
This article was downloaded by: [139.179.20.47] On: 30 October 2019, At: 00:15
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Transportation Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

A Branch-and-Cut Algorithm for the Alternative Fuel
Refueling Station Location Problem with Routing
Okan Arslan, Oya Ekin Karaşan, A. Ridha Mahjoub, Hande Yaman

To cite this article:
Okan Arslan, Oya Ekin Karaşan, A. Ridha Mahjoub, Hande Yaman (2019) A Branch-and-Cut Algorithm for the Alternative
Fuel Refueling Station Location Problem with Routing. Transportation Science 53(4):1107-1125. https://doi.org/10.1287/
trsc.2018.0869

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2019, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/trsc.2018.0869
https://doi.org/10.1287/trsc.2018.0869
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


TRANSPORTATION SCIENCE
Vol. 53, No. 4, July–August 2019, pp. 1107–1125

http://pubsonline.informs.org/journal/trsc/ ISSN 0041-1655 (print), ISSN 1526-5447 (online)

A Branch-and-Cut Algorithm for the Alternative Fuel Refueling
Station Location Problem with Routing
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Abstract. Because of the limited range of alternative fuel vehicles (AFVs) and the sparsity
of the available alternative refueling stations (AFSs), AFV drivers cooperatively deviate
from their paths to refuel. This deviation is bounded by the drivers’ tolerance. Taking this
behavior into account, the refueling station location problem with routing (RSLP-R) is
defined as maximizing the AFV flow that can be accommodated in a road network by
locating a given number of AFSs while respecting the range limitation of the vehicles and
the deviation tolerance of the drivers. In this study, we develop a natural model for the
RSLP-R based on the notion of length-bounded cuts, analyze the polyhedral properties of
this model, and develop a branch-and-cut algorithm as an exact solution approach. Ex-
tensive computational experiments show that the algorithm significantly improves the
solution times with respect to previously developed exact solution methods and extends
the size of the instances solved to optimality. Using our methodology, we investigate the
tradeoffs between covered vehicle flow and deviation tolerance of the drivers and present
insights on deviation characteristics of drivers in a case study in California.
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1. Introduction
The purpose of this paper is to develop a branch-and-
cut (B&C) algorithm for the refueling station location
problem with routing (RSLP-R). In a transportation
network with alternative fuel vehicles (AFVs) traveling
between their origin–destination (OD) pairs, the RSLP-
R is defined as locating a given number of alternative
fuel stations (AFSs) at the nodes of the network such
that the total vehicle flow travelingwithout running out
of fuel on paths whose lengths are bounded by the
tolerance of the drivers is maximized. This problem is
closely related with the efforts to curtail the negative
impacts of fossil fuels on the environment. Dependence
on fossil fuels contributes significantly to many of the
environmental problems we face today, such as air
pollution, globally increasing temperatures, and climate
change. Because of their limited supply levels, reserves
are destined to deplete. Historically, the transportation
sector has been one of the major consumers of fossil
fuels. However, there has been a recent surge for al-
ternative forms of fuels to be used in transportation.
These include hydrogen, biodiesel, electricity, ethanol,
compressed natural gas, and liquefied natural gas
(Energy Information Administration 2017a). In 2016, in

the United States, 24.79 million passenger cars and
light trucks using alternative energy sources were in
use. This number accounts to 10.25% of the total
number of the same vehicle types in the country, and it
is projected to surpass 20% by 2030 (Energy Information
Administration 2017b). The AFV usage in Europe is also
following a similar trend. The Renewable Energy Di-
rective (European Union 2009) set a 10% target for use of
energy from renewable sources in transportation by
2020, a considerable increase from the 4.7% target of
2013 (European Commission 2013).
Because of the rather limited range of AFVs, avail-

ability of refueling stations in intercity transportation
is a serious barrier to the proliferation of these vehicles.
In this regard, location of AFSs has been the topic
of several recent articles. There have been two main
streams of research, a set-covering location perspective
(Wang and Lin 2009, 2013; Wang and Wang 2010) and
a maximum covering location perspective. The latter
attracted more attention because covering all the de-
mand requires location of numerous facilities, which
seems implausible in the initial setup period of the AFS
infrastructure. To this end, Kuby and Lim (2005) pre-
sented the flow refueling location problem, which is defined
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as maximizing the AFV flow that can be accommodated
in a road network by locating p number of AFSs while
respecting the range limitation of the vehicles. The de-
mand is defined as the AFVs flowing on fixed paths
between their OD pairs. “Flow refueling location prob-
lem” and “refueling station location problem” are used
interchangeably in the literature to refer to the same
problem (MirHassani and Ebrazi 2013, Yıldız et al.
2016). In this paper, we prefer to use the latter. Kuby
and Lim (2005) proposed a maximal covering location
model (MCLM; Church and ReVelle 1974), in which the
coverage of an AFV flow requires location of possibly
multiple facilities on its path. The formulation requires
a priori generation of all node combinations that enable
complete traversal of a path, which is computationally
costly. For this reason, heuristic algorithms have been
proposed (Lim and Kuby 2010).

Since then, considerable effort has been spent for
improving the solution times and the size of the
solvable RSLP instances. Two different exact solution
approaches stand out in the literature. The first one,
presented by MirHassani and Ebrazi (2013), builds on
the idea that an AFV travels on the shortest path be-
tween two consecutive refueling stops. Given a fixed
path, not necessarily the shortest, the authors first build
a graph in which any path with a refueling station at
all of its intermediate nodes corresponds to a trip in
the original path that can be traveled without running
out of fuel. Because of this key observation, no pre-
processing is necessary to generate node combinations
as in Kuby and Lim (2005), and the solution process is
significantly accelerated. In the following section, we
further elaborate on this transformation that has also
been used by Chen et al. (2010) in the context of the
regenerator placement problem. The second work, by
Capar et al. (2013), refines the modeling logic using the
fact that, to cover a path, every arc on this path needs to
be traversed using one of the open stations. This new
model is similar to the MCLM but does not require
explicit generation of feasible node combinations to
cover a path. Therefore, both the preprocessing and the
solution times improve extensively. Further improve-
ments on the solution times and the size of the solvable
instances are obtained by applying Benders decom-
position on this model (Arslan and Karaşan 2016).

In this study, we focus our attention on the RSLP-R
introduced by Kim and Kuby (2012). In this version of
the problem, the path between an OD pair is not fixed
and anAFV flow is considered as refueled if there exists
a feasible path whose length is within a certain bound.
This bound is the tolerance of the driver to deviate from
the shortest path. Kim andKuby (2012) present amixed
integer programming formulation, Kim and Kuby
(2013) propose a heuristic approach, and Yıldız et al.
(2016) present a branch-and-price (B&P) algorithm to
solve this problem. The computational gains of the B&P

framework with respect to the original formulation by
Kim and Kuby (2012) turned out to be significant.
Another closely related problem is the regenerator

placement problem (Yetginer and Karasan 2003, Chen
et al. 2010) defined in the context of telecommunica-
tions to locate the regenerators that extend the optical
reach. From the functional perspective of extending the
reach, the AFSs are similar to the regenerators. One
major difference is related to the way demand is
modeled. The drivers in our application have a distance
tolerance on the deviation from the shortest path,
which is not present in signal routing. This constitutes
an additional challenge to our design problem. Com-
putational findings in the regenerator placement
problem show that B&C approaches outperform other
exact solution methods, especially in large-scale in-
stances (Rahman et al. 2015, Yıldız and Karaşan 2015,
Li and Aneja 2017). We also observe similar results.
In this paper, we propose a natural formulation for

the RSLP-R and provide a polyhedral study of the
convex hull of integer feasible solutions. We then devise
a B&C algorithm as an exact solution technique to solve
the problem. The constraints of our formulation, which
are exponential in number, are added using a cutting-
plane framework. The separation problem boils down
to finding a length-bounded node cut in a transformed
network. For separating integer solutions, we provide
a polynomial time-exact separation algorithm to gener-
ate cuts. For fractional solutions, we provide a formu-
lation to generate violated cuts. We also make use of
a heuristic algorithm to separate fractional solutions.
With our approach, we can solve real-world problem
instances, which could only be solved previously by
a B&P algorithm in a three-hour time frame, within two
minutes. We also further extend the size of the instances
that can be solved to optimality. Our approach also
addresses multiple vehicle types and possible nonsimple
path occurrences in the routes. Using our methodology,
we investigate the tradeoffs between covered vehicle
flow and deviation tolerance of the drivers and present
insights on deviation characteristics of drivers in a case
study in California.
In the following, we introduce this new formulation,

investigate its polyhedral properties, and present our
B&C algorithm along with the results of our compu-
tational experiments.

2. Definitions, Formulations, and
Polyhedral Analysis

Consider a road network represented by a weighted
directed graph G � (N,A) with node set N � {1, . . . ,n}
and arc set A. Let δij be the shortest path distance in G
from node i to node j. Suppose there are AFV drivers
willing to travel between OD pairs in G. An AFV de-
mand q is defined as a five-tuple 〈oq, dq, fq, rq, λq〉, where
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oq and dq are the origin and destination nodes, re-
spectively; fq is the flow volume; rq is the range of the
vehicle; and λq is the total distance that drivers can
tolerate. With this definition, we can incorporate the
vehicle flows between the same OD pair with different
deviation tolerances. The set of demands is denoted byQ.
Similar to previous studies, anAFV is assumed to depart
from its origin with a half-full tank and is required to
arrive at its destination at least with a half-full tank
unless these nodes have AFSs. If there exists a station at
the origin, then the AFV departs from the origin with
a full tank. If the destination has a station, then the AFV
can arrive at this node with an empty tank. The logic
behind such an assumption is related to round trips
between OD pairs; please refer to Kuby and Lim (2005)
and MirHassani and Ebrazi (2013) for further details.

Definition 1. The RSLP-R is defined as finding a subset
of N with cardinality at most p to locate the refueling
stations such that the total amount of refueled vehicle
flow respecting range and tolerance limitations is
maximized.

A node is called a dominated node for a demand q if it
does not appear on any path from oq to dq of length at
most λq. Note that we can identify whether a node i is
dominated by checking the shortest path distance be-
tween oq and dq using node i. Having δoqi + δidq >λq
implies that node i is a dominated node for demand q.
Next, we adapt the network transformation of
MirHassani and Ebrazi (2013) to the case in which
OD paths are not fixed. For each q ∈ Q, consider graph
Gq � (Nq,Aq)with node set Nq � {sq, tq} ∪ {i ∈ N : δoqi +
δidq ≤ λq}, where sq and tq are two new dummy nodes,
and arc set Aq � A1

q ∪ A2
q ∪ A3

q , where

A1
q � {(sq, j) : δoqj ≤ rq/2, j ∈ Nq\{sq, tq}},

A2
q � {(i, tq) : δidq ≤ rq/2, i ∈ Nq\{sq, tq}},

A3
q � {(i, j) : δij ≤ rq, i, j ∈ Nq\{sq, tq}, i �� j}.

Arc (sq, j) ∈ A1
q has length δoqj, arc (i, tq) ∈ A2

q has length
δidq , and arc (i, j) ∈ A3

q has length δij. Each arc in the
transformed graph corresponds to traveling on the
shortest path in the underlying road network between
the tail and the head nodes of the arc without refueling.
The dummy nodes sq and tq are added to model the
refueling logic, and they represent departing from the
origin with a half-full tank and arriving at the desti-
nation with at least a half-full tank. Therefore, the arcs
emanating from sq (i.e., arcs in set A1

q) and the arcs
entering to tq (i.e., arcs in set A3

q) have length at most
rq/2. Refueling at the origin node is represented by arc
(sq, oq). Traversing this arc is identified with the AFV
departing from node oq with a full tank. The same logic
also applies to the destination node. All nodes except
the first and the last nodes on a given path are referred

to as the path’s internal nodes. By assumption, an AFV
departs from sq with a half-full tank, and no station is
required to traverse an arc emanating from this node.
By construction, all other arcs in the transformed graph
can be traversed if an AFS is located at the tail node of
the arc. Therefore, to satisfy a given demand q, there
should exist a path in Gq of distance at most λq from sq
to tq with a refueling station at each of its internal
nodes. We refer to such a path as feasible.
For a demand q ∈ Q, let 3q be the set of all directed

paths in Gq from sq to tq with lengths at most λq.
A subset of nodes S ⊆ Nq \ {sq, tq} is called a q-node-cut
for path set 3q if S intersects each path in 3q at a node
different from sq and tq; in other words, removing S
from the set of nodes disconnects sq and tq. A q-node-
cut S is called minimal for 3q if no proper subset of S is
a q-node-cut for 3q. Let Γq represent the set of all
q-node-cuts for 3q.
Figure 1, (a) and (b), displays a graph representation

of an example road network and its transformed graph,
respectively. Consider a demand q with oq � 1, dq � 6,
rq � 4, and λq � 7. The cuts {2, 3}, {2, 5}, {3, 4}, and
{4, 5} in the transformed graph are all minimal q-node-
cuts for 3. Note that although cuts {2, 3}, {2, 5}, and
{4, 5} disconnect all paths from sq to tq, cut {3, 4} dis-
connects only the length-bounded paths, and the sq-(1)-
2-5-(6)-tq path remains connected.

2.1. Natural Formulation
In this section, we propose a formulation based on the
notion of q-node-cuts. The model has the following
variables:

Figure 1. Length-Bounded Cut Example
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xi �
1, if there is arefueling station located at node

i ∈ N
0, otherwise;

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yq �
1, if afeasible path is constructed for demand

q ∈ Q
0, otherwise.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

We refer to x as location variables and y as cover variables.
For convenience, we use x(S) � ∑

i∈S xi for set S ⊆ N. We
formulate the RSLP-R as follows:

max
∑
q∈Q

fqyq (1)

s.t. x(N) ≤ p, (2)
yq ≤ x(S) ∀q ∈ Q,S ∈ Γq, (3)
xi ∈ {0, 1} ∀i ∈ N, (4)
yq ∈ {0, 1} ∀q ∈ Q. (5)

The objective function maximizes the total vehicle
flow refueled. Constraint (2) ensures that at most p
stations are located. Constraints (3) express the fact
that for having a feasible trip for demand q, the
corresponding transformed graph needs to be con-
nected from sq to tq by at least one path of length at
most λq on which every internal node has a refueling
station. Suppose that, for demand q, there exists no
such path. Then there exists a subset S of Nq \ {sq, tq}
such that S contains at least one node from each path
in 3q. If none of the nodes in S has a station, con-
straints (3) for this choice of S force yq to zero because
q cannot be refueled. Constraints (4) and (5) are in-
tegrality constraints. Note that one can relax integ-
rality of the cover variables without changing the
optimal value. One of the main advantages of this
model is that we have natural variables associated with
only the nodes and OD pairs.

The idea of q-node-cuts can easily be extended to the
set-covering version of the problem, in which one seeks
to find the minimum number of AFSs to satisfy all the
demand.

min
∑
i∈N

xi (6)

s.t. x(S) ≥ 1 ∀q ∈ Q,S ∈ Γq, (7)
xi ∈ {0, 1} ∀i ∈ N. (8)

The objective function minimizes the number of se-
lected refueling stations. Constraints (7) ensure that, for
every demand, all q-node-cuts have at least one se-
lected refueling station, which implies that there exists
a length-bounded path between every OD pair. Con-
straints (8) are variable restrictions.

The budget for AFSs is usually limited. For this
reason, we consider the maximum-covering version of
the problem in this paper.

2.2. Polyhedral Analysis
Let- be the feasible set of the natural formulation given
by (2)–(5). In the following, we assume that |N| ≥ 2. For
a path π ∈ 3q, let N(π) be the set of its internal nodes.
We define, for each q ∈ Q, set3′

q to be the set of paths in
3q with at most p internal nodes. We assume, without
loss of generality, that 3′

q contains at least one path for
all q ∈ Q (otherwise, yq � 0 in all feasible solutions, and
demand q can be removed from set Q).
Let conv(-) be the convex hull of all the solutions in

-. In this section, we study the polyhedral properties
of conv(-) and prove that most of the constraints of
the natural formulation are facet-defining inequalities
under some conditions. The proofs of Propositions 1
through 6 are presented in the online appendix.

Proposition 1. The convex hull of - is full dimensional.

Next, we give necessary and sufficient conditions for
the trivial inequalities to be facet defining.

Proposition 2. For q ∈ Q, the inequality yq ≥ 0 is facet
defining for conv(-).
Proposition 3. For i ∈ N, the inequality xi ≥ 0 is facet
defining for conv(-) if and only if {i} is not a q-node-cut
for 3′

q for all q ∈ Q.

Proposition 4. For i ∈ N, the inequality xi ≤ 1 is facet
defining for conv(-) if and only if p ≥ 2 and there exists
a path πq ∈ 3′

q such that |N(πq) ∪ {i}| ≤ p for all q ∈ Q.

In the next two propositions, we put forward the
conditions under which the other constraints of the
model are facet defining.

Proposition 5. The inequality x(N) ≤ p is facet defining for
conv(-) if and only if p< |N|.
Proposition 6. For q ∈ Q and a q-node-cut S that is minimal
for path set 3′

q, the inequality yq ≤ x(S) is facet defining for
conv(-) if and only if, for every q̂ ∈ Q \ {q}, either there exists
a path πq̂ ∈ 3′̂

q with N(πq̂) ∩ S � ∅ or there exist a node
i ∈ S, a path πq ∈ 3′

q, and a path π
q̂ ∈ 3′̂

q such that N(πq) ∩
S � N(πq̂) ∩ S � {i} and |N(πq) ∪N(πq̂)| ≤ p.

3. Separation Problem
In our formulation, constraints (3) are exponential in
number, and we need a cutting plane algorithm to
generate them. For a given solution (x∗, y∗) and a de-
mand q ∈ Q with y∗q > 0, the separation problem is to
identify a q-node-cut S ⊆ Nq \ {sq, tq} for path set 3q

with x∗(S)< y∗q or to conclude that none exists.

3.1. Separating Integer Solutions
Consider an integer solution (x∗, y∗). For a subset of
nodes N′ ⊆ N, we define Gq(N′) to be the subgraph of
Gq induced by nodes in N′. For each q ∈ Q with y∗q � 1,
we compute the length of the shortest path from sq to tq
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in Gq(N∗
q), where N∗

q � {sq, tq} ∪ {i ∈ Nq : x∗i � 1}. If the
shortest path length is less than or equal to λq, then the
solution contains a feasible path for demand q. If not,
then at least one station needs to be located at those
nodes with x∗i � 0 to refuel demand q. In other words,
inequality (3) for the q-node-cut Nq \N∗

q is violated. We
refer to the process of identifying such a q-node-cut as
IntSep.

Clearly,Nq \N∗
q may not be a minimal q-node-cut for

path set 3q. For a node i ∈ Nq \N∗
q, if the shortest path

from sq to tq in Gq(N∗
q ∪ {i}) is greater than λq, then

locating a station at node i cannot render the demand
feasible, and Nq \ (N∗

q ∪ {i}) is also a q-node-cut for 3q.
The associated inequality (3) for this new q-node-cut
dominates the former one.We can repeat this operation
until a minimal q-node-cut is attained. When the cuts
generated by IntSep are also minimalized, then the
process is referred to as IntSep-M. In the following
section, we show that strengthening the generated cuts
in this fashion proved to be highly effective in reducing
the computational times.

3.2. Separating Fractional Solutions
Now suppose that (x∗, y∗) is fractional. Consider
a demand q ∈ Q with y∗q > 0. We define the minimum
weight q-node-cut problem (MqCP) as follows: given
graph Gq with node weight x∗i for node i ∈ Nq \ {sq, tq},
find a minimum weight subset S∗ of Nq \ {sq, tq} such
that deleting the nodes in S∗ disrupts all directed paths
from node sq to node tq with lengths of at most λq. There
exists an inequality (3) for demand q that is violated by
(x∗, y∗) if and only if x∗(S∗)< y∗q.

The special case of MqCP in which all arcs have unit
lengths is called the length-bounded minimum node-cut
problem (Lovász et al. 1978), which is known to be NP-
hard for lengths greater than four units (Baier et al.
2006, Mahjoub and McCormick 2010).

Consider a variable ui, which equals one if node i ∈
Nq \ {sq, tq} is in the q-node-cut and zero otherwise. We
also define πi to be the length of a shortest path from
node i ∈ Nq to node tq in graph Gq(N∗

q), where N∗
q �

{sq, tq} ∪ {i ∈ Nq \ {sq, tq} : ui � 0}. We let M be a very
large number and ε a very small positive number. We
refer to the following model as the minimum weight
q-node-cut model (MqCM):

(MqCM) min
∑

i∈Nq\{sq,tq}
x∗i ui (9)

s.t. πtq � 0,utq � 0, (10)

πi ≤ πj + δij +Muj ∀(i, j) ∈ Aq, (11)
πsq ≥ λq + ε, (12)

πi ≥ 0 ∀i ∈ Nq, (13)
ui ∈ {0, 1} ∀i ∈ Nq \ {sq, tq}.

(14)

The objective function minimizes the total weight of
nodes in the node cut. Constraint (10) sets the shortest
path length from tq to itself to zero, and it forbids this
node to be in the node cut. Constraints (11) ensure that
πi is not more than the length of a shortest path from
node i to node tq in the graph obtained by removing the
nodes with uj � 1. The shortest path length from sq to tq
after these nodes are removed is forced to be greater
than λq by constraint (12). Constraints (13) and (14) are
the nonnegativity and integrality constraints.
In the next section, we present computational results

in which we use this model for separation. However,
this turns out to be computationally costly in most
cases. For this reason, we also propose a simple and
efficient heuristic approach. Observe that any node cut
that disconnects sq and tq is also a q-node-cut for set3q.
For all q ∈ Q, we search for the minimum weight node
cut in graph Gq and add the corresponding cut if
a violation is identified. To find a node cut S, we split
every node i ∈ Nq \ {sq, tq} into two nodes i′ and i′′ and
add arc (i′, i′′) for every such i. Those arcs entering into
node i will be entering into node i′, and those arcs
leaving node iwill be leaving node i′′. All the arcs have
infinite capacity except for those that represent nodes
(i.e., arcs of the form (i′, i′′)). Arc (i′, i′′) has capacity
equal to x∗i . Solving a minimum cut problem on this
transformed network gives a cut with the minimum
x∗(S) value. If x∗(S)< y∗q, then a violated cut is identified
that separates a fractional or integer infeasible solution
at hand. We refer to this process as themincut heuristic.
Note that the minimum node cuts we obtain by the
heuristic are not necessarily minimal q-node-cuts because
they disconnect all paths regardless of their lengths.
Therefore, we can strengthen the generated cuts by the
cut minimalization process, similar to the logic in integer
separation. We refer to the heuristic as mincut-M if the
cuts generated by the mincut are minimalized.

4. Computational Study
We propose a B&C algorithm to solve the RSLP-R be-
cause constraints (3) are exponential in number. We
tested five different implementations (Table 1). The first
one, which we refer to as B&C-1, uses separation only at
integer solutions. In the second and third implementations,
we separate both integer and fractional solutions. We

Table 1. B&C Algorithm Implementations

Separation algorithm

Implementation Integer solutions Fractional solutions

B&C-1 IntSep-M
B&C-2 IntSep-M MqCM
B&C-3 IntSep-M MinCut
B&C-4 IntSep
B&C-5 IntSep-M MinCut-M

Arslan et al.: AFS Location Problem with Routing
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use the MqCM in B&C-2 and the mincut heuristic in
B&C-3 to separate fractional solutions. B&C-4 and B&C-5
are designed to test the efficiency of the cut minimal-
ization process. In B&C-4, we only separate integer
solutions, similar to B&C-1, but without minimalizing
the generated cuts. B&C-5, by contrast, is designed to
test whether the cut minimalization can also help in
strengthening the cuts we obtain by themincut heuristic.
In B&C-5, we separate both integer and fractional solu-
tions, similar to B&C-3, with the only difference that the
cuts generated by the mincut heuristic are minimalized.

For branching, we use the default settings of CPLEX.
We turn off the CPLEX cuts as our preliminary analysis
showed that this gives shorter computation times.

Extensive computational experiments are carried out
to test the efficiency of the proposed B&C algorithms.
The experiments are executed using CPLEX 12.6.1 (IBM
2014), implemented in a Java programming environment
under Linux using Concert Technology. The computer
has an Intel Xeon E5-2630 v2 processor at 2.60 GHz and
96 GB of RAM. The algorithms are implemented using
callback classes. A time limit of one hour is set in all
implementations.

Characteristics of network topologies considered
in this study are detailed in Table 2. CA is a real-world
representation of the California road network with 339
nodes and 1,234 arcs, as shown in Figure 2 (Arslan et al.
2014). The nodes of the network represent road in-
tersections or urban population centers. Similar to
previous studies, all urban centers with a population of
50,000 or more are selected as origin or destination
nodes, which are depicted in Figure 2 as OD pair nodes.
There are 1,167 OD pairs, and they are 30 kilometers or
more apart from each other. The vehicle flow volume
between each OD pair is calculated according to the
gravity model by Hodgson (1990). Networks G-250,
G-500, G-750, and G-1000 are randomly generated net-
works with 250, 500, 750, and 1,000 nodes, respectively.
To generate random graphs, we use JGraphT Java graph
library (Naveh et al. 2008). Arc lengths are generated
from a uniform distribution on the interval (0, 50) kilo-
meters. Triangular inequality is not considered. For
these graphs, we randomly select nodes with equal pro-
babilities to represent origins or destinations. Similar
to the CA network, we consider those OD pairs that
are 30 kilometers or more apart. The number of OD
pairs changes between experiments and varies between
1,000 and 4,000.
We mainly compare our results with the results of

the B&P algorithm by Yıldız et al. (2016). Kim and
Kuby (2013) present a heuristic algorithm based on
network transformation; however, because the refueling
station location problem is strategic in nature, we prefer
to compare only with the exact solution methods in
the literature. To this end, a computational compar-
ison of the model by Kim and Kuby (2012) with a B&P
algorithm is previously presented by Yıldız et al.
(2016), and it is shown that the former model cannot
scale up to large networks because of enumeration
requirements.
Let λ̂q � 100 × λq/δoq,dq for all q ∈ Q be the deviation

tolerance as a percentage of the shortest path length.
Note that our model is capable of handling different
driver tolerances for each OD pair. Furthermore, our
demand definition allows us tomodel varying tolerances
between the same OD pair. However, as in the previous
studies, we assume equal deviation tolerance percentage
for all demand, which we refer to as λ̂ � λ̂q, q ∈ Q.

Table 2. Characteristics of Instances

Node degree OD pairs

Network Number of nodes Number of arcs Minimum Mean Maximum Minimum distance Mean distance Maximum distance

CA 339 1,234 2 3.64 14 30.06 153.37 463.50
G-250 250 636 2 5.09 14 30.02 138.93 389.00
G-500 500 1,284 2 5.14 20 30.05 142.95 366.72
G-750 750 1,922 2 5.13 16 30.00 153.87 522.43
G-1000 1,000 2,580 2 5.16 22 30.00 160.98 458.86

Figure 2. (Color online) California Road Network
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In the following, we first compare the five B&C al-
gorithms on the CA network instances. This network is
the largest-size network used in testing the B&P al-
gorithm in Yıldız et al. (2016). We then increase the
number of demands and the size of the networks to
investigate the limitations of our approach.

4.1. California Network
Our first objective is to compare five B&C implemen-
tations in terms of solution times using this large
network. For this purpose, we consider a vehicle with
a range of 100 kilometers. As in Yıldız et al. (2016), the
number of stations considered are 1, 5, 10, . . . , 35, and the
drivers are assumed to be 0%, 10%, and 20% tolerant to
deviating from their shortest paths. Different from the
previous settings, we also consider deviations of 50% in
our experimental design. The results are presented in
Table 3. The two leftmost columns are parameters of the
experiment: p is the number of stations to be located, and
“Tolerance, %” is the drivers’ deviation tolerance from
the shortest path as a percentage. For instance, 10%
tolerancemeans that the drivers arewilling to drive up to
10% more from their shortest paths. The following five
columns in the table show the solution times in seconds.
“Root node gap” is the percentage gap between the
upper bound (UB) at the root node and the optimal
value, calculated as (UB –OPT)/OPT× 100%. Note that
for the B&C-2 algorithm, the upper bound we obtain at
the root node is equal to the optimal value of the linear
programming (LP) relaxation of the model because we
use exact algorithms for separation of both integer and
fractional solutions and turn off the presolve and
CPLEXcuts. “nNodes” is thenumberof nodes in the search
tree. The rightmost five columns show the number of
user cuts added by the algorithms.

The average solution times are 34.7, 493.9, 43.5,
1,525.0, and 94.3 seconds for the B&C-1 through B&C-5
algorithms, respectively. In Table 4, the time for sep-
arating integer and fractional solutions are shown in
columns (3) and (4), respectively. The average number
of cuts added (AvgNCuts) is reported in column (5). The
average percentage of nodes removed from cuts by the
minimalization algorithm for integer separation (IntSep-M)
and the mincut heuristic (MinCut-M) are also reported in
the table.

The B&C-2 algorithm could not find the optimal
solution of three instances (marked in Table 3) within
the one-hour time limit; it terminated at the root node,
and the maximum optimality gap was 3.1%. Table 4
shows that the B&C-2 algorithm spendsmore than 95%
of the time for the fractional separation at the root node;
however, no significant improvements can be achieved
over the other algorithms in terms of root node gap. In
other words, the time that the B&C-2 algorithm spends
to separate inequalities (3) exactly does not pay off.
Furthermore, the unpredictable solution times of the
MqCMmodel to separate fractional solutions in B&C-2
cause extended solution times in several instances, and
therefore, the solution times do not follow an obvious
pattern in Table 3. Next, we compare the B&C-1 and
B&C-4 algorithms and observe that the cut-minimalizing
algorithm is highly effective in reducing the computation
times. Without minimalization, the B&C-4 algorithm
spends less than 3% of the time for solving the separation
problem, mainly because of weak cuts being added.
Therefore, it fails to solve 13 of the 32 instanceswithin the
time limit (Table 3). In B&C-1, by contrast, the mini-
malization process removes, on average, 65.11% of the
nodes from the cuts generated by the IntSep-M algo-
rithm (Table 4). Finally, we compare the B&C-3 and
B&C-5 algorithms to see the effects of cut minimal-
ization in the cuts generated by the mincut heuristic. In
B&C-5, on average, minimalization removes 17.66% of
the nodes from the cuts generated by the heuristic;
however, this came at a cost of multiplying the frac-
tional separation times by more than five. The average
time for fractional separation increased from 12.2 to
65.2 seconds. Even though the average number of cuts
added is reduced from 1,942 to 1,853, the average
solution time increased from 43.5 seconds in B&C-3
to 94.3 seconds in B&C-5. The main reason for the cut
minimalization to perform well in the IntSep algo-
rithm but not in the mincut heuristic is that the cuts
generated by the mincut heuristic are already small
in size. However, the size of q-node-cut generated by
the IntSep algorithm is large because all those nodes
without a refueling station are in the cut. Thus, more
nodes are removed from the cuts generated by the
IntSep algorithm, and the time spent for cut minimal-
ization pays off. According to the performance results,

Table 4. Performance Summaries of B&C Algorithms

Average time, s Nodes removed, %

Implementation Total Integer Fractional AvgNCuts IntSep-M MinCut-M

B&C-1 34.7 34.3 0 1,873 65.11 —
B&C-2 493.9 19.0 473.9 2,255 64.82 —
B&C-3 43.5 30.9 12.2 1,942 64.71 —
B&C-4 1,525.0 43.6 0 71,668 — —
B&C-5 94.3 28.7 65.2 1,853 64.75 17.66
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1114 Transportation Science, 2019, vol. 53, no. 4, pp. 1107–1125, © 2019 INFORMS



T
ab

le
5.

R
es
ul
ts

fo
r
th
e
C
A

In
st
an

ce
s
w
ith

D
iff
er
en

t
V
eh

ic
le

R
an

ge
s

R
an

ge
=
10

0
km

R
an

ge
=
15

0
km

R
an

ge
=
20

0
km

p
To

l,
%

O
pt

va
lu
e,

%
So

l
tim

e,
s

R
oo

t
no

de
ga

p,
%

nN
od

es
nC

ut
s

O
pt

va
lu
e,

%
So

l
tim

e,
s

R
oo

t
no

de
ga

p,
%

nN
od

es
nC

ut
s

O
pt

va
lu
e,

%
So

l
tim

e,
s

R
oo

t
no

de
ga

p,
%

nN
od

es
nC

ut
s

1
0

30
.5
4

1.
9

0
0

1,
18
3

33
.9
5

1.
5

0
0

1,
20

8
36

.4
6

2.
3

0
0

1,
21
0

10
33

.2
9

7.
7

0
0

1,
17
3

34
.6
2

8.
2

0
0

1,
22

7
37

.2
2

8.
4

0
0

1,
24
1

20
36

.4
6

14
.9

0
0

1,
17
3

36
.8
3

14
.0

0
0

1,
28

4
38

.0
8

22
.1

0
0

1,
30
9

50
37

.6
6

20
.3

0
0

1,
20
0

42
.1
9

38
.6

0
0

1,
33

3
43

.8
4

44
.7

0
0

1,
56
9

5
0

67
.0
8

3.
4

0
0

2,
40
8

79
.9
4

3.
0

0
0

1,
84

9
85

.1
8

2.
7

0
0

1,
50
0

10
79

.5
7

29
.9

0.
38

5
3,
24
7

85
.9
1

23
.9

0
0

1,
91

1
90

.5
3

17
.8

0.
26

5
1,
54
5

20
82

.8
6

92
.0

4.
82

34
3,
81
8

89
.0
8

52
.9

0.
17

3
1,
92

7
93

.8
7

48
.5

0
0

1,
35
3

50
90

.4
6

11
9.
3

0.
5

9
2,
71
2

94
.5
1

10
5.
5

0
0

1,
71

3
97

.5
2

10
0.
2

0
0

1,
38
5

10
0

87
.9
8

4.
1

0.
78

5
2,
36
2

92
.9
8

3.
3

0.
91

28
1,
79

2
95

.6
4

3.
5

0.
35

7
1,
60
4

10
93

.4
7

25
.3

1.
18

22
2,
47
8

97
.4

18
.6

0
0

1,
55

7
98

.6
3

17
.1

0
0

1,
38
6

20
94

.9
49

.5
0.
39

25
2,
63
0

98
.2
9

46
.1

0.
07

7
1,
65

5
99

.0
2

48
.6

0.
04

6
1,
35
5

50
98

.8
2

90
.7

0.
25

25
1,
95
2

99
.8

91
.7

0
0

1,
39

4
99

.9
90

.1
0

0
1,
28
1

15
0

95
.0
1

4.
1

0.
06

7
2,
87
7

98
.3
5

4.
0

0.
28

37
1,
87

2
99

.2
2

3.
5

0.
25

66
1,
48
2

10
98

.8
9

21
.2

0.
01

4
1,
93
8

99
.7
9

19
.3

0.
05

10
1,
31

5
99

.8
7

16
.0

0.
06

11
1,
18
2

20
99

.2
4

44
.6

0.
08

7
2,
01
9

99
.9
5

45
.9

0
0

1,
35

2
99

.9
7

47
.4

0.
01

2
1,
22
0

50
10

0
72

.2
0

0
1,
39
2

10
0

83
.9

0
0

1,
18

8
10

0
10

1.
2

0
0

1,
17
8

20
0

98
.4
1

4.
5

0.
48

72
2,
55
6

99
.8
9

4.
1

0.
06

92
1,
91

2
99

.9
7

3.
9

0.
03

36
1,
42
4

10
99

.8
2

17
.8

0.
02

5
1,
68
0

99
.9
8

17
.5

0.
01

36
1,
23

4
10

0
17

.4
0

0
1,
19
8

20
99

.9
7

35
.1

0.
02

45
1,
44
6

10
0

41
.3

0
0

1,
17

6
10

0
45

.3
0

0
1,
17
7

50
10

0
70

.8
0

0
1,
29
5

10
0

82
.8

0
0

1,
18

8
10

0
91

.2
0

0
1,
17
8

25
0

99
.7
9

6.
1

0.
12

24
7

3,
21
7

10
0

3.
0

0
0

1,
35

6
10

0
2.
9

0
0

1,
24
4

10
99

.9
9

16
.4

0.
01

10
1,
28
4

10
0

16
.0

0
0

1,
20

1
10

0
15

.8
0

0
1,
17
4

20
10

0
31

.4
0

5
1,
23
4

10
0

43
.1

0
0

1,
17

1
10

0
42

.1
0

0
1,
17
7

50
10

0
72

.3
0

0
1,
29
7

10
0

82
.9

0
0

1,
18

8
10

0
90

.2
0

0
1,
17
8

30
0

10
0

4.
7

0
16

2,
45
6

10
0

3.
1

0
0

1,
67

0
10

0
2.
5

0
0

1,
20
5

10
10

0
15

.1
0

0
1,
21
5

10
0

17
.5

0
0

1,
19

8
10

0
17

.4
0

0
1,
16
9

20
10

0
38

.6
0

0
1,
28
3

10
0

40
.6

0
0

1,
17

1
10

0
42

.7
0

0
1,
17
7

50
10

0
72

.0
0

0
1,
29
7

10
0

87
.7

0
0

1,
18

8
10

0
97

.4
0

0
1,
17
8

35
0

10
0

2.
9

0
2

1,
34
4

10
0

2.
7

0
0

1,
22

2
10

0
2.
7

0
0

1,
20
5

10
10

0
13

.9
0

0
1,
18
4

10
0

16
.9

0
0

1,
19

8
10

0
15

.7
0

0
1,
16
9

20
10

0
34

.4
0

0
1,
28
3

10
0

44
.5

0
0

1,
17

1
10

0
42

.5
0

0
1,
17
7

50
10

0
74

.2
0

0
1,
29
7

10
0

87
.1

0
0

1,
18

8
10

0
90

.8
0

0
1,
17
8

Arslan et al.: AFS Location Problem with Routing
Transportation Science, 2019, vol. 53, no. 4, pp. 1107–1125, © 2019 INFORMS 1115



the B&C-1 algorithm, implementing separation only
at integer solutions and the cut minimalization algo-
rithm, performs the best of the five versions. It is more
than 14 times faster than the second implementation.
The root node gaps of the second and third imple-

mentations are the same for all the instances in which
both could finish solving the LP relaxation within the
time limit. With the best solution times and very small
root node gaps, we perform our further analyses using
the B&C-1 algorithm.

Figure 3. (Color online) Covered Flow as a Percentage of the Total Vehicle Flow for p � 1, . . . , 35 for (a) Range = 100 km, (b)
Range = 150 km, and (c) Range = 200 km in the CA network
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Detailed results with the B&C-1 algorithm and the CA
network are presented in Table 5. Ranges of 100, 150, and
200 kilometers are considered. The first two columns
present the number of stations to be located and the
drivers’ tolerance for deviation. Columns (3) through (7)
show results for vehicles with a range of 100 kilometers.
In addition to the statistics provided in Table 3, column
“Opt value, %” shows the percentage of total vehicle
flow covered. The following five columns correspond to
solutions for vehicles of range 150 kilometers, and the
rightmost five columns correspond to those for vehicles
of range 200 kilometers. Even though our computer
configuration is not the same as the one used in Yıldız
et al. (2016), the two are comparable. According to
PassMark Software (2017), our computer has a 1.147
times higher CPU mark rating. The results show that
our B&C implementation outperforms the previous B&P
algorithm: B&C-1 is able to solve the instances even
with 50% tolerance in less than two minutes, whereas
the B&P implementation could only handle 20% toler-
ance and terminated before reaching optimality after
three hours for several instances.

Figure 3 plots the covered vehicle flow for different
deviation tolerances when p � 1, . . . , 35 stations are
optimally located and the vehicles have ranges of 100,
150, and 200 kilometers in parts (a), (b), and (c), re-
spectively. Coverage increases to 100% steadily in all
three plots. The rate of increase is faster for higher-
deviation tolerances. For instance, when range is 100
kilometers in Figure 3(a), in the 0% deviation curve, all
demand can be covered when p � 30. In the 50% de-
viation curve, by contrast, full coverage is reached
when p � 15. The rate of increase is also faster for
higher vehicle ranges. When range increases to 200
kilometers in Figure 3(c), in the 0% deviation curve,
100% coverage can now be reached by locating 20
stations rather than 30 stations as in the 100-kilometer
scenario in Figure 3(a). Note that the impact of de-
viation tolerance on the covered flow is more pro-
nounced when the range is shorter. For instance, when
p � 5 and range is 100 kilometers in Figure 3(a), cov-
erage increases from 67.09% in λ̂ � 0% to 90.47% in λ̂ �
50% (23.38% difference). The increase is only 12.34%
when the range is 200 kilometers in Figure 3(c) from

Figure 4. (Color online) (a) Percentage of Covered and Missed Vehicle Flows for Different Driver Tolerances in the California
Network with Vehicles of 100-km Range and When p � 5 Stations Are Optimally Located, (b) Percentage of Covered and
Missed Vehicle Flows When p � 1, . . . , 35 Stations Are Optimally Located in the California Network with Vehicles of 100-km
Range and for Deviation Tolerance λ̂ � 10%
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85.18% in λ̂ � 0% to 97.52% in λ̂ � 50%. By locating
only a single station (i.e., p � 1) in Los Angeles in the
southern part of California, 30.55%–43.85% of the ve-
hicle flow can be covered, depending on the range of
the vehicle and deviation tolerance of the drivers.
Fifteen stations cover more than 90% of the demand for
all range and tolerance levels considered in Figure 3. By
locating 30 stations, all vehicle flows can be covered in
all settings.

Note that when the problem is solved using our
natural formulation, the optimal refueling station lo-
cations and the demand that can be covered are given
by the x and y variables, respectively. Consider a de-
mand q and the corresponding OD pair (oq, dq). We
postprocess the optimal solution to determine the path
that a vehicle flow takes by solving a shortest-path
algorithm in the graph induced by the optimal station
locations. Let δ∗oqdq be the shortest path length in the
induced graph. We then compare this length with δoqdq ,
which is the shortest path length in the original road
network. If δ∗oqdq � δoqdq , then the vehicle flow travels on
its shortest path. If δoqdq < δ∗oqdq ≤ λq, then the vehicle
flow deviates from its shortest path to travel to its
destination. If λq < δ∗oqdq <∞, in other words, if the
shortest path length is greater than the drivers’ toler-
ance but finite, then the vehicle flow is not covered
because there is no path of length at most λq. In this
case, we refer to such flow as missed flow because of
tolerance. If δ∗oqdq � ∞, that is, there is no path from the
origin to the destination and these two nodes are
disconnected, then the range is not long enough to travel
between the located stations. Therefore, we refer to such
flow as missed flow because of range.

Figure 4(a) shows the breakdown of covered and
missed vehicle flows for different tolerances when five

stations are optimally located in the CA network with
vehicles of 100-kilometer range. This figure is repre-
sentative to show the reasons for covering and missing
vehicle flows. When the drivers are not tolerant to
deviating (i.e., 0% tolerance), then 67.09% of the total
vehicle flow can be covered. The coverage increases to
90.46% when the drivers tolerate 50% of their shortest
paths. The deviating vehicle flow percentage increases
for higher deviation tolerances, and vehicle flow trav-
eling on their shortest paths decreases. We also observe
in the figure that the main cause of missing vehicle
flow is the limited range. The missed flow because of
tolerance is at maximum 0.7% for 20% deviation toler-
ance in Figure 4(a). It is very rarely the case in all the
scenarios that there exists a required infrastructure for
vehicles to travel but the drivers are intolerant to
deviating.
Figure 4(b) shows the covered and missed flow

percentages in the optimal solutions when p � 1, . . . , 35
stations are located in the CA network with vehicles of
100-kilometer range and driver deviation tolerance of
10%. The percentage of the deviating vehicle flow is
increasing until full coverage is achieved at 20 stations.
Higher numbers of stations being located in the net-
work increases their availability on the shortest paths of
the drivers, which leads to less vehicle flow deviating.
We now provide insights about the deviation dis-

tances. Similar to the deviation tolerance, we present
the deviation distance as a percentage of the shortest
path. We refer to the deviation distance as devDist,
which is given by devDist � 100 × (δ∗oqdq − δoqdq)/δoqdq
for q ∈ Q. Figure 5 plots the distribution of vehicle flow
grouped into devDist intervals in the CA network
for vehicles of 100-kilometer range and when p � 5
and λ̂ � 50%. This figure is representative to show the

Figure 5. Distribution of Vehicle Flow Grouped into Deviation Distance Intervals in the CA Network for Vehicles of 100-km
Range and When p � 5 and λ̂ � 50%

Note. The deviation distance on the horizontal axis is presented as a percentage of the shortest path.
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distribution of deviation distances. For the considered
setting, Figure 4(a) shows that 9.53% of the total ve-
hicle flow is missed, 13.86% of the total vehicle flow
drive on their shortest paths (shown in the first bar in
Figure 5), and 76.61% of the total vehicle flow deviate
(shown in bars 2–11 in Figure 5). The deviation peaks
at 5%–10% deviation and gradually decreases until
50% tolerance level. The average devDist in the figure
is 12.79%. When all the instances in Table 5 are con-
sidered, the average devDist for λ̂ � 10%, λ̂ � 20%,
and λ̂ � 50% are 3.1%, 5.8%, and 10.6%, respectively.

Observe that there are three critical parameters in the
RSLP-R that affect the performance: (1) the deviation
tolerance of the drivers, (2) the number of demands,
and (3) the size of the network. In the CA network, we
increased the deviation tolerance to 50% and observed
that the model adapted to increasing deviations. In the
following experiment, we concentrate on increasing the
number of demands, and finally, we test our model
against increasing network sizes in random graphs.

In the CA network, there are 1,167 OD pairs. The
results presented in Table 5 are obtained assuming
a single vehicle type traveling between each ODpair. In
the following experiment, we add a new parameter: the
number of vehicle types, and each OD pair is assigned
the same number of vehicle types. Therefore, having
eight vehicle types in an experiment refers to 9,336
distinct demands traveling between 1,167 OD pairs.
The ranges of vehicles change between 100 and 275
kilometers by increments of 25. In other words, when
we have eight vehicle types running between the same
OD pair, their ranges are 100, 125, . . . , 275 kilometers.
In this regard, Table 6 presents results for the CA
network for a different number of vehicle types. We
again observe very small root node gaps. Figure 6
depicts the average solution times of the 32 instances
corresponding to each vehicle type and shows that the
solution times sublinearly increase by the number of
vehicle types.

We also investigate the effect of increasing the number
of OD pairs on solution times. For this purpose, we
introduce two new sets of OD pairs. Recall that the

1,167 OD pair nodes in the previous experiments
represent those urban centers with a population of
50,000 or more. This corresponds to approximately
5.71 million vehicles per year. In the first (and second,
respectively) new set, we consider those urban cen-
ters with 30,000 (and 20,000, respectively) or more in
population and 30 kilometers apart, corresponding
to 1,874 (and 3,121, respectively) OD pairs and more
than 5.91 million (and 6.11 million, respectively)
vehicles per year. The results are reported in columns
(3)–(20) of Table 7. All instances are solved in less than
eight minutes. Apart from these two new OD pair sets,
we also test unit vehicle flows between each OD pair.
In our original experiments with 1,167 OD pairs, the
vehicle flows are highly unbalanced, changing between
14.51 and 1,235,110 vehicles per year. For both balanced
and unbalanced instances, the solution times and the
root node gaps are consistently small, showing the
strength of our solution methodology.

4.2. Random Networks
Random networks are generated to test the compu-
tational efficiency of the proposed B&C-1 algorithm
against increasing sizes of networks. For this purpose,
four random graphs, details of which are presented in
Table 2, are generated. For each network, 1,000, 2,000,
and 4,000 random OD pairs are selected. For each
graph and OD pair count, we test our algorithm for 10,
20, 30, 50, and 100 stations. We conduct each experi-
ment for 0%, 10%, and 20% deviation tolerance. We
consider a vehicle with a range of 100 kilometers. The
results are presented in Table 8. Three leftmost columns
show the parameter settings. The “Best lbd, %” column
shows the best feasible solution at termination. “Opt
Gap, %” is the gap between the best upper and lower
bounds at termination. “Sol time, s,” “Root node gap,
%,” “nNodes,” and “nCuts” columns are as previously
defined.
Observe that except for 17 instances, the algorithm

was able to find the optimal solution within the one-
hour time limit. Average solution times are generally
higher than those for the CA network. Note that even
with large gaps at the root node, the algorithm still
performs fairly fast in finding an optimal solution.
According to our results, the algorithm performs well
until the bottleneck is hit in instances with 1,000 nodes
and 4,000 OD pairs.

5. Conclusions
In this study, we have proposed a natural formulation
for the RSLP-R based on the notion of length-bounded
node cuts and analyzed its polyhedral properties.
We proposed a B&C algorithm as an exact solution
method. For separating integer solutions, we devised
a polynomial-time algorithm. For fractional solutions,
we developed an integer programming model and

Figure 6. Solution Times for Different Number of Vehicle
Types
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made use of a classical minimum cut algorithm as an
efficient heuristic. Extensive computational studies
showed that the solution times and the size of the
solvable instances are improved significantly with re-
spect to previously reported results byYıldız et al. (2016).
We can address practically sized problem instances,
which could only be solved previously by a B&P algo-
rithm in a three-hour time frame, in under twominutes.
Our approach can also address multiple vehicle types
and possible nonsimple path occurrences in the driver
routes.

Our approach can easily be adapted to handle dif-
ferent driver tolerances. Rather than assuming a distance
tolerance on the path, a bound on the number of refu-
eling stops might be considered for the drivers. This
special case of our problem can be solved by assuming
unit length arcs in the transformed network and solving
the RSLP-R on this transformed network.

For future research directions, capacities of the re-
fueling stations can be accommodated into the prob-
lem, which would bring more realism. Considering
uncertainties inherent in the problem, such as the vehicle
flows between OD pairs, can also help in modeling the
real world more closely.
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