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a b s t r a c t 

With different names and characteristics, relays play a crucial role in the design of transportation and 

telecommunication networks. In transportation networks, relays are strategic locations where exchange 

of drivers, trucks or mode of transportation takes place. In green transportation, relays become the refu- 

elling/recharging stations extending the reach of alternative fuel vehicles. In telecommunication networks, 

relays are regenerators extending the reach of optical signals. We study the network design problem with 

relays and present a multi-commodity flow formulation and a branch-and-price algorithm to solve it. Mo- 

tivated by the practical applications, we investigate the special case where each demand has a common 

designated source. In this special case, we can show that there exists an optimal design that is a tree. 

Using this fact, we replace the multi-commodity flow formulation with a tree formulation enhanced with 

Steiner cuts. Employing a branch-and-price-and-cut schema on this formulation, we are able to further 

extend computational efficiency to solve large problem instances. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Several facilities on transportation and telecommunication net-

orks are relay points. In transportation, relays play an impor-

ant role as strategically located facilities on the network where

he exchange of drivers, trucks and trailers takes place. In multi-

odal transportation operations, they function as linkages where

he mode of transportation is switched ( Ali et al., 2002 ). Relay net-

ork architectures are proposed to alleviate the high turnover rate

roblem for the truck drivers and to lower the operational costs

 Ali et al., 2002; Üster and Kewcharoenwong, 2011; Üster and Ma-

eshwari, 2007; Vergara and Root, 2013 ). 

Recent advances in the alternative fuel vehicle (AFV) technolo-

ies pose big opportunities and challenges for the transportation

ector. The lack of refuelling/recharging infrastructure for AVF is

ne of the main barriers to harvesting the potential benefits of

hese novel technologies ( Bapna et al., 2002; Melaina and Brem-

on, 20 08; Melaina, 20 03; Romm, 20 06 ). Motivated by this ur-

ent need and high installation cost for the refueling/recharging

tations, the refueling station location problem has begun to at-

ract significant attention both from academia and industry ( Capar

t al., 2013; Kim and Kuby, 2012, 2013; Kuby and Lim, 2005, 2007;
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uby et al., 2009; MirHassani and Ebrazi, 2013; Wang and Lin,

009, 2013; Wang and Wang, 2010; Yıldız et al., 2016 ). The refuel-

ng/recharging stations are essentially relay points that extend the

each of an AFV. 

Besides transportation, relays also carry out signifi-

ant functions in telecommunication networks. Indeed, net-

ork design problem with relays (NDR) is introduced by

abral et al. (2007) and is motivated by a telecommunication

etwork design project in Alberta. In telecommunication networks,

ignal quality degrades with the distance and relays function as

epeaters, regenerators, amplifiers, etc. to enhance the reach of

he signal. For example, though capable of carrying the bulk of

he data over the internet, optical signals cannot travel more than

ome given distance before their quality degrades below some

hreshold level. To overcome this deficiency, regenerators, which

re expensive devices, are needed to transmit optical signals

ver long distances. As such, regenerators are essential for the

ptical networks and there is a rich literature on the regenerator

ocation problem ( Chen et al., 2010, 2015; Jinno et al., 2009;

ewcharoenwong and Üster, 2014; Yang and Ramamurthy, 2005;

etginer and Kara ̧s an, 2003; Yıldız and Kara ̧s an, 2015, 2017 ). The

inship between the network design with relays and regenerator

lacement problems also indicates the affiliation between the

ub location problems and NDR. As an important example one

an cite the hub covering location problem that is introduced

y Campbell (1994) . In this study the author considers a reach

https://doi.org/10.1016/j.cor.2018.01.004
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2018.01.004&domain=pdf
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Fig. 1. Examples of non-simple paths in directed and undirected graphs with 

threshold set to 9. 
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limit for the commodities transported in the network and requires

the non-hub nodes to reach their hub nodes and hub nodes to

reach other hubs without violating the reach constraints. In such a

setting, hubs essentially function as relays. 

Considering the network design with relays, the edge design

aspect has been mostly overlooked in the transportation litera-

ture even though some sort of edge construction constitutes a

crucial part of the overall network design for many practical ap-

plications. One such example is the relay network design for

freight transportation. To abide by the traffic regulations and al-

leviate the problem of high turnover rates for the truck drivers,

load/truck exchange stations are located in the transportation net-

works ( Ali et al., 2002 ). When logistics firms consider choosing the

best locations for such relay locations they also need to consider

which lanes they will operate which is akin to setting up edges in

their transportation network. Similarly for the multi-modal/inter-

modal transportation, inclusion of new modes of transportation or

extensions to the current transportation network requires the joint

consideration of relay locations and edge designs. The inclusion of

alternative fuel vehicles in transportation networks also requires a

comprehensive planning of road and refueling infrastructure exten-

sions in a concerted way ( Leitner et al., 2015 ). 

A classical network design instance is represented by an undi-

rected graph corresponding to the physical transportation or

telecommunication network. A given set of origin-destination (OD)

pairs should be routed through this network. There is an associated

establishment cost for every link/edge and once an edge is chosen

in the design, it can be used in the routing of any number of OD

pairs. The aim is to choose a subset of edges in the most cost-

effective manner so as to enable the routing of every OD pair. The

network design problem with relays shares all these characteristics

with a classical network design problem. However, the commodi-

ties have also reach limitations and while traversing an edge the

reach diminishes by an amount proportional to the length of this

edge. Ultimately, relays should be located in order to extend the

reach and there is an associated cost to enhancing a node in the

graph with the relay capability. The route for each OD pair should

be such that two consecutive nodes from the set of terminal and

relay nodes on this route should be within the reach limitation.

The aim is to choose a subset of edges and a subset of nodes so

as to enable the proper communication of all the OD pairs in the

most cost-effective manner. Variations of this general form are also

studied in the literature. In the directed network design problem

with relays (DNDR), the underlying graph is directed. In the single-

source network design problem with relays (NDR-S), the origin is

the same for each OD pair. 

NDR is an interesting problem not only because it is pervasive

in real world applications but also because it adds extra challenges

to classical network design problems. For instance, in DNDR an op-

timal solution can contain paths with loops. In Fig. 1 (a) a simple

example is given to illustrate this fact. There are two OD pairs, ( s,

t 1 ) and ( s, t 2 ) and the number given on each edge is the length for

that edge. Suppose all edge costs are zero and all node costs are

1. In this example the threshold length is 9 and the only optimal

solution is to put a relay on node 3, use the path s − 1 − 2 − 3 − t 1
to connect the OD pair ( s, t 1 ) and employ the non-simple path

s − 1 − 2 − 3 − 1 − 2 − t 2 to connect s to t 2 . It may also happen that

the path for an OD pair in an optimal solution of NDR traverses

the same edge more than once. Fig. 1 (b) shows such an example.

Assuming the same cost structure, the first OD pair ( s, t 1 ) follows

the path s − 1 − 2 − 1 − 4 − 5 − 4 − t 1 and the second OD pair ( s,

t 2 ) follows s − 1 − 2 − 1 − 4 − 5 − 6 − t 2 . Nodes 2 and 5 are chosen

as the relay nodes. Note that this solution is the unique optimal

solution and in this solution the edges {1, 2} and {4, 5} are tra-

versed back and forth. The fact that OD pairs may use paths with

cycles makes NDR a very challenging network design problem. 
Various network design problems are closely related with NDR.

ne such example is the Steiner tree problem (STP) ( Hwang et al.,

992 ). When all pairwise communications are required for a given

ubset of nodes and the threshold value is arbitrarily large, NDR

educes to STP. NDR also generalizes the node-weighted Steiner

ree problem (NSTP) ( Segev, 1987 ) and the Steiner tree problem

ith hop constraints (STPH) ( Voß, 1999 ). Note that, for a given set

f terminal nodes considering all pairs connectivity, assuming the

hreshold and edge lengths equal to one and setting relay costs as

he weight of the nodes, NDR becomes the same problem as NSTP.

imilarly, NDR where the threshold is the allowed number of hops,

dge lengths are all equal to one, and relay costs are set to some

ig number (such as the sum of the costs of all edges) solves STPH.

bserve that, the regenerator location problem (RLP) ( Chen et al.,

010 ) is also a special case of NDR where all edge costs are as-

umed to be zero. 

For the solution of NDR, Cabral et al. (2007) present a path-

ased integer programming formulation and propose a column

eneration approach to obtain a lower bound. They also obtain

easible solutions by solving the formulation with a restricted set

f columns. In addition, they propose four construction heuris-

ics. They use randomly generated grid graphs to test their so-

ution methods on single-source instances. Kulturel-Konak and

onak (2008) propose a multi-commodity flow formulation and

resent a heuristic algorithm that integrates local search and ge-

etic algorithm. Konak (2012) separates NDR into two problems,

ne to find paths and the other to locate relays. He presents an

fficient heuristic algorithm in which feasible paths for each OD

air are generated by a genetic algorithm and a set covering prob-

em is then solved with these paths to locate relays in the net-

ork. Considering a directed graph instead of an undirected one,

i et al. (2012) propose a node-arc and an arc-path formulation for

NDR. To solve the node-path formulation they suggest a branch-

nd-price algorithm for which the pricing problem is an NP-Hard

roblem called the minimum cost path problem with relays. They

se a slightly modified version of the algorithm by Laporte and

ascoal (2011) to solve it. In the computational experiments, for

he sake of simplicity, the authors only consider simple paths in

he pricing phase and omit those with cycles. In their computa-

ional studies they consider single-source instances. Unfortunately,

t is not possible to use an algorithm that solves DNDR directly to

olve NDR by simply modifying the problem data. A recent study
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y Leitner et al. (2015) considers NDR problems with non-simple

aths and presents multi-commodity flow and cut-set formulations

o solve it. They propose a branch-and-price and a branch-and-

rice-and-cut algorithm and present computational results. 

In our study we use the notion of a directed virtual network

hat originates from previous studies Yıldız and Kara ̧s an (2017) and

ıldız et al. (2016) . The virtual network is derived from the phys-

cal one; it has the same nodes as the physical network but the

rcs of the virtual network correspond to simple directed paths in

he original graph with lengths not more than the threshold. We

ropose a multi-commodity flow and a tree formulation on this

irtual network to solve NDR and NDR-S problems, respectively.

ince the number of arcs on the virtual network grows exponen-

ially with the size of the original network and we have a variable

or each of these arcs in both formulations, we propose branch-

nd-price algorithms to solve our formulations. 

We first present our multi-commodity flow based formulation

nd the branch-and-price algorithm to solve it. In order to expe-

ite the branch-and-price algorithm, we strengthen our formula-

ion with optimality cuts and employ graph transformations. Then,

e focus our efforts to the special case NDR-S. 

The special attention for NDR-S problem in the literature stems

rom both practical and theoretical reasons. On the practical side,

or many transportation and telecommunication applications there

s a special source from which some commodities or signals are

isseminated to other terminal nodes as we have in server-client

etwork architectures considered by Cabral et al. (2007) . Some-

imes these special nodes are hubs where commodities/signals are

ongregated or exchanged. In a transportation setting the common

ource could be a depot from which some goods are distributed

o their final destinations; it could be the center where entities

rom terminal nodes are collected and mode of transportation is

witched. When the number of OD pairs grows, NDR becomes

arder to solve. In solving these large problems, NDR can be de-

omposed into several NDR-S problems. For instance, one can re-

ax NDR in a Lagrangian manner to obtain single source problems.

s such, having an efficient algorithm to solve NDR-S is of interest

o devise efficient solution algorithms for the general NDR prob-

em. On the theoretical side, NDR-S also has some quite interesting

roperties. We can show that there is an optimal design which is a

ree both in the original and the virtual networks. Exploiting these

roperties we propose an improved formulation that uses the cut

ormulation of Steiner trees. We derive valid inequalities and op-

imality cuts and implement a branch-and-price-and-cut algorithm

o solve our tree formulation that contains an exponential number

f constraints involving an exponential number of variables. 

. Definitions and notation 

In this section, we provide definitions and notation pertinent

hroughout the paper. Additional definitions and notation will be

isted on a need basis. 

Throughout the text G = (V, E) represents our physical network

ith associated data l e ≥ 0 for e ∈ E corresponding to edge length,

 e ≥ 0 for e ∈ E corresponding to edge design cost and h i ≥ 0 for i ∈ V

orresponding to relay design cost. K will represent the set of OD

airs. For an OD pair k , the origin and the destination nodes are

enoted by O (k ) and D(k ) , respectively. The relay free communi-

ation range is a given threshold value d max > 0. In other words,

wo nodes of distance at most d max in G can communicate without

ny relays. We assume without loss of generality that l e ≤ d max for

very e ∈ E since any edge violating this condition can simply be

eleted from G . 

We define A = { (i, j) ∪ ( j, i ) : { i, j} ∈ E} as the arc set induced

y the edges in G . For the pair of arcs a = (i, j) , a = ( j, i ) that
1 2 
re induced by the edge e = { i, j} we denote ε(a 1 ) = ε(a 2 ) = e . We

ssume that l a = l ε(a ) for every a ∈ A . 

A directed path is a sequence of arcs (a 1 , . . . , a η) with a i =
(n i −1 , n i ) ∈ A for i = 1 , . . . , η and n i ∈ N for i = 0 , . . . , η. It is called

imple if it does not repeat any node. The length of a directed path

 is denoted by l ( p ) and it is the sum of the lengths of arcs con-

ained in it, i.e., l(p) = 

∑ 

a ∈ p l a . The formulations that we present

ext depend on the notion of path-segments introduced to the lit-

rature in Yıldız and Kara ̧s an (2017) and Yıldız et al. (2016) . A path-

egment p is a directed simple path with total length not more than

 max . Its origin and destination nodes are denoted as o ( p ) and d ( p ),

espectively. Due to the symmetry of our length function, if p is a

ath-segment, so is p ′ , the directed path obtained by reversing all

he arcs on p . We define P as the set of all path-segments. 

A route π = (p 1 . . . , p η) is an ordered union of path-segments

p i , i = 1 , . . . , η where d(p i ) = o(p i +1 ) for i = 1 , . . . , η − 1 . We call a

oute feasible for an OD pair k , if o(p 1 ) = O(k ) , d(p η) = D(k ) and

 ( p i ) for i = 1 , . . . , η − 1 is a relay location, i.e., there exists a relay

ode at the end of each path-segment except the last one. 

An NDR problem instance is specified by a physical network G

ith associated data l, c and h , OD pair set K , and a threshold value

 max . The aim is to establish a feasible route for every k ∈ K such

hat the total of edge design and relay design cost is minimized. 

A physical network G and a given threshold value d max induce

 virtual network � = (V, A ) where A = { (i, j, p) : p ∈ P, o(p) =
, d(p) = j} . By this construction, a feasible route in the physical

etwork corresponds to a directed path in the virtual network.

onversely, any directed path from O(k ) to D(k ) in � corresponds

o a feasible route for k ∈ K provided that every intermediate node

n this path is equipped with the relay property. Our formulations

ely on the correspondence between the physical and the virtual

etworks. Fig. 2 presents an example for a virtual graph. In this

xample we consider a quite simple input graph with four nodes

nd five edges with unit lengths in Fig. 2 (a). Considering a d max 

alue of two, we obtain the virtual network depicted in Fig. 2 (b).

n Fig. 2 (b) the parallel arcs between the same node pairs are

rawn with the same style and they are depicted in a way to show

he physical path-segments they represent. For example the dou-

le headed dashed lines on the rightmost and leftmost boundaries

f the figure, represent the parallel virtual network arcs between

odes 2 and 3 corresponding to the path-segments ((2, 4), (4, 3)),

(2, 1), (1, 3)), ((3, 4), (4, 2)) and ((3, 1), (1, 2)). As we see in Fig. 2 ,

he induced virtual graph for a quite simple input graph and mod-

rate d max value, can get quite dense. If we merge the parallel arcs

n the virtual network into one edge, we obtain the communication

raph, which is introduced by Chen et al. (2010) to solve the RLP.

he communication graph has been used in Leitner et al. (2015) to

erive an alternative exact approach to the NDR. 

A solution for an NDR problem in the physical network G =
(V, E) is a pair 〈 R, T 〉 where R ⊆V is the set of relay locations and

 ⊆E is the set of edges included in the design. The relay locations

nd the edges in the resulting design enable feasible routes for

ach OD pair k ∈ K . A solution for an NDR problem 〈 R, T 〉 induces a

irected subgraph of the virtual network � = (V, A ) on which for

very k ∈ K , there exists a directed path from O(k ) to D(k ) with

very intermediate node in R . 

. Solving NDR 

In this section, we present a branch-and-price algorithm to

olve the general problem NDR. We first list some structural prop-

rties satisfied by certain optimal solutions. Then we provide

ur multi-commodity flow formulation strengthened by optimality

uts based on these properties and detail the algorithm. 
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Fig. 2. Virtual network example. 
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3.1. Properties of NDR solutions 

The following result plays a key role in strengthening our for-

mulations. 

Lemma 1. There exists an optimal solution 〈 R ∗, T ∗〉 to NDR such that

for all k ∈ K, there exists a feasible route π k using edges T k ⊆T ∗ for

which T k is a tree. 

Proof. Consider an arbitrary k ∈ K . Among all feasible routes from

O(k ) to D(k ) pick one using the fewest number of edges T k from

T ∗. Assume T k has a cycle. Since each path-segment in π k is sim-

ple, in order for T k to create a cycle, there should exist two dis-

tinct path-segments ˆ p and ˆ q of π k sharing a particular node, say i .

Without loss of generality assume that ˆ p = (p 1 , p 2 ) comes before

ˆ q = (q 1 , q 2 ) where p 1 , p 2 , q 1 , q 2 are path-segments with d(p 1 ) =
d(q 1 ) = o(p 2 ) = o(q 2 ) = i . Since the route traverses a directed cy-

cle, q ′ 
1 

� = p 2 . 

Since both ˆ p and ˆ q are path-segments, we have 

l(p 1 ) + l(p 2 ) ≤ d max and l(q 1 ) + l(q 2 ) ≤ d max (1)

We must have 

l(p 1 ) + l(q 1 ) > d max , (2)

since otherwise, we can replace the portion of the O (k ) –D (k ) path

from o ( p 1 ) to d ( q 2 ) with (p 1 , q 
′ 
1 
, q 1 , q 2 ) removing all edges on p 2 ,

the edges on the intermediate segments between ˆ p and ˆ q and thus

violating our assumption of π k using the minimum number of

edges from T ∗. Note that the case p 2 = ∅ implies node i ∈ R ∗ for

which ( p 1 , q 2 ) is a feasible route from o ( p 1 ) to d ( q 2 ) again contra-

dicting the minimum usage of edges. 

By a similar line of reasoning, we must have 

l( p 2 ) + l( q 2 ) > d max , (3)

However, inequalities (1) –(3) cannot simultaneously hold. �

Lemma 1 has several obvious implications. 

Corollary 1. There exists an optimal solution 〈 R ∗, T ∗〉 to NDR such

that for all k ∈ K, there exists a feasible route π k with the following

properties: 

(i) Each node i ∈ V appears at most twice on π k , 

ii) Each arc a ∈ A appears at most once on π k , 

ii) Non-consecutive path-segments on π k are disjoint, 

v) If two consecutive path-segments say ˆ p = (p 1 , p 2 ) and ˆ q =
(q 1 , q 2 ) on π k with d(p 2 ) = o(q 1 ) share an intermediate node

i ∈ V, with d(p 1 ) = d(q 1 ) = o(p 2 ) = o(q 2 ) = i, then p 2 = q ′ 
1 
. 

We would like to note that Lemma 1 does not hold for DNDR

as the example in Fig. 1 (a) attests to. 
.2. Multi-commodity flow formulation (MCF) 

Considering OD pairs as separate commodities and routing each

ne from its source to the destination by establishing a feasi-

le route, i.e., a directed path in the virtual layer, gives a multi-

ommodity flow formulation for NDR. Similar multi-commodity

ow formulations are used in Yıldız and Kara ̧s an (2017) and

ıldız et al. (2016) for different application settings. 

We define the following decision variables for this formula-

ion: 

 i = 

{
1 , if node i ∈ V is a relay point , 
0 , otherwise, 

 e = 

{
1 , if edge e ∈ E is used in the network design , 

0 , otherwise, 

 

k 
p = 

{
1 , if path-segment p ∈ P is used by the OD pair k ∈ K,

0 , otherwise. 

e name these variables as relay, edge and flow variables , respec-

ively. We use the following additional notation. For node i ∈ V ,
+ (i ) and δ−(i ) are the sets of path-segments that start and end

t node i , respectively. For brevity of notation, we use v k (P 

′ ) =
 

p∈P ′ v k p for P 

′ ⊆ P and k ∈ K . 

The multi-commodity formulation that we refer to as MCF is: 

in 

∑ 

i ∈ V 
h i r i + 

∑ 

e ∈ E 
c e w e (4)

.t. v k (δ+ (i )) − v k (δ−(i )) = 

{ 

1 if i = O(k ) 
−1 if i = D(k ) 
0 otherwise 

k ∈ K, i ∈ V, 

(5)

 

k (δ−(i )) ≤ r i k ∈ K, i ∈ V \ D(k ) , (6)

 

k 
p ≤ w ε(a ) k ∈ K, p ∈ P, a ∈ p, (7)

 i ∈ { 0 , 1 } i ∈ V, (8)

 e ∈ { 0 , 1 } e ∈ E, (9)

 

k 
p ≥ 0 k ∈ K, p ∈ P . (10)

The objective is to minimize the total relay placement and edge

esign cost. Constraints (5) are flow balance constraints to route
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ach commodity from its origin to its destination by a concatena-

ion of path-segments. Constraints (6) ensure that path-segments

nd at either a relay node or the destination node. Constraints

7) are the edge design constraints that enforce that an edge used

y an active path-segment should be included in the solution. Fi-

ally, constraints (8) –(10) are the domain restrictions for the vari-

bles. Although all decision variables are assumed to be binary, we

an relax the integrality requirement for the flow variables since

nce relay and edge design variables are fixed, flows on different

outes for an OD pair can be consolidated on just one arbitrarily

hosen path (among those that carry flow) without any change in

he objective function value. 

Lemma 1 enables us in strengthening constraints (7) and de-

reasing the size of the formulation. In particular, 

orollary 2. Let k ∈ K and a ∈ A. The inequality ∑ 

p∈P: a ∈ p 
v k p ≤ w ε(a ) (11) 

s an optimality cut for (4) –(10) . 

roof. Corollary 1 (ii) states that MCF has an optimal solution

here two path-segments employed by the same OD pair do not

hare an arc. Thus we can sum constraints (7) over all path-

egments without losing optimality. �

During our experimentations, we replaced constraints (7) with

onstraints (11) in model MCF. 

Note that even though Lemma 1 is not valid for a DNDR in-

tance, our original MCP model (4) –(10) can solve the directed net-

ork design problem with relays by simply replacing (4) with: 

in 

∑ 

i ∈ V 
h i r i + 

∑ 

a ∈ A 
c a w a 

nd (7) with: 

 

k 
p ≤ w a ∀ k ∈ K, p ∈ P, a ∈ p 

here c a is the cost of including an arc a ∈ A and w a is the binary

ecision variable for the arc design. 

.3. Solving MCF 

Since the number of flow variables grows exponentially with

he network size, for realistic size problems it is not practical to

enerate all these variables a-priori and solve MCF directly as a

ixed integer program. To overcome this problem we employ a

olumn generation procedure to solve the linear relaxation of MCF

hat we denote as MCF-LP. To solve MCF we devise a branch-and-

rice algorithm. 

To solve MCF-LP, we start with a restriction that contains a

ubset of flow variables and add the remaining variables when

eeded. The problem that determines the flow variables to add to

chieve optimality is the pricing problem. Below, we explain how

e solve the pricing problem, how we choose the initial subset of

ow variables, the branching rule, the search rule and other imple-

entation details. 

ricing problem 

After solving the restricted MCF-LP that contains only a subset

f the flow variables, we look for columns (flow variables) with

egative reduced costs. We solve the pricing problem to find such

 column or conclude that none exists. Let αk 
i 
, −βk 

i 
and −γ k 

a de-

ote the dual variables associated with the constraints (5),(6) , and

11) , respectively. Then the reduced cost for a flow variable v k p can

e calculated as follows: 

¯
 

k 
p = 

{
αk 

d(p) 
− αk 

o(p) 
+ 

∑ 

a ∈ p γ
k 

a , if d(p) = D(k ) 

αk 
d(p) 

− αk 
o(p) 

+ 

∑ 

a ∈ p γ
k 

a + βk 
d(p) 

, otherwise. 
(12) 
he pricing problem is to check for each k ∈ K and

(o(p) , d(p) , p) ∈ A whether v̄ k p is negative. Let A 

c = { (i, j) :

(i, j, p) ∈ A for some path-segment p} denote the set of plausible

ode pairs. We would like to recall that given a directed graph

ith costs and resources associated with each arc, the constrained

hortest path problem (CSP) ( Garey and Johnson, 1979 ) seeks a

inimum cost path from a given source node to a given destina-

ion node with a side constraint on the total resource of the path.

ince we have γ k 
a ≥ 0 for all a ∈ A, k ∈ K and we look for a negative

educed cost column, the pricing problem for OD pair k ∈ K and a

lausible pair ( i, j ) ∈ A 

c is actually a CSP instance from node i to

ode j on a graph G 

k = (V, A ) in which the resource is τa = l a and

he cost is c̄ a = γ k 
a for all a ∈ A and the resource limit is τ = d max . 

In this approach, one needs to solve O (| K || A 

c |) CSP problems to

olve the pricing problem. This can in fact be done in a more effi-

ient way by solving O (| K |) CSP problems as follows. Consider the

ricing graph 

˜ G 

k = ( ̃  V , ̃  A ) , where: 

1. ˜ V = V ∪ { ̃ s } ∪ { ̃ t } , 
2. ˜ A = A ∪ { ( ̃ s , i ) : i ∈ V } ∪ { (i, ̃  t ) : i ∈ V } , 
3. for arc a ∈ A , the cost is c̄ a = γ k 

a and the resource is τa = l a , 

4. for arc a ∈ ̃

 A \ A, the resource τa = 0 , 

5. for arc ( ̃ s , i ) , i ∈ V the cost is c̄ ˜ s ,i = −αk 
i 
, 

6. for arc (i, ̃  t ) , i ∈ V, the cost is c̄ i, ̃ t = αk 
i 

if D(k ) = i and c̄ i, ̃ t = αk 
i 

+
βk 

i 
otherwise. 

Fig. 3 illustrates a small example for the generation of the pric-

ng graph. For the input graph shown in Fig. 3 (a) and the dual vari-

ble values α, β and γ , the related pricing graph for the OD pair

 = (i, m ) is depicted in Fig. 3 (b). The following lemma establishes

he validity of the proposed solution approach for the pricing prob-

em. 

emma 2. Let k ∈ K and ˜ G 

k = ( ̃  V , ̃  A ) , c̄ and τ be as defined above.

here exists a negative reduced cost column for commodity k if and

nly if there exists a negative cost path from ˜ s to ˜ t in ˜ G 

k with resource

onsumption not more than the threshold d max . 

roof. It is enough to observe that for each path ˜ p =
(( ̃ s , o(p)) , p, (d(p) , ̃  t )) from ˜ s to ˜ t in 

˜ G 

k , the cost is equal to

¯ ˜ s ,o(p) + 

∑ 

a ∈ p ̄c a + c̄ d(p) , ̃ t , which is equal to −αk 
o(p) 

+ 

∑ 

a ∈ p γ k 
a +

k 
d(p) 

if d(p) = D(k ) and to −αk 
o(p) 

+ 

∑ 

a ∈ p γ k 
a + αk 

d(p) 
+ βk 

d(p) 
,

therwise. In both cases, these quantities give the reduced cost of

he column associated with path segment p and commodity k . In

ddition, the resource constraint ensures that the path segment

as length at most d max . �

Observe that as an immediate result of Lemma 2 , we can safely

erminate the column generation procedure and declare the cur-

ent best solution as an optimal solution for MCF-LP, if CSP so-

utions return a path with a nonnegative cost for all k ∈ K in the

espective pricing graphs. 

Since the CSP is NP-Hard ( Garey and Johnson, 1979 ) and we

eed to solve | K | CSPs at each column generation iteration, to save

ime we first try to find the negative reduced cost variables by a

euristic approach and resort to the exact solution methodology

f the heuristic method fails. For that purpose we use the heuris-

ic algorithm HS q used also in Yildiz and Karasan (2014). For each

lausible pair ( i, j ) ∈ A 

c , HS q stores the first q shortest paths from

 to j in G and checks them first to detect a negative reduced cost

olumn. Since HS q requires to solve a q -shortest path problem once

n the beginning of the branch-and-price algorithm and there are

ery efficient algorithms that solve it on graphs with nonnegative

engths ( de Azevedo et al., 1994 ), this heuristic can drastically im-

rove the performance of the pricing phase in exchange of a quite

oderate increase in computer memory cost. 
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Fig. 3. Pricing graph corresponding to the detection of negative reduced cost variables for the OD pair ( i, m ). The artificial arcs are depicted with dashed lines. 
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Initial variable pool: 

Defining variables for path-segments instead of whole paths di-

verts from the widely used path based formulations for which col-

umn generation techniques have been applied very successfully

for a wide range of problems ( Lübbecke and Desrosiers, 2005 ).

Path-segments as variables require a more careful approach to

determine the initial variable pool of flow variables ( Yıldız and

Kara ̧s an, 2017 ). Let p ij be the trivial path-segment that contains

only the arc ( i, j ) ∈ A . We can define the initial variable pool as

 0 = { v k p i j 
: k ∈ K, (i, j) ∈ A } . Note that, a solution for the MCF-LP,

considering only the flow variables in V 0 , contains enough infor-

mation to derive all the needed dual variable values to properly

construct the pricing problem. 

Branching and search: 

One of the key points in developing a branch-and-price algo-

rithm is to define a branching rule that eliminates non-integral so-

lutions while preserving the special structure of the pricing prob-

lem ( Barnhart et al., 20 0 0 ). In our case, since the flow variables are

not required to be integral, standard branching rules can be ap-

plied to non-integral relay and edge variables without any change

in the structure of the pricing problem. In our implementations,

based on the results we get in preliminary tests we give priority

to relay variables and branch on edge variables only when all re-

lay variables are integral. For the search of the branch-and-bound

tree we use depth first strategy that speeds up the re-optimization

after adding a branching cut. 

Heuristic: 

For any branch-and-bound algorithm, obtaining a good feasible

solution at the beginning can be very useful to speed up the so-

lution procedure. In order to get such a good solution we do the

following. At the root node, at each iteration of the column gen-

eration phase we check whether the solution for the current re-

stricted MCF-LP is integral or not. If it is integral and has a lower

cost than the best integer solution found so far we store it as the

best integer solution. If no such solution is found we solve MCF as

an integer program with only the columns generated at the root

node. Our numerical experiments have shown that the integral so-

lution obtained by this procedure is often of high quality and can

speed up the branch-and-price algorithm significantly. Since we

generate a significant number of new columns during our search

in the branch-and-bound tree, it is also useful to repeat this solu-

tion procedure at some nodes in the branch-and-bound phase to

obtain a better heuristic solution. In our implementation we resort

to this heuristic every 300 nodes if more than 500 columns have

been added after our last heuristic attempt. We give a time limit of

1800 s to our mixed integer linear program (MIP) solver and con-
ider the best incumbent solution if it reaches to this time limit

ithout a proof of optimality. 

ariable pool management: 

In most column generation/branch-and-price implementations

anaging the variable pool is crucial. Our preliminary studies have

ndicated that keeping all the columns in the model and not taking

hem out based on the frequency they appear in the optimal bases

ave the best performance so we abide by this strategy during all

ur computational experiments. 

We present the results of our computational experiments with

his branch-and-price algorithm in Section 5 . 

. Solving NDR-S 

Obviously our MCF formulation can be used directly to solve

DR-S. However, as a general solution approach it ignores the spe-

ial structure of the NDR-S problem, which can be exploited to im-

rove computational efficiency. Facilitated by this special problem

tructure, we present a more efficient solution approach for NDR-S

n this section. 

.1. Properties of NDR-S solutions 

Let D be the set of terminal nodes, i.e., D = { i ∈ V : O(k ) =
 or D(k ) = i, k ∈ K} for a given NDR instance. In the variation NDR-

, there exists a special source node s ∈ V such that s = O(k ) for all

 ∈ K . 

NDR-S requires that node s reaches all terminal nodes in D �{ s }.

his calls for a solution that induces a connected graph in the

hysical network and a rooted connected directed graph in the vir-

ual network (ignoring isolated nodes and edges with zero costs).

n fact, we can even show that there exists an optimal solution in-

ucing a tree in the physical layer and a rooted tree in the virtual

ayer. 

heorem 1. Given an NDR-S instance, there exists an optimal solu-

ion 〈 R ∗, T ∗〉 such that T ∗ is a tree. 

roof. Let T i ⊆T ∗ for each i ∈ K be the set of edges used in the

oute π i from s to i . By Lemma 1 , we may assume without loss

f generality that T i is a tree for each i ∈ K . Now we shall con-

tructively show that we can add these trees one by one without

reating cycles and maintaining optimality. Assume ˜ T = ∪ i ≤m 

T i for

ome 1 ≤ m < | K | is free of cycles. We shall show that ˜ T ∪ T m +1 can

e made cycle free without losing optimality. 

Assume to the contrary that when the edge sets in 

˜ T and T m +1 

re combined, we create a cycle. In other words, visualizing T̃ 

ooted at s , there exist two nodes u and v such that πm +1 touches

hese two nodes but does not use the unique path from u to v in
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 . Among all potential such node pairs u and v , pick one for which

he unique paths from u to v in 

˜ T and T m +1 only intersect at these

odes. Without loss of generality we assume that the unique s − u

aths in 

˜ T and T m +1 are identical (possibly void corresponding to

he case s = u ). 

We know that each node in 

˜ T (similarly in T m +1 ), has a fea-

ible route from s otherwise we can remove it along with all its

ncident edges without violating feasibility. Consider the subtree
 

 u v consisting of the unique u − v path in 

˜ T as well as any sub-

ree hanging from the nodes on this path. Now, there may be some

odes on 

˜ T u v that are reachable from s only through routes touch-

ng node v . Their routes first have to traverse from u to v , possibly

et regenerated through a subtree rooted at v and then come back.

ote that since v and all its nodes in its subtree have this prop-

rty, such nodes do exist. Let W be the set of all such nodes along

ith all the nodes on their unique subtrees hanging from 

˜ T u v and

 = ̃

 T u v \ W . In other words, if node i is a node on the unique u − v
ath, and if j is a node in its subtree which is reachable from s

hrough v only, any node on the subtree rooted at i (including i

tself) will belong to set W . By our construction, ( S, W ) properly

artitions the node set of ˜ T u v and there exists a unique edge, say

˜  ∈ ̃

 T u v , with one endpoint in S and the other endpoint in W . 

We now know that s has a route to each w ∈ W visiting node v .

et πw = (πw 

1 , π
w 

2 ) denote this route and assume v appears once

n πw 

1 
as a terminal node. Let p ( w ) be the portion of the last path-

egment on πw 

1 
terminating at node v . Similarly, for D(m + 1) ,

onsider the route πm +1 which passes through v and let q be the

ortion of the path-segment on this route while visiting v for the

rst time. Note that l q < l p ( w ) for each w ∈ W otherwise it would

e possible for s to reach D(m + 1) without using the edges on

he unique path from u to v on T m +1 . But then, s can reach each

 ∈ W by first reaching v following the route πm +1 on T m +1 and

hen following the route πw 

2 
from v to w on 

˜ T u v . So if edge ˜ e is

eleted no node will lose its reachability from node s and one cy-

le in 

˜ T ∪ T m +1 can be removed. One can repeat these arguments

o eliminate all cycles. �

heorem 2. Given an NDR-S instance, there exists an optimal solu-

ion 〈 R ∗, T ∗〉 such that the union of path-segments used in the de-

ign form a rooted tree in the virtual network � with root s spanning

odes in R ∗ ∪ D. 

roof. For each i ∈ D �{ s }, let π i be a feasible route from s to i . Con-

ider the subgraph of the virtual network � induced by the path-

egments used by the routes π i , i ∈ D �{ s }. Let � = ( V , A ) be this

ubgraph. By definition of feasible routes, V = D ∪ R ∗ so � will be

he desired rooted tree if no node in V has two incoming arcs from

 . Assume to the contrary that node i ∈ V has two incoming arcs

 1 and a 2 from A . Then node i is necessarily in R ∗ and any one of

he arcs a 1 or a 2 could be removed without violating feasibility. �

For the sake of generality, the proofs for Theorems 1 and 2 do

ot assume strictly positive edge costs. However, if this is the case,

hen no optimal solution would induce a cycle in the physical net-

ork. In other words, we can say that: 

orollary 3. Given an NDR-S instance, if c e > 0 for each e ∈ E, then

very optimal solution induces a tree in the physical network and a

ooted tree in the virtual network. 

.2. Tree formulation (TF) 

Now we are ready to present our Tree Formulation (TF) for

DR-S. Using the results of Theorem 2 , we can provide a single-

ommodity formulation. TF uses the same relay and edge de-

ign variables of the MCF formulation but considers flow variables

ithout commodity superscripts. These variables are called single-
ow variables : 

 p = 

{
1 , if path-segment p ∈ P is established, 
0 , otherwise. 

iven S ⊂ V , P(S) = { p ∈ P : o(p) , d(p) ∈ S} denotes the set of all

ath-segments with both endpoints in set S . For p ∈ P, let E(p) =
 e ∈ E : e = ε(a ) for a ∈ p} . We let v (P ′ ) = 

∑ 

p∈ P ′ v p , for P ′ ⊆P and

(V ′ ) = 

∑ 

i ∈ V ′ r i , for V 

′ ⊆V . The tree formulation (TF) is given as : 

in 

∑ 

i ∈ V 
h i r i + 

∑ 

e ∈ E 
c e w e (13) 

.t. v (P) = | D | + r(V \ D ) − 1 , (14) 

 (P(S)) ≤ | S ∩ D | + r(S \ D ) − 1 S ⊂ V : S ∩ D � = ∅ , (15) 

 (P(S)) ≤ r(S \ { j} ) S ⊂ V : S ∩ D = ∅ , j ∈ S, (16) 

 (δ−(i )) = 

{
1 if i ∈ D 

r i if i ∈ V \ D 

∀ i ∈ V \ { s } , (17) 

 i ≥
{∑ 

p∈P:(i, j,p) ∈A v p + 

∑ 

p∈P:( j,i,p) ∈A v p if i / ∈ D ∑ 

p∈P:(i, j,p) ∈A v p otherwise 
(i, j) ∈ A 

c , 

(18) 

∑ 

p∈ δ−(i ): e ∈E(p) 

v p ≤ w e i ∈ V, e ∈ E, (19) 

 p ≥ 0 p ∈ P, (20) 

 i ∈ { 0 , 1 } i ∈ V, (21) 

 e ∈ { 0 , 1 } e ∈ E. (22) 

imilar to the MCF formulation, the objective function is to mini-

ize the network design cost. Note that, by Theorem 2 , we know

hat there exists an optimal solution that induces a rooted tree in

he virtual network spanning all terminal nodes and relay nodes.

onstraints (14) –(16) ensure that the union of path-segments form

 tree in the virtual network. Constraints (17) force that all the ter-

inal nodes are visited in this rooted tree and that a non-terminal

ode is visited if and only if it is enhanced as a relay. Recall that

 is the virtual network arc set and A 

c is the set of plausible node

airs. Constraints (18) are regeneration constraints. They make sure

hat all the internal nodes of the virtual rooted tree are enhanced

ith relay capabilities. Note that, these constraints are stronger for

he non-terminal nodes for which there can be no incoming or

utgoing arcs if they are not chosen as relays. Since all routes start

n s, for the sake of simplicity and without loss of generality, we

ssume that h s = 0 and allow for source node to be chosen as a re-

ay point. Constraints (19) are the edge design constraints enforc-

ng all the edges used by established path-segments to be included

n the design. Note that instead of writing this constraint sepa-

ately for each path-segment we can sum over all path-segments

haring the same destination and obtain a stronger inequality. The

alidity of this inequality is also guaranteed by constraints (17) . Fi-

ally (20) –(22) are the variable domain restrictions. 
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4.3. Strengthening TF 

4.3.1. Connectivity cuts for the relays 

We seek for an optimal solution that is a rooted tree at node

s in the virtual network having relay locations as internal nodes

and terminal nodes as leaves. Any terminal or relay location that

is not in the relay free communication range of s needs to reach

to a relay location within its range. Using this knowledge, we get

a tighter formulation by adding the following cuts to TF: ∑ 

j :(i, j ) ∈ A c 
r j ≥

{
1 if i ∈ D 

r i if i ∈ V \ D 

i ∈ V \ { s } : (s, i ) �∈ A 

c . (23)

4.3.2. Steiner tree cuts in the physical network 

TF seeks an optimal solution where the arcs of the virtual net-

work corresponding to single-flow variables induce a rooted tree

and where the design cost of the edge and relay variables is mini-

mum. The correctness of this formulation is ensured by Theorem 2 .

Due to Theorem 1 , we can also restrict the design to induce a tree

in the physical network. Since all terminal nodes need to be in this

tree for connectivity requirements, this tree is actually a Steiner

tree that spans terminal nodes in D . Using this fact, we can gener-

ate further optimality cuts to eliminate some fractional solutions. 

We obtain a strengthened tree formulation (STF) by adding the

relay connectivity cuts (23) and the following Steiner tree con-

straints to TF: 

w (E) = u (V ) − 1 , (24)

w (E(S)) ≤ u (S \ { j} ) S ⊂ V, j ∈ S, (25)

u i ≥ r i i ∈ V \ D, (26)

u i = 1 i ∈ D, (27)

where we define the Steiner variables as: 

u i = 

{
1 , if node i ∈ V is included in the design, 
0 , otherwise. 

Constraints (24) and (25) are the well known Steiner tree

constraints where for S ⊂ V , E(S) = {{ i, j} ∈ E : i, j ∈ S} . Since these

constraints provide the complete characterization of the re-

lated spanning tree polytope in the case of binary u i variables

( Edmonds, 1970 ), they are strengthened by tightening the bounds

on the Steiner variables. For this reason we add constraints

(26) and (27) that force all terminal nodes and all non-terminal

relay locations to be included in the resulting Steiner tree. 

4.4. Solving STF 

Since STF contains a large number of variables and constraints

which exponentially grow with the problem size it is not possible

to solve STF directly for realistic size problems and a simultane-

ous row and column generation is needed. We denote the linear

relaxation of STF with STF-LP. 

To solve STF-LP, we start with a subset of single-flow variables

and add the remaining variables iteratively in a column generation

phase. Once there is no variable to add we check for violated in-

equalities. If we find one we add it to the model and return to the

column generation phase again. 

During the column generation phase we solve the pricing prob-

lem to detect any negative reduced cost variables. For the row gen-

eration phase we solve a separation problem to detect any vio-

lated inequalities. Here note that, constraints (15) and (16) could
e violated by a solution with integral relay and edge design vari-

bles and to be able to properly calculate the reduced costs of the

ingle-flow variables we need to add any violated inequalities after

ach column generation iteration. Below, we discuss this issue in

ore detail, explain how we solve the pricing and the separation

roblems, how we choose the initial subset of flow variables, the

ranching rule, the search rule and other implementation details. 

nitial variable and constraint pool: 

For the initial variable pool we use the trivial single-flow vari-

bles each associated with an arc in the input network, i.e., we

ave V 0 = { v p i j 
: (i, j) ∈ A } as the initial set of columns. For the ini-

ial constraints we consider Constraints (14),(17) –(19),(23),(24),(26)

nd (27) and the relaxed domain restrictions. 

eparation problem: 

After solving the initial problem with a subset of variables and

onstraints, we look for violated inequalities by solving the sep-

ration problem. We use the separation procedure proposed by

ee et al. (1996) , which is designed for a closely related Steiner

ree problem, for both the physical and virtual network cycle can-

elation constraints. For the sake of brevity, we only explain this

eparation procedure for the physical network, i.e. separation of

onstraints (25) , but it is very easy to see that the same procedure

an be readily applied to the virtual network cycles as well. 

Let ( r ∗, w 

∗, u ∗, v ∗) be the optimal solution for STF-LP where

 

∗ = { i ∈ V : u ∗
i 

> 0 } , E ∗ = { e ∈ E : w 

∗
e > 0 } are the sets of Steiner

nd edge design variables with positive values. We first generate

he separation graph 

ˆ G = ( ̂  V , ˆ A ) , where: 

1. node set ˆ V = V ∗ ∪ E ∗ ∪ { ̂ s , ̂  t } , 
2. arc set ˆ A = { ( ̂ s , e ) : e ∈ E ∗} ∪ { (i, ̂  t ) : i ∈ V ∗} ∪ { (e, i ) , (e, j) : e =

{ i, j} ∈ E ∗} , 
3. arc capacities are infinite except for those arcs: 

- leaving from ˆ s , with capacities ˆ c ( ̂ s ,e ) = w 

∗
e , 

- reaching to ˆ t , with capacities ˆ c ( i, ̂ t ) = u ∗
i 
. 

To solve the separation problem, for each j ∈ V 

∗, we change the

rc capacity for ( j, ̂  t ) to zero and solve a maximum flow problem

rom ˆ s to ˆ t . If the solution value is less than w ( E ), the minimum

apacity cut gives a violated inequality where S is the set of indices

f Steiner variables in the minimum cut and j is the index of the

teiner variable that is excluded in the first sum in (25) . For more

etails about the validity of this separation procedure we refer the

eader to Lee et al. (1996) . 

Note that the above exact separation procedure requires solv-

ng several maximum flow problems. Indeed we can do better

han this by first trying a simple yet quite efficient heuristic be-

ore resorting to the exact solution for the separation problem. The

euristic algorithm which we call as the connectivity heuristic ( HS C )

epends on the following observation. If the separation graph 

ˆ G is

ot connected and none of its connected components contains all

he terminal nodes (including s), then we can detect violations as

ollows. Let C be the collection of connected components of ˆ G each

ncluding a terminal node. For S ⊂ V , let δ(S) = { e ∈ E : | e ∩ S| = 1 } .
hen the following cuts can be added to the model to remove this

nfeasible solution. 

 (δ(C)) ≥ 1 C ∈ C. (28)

t is obvious that Theorem 1 establishes the validity of these cuts

or the physical layer and Theorem 2 enables a very similar pro-

edure to be applied in the virtual layer. Thus, using the heuristic

S C , we have the chance to solve the separation problem with a

imple graph search in many cases especially at the beginning of

he algorithm where a very limited number of constraints are in

he model. 
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ricing problem: 

After the row generation (cutting plane) phase ends, we look

or columns (single-flow variables) with negative reduced costs to

dd to the model. We solve the pricing problem to find such a

olumn or conclude that none exists. Let −α, −β, −γ , −λ, θ, −μ
e the dual variables associated with constraints (14) –(19) , respec-

ively. Since we are looking for a tree rooted at s , the reduced cost

¯
 p of a flow variable v p is infinity if d(p) = s and if this is not the

ase it can be calculated as follows: 

¯
 p = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

α+ 

∑ 

S⊂V, 
S∩ D � = ∅ 

o(p) ,d(p) ∈ S 

βS + 

∑ 

S⊂V, 
S∩ D = ∅ 

o(p) ,d(p) ∈ S 

∑ 

j∈ S γ
j 

S 
+ λd(p) 

+ θo(p) ,d(p) + 

∑ 

e ∈E(p) μ
e 
d(p) 

, if d(p) ∈ D,

α + 

∑ 

S⊂V, 
S∩ D � = ∅ 

o(p) ,d(p) ∈ S 

βS + 

∑ 

S⊂V, 
S∩ D = ∅ 

o(p) ,d(p) ∈ S 

∑ 

j∈ S γ
j 

S 
+ λd(p) 

+ θo(p) ,d(p) + θd(p) ,o(p) + 

∑ 

e ∈E(p) μ
e 
d(p) 

, otherwise. 

(29) 

ote that, as a complicating factor, the above calculation involves

ome dual variables associated with constraints that are not in the

urrent model. Fortunately, this does not cause a problem since we

an set the values of the dual variables associated with the con-

traints that are not in the model to zero. Here note that, since we

tart with all the trivial single-flow variables and do not remove

ny of them throughout the algorithm, addition of the Steiner cuts

oes not cause infeasibility and reduced cost calculations are not

dversely affected. 

Recall that we are looking for negative reduced cost variables

nd we have μe 
d(p) 

≥ 0 , for each edge e ∈ E and path-segment p ∈
. Thus, the pricing problem for each plausible pair ( i, j ) ∈ A 

c is

ctually a CSP instance from node i to node j on original network

 = (V, A ) in which the resource for each arc a ∈ A is l a , the cost for

ach arc a ∈ A is μe 
j 

and the resource limit is d max . As we have dis-

ussed during the presentation of the branch-and-price algorithm

or the MCF formulation in Section 3.3 , we first try the HS q heuris-

ic to detect any negative reduced cost variables and resort to the

xact solution only when HS q cannot find one. 

mplementation details: 

For the branch-and-price-and-cut, we use essentially the same

ranching and search strategies previously discussed for the

ranch-and-price in Section 3.3 and for the sake of brevity we do

ot repeat the same explanations here. For the variable and con-

traint pool management our preliminary studies have shown that

ur branch-and-price-and-cut algorithm performs best when we

o not remove any column or row. During the branch-and-price-

nd-cut algorithm we search for violated inequalities in the root

ode, in the last branch-and-bound node left in the queue and

hen we find an integral solution. For the cut generation, except

or the case we have an integer solution at hand, we terminate it

hen the increase in the objective function value is less than 0.01

fter the inclusion of the last set of cuts. 

euristic: 

Mimicking the heuristic solution approach we have for the

ranch-and-price algorithm, at the root node of the branch-and-

ound tree, at each iteration of the column generation phase we

heck whether the solution for the current restricted STF-LP is in-

egral or not. If it is integral, there is no violated constraint and this

olution has a lower cost than the best integer found so far then

e store it as the best integer solution. If no such solution is found,

e solve STF as an integer program with only the columns gener-

ted at the root node. To solve this restricted STF more efficiently,

e employ a branch-and-cut approach in which the violated con-

traints are added iteratively using the same separation procedure

e presented above. Our numerical experiments have shown that
he integral solution obtained by this procedure is often of high

uality and can speed up the branch-and-price-and-cut algorithm

ignificantly. 

Note that we can also solve NDR-S by solving the TF formula-

ion with a branch-and-price-and-cut algorithm that is similar to

he one presented for STF. With an aim to asses the benefits of us-

ng the information that the solution of the problem is a tree in

he input graph, we consider this simpler algorithm in our compu-

ational experiments as well. 

.5. Enhancing MCF for NDR-S problems 

When we consider NDR-S problems, we can add the Steiner

ree cuts to the MCF formulation as well and obtain a stronger

ormulation. Let SMCF be the MCF formulation strengthened with

he Steiner tree cuts. We need a branch-and-price-and-cut algo-

ithm to solve this new formulation. Since the Steiner tree cuts for

CF do not include the flow variables, the pricing problem is not

ffected by the inclusion of these cuts. As a result, with a slight

odification of the branch-and-price algorithm explained in detail

n Section 3.3 , it is straightforward to implement this new branch-

nd-price-and-cut algorithm and for the sake of brevity we do not

rovide the details here. 

. Computational study 

Comprehensive numerical experiments are conducted to test

he performance of the algorithms proposed in this study.Three

ommon network topologies from the literature are considered:

rid networks by Cabral et al. (2007) , Steiner instances B and C

rom the OR-Library ( Beasley, 1990 ) and instances by Konak (2012) .

e implemented all the algorithms using Java under Linux and

PLEX 12.5 and all experiments are done on the same machine:

ntel 2 Xeon E5-2609 4C 2.4 GHz CPU and 8GB RAM. 

.1. Single-source instances 

.1.1. Cabral instances 

Since the NDR problem is first introduced by

abral et al. (2007) , most of the literature on this problem

onsiders the instances presented in this study. In order to test

ur algorithms we consider original Cabral instances as well as

ew ones with higher number of OD pairs that we obtain by

mitating the random problem generation procedure described in

abral et al. (2007) . Cabral instances are single-source instances

hat have a grid structure with a rows and b columns. The costs

nd lengths of the edges are randomly generated from a uniform

istribution U [10, 30]. For these problem instances d max = 70 and

he relay costs are randomly chosen from a uniform distribution

 [70, 140]. 

Before proceeding with the computational results, we first look

t NDR-S solutions on some small size network instances to show

he complexity of the problem and to illustrate the correspondence

etween the solutions in the physical and virtual networks. These

xamples clearly show that solving NDR in a sequential manner,

.e., first solving a Steiner tree problem and then placing regen-

rators in the resulting design, may not produce high quality solu-

ions. In Fig. 4 , we consider a 5 × 10 grid network with 10 terminal

odes. Fig. 4 (a)–(c) depict the NDR-S solutions on the input graphs

or d max values of 30, 50 and infinity, respectively. The dashed lines

how the edges present in the grid graph, whereas the thick(red)

ines show those edges included in the optimal solution. The ter-

inal nodes are shown with double circles and nodes enhanced

ith relay capabilities are highlighted (depicted in turquoise color).

he dashed circles show the nodes in the grid graph that are not
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Fig. 4. Grid graph solution illustrations. 
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included in the design. Figs. 4 (d)–(f) illustrate the respective so-

lutions in the virtual networks as rooted trees. These instances

clearly show that the optimal edge design may heavily depend on

the locations of the relays. Note that when d max = ∞ our problem

reduces to a Steiner tree problem and Fig. 4 (c) shows the mini-

mum cost Steiner tree solution. This design is quite different than

the design for the instance with d max = 30 . As we see in this small

example, the tree structure generated in the physical network layer

is significantly affected by the relay placement decisions. There-
ore, when the relay costs are not negligible and d max values are

estrictive, solving the NDR problem by jointly solving relay place-

ent and network design problems can provide much different re-

ults than a sequential solution approach. As a result, depending

n the cost structure of the given problem instance, the difference

etween such a heuristic solution’s objective function value and

he true optimum can get arbitrarily large. 

We first compare the computational performances of the solu-

ion approaches we propose in this study. Table 1 shows the re-
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Table 1 

Solution time comparisons for the proposed algorithms. 

Solution Time (seconds) Solution Time Ratios 

a b | K | MCF SMCF TF STF MCF SMCF TF 

5 5 5 0.9 0.6 1.0 0.7 1.3 0.9 1.4 

10 2.6 1.3 1.2 0.7 3.7 1.8 1.7 

20 115.7 15.4 19.3 1.4 81.8 10.9 13.7 

6 5 5 1.2 1.0 2.0 1.1 1.1 1.0 1.9 

10 8.9 3.5 5.9 1.6 5.7 2.3 3.8 

20 285.7 12.8 35.8 1.7 170.3 7.6 21.3 

7 5 5 2.0 2.3 3.8 2.4 0.8 0.9 1.6 

10 18.3 6.4 10.1 2.3 7.9 2.8 4.4 

20 448.5 31.1 55.1 3.0 148.7 10.3 18.2 

30 4213.5 230.5 387.8 9.1 461.2 25.2 42.4 

8 5 5 2.2 1.9 5.8 3.5 0.6 0.5 1.7 

10 51.9 14.6 45.0 7.0 7.4 2.1 6.4 

20 735.5 39.8 145.5 6.6 110.7 6.0 21.9 

30 > 7200.0 859.7 2376.7 17.9 > 402.9 48.1 133.0 

9 5 5 3.1 5.6 20.3 6.1 0.5 0.9 3.3 

10 53.1 23.5 65.9 8.4 6.3 2.8 7.8 

20 1786.8 136.2 682.2 17.1 104.8 8.0 40.0 

30 > 7200.0 220.8 2148.6 19.1 > 376.2 11.5 112.3 

10 5 5 3.1 3.3 58.5 40.6 0.1 0.1 1.4 

10 54.2 15.2 149.5 44.4 1.2 0.3 3.4 

20 1483.0 65.7 1011.4 70.3 21.1 0.9 14.4 

30 > 7200.0 317.9 3564.4 43.4 > 165.9 7.3 82.1 

40 > 7200.0 851.9 > 7200.0 63.7 > 113.1 13.4 > 113.1 

11 5 5 11.6 18.6 675.8 42.9 0.3 0.4 15.8 

10 98.1 28.6 484.0 43.9 2.2 0.7 11.0 

20 2072.6 108.9 1881.9 28.7 72.1 3.8 65.5 

30 > 7200.0 1104.0 5819.3 122.0 > 59.0 9.0 47.7 

40 > 7200.0 3968.6 > 7200.0 226.3 > 31.8 17.5 > 31.8 

12 5 5 5.0 8.9 294.2 40.6 0.1 0.2 7.2 

10 58.6 32.1 712.0 44.4 1.3 0.7 16.0 

20 2684.6 166.1 3187.7 70.3 38.2 2.4 45.3 

30 > 7200.0 2926.0 5938.2 43.4 165.9 67.4 136.8 

40 > 7200.0 802.4 > 7200.0 63.7 > 113.1 12.6 > 113.1 
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Table 2 

Results for original Cabral instances with STF. 

a b K Time # Opt Gap R.Gap BBN Cols Cuts 

4 5 5 0.5 10 0.00 0.00 1.4 464.6 18.5 

10 0.6 10 0.00 0.01 2.0 499.9 16.5 

5 5 5 0.7 10 0.00 0.01 2.4 670.3 38.8 

10 0.7 10 0.00 0.01 5.4 716.8 32.3 

6 5 5 4.7 10 0.00 0.01 3.2 902.2 84.2 

10 1.9 10 0.00 0.02 5.4 976.0 87.6 

7 5 5 1.5 10 0.00 0.01 3.0 980.8 81.6 

10 2.5 10 0.00 0.03 10.6 1211.0 111.9 

8 5 5 5.6 10 0.00 0.02 10.4 1308.2 222.8 

10 3.5 10 0.00 0.03 12.2 1345.7 207.7 

9 5 5 7.1 10 0.00 0.02 6.8 1462.3 211.8 

10 7.9 10 0.00 0.03 16.8 1634.1 198.5 

10 5 5 29.6 10 0.00 0.04 21.2 1749.3 409.6 

10 45.9 10 0.00 0.04 40.4 1930.0 306.3 

11 5 5 24.5 10 0.00 0.04 28.0 1813.0 431.1 

10 78.7 10 0.00 0.05 46.6 2210.7 459.4 

12 5 5 59.1 10 0.00 0.02 29.4 2239.0 523.0 

10 117.8 10 0.00 0.07 81.0 2556.4 657.6 

w  

g  

fl  

S  

c  

e

 

a  

m  

w  

g  
ults of numerical experiments for instances with up to 60 nodes

nd 40 OD pairs. In the table, a and b are the grid dimensions and

 K | is the number of OD pairs. For each setting, five random in-

tances are created and the average solution times are reported for

ach solution method. The first four columns show the run times

n seconds for the respective algorithms that solve MCF, SMCF, TF

nd STF formulations and the last three columns report the ratios

f the solution times of algorithms for MCF, SMCF and TF to those

f STF. A time limit of 7200 seconds is given to all the algorithms.

or all instances, HS 6 heuristic is used to solve the related pricing

roblem in the branch-and-price and branch-and-price-and-cut al-

orithms. 

Looking at Table 1 , we immediately notice that including

teiner cuts drastically improves the performances of the solu-

ion procedures both for the multi-commodity flow and tree for-

ulations. For the multi-commodity flow formulations, solution

imes with SMCF can on the average improve more than 20 times,

hereas this ratio increases to 100 when we consider tree formu-

ations. Comparing the computational performances of all these so-

ution methods, the results presented in Table 1 clearly show that

he branch-and-price-and-cut algorithm of STF is superior to other

lgorithms. The last three columns show that, on the average, this

lgorithm can be more than 461, 67 and 136 times faster than the

lgorithms that solve MCF, SMCF and TF, respectively. Note that

hese ratios could be much larger if we had not have the time

imit and waited all algorithms to finish. Such a drastic perfor-

ance superiority can be explained by two major advantages STF

as over other formulations. The first one, that it shares with TF, is

he single flow approach for which the increase in the number of

D pairs in the problem does not increase the number of variables

hereas, the number of variables in the multi-commodity flow for-

ulations depends directly on the number of OD pairs. As a result,
hile the number of OD pairs grows, the run times for STF do not

et as much adversely affected as those for the multi-commodity

ow formulations. The second advantage is the inclusion of the

teiner cuts, which it shares with the SMCF. The inclusion of these

uts results in a much tighter formulation that can be solved more

fficiently. 

As Table 1 indicates, the performance of the branch-and-price-

nd-cut algorithm for STF is quite satisfactory for small and

edium size problems. For a better assessment of its performance

e studied original Cabral instances ( Cabral et al., 2007 ) and larger

rid networks with up to 100 nodes and 80 OD pairs. For each
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Table 3 

Results for larger size problem instances with STF. 

a b | K | Time #Opt Gap R.Gap BBN Cols Cuts 

8 8 5 3.80 5 0.00 0.05 12.20 1256.20 199.40 

10 19.52 5 0.00 0.08 42.60 2838.20 535.80 

20 56.10 5 0.00 0.07 100.20 3115.60 875.20 

30 99.84 5 0.00 0.08 223.00 3216.20 1002.80 

40 494.94 5 0.00 0.08 1410.20 3275.60 1450.40 

60 3110.17 4 0.02 0.07 13643.80 3343.40 1514.60 

9 9 5 100.98 5 0.00 0.08 44.60 3782.60 1474.20 

10 219.75 5 0.00 0.10 181.00 4145.80 1286.80 

20 689.04 5 0.00 0.11 647.80 5026.00 1329.00 

30 1135.57 5 0.00 0.11 1130.60 4939.00 1820.60 

40 2149.40 5 0.00 0.10 2488.20 4882.00 1938.00 

60 6680.92 1 0.06 0.09 11118.00 4914.20 1507.60 

10 10 5 208.85 5 0.00 0.12 71.80 4109.00 1952.00 

10 936.79 5 0.00 0.11 277.80 5368.80 2280.00 

20 2259.04 5 0.00 0.11 1402.20 5922.00 2264.40 

30 4198.15 4 0.02 0.10 1882.25 5620.75 2434.25 

40 6373.17 1 0.09 0.12 3885.40 5998.40 1729.80 

60 6053.07 1 0.09 0.10 5050.60 6022.80 1452.40 

80 7201.20 0 0.12 0.12 10563.80 5969.60 967.00 

Table 4 

Results for OR library Steiner tree instances with STF. 

Prob. Num V E | K | Time #Opt Gap R.Gap BBN Cols Cuts 

SteinB 1 50 63 9 1.5 5 0.00 0.03 3.8 1217.8 79.8 

2 13 1.9 5 0.00 0.03 6.6 1249.4 90.0 

3 25 1.4 5 0.00 0.00 4.2 1424.6 49.8 

4 100 9 6.9 5 0.00 0.03 7.4 5307.2 224.8 

5 13 2.8 5 0.00 0.01 4.2 4158.2 43.6 

6 25 4.5 5 0.00 0.01 5.4 4544.4 139.2 

7 75 94 13 2.9 5 0.00 0.02 9.8 1992.6 85.6 

8 19 4.2 5 0.00 0.03 7.4 1951.8 151.0 

9 38 12.6 5 0.00 0.02 99.0 1837.2 253.8 

10 150 13 10.1 5 0.00 0.02 6.2 6735.6 235.0 

11 19 24.9 5 0.00 0.03 11.4 7018.6 365.2 

12 38 24.8 5 0.00 0.02 11.8 8441.0 348.8 

13 100 125 17 2.6 5 0.00 0.00 3.4 2028.8 59.0 

14 25 5.6 5 0.00 0.02 9.4 2110.6 320.6 

15 50 41.1 5 0.00 0.02 206.6 2874.8 667.6 

16 200 17 31.1 5 0.00 0.04 18.2 7228.0 459.4 

17 25 92.2 5 0.00 0.05 31.4 10879.0 783.2 

18 50 458.8 5 0.00 0.03 86.6 11470.8 1215.2 

SteinC 1 500 625 5 960.0 5 0.00 0.13 44.6 14707.0 1282.2 

2 10 3851.6 3 0.02 0.08 91.8 17618.8 1690.0 

3 83 7200.0 0 0.08 0.08 772.2 15461.2 1193.8 

4 125 7200.0 0 0.05 0.05 418.8 16529.8 2543.8 

5 250 7200.0 0 0.07 0.07 433.6 18392.0 3417.2 

6 500 10 0 0 5 2743.1 5 0.00 0.02 5.0 50299.8 2791.6 

7 10 2786.1 5 0.00 0.02 5.4 58781.0 1795.2 

8 83 7200.0 0 0.08 0.08 21.6 42982.4 2617.8 
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problem setting we have ten instances for the Cabral problems and

five random instances for the large grid networks. Since none of

the other formulations are able to scale up to the large problem

instances considered in these experiments, we only report the so-

lutions for STF in Tables 2 and 3 for the Cabral instances and large

grid networks, respectively. In these tables, the column Time is the

average run time of the algorithm in seconds until it finds an op-

timal solution or the time limit of 7200 seconds is reached. The

column # Opt shows the number of instances solved to optimal-

ity within the given time limit, Gap is the average optimality gap

(percentage) and R.Gap is the average optimality gap (percentage)

calculated at the root node of the branch and bound tree. The col-

umn BBN shows the number of branch-and-bound nodes explored

by the algorithm whereas Cols and Cuts columns show the total

number of columns and rows generated, respectively, throughout

the solution procedure. 

As we see in Tables 2 and 3 , for most of the instances, the

branch-and-price-and-cut algorithm solves STF to optimality and
 f  
he optimality gaps are quite small for the instances for which

he algorithm stopped due to the time limit. For these sets of in-

tances, the linear relaxation of STF provides a quite tight lower

ound which indicates the strength of the STF and accounts for

he high computational efficacy. From Table 3 we can infer that the

roblem gets harder when the number of OD pairs increases. It is

nteresting to see that while the number of explored branch-and-

ound nodes drastically increases with the number of OD pairs, the

umber of columns and rows generated do not increase as much. 

.1.2. Steiner problems from OR-library 

As we have already argued, NDR problems are closely related

ith the Steiner tree problems, which are extensively studied in

he literature. In order to further test and evaluate the computa-

ional performance of our branch-and-price-and-cut algorithm for

TF on a different network topology than we have for the grid

etworks, we also consider the Steiner problem instances B and C

rom the OR-Library ( Beasley, 1990 ). These network topologies are
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Table 5 

Results of the computational experiments for type-I problems with c e = l e . 

GA Results MCF Results 

N | K | d max | E | Average Best Sol. Gap RT 

40 5 30 198 486.26 473.80 473.80 0.00 2.0 

40 5 35 272 354.58 354.57 352.08 0.00 7.3 

40 10 30 198 521.26 518.98 518.98 0.00 7.2 

40 10 35 272 407.00 407.00 399.36 0.00 194.4 

50 5 30 279 283.79 283.78 283.79 0.00 0.5 

50 5 35 372 271.90 260.23 260.24 0.00 1.1 

50 10 30 279 544.06 540.39 540.39 0.00 16.7 

50 10 35 372 426.88 407.49 404.32 0.00 31.9 

60 5 30 305 523.01 509.90 509.12 0.00 3.1 

60 5 35 412 378.81 377.02 377.02 0.00 5.8 

60 10 30 641 681.40 678.84 678.84 0.00 27.4 

60 10 35 853 507.34 499.64 499.64 0.00 59.5 

80 5 30 641 358.20 356.65 353.86 0.00 759.4 

80 5 35 853 328.80 328.80 328.80 0.00 5495.0 

80 10 30 641 471.07 471.00 460.36 0.16 7200.0 

80 10 35 853 448.42 436.76 436.76 0.26 7200.0 

160 5 30 2773 292.98 287.93 287.84 0.26 7200.0 

160 5 35 3624 274.64 270.22 275.96 0.26 7200.0 

160 10 30 2773 413.69 405.64 439.38 0.38 7200.0 

160 10 35 3624 415.13 397.59 422.58 0.38 7200.0 

Table 6 

Results of the computational experiments for type-II problems with c e = d max − l e . 

GA Results MCF Results 

N | K | d max | E | Average Best Sol. Gap RT 

40 5 30 198 247.27 247.27 247.27 0.00 0.4 

40 5 35 272 111.30 111.30 111.30 0.00 1.2 

40 10 30 198 297.09 292.62 292.62 0.00 1.1 

40 10 35 272 140.51 140.51 140.51 0.00 3.0 

50 5 30 279 119.80 119.80 119.80 0.00 0.4 

50 5 35 372 155.57 155.57 155.57 0.00 1.0 

50 10 30 279 297.55 279.70 279.70 0.00 1.0 

50 10 35 372 220.26 206.22 206.22 0.00 2.1 

60 5 30 305 318.17 317.32 317.32 0.00 0.8 

60 5 35 412 166.35 166.35 166.35 0.00 0.9 

60 10 30 641 452.21 414.32 414.32 0.00 7.6 

60 10 35 853 243.76 242.32 242.32 0.00 3.5 

80 5 30 641 139.70 134.73 134.73 0.00 3.6 

80 5 35 853 104.04 104.04 104.04 0.00 9.9 

80 10 30 641 189.80 187.17 187.17 0.00 16.1 

80 10 35 853 174.07 168.62 168.62 0.00 48.8 

160 5 30 2773 82.35 78.61 78.61 0.00 601.6 

160 5 35 3624 74.35 68.15 68.15 0.00 2881.8 

160 10 30 2773 125.22 112.06 112.06 0.00 2744.7 

160 10 35 3624 118.70 109.12 109.12 0.00 4555.1 
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onsidered for other extensions to the basic Steiner tree problem

uch as the Steiner tree problem with revenues, budget and hop

onstraints ( Costa et al., 2009 ). 

We abide by the cost structures and reach limitations of the

abral instances when we generate random single-source instances

rom these network topologies. The root node s is chosen as the

mallest number node in the list of terminals provided for each

roblem instance. In solving the pricing problems, we use HS 15 and

S 5 for the group of instances B and C, respectively. 

Table 4 summarizes the results with the branch-and-price-and-

ut algorithm for these instances. For each network five random

nstances are considered. As we see in the table, STF can scale up

o these large problem instances. Most of them are solved to op-

imality and the optimality gaps are quite low for the unsolved

roblems. We can see in Table 4 that the linear relaxation of the

ormulation provides quite tight bounds for these large size in-

tances. Similarly we see that the number of OD pairs is a signifi-

ant dimension of the problem that affects the performance of the

lgorithm. 
.2. Multi-source instances 

In this subsection we consider NDR instances presented in

onak (2012) and compare the performance of our MCF algorithm

ith the genetic algorithm (GA) proposed in that paper. Our pre-

iminary studies have shown that for the small and medium size

nstances MCF runs faster when we solve it as a compact mixed

nteger program by providing all the simple paths with lengths

t most the given threshold value d max . So in our computational

xperiments we solve MCF directly as a MIP for 40, 50, 60 and

0 node instances and solve it with the branch and price ap-

roach for instances with 160 nodes. Tables 5 and 6 present the

esults we obtain with MCF algorithm along with the results of

he genetic algorithm for type-I and type-II problems, respectively

A. Konak, personal communication, March 28, 2017). Considering

ifferent practical applications, the correlations between the cost

nd length of an edge e ∈ E are defined differently to generate

ype-I and type-II problem instances. For the type-I problem in-

tances the edge costs and lengths are the same whereas for the
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type-II problem instances they are inversely correlated and sum up

to d max for each edge. In both tables, columns N , | K |, d max , | E | in-

dicate the number of nodes, number of OD pairs, maximum reach

value and number of edges of the respective problem instance. For

the GA results, the column Average indicates the average objective

function value for the 10 runs of the algorithm and the following

column Best reports the best solution value obtained in these runs.

For the MCF algorithm results, Sol. is the value of the best feasible

solution found in 7200 second time limit and the column Gap re-

ports the optimality gap calculated for the reported MCF solution.

The last column RT indicates the run time of the MCF algorithm. 

One interesting result we see in Tables 5 and 6 is that in most

of the instances GA is able to find the optimal solution in 10 trials.

These results also attest to the efficiency of the MCF algorithm. For

small and medium size problem instances our algorithm can find

optimal solutions efficiently. In our experiments it is usually the

case that MCF finds the optimal solution quite early and spends

much of its time to obtain the proof of optimality. It is also inter-

esting to see that when the cost and the length of the edges are

inversely correlated, the performance of the MCF algorithm gets

better. For the type-II problem instances forming path segments

with multiple short arcs are discouraged due to the resulting high

costs and optimal solution contains mostly path segments with

very small number of arcs. We think that, since the number of

path segments with fewer arcs are much less than the number of

path segments with larger number of arcs, MCF can find the opti-

mal solution much faster for type-II problems. 

6. Conclusion 

This study revisits the network design problem with the relay

placement perspective and introduces efficient solution algorithms

to solve this relatively new and challenging network design prob-

lem. The literature on network design problems is quite extensive

but even though relays are common in many transportation and

telecommunication applications, there are very few studies that

consider relays as part of the network design. Our study attempts

to fill this gap in the literature. 

Network design problems are challenging problems and incor-

porating relay placement decisions complicates them further by

allowing paths with cycles to appear in the optimal solutions. In

order to address this challenging problem, we propose a multi-

commodity flow based formulation and a branch-and-price algo-

rithm to solve it by using the path-segment notion of Yıldız and

Kara ̧s an (2017) and Yıldız et al. (2016) . Our path-segment formula-

tions enable quite efficient representation of the reach constraints

in the model and provide opportunities to device graph transfor-

mations and novel algorithmic approaches to improve the perfor-

mance of our branch-and-price procedure. 

With both practical and theoretical motivations, we pay a spe-

cial attention to NDR-S in this study. As one of the main contribu-

tions of this study, we show special properties satisfied by a subset

of optimal solutions for this interesting problem. Then we propose

a novel tree formulation and a branch-and-price-and-cut algorithm

that exploits this special structure. Considering the special proper-

ties of NDR-S exclusively and tailoring our algorithm respectively,

we achieve to solve large problem instances. As a future research

direction, we are interested in adapting this approach to address

other location and routing problems with reach constraints. 
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