −
is zero by constraints (8) . Due to constraints (3) , total time to pro-

duce x i units ( x i time units since we assume p = 1 ) minus the to-

tal compression amount in node i ( r i time units) should be less

than or equal to the capacity. Constraints (4) ensure that the pro-

cessing time of each job is reduced by at most β time units. Con-

straints (5) are the range constraints that relate the variables x i 
and z t ( i ) , and also the production amounts of different nodes de-

fined for the same time period t ( i ). Note that, according to these

constraints, if nodes i and i ′ are both defined for period t , then

production amounts for both of these nodes should be in the same

range: x i , x i ′ ∈ [ λt z t , δt z t ] for i, i ′ ∈ V t . Definitions of the variables

x 1 i and x 2 i are expressed in the constraints (6) and (7) (and non-

negativity constraints), respectively. Constraints (9) and (10) define

the ranges and types of the variables. 

Note that, the formulation LSI has a nonlinear objective func-

tion due to the compression and nervousness costs. In the next

section, we will reformulate the problem as a SOCMIP and

strengthen the formulation so that it can be solved by a commer-

cial solver. 
. Reformulation of the problem 

We now reformulate LSI as a SOCMIP. To do this, we first intro-

uce nonnegative auxiliary variables w 1 i , w 2 i and v i such that 

 

a 1 /b 1 
1 i 

≤ w 1 i i ∈ V (11)

 

a 2 /b 2 
2 i 

≤ w 2 i i ∈ V (12)

 

e/d 
i 

≤ v i i ∈ V (13)

e can replace nonlinear terms in the objective function (1) by

hese auxiliary variables, and add inequalities (11) –(13) to formu-

ation LSI . Moreover, as b 1 , b 2 , d > 0, and y t(i ) = 0 implies x i = x 1 i =
 2 i = r i = 0 , we can multiply the right hand sides of inequalities

11) –(13) by y t : 

 

a 1 
1 i 

≤ w 

b 1 
1 i 

y a 1 −b 1 
t(i ) 

i ∈ V (14)

 

a 2 
2 i 

≤ w 

b 2 
2 i 

y a 2 −b 2 
t(i ) 

i ∈ V (15)

 

e 
i ≤ v d 

i 
y e −d 

t(i ) 
i ∈ V (16)

Note that, if there is no production in period t , then y t = 0 and

 i , x 1 i , x 2 i , r i will be equal to zero; and if y t = 1 , then inequali-

ies (14) –(16) are equivalent to (11) –(13) . This procedure is called

conic strengthening” by Aktürk et al. (2009) since it strengthens

he continuous relaxation, and the resulting inequalities can be

epresented by conic quadratic inequalities. 

As given in Ben-Tal and Nemirovski (2001) , for l ∈ Z + and

, ξ1 , . . . , ξ2 l ≥ 0 , the inequality ζ 2 l ≤ ξ1 . . . ξ2 l can be represented

y using O (2 l ) variables and hyperbolic inequalities of the form

≤ ω 1 ω 2 which is conic quadratic representable: (
2 υ

ω 1 − ω 2 

)∥∥∥∥ ≤ ω 1 + ω 2 . (17)

sing these results, one can show that inequalities (14) –(16) can

e represented by O ( log 2 ( a 1 )), O ( log 2 ( a 2 )), O ( log 2 ( e )) variables and

onic quadratic constraints, respectively ( Aktürk et al., 2009 ). 

Thus, LSI can be reformulated as 

(LSI I ) min 

T ∑ 

t=1 

f t y t + 

∑ 

i ∈ V 
( c i x i + h i s i ) + 

∑ 

i ∈ V 
( μ1 i w 1 i + μ2 i w 2 i ) 

+ 

∑ 

i ∈ V 
κi v i (18)

s.t. (2) − (10) 

(14) − (16) 

w 1 i , w 2 i , v i ≥ 0 i ∈ V 

LSII has a linear objective function, and nonlinear constraints

14) –(16) , which are conic quadratic representable. We will refer

o the conic quadratic representation of LSII as CLSII . In CLSII , we

eplace inequalities (14) –(16) with their conic quadratic represen-

ations, and obtain a quadratically constrained MIP with linear ob-

ective function, which can be solved by fast algorithms of com-

ercial solvers like IBM ILOG CPLEX. 

. Valid inequalities 

Note that our problem is a generalization of the stochastic ca-

acitated lot sizing problem. The capacity constraints (3) are relax-

tions of the classical capacity constraints due to the controllable

rocessing times option. Therefore, valid inequalities developed for
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he stochastic capacitated lot sizing problem may not be valid for

ur problem, except the ones valid for the stochastic uncapacitated

ot sizing problem (e.g. Guan et al., 2006b ). But, it is possible to de-

ive new valid inequalities for our problem by using the new vari-

bles and constraints introduced. In this section, we derive new

alid inequalities for the formulation LSII . 

For u ∈ V and k ∈ V ( u ), if balance constraints (2) are summed for

 ∈ P ( u, k ), we obtain the following inequalities: 

 u − + 

∑ 

i ∈ P(u,k ) 

x i = d uk + s k k ∈ V (u ) (19) 

here d uk = 

∑ 

i ∈ P(u,k ) d i . Since s ≥ 0, 

 u − + 

∑ 

i ∈ P(u,k ) 

x i ≥ d uk k ∈ V (u ) . (20) 

or the classical capacitated lot sizing problem, capacity is an up-

er bound for the production amount: x i ≤ C t ( i ) . But when the pro-

essing times are controllable, we can produce more than the ca-

acity by reducing the processing times. So for our problem, an

pper bound for the production amount is C t(i ) y t(i ) + r i . Due to

hese upper bounds, inequalities (20) imply 

 u − + 

∑ 

i ∈ P(u,k ) 

r i + 

∑ 

i ∈ P(u,k ) 

C t(i ) y t(i ) ≥ d uk k ∈ V (u ) . (21) 

In this section, we assume that capacities are the same for all

eriods, C t = C̄ for t = 1 , . . . , T and demand is normalized with re-

pect to the capacity, i.e., d̄ i = 

d i 
C̄ 

. The validity of the inequalities

erived in this section depends on this assumption. If the capaci-

ies are time-variant, one can take C̄ = max 
t 

{ C t } , and use the valid

nequalities. But, obviously, the quality of the inequalities depends

n the tightness of C̄ , i.e., if the difference between C̄ and min 

t 
C t is

ery large, then the inequalities may not perform well. 

So, inequalities (21) are rewritten as 

 u − + 

∑ 

i ∈ P(u,k ) 

r i + 

∑ 

i ∈ P(u,k ) 

y t(i ) ≥ d̄ uk k ∈ V (u ) . (22) 

ote that, in these inequalities the variables are also expressed in

erms of capacity (for example r̄ i = 

r i 
C̄ 

), but for ease of notation we

o not rename them. 

We will derive two different sets of valid inequalities for the

roblem. First, we will show that for given u , inequalities (22) de-

ne a continuous mixing set. Van Vyve (2005) introduced valid in-

qualities and an extended formulation for the continuous mixing

et and showed that these inequalities are sufficient for describing

he convex hull of the set. We will make use of this study to derive

alid inequalities for our problem. Next, we will apply the mixing

cheme of Günlük and Pochet (2001) to inequalities (22) to obtain

alid inequalities for our formulation. 

.1. Continuous mixing set structure 

Now we will show that for given u , inequalities (22) de-

ne a continuous mixing set. Let αk = 

∑ 

i ∈ P(u,k ) y t(i ) − � ̄d uk � , σk =
 

i ∈ P(u,k ) r i , 
ˆ d k = d̄ uk − � ̄d uk � for k ∈ V ( u ), and s = s u − . Then, inequal-

ties (22) are equivalent to 

 + σk + αk ≥ ˆ d k k ∈ V (u ) 
σk ∈ R + , αk ∈ Z k ∈ V (u ) 

s ∈ R + 

alid inequalities of Van Vyve (2005) for the continuous mix-
ng set are based on costs of cycles in a graph constructed
s follows. Let V ′ = { j 0 , j 1 , . . . , j | V (u ) | } be an ordered set includ-

ng all the descendants of node u such that ˆ d j i ≤ ˆ d j i +1 
for i =

 , . . . , | V (u ) | − 1 . In this set, j 0 is a dummy node with 

ˆ d j 0 =
 . Let G 

′ 
u = (V ′ , A 

′ ) be a graph defined on the node set V 

′ 
ith the arc set A 

′ = { ( j 0 , j i ) : 1 ≤ i ≤ | V (u ) |} ∪ { ( j i , j 0 ) : 1 ≤ i ≤
 V (u ) |} ∪ { ( j i , j l ) : ˆ d j i 
 = 

ˆ d j l , 1 ≤ i, l ≤ | V (u ) |} . Suppose that cost of

n arc ( j i , j l ) ∈ A 

′ is given by: 

� j i , j l ( s, σ, α) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

s + σ j i + 

(
ˆ d j i − ˆ d j l + 1 

)
α j i − ˆ d j l if 1 ≤ i < l ≤ | V ( u ) | , 

σ j i + 

(
ˆ d j i − ˆ d j l 

)
α j i if 1 ≤ l < i ≤ | V ( u ) | , 

s + σ j i + α j i − ˆ d j i if i = l and 1 ≤ i ≤ | V ( u ) | , 
s − ˆ d j l if i = 0 and 1 ≤ l ≤ | V ( u ) | ,
σ j i + 

ˆ d j i α j i if l = 0 and 1 ≤ i ≤ | V ( u ) | .
Graph G 

′ 
u should not include a negative cycle. Thus, each cycle

n this graph leads to a valid inequality for the set defined by in-

qualities (22) . For a given elementary cycle C ⊂ A 

′ , the associated

ycle inequality is ∑ 

 

j i , j l ) ∈C 
� j i , j l ( s, σ, α) ≥ 0 . (23) 

eparation of these valid inequalities is equivalent to finding a

egative cost cycle in the graph G 

′ 
u and this can be done in

 (| V ( u )| 3 ) time by the shortest path algorithm of Floyd–Warshall

 Ahuja et al., 1993 ). Moreover, Van Vyve (2005) developed an ex-

ended formulation for the continuous mixing set based on the

ual of this separation problem. Note that the graph G 

′ 
u does not

ontain any negative cycle if there exists θ ∈ R 

| V (u ) | +1 such that 

j i , j l ( s, σ, α) ≥ θ j i − θ j l 
for all ( j i , j l ) ∈ A 

′ (24) 

nequalities (24) are equivalent to: 

 + σ j i + 

(
ˆ d j i − ˆ d j l + 1 

)
α j i ≥ ˆ d j l + θ j i − θ j l 

( j i , j l ) ∈ A 

′ : 1 ≤ i < l ≤ | V (u ) | (25) 

j i + 

(
ˆ d j i − ˆ d j l 

)
α j i ≥ θ j i − θ j l 

( j i , j l ) ∈ A 

′ : 1 ≤ l < i ≤ | V (u ) | 
(26) 

 + σ j i + α j i ≥ ˆ d j i 1 ≤ i ≤ | V (u ) | (27) 

 ≥ ˆ d j l + θ j 0 − θ j l 
1 ≤ l ≤ | V (u ) | (28) 

j i + 

ˆ d j i α j i ≥ θ j i − θ j 0 1 ≤ i ≤ | V (u ) | (29) 

Note that the extended formulation given by inequalities (25) –

29) and the valid inequalities (23) are derived for a fixed node u 

nd for all the descendants of node u . In our computational ex-

eriments, we consider the extended formulation for each u ∈ V

nd added the extended formulation to our formulation. Results

or this experiment are given in Section 6 . 

.2. Mixing set structure 

In this subsection, we will apply the mixing procedure of

ünlük and Pochet (2001) to inequalities (22) : 

 u − + 

∑ 

i ∈ P(u,k ) 

r i + 

∑ 

i ∈ P(u,k ) 

y t(i ) ≥ d̄ uk k ∈ V (u ) . 

uppose that u is fixed and let ˆ d k = d̄ uk −
⌊

d̄ uk 

⌋
be the frac-

ional part of the total demand from node u to node k . Let R =
 i 1 , . . . , i K } ⊆ V (u ) be an ordered set such that 0 = 

ˆ d i 0 ≤ ˆ d i 1 ≤ ˆ d i 2 ≤
 . . ≤ ˆ d i K . Set of nodes in the paths from node u to the nodes in R

re given by V R = ∪ k ∈ R P (u, k ) . Note that 

 = s u − + 

∑ 

i ∈ V R 
r i ≥ s u − + 

∑ 

i ∈ P(u,k ) 

r i ∀ k ∈ R. 
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Thus, s is an upper bound for the continuous part of inequalities

(22) for the nodes in R and inequalities (22) imply 

s + 

∑ 

i ∈ P(u,k ) 

y t(i ) ≥ d̄ uk k ∈ R. (30)

If we define y uk = 

∑ 

i ∈ P(u,k ) y t(i ) for k ∈ R , then inequalities (30) can

be rewritten as 

s + y uk ≥ d̄ uk k ∈ R. (31)

Inequalities (31) define a mixing set since s ∈ R and y uk ∈ Z for

k ∈ R . We will apply the mixing procedure to these inequalities to

obtain valid inequalities for our problem. Mixing of inequalities

(31) leads to the following inequalities 

s ≥
K ∑ 

j=1 

(
ˆ d i j − ˆ d i j−1 

)(⌊
d̄ u,i j 

⌋
+ 1 − y u,i j 

)
(32)

s ≥
K ∑ 

j=1 

(
ˆ d i j − ˆ d i j−1 

)(⌊
d̄ u,i j 

⌋
+ 1 − y u,i j 

)
+ 

(
1 − ˆ d i K 

)(⌊
d̄ u,i 1 

⌋
− ȳ u,i 1 

)

(33)

Let t̄ R be the maximum time period for the nodes in the set R ,

i.e., t̄ R = max { t(i ) : i ∈ R } . For t = t(u ) , . . . , ̄t R , define 

�t ( R ) = 

∑ 

i j ∈ R : t(i j ) ≥t 

(
ˆ d i j − ˆ d i j−1 

)
. 

Consequently, inequalities (32) and (33) are equivalent to 

s u − + 

∑ 

i ∈ V R 
r i + 

t̄ R ∑ 

t = t (u ) 

�t ( R ) y t ≥
K ∑ 

j=1 

(
ˆ d i j − ˆ d i j−1 

)(⌊
d̄ u,i j 

⌋
+ 1 

)
(34)

s u − + 

∑ 

i ∈ V R 
r i + 

t ( i 1 ) ∑ 

t = t (u ) 

(
�t ( R ) + 1 − ˆ d i K 

)
y t + 

t̄ R ∑ 

t = t ( i 1 ) +1 

�t ( R ) y t 

≥
K ∑ 

j=1 

(
ˆ d i j − ˆ d i j−1 

)(⌊
d̄ u,i j 

⌋
+ 1 

)
+ 

(
1 − ˆ d i K 

)⌊
d̄ u,i 1 

⌋
(35)

Inequalities (34) and (35) are valid for our problem and can be

separated in O ( n log n ) time by using the separation scheme de-

scribed in Pochet and Wolsey (2006) . Note that these inequali-

ties are derived for fixed u , and in our computational experiments

given in Section 6 , we consider these inequalities for all u ∈ V . 

6. Computational experiments 

In this section, we first test the valid inequalities developed

in the previous section, and then we investigate the nervousness

caused by the production schedules obtained by our formulation. 

Note that, there are several parameters for controlling the ner-

vousness. Different values of λ′ , λ, δ, δ′ and different forms of the

nervousness cost function g may lead to different problem settings:

S1. If λ′ = λ and δ′ = δ, then the nervousness cost is equal to

0. Thus, we obtain a formulation with no nervousness cost

function. But note that, with λ and δ parameters, it is still

possible to decrease quantity oriented nervousness by con-

trolling range of the production amounts by constraints (5) . 

S2. If λt = 0 and δt is sufficiently large, i.e., δt = 

C t 
p−u , for all t ,

then the range constraints (5) become redundant. Thus, we

obtain a formulation without range constraints. But, we can

still penalize the differences between x i and z t by the ner-

vousness cost function. 
S3. If λt = λ′ 
t = 0 , δt = δ′ 

t and δt is sufficiently large, i.e., δt =
C t 

p−u , then the formulation is equivalent to the static - dy-

namic uncertainty strategy as production periods are deter-

mined beforehand and the production amount of each pe-

riod is determined as an answer to the demand realization.

In this case, variables z t ( i ) , x 1 i , x 2 i and constraints (5) − (7)

can be ignored. 

S4. If λt = λ′ 
t = δt = δ′ 

t = 1 for all t , then the formulation is

equivalent to static uncertainty strategy since production de-

cision for a period is the same regardless of the demand re-

alization ( x i = z t(i ) for all i ∈ V t ). 

S5. If a 1 = b 1 and a 2 = b 2 , then the nervousness cost is a

piecewise linear function (with at most three pieces):

g i (x i , z t(i ) ) = μ1 i [ λ
′ 
t(i ) 

z t(i ) − x i ] 
+ + μ2 i [ x i − δ′ 

t(i ) 
z t(i ) ] 

+ for

x i ∈ [ λt ( i ) z t ( i ) , δt ( i ) z t ( i ) ] (see Fig. 3 (i)). 

S6. If a 1 = b 1 , a 2 = b 2 and λ′ 
t(i ) 

= δ′ 
t(i ) 

= 1 , then the nervousness

cost is a piecewise linear function (with at most two pieces):

g i (x i , z t(i ) ) = μ1 i [ z t(i ) − x i ] 
+ + μ2 i [ x i − z t(i ) ] 

+ for x i ∈ [ λt ( i ) z t ( i ) ,

δt ( i ) z t ( i ) ] (see Fig. 3 (ii)). 

S7. If λ′ 
t(i ) 

= δ′ 
t(i ) 

= 1 , then the nervousness cost function

is given by g i (x i , z t(i ) ) = μ1 i ([ z t(i ) − x i ] 
+ ) a 1 /b 1 + μ2 i ([ x i −

z t(i ) ] 
+ ) a 2 /b 2 for x i ∈ [ λt ( i ) z t ( i ) , δt ( i ) z t ( i ) ] (see Fig. 3 (iii)). 

S8. The general setting of the nervousness cost function with

λt ≤ λ′ 
t ≤ 1 and 1 ≤ δ′ 

t ≤ δt (see Fig. 2 ). 

In our computational experiments, we refer to these settings.

e assume that the compression cost function is quadratic, and

 = 2 (number of children of each node), β = 0 . 6 , d i ∼ U [1, 10 0 0],

 i ∼π i U [20, 30], h i ∼π i U [1, 10], κi ∼ πi U[0 . 04 ̄κ, 0 . 06 ̄κ] for i ∈ V ;

f t ∼ U[4 ̄f , 6 ̄f ] , and C t = c̄ (T − 1) for t = 1 , . . . , T . Several problem

nstances will be generated for different values of the coefficients

f̄ , κ̄ , ̄c . Note that we assume that the capacities are time-invariant

o be able to use the valid inequalities presented in the previous

ection. We assume that all of the nodes defined for the same time

eriod have equal probabilities ( π i ). These parameter settings are

ery similar to the ones considered in Guan et al. (2009) . Values

f the other parameters will be given in the subsequent sections. 

We implement the formulations and the branch-and-cut proce-

ure in IBM ILOG Cplex 12.5, and perform the experiments on a

.4 GHz Intel Core i7 Machine with 16 GB memory running Win-

ows 10. 

.1. Test of valid inequalities 

In this part, we consider the problem under the first setting

S1), the basic form of our formulation in which there is no ner-

ousness cost, to test the valid inequalities developed in the pre-

ious section. Since most of the commercial solvers, such as Cplex,

an solve MIP formulations with quadratic objective functions effi-

iently, we consider the following formulation where the quadratic

ompression cost function is kept in the objective function. 

(LSQ ) min 

T ∑ 

t=1 

f t y t + 

∑ 

i ∈ V 
( c i x i + h i s i ) + 

∑ 

i ∈ V 
κi r 

2 
i 

s.t. (2) − (5) 

x i , s i , r i ≥ 0 i ∈ V 

y t ∈ { 0 , 1 } , z t ≥ 0 t = 1 , . . . , T 

We consider the following additional parameter settings:

¯ = 1 , λt(i ) = 0 . 5 , δt(i ) = 1 . 3 for i ∈ V , and different values of

etup costs and capacities with f̄ ∈ { 10 0 0 , 20 0 0 , 30 0 0 } and c̄ ∈
 150 , 200 , 250 , 300 } . In order to observe the effect of the inequal-

ties we developed, we first turn off presolve and the automatic

uts of Cplex. 



E. Koca et al. / Computers and Operations Research 94 (2018) 23–37 31 

Fig. 3. Special cases of the nervousness cost function. 

 

a  

f  

m  

a  

(  

l  

a  

G  

e  

t  

o

 

I  

g  

i  

a  

N  

t  

a  

r  

r  

a  

r  

t  

v  

r

 

i  

c  

b  

u  

a  

I  

(  

s  

W  

t  

o  

t  
We first test the cycle inequalities developed in Section 5.1 . We

dd the extended formulation (25) –(29) for each node u ∈ V to the

ormulation LSQ and solve the resulting formulation by Cplex. Re-

ember that for given u , inequalities (25) –(29) are developed for

ll the descendant nodes of u, V ( u ). We also consider inequalities

22) for all paths starting at node u and add the extended formu-

ation (25) –(29) for each path P ( u, v ) for all v ∈ V ( u ). Note that an

rc is defined between every pair of nodes in V ( u ) in the graph

 

′ 
u while developing the extended formulation. By considering the

xtended formulation for each path separately, we exclude the arcs

hat are defined between the nodes of different paths. We test both

f these approaches for small problem instances. 

Results for instances with 7 periods can be seen in Table 1 .

n this table, the columns rgap, cpu and node represent the root

ap (the percentage gap between the best lower bound obtained

n the root node and the optimal value), solution time (in seconds)

nd the number of branch-and-bound nodes explored, respectively.

ote that all the problem instances are solved in much smaller

ime (less than one second) by the formulation LSQ, but the main

im of this experiment is to see the improvement of root gap by
eformulation. We observe that including the extended formulation

educes the root gap in all of the problem instances. The root gaps

re reduced by more than 50% in all the problem instances. The

oot gap is decreased from 11.6% to 3.3% on the average by both of

he reformulations. Although root gaps of the reformulations are

ery close, adding the extended formulation for each path sepa-

ately results in less computation time. 

We consider the same experiment for larger instances by us-

ng only the second approach since it performs better in terms of

omputation times. Moreover, adding all the inequalities may not

e a good approach for solving larger instances. In order to make

se of the extended formulation for solving larger instances, we

dd the extended formulation for paths with maximum n̄ nodes.

n other words, we add the extended formulation for inequality

22) for the path P ( u, v ) if t(v ) − t(u ) ≤ n̄ − 1 . This approach is very

imilar to the approximate extended formulations of Van Vyve and

olsey (2006) . Note that, n̄ = T corresponds to adding the ex-

ended formulation for all paths (the original version of the sec-

nd approach), and the results for this case give the informa-

ion about the maximum possible root gap reduction due to the
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Table 1 

Test of different extended formulations for T = 7 . 

f̄ c̄ LSQ LSQ with reformulation 

rgap cpu node for V ( u ) for paths 

rgap cpu node rgap cpu node 

10 0 0 150 3.36 0 3 1.07 57 1 1.08 3 1 

200 9.05 0 12 2.52 88 5 2.43 4 6 

250 9.76 0 10 2.08 69 4 2.06 4 4 

300 12.59 0 28 2.76 81 7 2.95 4 6 

20 0 0 150 5.82 0 4 2.33 55 4 2.33 3 4 

200 11.73 0 15 3.82 72 10 3.82 7 10 

250 17.86 0 17 4.59 78 7 4.49 14 5 

300 19.02 0 42 5.81 97 12 5.84 7 9 

30 0 0 150 9.47 0 12 4.11 72 8 4.12 6 9 

200 9.89 0 17 3.34 69 7 3.43 4 4 

250 14.06 0 35 4.47 78 13 4.50 21 21 

300 16.57 0 20 3.15 66 4 3.14 11 4 

Table 2 

Test of the partial reformulation for T = 8 . 

f̄ c̄ LSQ with reform. LSQ with partial reformulation 

LSQ n̄ = T n̄ = 2 n̄ = 3 n̄ = 4 

rgap cpu node rgap cpu node rgap cpu node rgap cpu node rgap cpu node 

10 0 0 150 8.26 0 13 1.47 34 11 1.48 1 6 1.47 1 7 1.47 3 8 

200 12.98 0 47 2.48 27 13 2.58 1 12 2.49 2 14 2.48 4 14 

250 12.18 0 23 1.86 30 9 1.86 1 8 1.86 1 5 1.86 4 7 

300 15.91 0 82 1.54 25 21 1.54 1 16 1.54 2 18 1.54 5 19 

20 0 0 150 11.20 0 42 4.61 66 11 4.62 1 19 4.62 2 17 4.62 4 12 

200 12.49 0 45 4.33 150 18 5.22 1 22 4.33 2 17 4.33 6 20 

250 15.30 0 68 2.59 63 36 2.64 1 12 2.62 3 17 2.59 7 17 

300 17.24 0 72 2.77 40 15 2.77 1 13 2.76 3 15 2.76 6 14 

30 0 0 150 13.15 0 35 6.25 68 17 6.29 1 19 6.29 4 20 6.26 14 37 

200 13.42 0 27 2.39 41 9 2.45 1 8 2.39 2 8 2.39 5 9 

250 20.05 0 56 6.05 55 13 6.27 2 16 6.25 4 16 6.21 7 12 

300 19.48 0 44 8.41 214 16 8.71 2 23 8.46 4 28 8.41 9 18 
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reformulation. We first consider different n̄ values in order to see

the effect of the reformulation for different n̄ values. Results for

instances with 8 periods are given in Table 2 . LSQ solves these in-

stances again in much smaller time (less than one second), and

the smaller n̄ values result in less computation times as expected.

The root gap is again reduced by more than 50% by the reformu-

lation (column n̄ = T ). Besides, the number of branch and bound

nodes explored decreases in all of the problem instances. For ex-

ample, for one of the instances, adding the extended formulation

for all paths including at most two nodes decreases the root gap

from 20.05% to 6.27%. 

For solving larger problem instances, we make use of the partial

extended formulation and the mixing inequalities (34) and (35) .

We first add the partial extended formulation for n̄ = 2 for the

nodes of the scenario tree defined for the first 6 periods. Then,

we solve the relaxation of the reformulation and call the separa-

tion routine of mixing inequalities in the root node. The separation

routine is called maximum 15 times and at each round at most

100 mixing inequalities are added. We consider 13 and 14 period

instances and set the time limit to 3600 seconds. 

A summary of our computational experiment for both LSQ and

CLSII can be seen in Table 3 . After several initial runs, we only re-

port the CLSII with the partial extended formulation and the valid

mixing inequalities in further analysis for solving larger problem

instances, since they outperform the straightforward CLSII imple-

mentation. If the solver terminates with positive optimality gap,

the final percentage gap is given under the column (fgap) in paren-

thesis. The best solution times and the root gaps for each instance

are written in bold. 
As it can be observed from Table 3 , for 13 period instances, the

artial reformulation reduces the root gap of LSQ from 19.7% to

1% on the average, and the mixing inequalities further reduce this

ap about 2%. Similar results are observed for 14 period instances.

or these instances, the average root gap of LSQ is reduced from

9.8% to 12.2% by the partial reformulation, and average 0.8% root

ap reduction is obtained due to the addition of the valid inequal-

ties. Besides, the root gaps of LSQ and CLSII with the partial ex-

ended formulations (and the mixing inequalties) are very close to

ach other. 

The best root gaps are obtained by the addition of the partial

xtended formulation and the mixing inequalities. But in most of

he instances, the best solution times are achieved by the addition

f only the partial extended formulation. This might be due to in-

rease in the size of the formulations by the addition of the valid

ixing inequalities. Note that the root gap reduction by the mix-

ng inequalities is very small, for example, for the instances with

4 periods, the root gap is decreased by 0.3% on the average by

he addition of the valid inequalities to CLSII with the partial ex-

ended formulation. But the addition of these inequalities increases

he size of the formulation, and determination of the inequalities

o be added (the separation routine) takes some time. These ob-

ervations are supported by the results for the instances with 14

eriods. In most of the instances, the best solution times are due

o the addition of the partial extended formulation to either LSQ

r CLSII. 

Note that, the average solution times of LSQ with the partial

xtended formulation and CLSII with the partial extended formu-

ation are very close. Besides, in most of the instances, one of them
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Table 3 

Results for larger instances. 

T f̄ c̄ LSQ LSQ reform. LSQ reform. & cuts CLSII reform. CLSII reform. & cuts 

rgap cpu (fgap) node rgap cpu (fgap) node rgap cpu (fgap) node rgap cpu (fgap) node rgap cpu (fgap) node 

13 10 0 0 150 13.35 526 627 7.61 248 313 7.49 224 250 7.48 313 200 7.38 280 168 

200 16.71 415 593 9.44 228 207 8.22 212 163 9.34 287 238 8.96 296 211 

250 16.36 394 628 9.07 204 184 6.38 161 68 8.99 227 200 8.49 281 148 

300 19.40 630 928 8.32 409 208 5.79 415 150 10.10 255 148 9.35 268 113 

20 0 0 150 16.07 363 289 8.61 140 117 8.52 142 114 8.15 300 109 8.06 285 103 

200 17.01 505 412 10.57 230 175 8.98 238 144 10.06 264 87 9.67 301 118 

250 22.76 477 621 11.10 248 76 7.91 180 90 10.70 302 164 10.15 294 118 

300 24.93 761 972 13.82 640 258 9.56 628 223 12.93 308 160 12.28 386 178 

30 0 0 150 17.60 243 218 10.67 249 164 9.71 258 228 9.77 325 115 9.19 307 105 

200 20.37 296 294 12.89 241 172 11.09 248 154 11.94 318 128 11.48 378 132 

250 22.54 302 451 13.78 248 206 10.89 267 158 12.92 292 123 12.14 380 138 

300 29.34 728 747 16.98 238 150 13.19 283 166 14.88 271 143 13.96 438 144 

Average 19.70 470 565 11.07 277 186 8.98 271 159 10.61 288 151 10.09 324 140 

14 10 0 0 150 12.60 1656 588 7.60 882 206 7.51 879 222 7.50 1042 230 7.42 1146 192 

200 16.83 (3.77) 900 10.41 1385 312 9.95 1445 283 10.21 1136 217 9.98 1495 227 

250 19.39 2578 1268 11.71 1356 362 11.16 1572 384 11.59 1149 291 11.28 1535 309 

300 18.58 (2.48) 1125 11.42 1225 418 10.41 948 281 11.37 932 318 10.99 1580 394 

20 0 0 150 16.44 2066 335 10.49 926 220 10.20 1031 189 9.50 1196 137 9.34 1440 132 

200 18.57 3070 850 11.27 1186 248 10.88 1007 262 10.81 1525 211 10.59 1795 241 

250 20.96 3156 1197 13.33 3117 436 12.61 (2.78) 363 12.94 1419 286 12.61 1704 223 

300 23.53 2143 880 13.34 775 173 12.00 1093 183 12.87 997 157 12.42 1517 120 

30 0 0 150 16.87 1016 241 10.43 1329 216 10.15 1393 214 9.52 1009 108 9.35 1320 121 

200 20.47 1602 308 13.11 840 161 12.70 972 173 12.14 1323 140 11.88 1487 136 

250 24.27 1859 496 16.13 1231 311 15.28 1349 287 15.18 1286 199 14.85 2009 216 

300 29.50 3494 1050 17.29 805 194 13.88 1036 173 16.22 1312 157 15.73 1680 197 

Average 19.83 2487 1201 12.21 1255 271 11.39 1360 521 11.65 1194 204 11.37 1559 209 
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Table 4 

Results with default Cplex options. 

T f̄ c̄ LSQ LSQ reform. 

cpu node cpu node 

13 10 0 0 150 172 132 169 111 

200 111 89 139 148 

250 156 191 147 105 

300 202 209 192 172 

20 0 0 150 188 103 137 100 

200 289 204 197 125 

250 215 163 198 122 

300 319 229 251 153 

30 0 0 150 259 161 275 151 

200 249 160 265 146 

250 386 228 377 228 

300 417 283 340 204 

14 10 0 0 150 485 91 500 89 

200 772 254 633 234 

250 660 163 623 199 

300 1032 321 868 244 

20 0 0 150 843 179 579 103 

200 895 207 794 122 

250 1269 228 961 192 

300 822 181 498 42 

30 0 0 150 914 213 911 159 

200 932 119 1094 173 

250 1481 242 1296 171 

300 1216 249 1585 212 

t  

W  

i  

m  

t  

l  

r

chieves the best solution times among all the reformulations. But,

n general none of them is superior to the others. 

Overall, it can be observed that by conic strengthening, refor-

ulating and adding valid inequalities, we could reduce the root

aps and the solution times for our problem instances. Significant

mprovements are obtained by the partial reformulation (by adding

he partial extended formulation). 

In all the experiments presented above, Cplex presolve, heuris-

ics and cuts are disabled to observe the effect of the inequalities

e developed. Since the default settings of Cplex performs well

n most problems, next we test the reformulations with the de-

ault Cplex options. When the valid inequalities are made use of

n a branch-and-cut procedure, Cplex switches from the dynamic

earch algorithm (the method used in the default settings) to the

onventional branch-and-cut. We first test CLSII with the partial

eformulation and valid inequalities with the enabled Cplex pre-

olve and cuts, and the traditional branch-and-cut. We observe that

he solution times of CLSII with partial reformulation and valid in-

qualities get worse than LSQ. Then, as we obtain the major root

ap reduction by the partial reformulation, we test the formula-

ions LSQ and CLSII with only the partial reformulation. Note that

n the partial reformulation the inequalities are added a priori, and

his enables us to make use of the dynamic search algorithm of

plex. Since CLSII with the partial reformulation is outperformed

y LSQ with the partial reformulation, we only present the results

or LSQ and LSQ with the partial reformulation in Table 4 . As it

an be observed from the table, for the instances with 13 peri-

ds, although the solution times are very close to each other, in

ost of the instances LSQ with partial reformulation performs bet-

er. The difference becomes more clear in the problem instances

ith 14 periods. In 9 of the problem instances, LSQ with the par-

ial reformulation solves the problem in less computation times;

nd in the remaining 3 instances the solution times get worse due

o the increase in the size of the problem by the partial reformu-

ation. Besides, both the improvement and the deterioration due
o the partial reformulation is about 190 seconds on the average.

e note that when the setup costs are medium sized (20 0 0 in our

nstances), the partial reformulation improves the solution times

ore. So we conclude that although Cplex with the default op-

ions performs well, its performance highly depends on the prob-

em instance, and it is possible to improve it by using our partial

eformulation. 
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Table 5 

Classical Scenario Tree Formulation (STF) vs. Setting 3 (S3). 

f̄ c̄ STF S3 cost % cost 

BUB fgap(%) obj diff diff

10 0 0 100 220,083 1.37 233,519 13,436 6.10 

150 218,568 1.25 230,045 11,478 5.25 

200 223,425 1.02 226,140 2715 1.22 

20 0 0 100 266,369 3.22 289,606 23,237 8.72 

150 272,528 4.42 287,899 15,371 5.64 

200 268,240 5.29 280,865 12,625 4.71 

30 0 0 100 304,041 6.33 323,985 19,944 6.56 

150 309,659 8.39 321,950 12,291 3.97 

200 301,542 8.02 316,545 15,003 4.98 
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6.2. Nervousness 

Now, we will analyze the nervousness of the solutions obtained

by our formulation under different settings. Our main aim is to ob-

serve the effect of range constraints, nervousness cost function and

controllable processing times on the nervousness of the production

plans. 

In this experiment, we consider problem instances with 13 pe-

riods with the nervousness cost function depicted in Fig. 2 where

λ′ = 0 . 5 λ and δ′ = 0 . 5 δ. Additionally, we consider the following

parameter settings: the coefficients related to the compression

cost κ̄ ∈ { 1 , 5 } ; the nervousness cost μ1 i = μ2 i ∼ πi U[0 . 4 ̄μ, 0 . 6 ̄μ] ,

where μ̄ ∈ { 1 , 5 } ; the setup cost f̄ ∈ { 10 0 0 , 20 0 0 , 30 0 0 } ; and the

capacity c̄ ∈ { 100 , 150 , 200 } . We consider different range parame-

ters: λt = 1 − ε, δt = 1 + ε, where ε ∈ {0.2, 0.5, 0.8} for t = 1 , . . . , T .

We do not report the solution times, and root gaps in this section,

since our main aim is to analyze the nervousness of different solu-

tions. Moreover, in the tables we report the averages of the results

for the given parameter settings. 

As it is stated in the previous sections, the classical scenario

tree formulation of the stochastic lot sizing problem causes both

setup and quantity oriented nervousness (we will call that formu-

lation STF), and in our formulation, we exclude setup oriented ner-

vousness. Thus, by comparing the total cost of the solutions of the

classical scenario tree formulation and our formulation under the

third setting (static-dynamic uncertainty strategy), we can observe

the cost of eliminating setup oriented nervousness. This compari-

son can be seen in Table 5 . 

In the classical scenario tree formulation 0–1 setup variables

are defined for each node separately. Thus, the number of binary

setup variables in STF ( n = m 

T − 1 ) is much larger than that of our

formulation ( T ). Therefore, the solver cannot solve STF for 13 pe-

riod instances to optimality in 3600 s. For this formulation, the

final gap at the end of the time limit is given under the column

fgap in Table 5 . The total cost of the best solution found in 3600

seconds is given under the column BUB. 

Cost differences and the percentage cost differences between

the solutions of these two formulations are reported under the

columns cost diff and % cost diff. In our comparisons, we use the

best upper bounds for the formulation STF. It can be seen from

Table 5 that the cost increases about 5% due to restricting setup

decisions from scenarios to periods. In other words, for eliminat-

ing setup oriented nervousness we increased the total cost by 5%

on the average. According to the solutions of the classical scenario

tree formulation, there is a setup decision for almost each period

under different scenarios. On the other hand, for our formulation

the average number of production periods is about 11, 9, 7 for

c̄ ∈ { 100 , 150 , 200 } , respectively. Consequently, we fix the produc-

tion periods beforehand and obtain production schedules with no

setup oriented nervousness in return for an increase in the total

cost. 
Now we will examine the effect of the range constraints and

ervousness cost function on the quantity oriented nervousness. To

o this, we compare the solutions for settings S1, S2, S3, and S8.

ote that, these settings correspond to the four possible combi-

ations of the presence of range constraints and nervousness cost

unction. The results of this experiment are given in Tables 6 and

 , and we compare the total costs and nervousness costs of the

roduction schedules obtained under these settings for μ̄ = 1 and

¯ = 5 , respectively. Note that the objective function under settings

1 and S3 does not contain the nervousness cost of the solution,

hereas the one under settings S2 and S8 does. Thus, here we

ompare the total production, inventory holding, and compression

osts of the solutions; and we call them conventional costs. Since

etting S3 does not include range constraints and nervousness cost

unction, this is the most relaxed version, and it results in the min-

mum cost solutions among all the settings. Therefore, in the left

and sides of these tables, we report the percentage increases in

he conventional costs under other settings compared to S3. 

In the right parts of the tables, we compare the nervousness

osts of the production schedules obtained under settings S1, S2,

3, and S8. Since settings S1 and S3 do not contain nervousness

ost functions, we compute the nervousness costs of the solutions

btained under these settings by using our nervousness cost func-

ion. Moreover, as setting S3 does not contain the promised pro-

uction amounts as decision variables, we compute the promised

roduction amounts for each period by taking the average of the

ctual production amounts for the corresponding nodes. Note that

etting S8 results in the most stable production schedules among

ll these settings, since we include both range constraints and ner-

ousness cost function in this setting. Hence, in these tables, we

ive the nervousness cost of the solutions obtained under setting

8, and report the ratio of the nervousness costs under other set-

ings to the nervousness cost under setting S8. Although the so-

utions in settings S3 and S1 do not depend on the parameter μ̄,

e give the results for these settings in both tables to make the

omparisons more clear. 

It can be observed from the tables that nervousness costs of the

olutions obtained under settings S2 and S8 are almost the same

or ε ∈ {0.5, 0.8}, and the increases in the conventional costs un-

er these setting are also very close. Thus, we can conclude that

n the presence of a nervousness cost, the range constraints do

ot have a significant impact unless they are very tight. But, if the

ange parameters are closer to one ( ε = 0 . 2 in our instances), then

ncluding range constraints also decrease the nervousness costs.

oreover, for μ̄ = 1 (when the nervousness cost coefficients are

maller) in settings S2 and S8, we decrease nervousness costs of

he production schedules in larger amounts by increasing the con-

entional costs. For example, by increasing the conventional costs

bout 4.3%, the ratio of the nervousness costs is decreased by

37,406 on average under setting S2 for ε = 0 . 8 . 

Note that nervousness costs of the solutions under settings S1

nd S3 are very large compared to settings S2 and S8. Since set-

ing S3 does not include range constraints and nervousness cost

unction, this setting has the largest nervousness cost. In setting

1, since there is no penalty cost for the differences between the

romised production amounts and the actual production amounts,

he actual production amounts are spread on the interval deter-

ined by the range constraints. On the other hand, as in settings

2 and S8 the differences between the production amounts and the

romised production amounts are penalized, the actual production

mounts become very close to the promised production amounts.

his is the reason for the large differences in the nervousness costs

f these settings. 

By comparing nervousness costs of the solutions obtained un-

er settings S1 and S3, we can conclude that including only

ange constraints also decreases the nervousness costs of the
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Table 6 

Comparison of nervousness and conventional costs for μ̄ = 1 . 

f̄ c̄ S3 obj ε % increase in the Nervousness costs 

conventional costs Ratio of the nervousness costs to S8 

S1 S2 S8 S8 S2 S1 S3 

10 0 0 100 233,519 0.8 0.39 5.28 5.28 295 1.00 203,330 360,418 

0.5 3.02 11.75 11.75 1457 1.01 32,642 128,145 

0.2 18.76 25.68 28.99 3806 1.88 3881 79,035 

150 230,024 0.8 0.45 6.30 6.30 363 1.00 166,497 330,525 

0.5 3.41 15.38 15.38 1604 1.01 29,962 124,636 

0.2 26.77 37.18 43.91 5522 1.93 4286 56,390 

200 226,140 0.8 0.49 5.72 5.72 295 1.00 206,698 417,450 

0.5 3.24 14.54 14.58 1846 1.00 25,807 106,973 

0.2 30.79 42.04 48.76 5333 2.03 4009 56,503 

20 0 0 100 288,883 0.8 0.35 3.65 3.65 180 1.00 349,033 583,342 

0.5 2.29 8.58 8.58 1138 1.00 35,381 153,209 

0.2 13.70 19.48 21.31 3700 1.65 4214 73,818 

150 287,452 0.8 0.37 4.17 4.17 205 1.00 263,420 437,382 

0.5 2.40 10.72 10.72 1435 1.00 26,645 103,285 

0.2 19.19 29.81 34.40 6020 1.76 3911 38,899 

200 280,865 0.8 0.19 3.76 3.76 174 1.00 170,831 234,584 

0.5 1.87 10.74 10.74 1499 1.01 25,618 59,266 

0.2 19.10 29.74 34.64 5500 1.88 4219 31,317 

30 0 0 100 322,853 0.8 0.22 2.50 2.50 246 1.00 190,469 310,476 

0.5 1.43 6.14 6.14 1210 1.00 27,422 109,926 

0.2 10.56 15.78 17.38 3700 1.64 4217 59,692 

150 321,573 0.8 0.14 3.19 3.19 220 1.00 136,676 173,627 

0.5 1.48 8.99 8.99 1468 1.00 26,098 58,146 

0.2 16.48 25.69 29.83 5765 1.81 4059 29,097 

200 316,472 0.8 0.20 3.41 3.41 265 1.00 142,963 188,852 

0.5 1.79 9.66 9.66 1484 1.01 28,263 68,372 

0.2 17.17 26.65 31.10 4144 2.23 5389 44,974 

Table 7 

Comparison of nervousness and conventional costs for μ̄ = 5 . 

f̄ c̄ S3 obj ε % increase in the Nervousness costs 

conventional costs Ratio of the nervousness costs to S8 

S1 S2 S8 S8 S2 S1 S3 

10 0 0 100 233,519 0.8 0.39 5.48 5.48 65 1.00 4,645,414 8,234,351 

0.5 3.02 12.86 12.86 649 1.00 366,322 1,438,119 

0.2 18.76 31.20 31.68 2990 1.25 4940 503,091 

150 230,024 0.8 0.45 6.53 6.53 46 1.00 6,594,838 13,091,909 

0.5 3.41 16.51 16.51 929 1.00 258,654 1,075,963 

0.2 26.77 44.99 48.08 3589 1.85 6595 433,829 

200 226,140 0.8 0.49 5.93 5.93 65 1.00 4,722,168 9,536,953 

0.5 3.24 15.84 15.89 856 1.08 278,121 1,152,831 

0.2 30.79 49.85 52.85 4121 1.58 5187 365,579 

20 0 0 100 288,883 0.8 0.35 3.75 3.75 54 1.00 5,816,689 9,721,494 

0.5 2.29 9.25 9.25 582 1.00 345,803 1,497,416 

0.2 13.70 23.13 23.46 2890 1.22 5394 472,522 

150 287,452 0.8 0.37 4.28 4.28 50 1.00 5,371,204 8,918,344 

0.5 2.40 11.51 11.51 747 1.00 255,983 992,278 

0.2 19.19 36.11 37.92 3345 1.77 7038 350,007 

200 280,865 0.8 0.19 3.86 3.86 36 1.00 4,087,856 5,613,396 

0.5 1.87 11.58 11.58 761 1.00 252,246 583,549 

0.2 19.10 35.92 37.68 3322 1.74 6985 259,254 

30 0 0 100 322,853 0.8 0.22 2.62 2.62 118 1.00 1,986,055 3,237,398 

0.5 1.43 6.77 6.77 754 1.00 219,892 881,487 

0.2 10.56 18.97 19.26 2902 1.23 5375 380,435 

150 321,573 0.8 0.14 3.30 3.30 47 1.00 3,199,185 4,064,083 

0.5 1.48 9.73 9.73 755 1.00 253,691 565,213 

0.2 16.48 31.35 32.85 3395 1.71 6893 247,058 

200 316,472 0.8 0.20 3.55 3.55 75 1.00 2,527,866 3,339,269 

0.5 1.79 10.40 10.40 748 1.00 280,296 678,067 

0.2 17.17 32.65 33.28 2890 2.06 7726 322,387 
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solutions. Moreover, including tighter range constraints ( ε = 0 . 2 )

causes larger cost increases but results in more stable production

schedules. The cost increase due to range constraints is about 0.3%,

2.3%, and 19% for ε = 0 . 8 , ε = 0 . 5 , and ε = 0 . 2 respectively. 

We can observe the effect of nervousness cost coefficient by

comparing Tables 6 and 7 . Note that as nervousness cost coef-

ficient increases the conventional cost increases slightly; but the

nervousness cost decreases in larger amounts. Thus, larger ner-

vousness cost coefficients result in solutions with less quantity ori-

ented nervousness. This is due to the structure of the nervous-

ness cost function; since we assume that the function is convex,

we restrict larger deviations from the desired ranges. Furthermore,

we have observed that compressing the processing times is mostly

used when setup costs are larger and capacities are medium sized

with respect to the demand. Moreover, in most of the instances

controlling the processing times results in solutions with less ner-

vousness costs. 

In summary, our computational results clearly indicate that we

could significantly reduce the nervousness costs and generate sta-

ble plans with a relatively small increase in conventional costs.

Nonlinear nervousness and compression cost functions provide a

more realistic production environment, but complicate the prob-

lem significantly. We have developed new valid inequalities and

utilize the recent advances in second-order cone programming to

alleviate this difficulty. 

Determining the production periods and the quantities be-

forehand may ease the other planning issues in a plant such

as replenishment of raw materials, inventory control, workforce

planning, and agreements with the customers. Based on our com-

putational experiments, we conclude that with a small increase

in the total cost (7% in our experiments) one can determine the

production periods beforehand. Moreover, since the promised pro-

duction amounts are also decided before the demand realizations,

they will be useful in these arrangements as well. The differences

between the promised production amounts and the actual produc-

tion amounts can be reduced by means of the range constraints

and the nervousness cost functions. Of course, the flexibility of the

system is very important to determine the values of nervousness

related parameters. By a convex nervousness cost function, the dif-

ference can be minimized, but it may result in higher costs. On the

other hand, even with loose range parameters it is possible to keep

the actual production amounts within a range of the promised

production amounts with a slight increase in the total cost. 

7. Conclusions 

In this paper, we study the multistage stochastic lot sizing prob-

lem with controllable processing times under nervousness con-

siderations. In order to reduce the system nervousness caused by

multistage stochastic programming, we restrict the production de-

cisions under different scenarios. To the best of our knowledge,

this problem is not studied before. We derive valid inequalities and

extended formulation based on continuous mixing and mixing set

relaxations of the problem. We computationally test these and ob-

serve that the valid inequalities reduce the root gaps significantly

and the extended formulations improve the computation times. 

In our computational experiments, we also investigate the effect

of range constraints and nervousness cost function on the quantity

oriented nervousness of the solutions. We observe that including

the range constraints and/or the nervousness cost function result

in more stable production schedules. Moreover, if there exist a ner-

vousness cost function, then the inclusion of range constraints has

a slight impact on the quantity oriented nervousness. Clearly, the

results we obtain depend highly on the structure of the nervous-

ness cost function. It may be interesting to investigate different

forms of this function and the impact on the solutions. 
To limit nervousness, we imposed additional constraints on the

ecourse variables in a multistage stochastic programming setting.

he same approach may be used for other problems where large

hanges in the recourse decisions have negative consequences in

he system performance. 

We penalized the difference between the actual production

mounts and the intervals determined according to the promised

roduction amounts to reduce quantity oriented nervousness. Con-

idering chance constraints to ensure that the range constraints are

atisfied with some certain probability might be another interest-

ng future research direction. 

By taking the production decisions for periods, independently

rom demand realizations, we exclude the setup oriented nervous-

ess from our model. Moreover, this assumption reduces the num-

er of binary decision variables in our formulations and enables

s to solve larger problem instances compared to the classical sce-

ario tree approach. However, the proposed solution approach is

till limited by the size of the scenario tree, and it may not be pos-

ible to solve problem instances with longer planning horizons. On

he other hand, as it is also harder to determine the possible de-

and realizations for further periods, this method can be applied

n two different ways. The first is to implement the method in a

olling horizon framework: when the new demand information is

btained, the formulation can be solved with the new data and

he updated inventory amounts. This implementation may cause

ervousness as the previous production decisions may be changed

n the rolling horizon framework, but one can freeze the previous

ecisions to overcome this drawback. Another possibility is to use

he demand estimations for further periods instead of possible de-

and scenarios. In other words, one can construct a scenario tree

n which the possible demand realizations are considered until a

eriod, say period T ′ , and after T ′ each node has only one child

hat represents the estimated demand. In this way, both difficulties

ay be surpassed: the demand information for further periods can

e taken into consideration, and the problem for longer planning

orizons can be solved as well. 
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