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a b s t r a c t

Consider a situation in which individuals –the buyers –have different valuations for the
products of a given set. An envy-free assignment of product items to buyers requires
that the items obtained by every buyer be purchased at a price not larger than his/her
valuation, and each buyer’s welfare (difference between product value and price) be the
largest possible. Under this condition, the problem of finding pricesmaximizing the seller’s
revenue is known to be APX -hard even for unit-demand bidders (with several other
inapproximability results for different variants), that is, when each buyer wishes to buy at
most one item. Here, we focus on Envy-free Complete Allocation, the special case where
a fixed number of copies of each product is available, each of the n buyers must get exactly
one product item, and all the products must be sold. This case is known to be solvable in
O(n4) time. We revisit a series of results on this problem and, answering a question found
in Leonard (1983), show how to solve it in O(n3) time by connections to perfect matchings
and shortest paths.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and background

The purpose of the present note is to offer a refinement in a special case of a time-honored problem of economic theory,
namely computation of Walrasian equilibrium, which also overlaps with the celebrated assignment problem of operations
research.

Consider a set B of n buyers, each one interested in purchasing an item out a catalogue C of m ≤ n products. Product i is
available in ci copies or items. Buyer b has a valuation for each product, defined by a valuation function vb : C → R+, and all
these functions are encoded into an n × n matrix V = [vb,i].

We are interested in finding a complete allocation of items to buyers, i.e. a function φ : B → C , where we intend that
buyer b purchases product φ(b). With the term completewe mean that all the buyers must be satisfied, that is,

n =

∑
i∈C

ci. (1)

Let Φ be the set of all complete allocations: for φ ∈ Φ to be feasible, a price vector p ∈ Rm
+
must exist such that

(i) the price paid to any item never exceeds the buyer’s valuation of the corresponding product:

0 ≤ pφ(b) ≤ vb,φ(b) b ∈ B, (2)
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(ii) for each buyer, the difference between his/her valuation of the item bought and the price actually paid is the largest
possible among all possible items:

vb,φ(b) − pφ(b) ≥ vb,i − pi b ∈ B, i ∈ C . (3)

Price pi paid for product i is non-discriminatory, meaning that different copies of the same product must be sold at the
same price. Both φ and p fulfilling (i) and (ii) above are said to be envy-free. In a more general setting, where the number of
buyers and product copies do not necessarily match, an envy-free pair (φ, p) is known as aWalrasian equilibrium; see [9,10].
From a seller’s viewpoint, a problem arises ofmaximizing the revenue obtained. Note that in aWalrasian equilibrium, unsold
items must have zero price. This is not the case in the general setting; see e.g., the discussion in [10]. In general, the seller’s
revenue does not coincide with the linear expression

R(p) =

∑
i∈C

cipi (4)

unless (1) holds. Finding envy-free non-discriminatory prices (and a corresponding envy-free complete allocation) that
maximize (4) is the Envy-free Complete Allocation problem which is a special case of a problem studied since the early
eighties to model elicitation of honest preferences [14], and later product-line positioning and pricing [5,6]. In the latter
scenario, the so-called Profit Problem seeks to maximize the seller’s revenue by deciding the products to offer and their
allocation to buyers: when products are given, the model becomes the one addressed in the present paper. This model has
also application in a facility location and pricing problem studied in [2]. There, a set ofm facilities offers service to a discrete
set of n ≥ m clients, and client k chooses the facility i for which the total cost pi + dki (price of the service + transportation
cost to the facility) is minimum. The facility holder wants to choose prices pi so that the total revenue is maximized. If s/he
wants a solution where facility i captures exactly ci clients, the objective reads exactly as (4). To transform the problem
into Envy-free Complete Allocation it suffices to identify clients with buyers, facilities with item types, and then choose
vb,i = d − dbi as the valuation function of buyer b, where d = maxi,k{dki }.

Already in 1988, Dobson and Kalish [5] observed that when an allocation is given, finding the prices that maximize the
seller’s profit (the pricing problem) is the dual of a minimum cost flow problem. They take advantage of this observation
to design a solution heuristic that moves from allocation to allocation, every time finding envy-free prices that, maximizing
buyers’ utility (value minus price, also referred to as welfare), make them happy with the products obtained. In [5] the
authors compare different options, including a random choice, for the allocation to be chosen at each step of the algorithm
and conclude that the best choice is one that maximizes buyers’ welfare. The reasons are: maximum welfare is interesting
by itself; moreover, since profit is part of the total welfare, the larger the latter the more profit can be carved (see [6], p.
167). While a negative-length cycle in the flow network developed in [5] and later used in [13,17] (a similar use of network
flow construction is used in [17] in a somewhat different context of optimal auction design) is clearly addressed as the
responsible of price infeasibility, no connection is apparently made between price infeasibility and welfare allocations: that
is, which properties should an envy-free allocation have to guarantee the existence of prices fulfilling (i), (ii)? The question is
answered in Section 3 of this paper as follows: an envy-free price vector for some allocation exists if and only if the allocation
is a welfare maximizer. A subsequent question, which apparently remained unstudied, is also answered in the affirmative
in Lemma 3 of the present paper: are welfare-maximizing allocations all equivalent from the viewpoint of the revenue that
the corresponding envy-free prices guarantee to the seller? Finally, both [5,6] and [14] credit the pricing algorithm an O(n4)
complexity, and a call was made for a more efficient computational procedure (cf. section III, p. 472 of [14]). As we shall see
in the sequel, the problem can in fact be solved in O(n3).

2. Envy-free perfect matching

Without loss of generality, envy-free complete allocations can be reduced to permutations (or equivalently, perfect
matchings). Recalling (i), (ii) of Section 1, envy-free price vectors associatedwith a given φ must satisfy the following system
of linear inequalities, cf. (2)–(3) introduced in the previous section:

0 ≤ pφ(b) ≤ vb,φ(b) b ∈ B
vb,φ(b) − pφ(b) ≥ vb,i − pi b ∈ B, i ∈ C .

Let N = {1, . . . , n} denote the index set of both the buyers in B and the copies of products (that is, the n items) available.
It is then easy to reduce φ to a permutation π : N → N , where π (i) is the index of the buyer that purchases item i. Instead
of pricing products, we now price the n individual items in N . An envy-free permutation, and the corresponding perfect
matching

Mπ
= {(π (i), i) : i ∈ N}

between buyers and items, is then one fulfilling

pi ≤ vπ (i),i i ∈ N (5)

pi − pj ≤ vπ (i),i − vπ (i),j i, j ∈ N (6)

pi ≥ 0 i ∈ N. (7)
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The only question with (5)–(7) regards the assumption of non-discriminatory prices, as the system allows individual
items to receive different prices. But suppose buyers a, b get two copies i, j of the same product. If a is assigned i, then
pi − pj ≤ va,i − va,j = 0, because i and j are identical items. Similarly, pj − pi ≤ vb,j − vb,i = 0. Therefore, pi = pj.

So let Π be the set of all permutations of N and FR(π ) = {p ∈ Rn
: p satisfies (5)–(7)} denote the feasible region of

envy-free prices induced by π . Among all π ∈ Π , the seller seeks a revenue-maximizing one. In other words, from the
seller’s viewpoint, the problem is:

max
π∈Π

max
p∈FR(π )

n∑
i=1

pi. (8)

Problem (8) is called Envy-free Perfect Matching, a variant of the APX -hard Envy-free Pricing problem with unit-
demand bidders where each buyer gets at most one object (see e.g. [7,10,12,16] for a sample of the literature on envy-free
pricing and connections to network pricing problems).

The APX -Hardness result is from [10], but other approximation results (positive or negative) exist in the literature. A
well studied problem is Unit-demanded Envy-free Pricing, in which each consumer is willing (or is allowed) to buy at
most one item, and there is an unlimited supply of each item: (2 log n)- and (1 + ε)-approximation algorithms, where n is
the number of consumers, are respectively given in [10,11], the second holding for a constant number of items. In [3] the
hardness of approximation is analyzed in the case of uniform budget (equivalent to the min-buying problem with uniform
budget proposed by [15]), where each consumer equally values all items s/he is interested in. Chalermsook et al. [4] studied
the case in which the buyers have uniform budgets and are interested in at most ℓ items. They proved that approximating
this problem is Ω(ℓ1/2)-hard unless P = NP , thus the problem is not in APX unless P = NP . There are also other results
using, for example, the Unique Games Conjecture and the Exponential Time Hypothesis; see references cited in [7] for a more
complete and up-to-date review.

In Envy-free Pricing, maximizing the sum of prices is in general not equivalent to maximizing the total revenue of the
seller, because s/he can decide to remove from the market the items that force the solution to low prices. But in the special
case considered here the two objectives are equivalent, and one can easily formulate it as a mixed-integer linear program:
a permutation π is encoded by 0-1 decision variables xbi, setting xbi = 1 if and only if b = π (i) (or equivalently (b, i) ∈ Mπ );
then the problem is modeled as

max
n∑

i=1

pi (9)

subject to
n∑

i=1

xbi = 1 b ∈ N (10)

n∑
b=1

xbi = 1 i ∈ N (11)

pi −
n∑

b=1

vb,ixbi ≤ 0 i ∈ N (12)

pi − pj −
n∑

b=1

(vb,i − vb,j)xbi ≤ 0 i, j ∈ N (13)

pi ≥ 0 i ∈ N (14)

xbi ∈ {0, 1} b ∈ N, i ∈ N. (15)

Objective function (9) represents the seller’s total revenue from the sale of the objects. Eqs. (10)–(11) and domain
restrictions (15) enforce that the x variables encode a perfect matching, whereas inequalities (12)–(14) make the corre-
sponding prices envy-free: in fact, by (11), one xbi only will get value 1, and precisely the one corresponding to the client
b = π (i) that selects item i; consequently, the summations in (12), (13) return the right-hand sides of inequalities (5), (6),
respectively.

Envy-free Perfect Matching is closely related to the well-known Perfect Matching problem. Here, we associate the
former with this particular instance of the latter:

max
π∈Π

n∑
i=1

vπ (i),i (16)
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which can be formulated:

max
∑
b,i∈N

vb,ixbi (17)

subject to (10)–(11) and xbi ≥ 0. An optimal solution to this problem will be said v-maximum.
Let z denote the optimal value of the above problem with all objects in N , and z(j) denote the solution of the above

problem with item j removed from N , i.e., the optimal value of the bipartite matching problem:

max
n∑

b=1

∑
i∈N\{j}

vb,ixbi

subject to
n∑

i=1

xbi ≤ 1 b ∈ N

n∑
b=1

xbi = 1 i ∈ N \ {j}

xbi ≥ 0 b ∈ N, i ∈ N.

Then it is shown in [9] that the prices p∗

j defined as p∗

j = z− z(j) solve problem (8) (cf. Theorem 5 of [9]). Since the procedure
requires the solution of n + 1 linear programs of complexity O(n3) each, the total complexity is O(n4), the same indicated
by the network flow procedure of [5,6]. We report in the next section a procedure which improves efficiency by an order of
magnitude.

3. Reduced problem complexity

Definition 1. If π (i) = i for every i ∈ N , then π is termed identity-permutation.

Lemma 1. If FR(π ) ̸= ∅, then π ∈ Π solves the Perfect Matching problem (16).

Proof. Without loss of generality, suppose that π is the identity-permutation (if not, rename items). Let p ∈ FR(π ) and,
indirectly, assume there exists γ ∈ Π such that

n∑
i=1

vγ (i),i >

n∑
i=1

vi,i. (18)

Let Q ⊆ N be such that γ (i) ̸= i for each i ∈ Q . Since γ ̸= π , Q is nonempty. In other words, inequality (18) reduces to∑
i∈Q

vγ (i),i >
∑
i∈Q

vi,i. (19)

As p ∈ FR(π ), p fulfills inequalities (6), in particular those written for i = γ (j), j ∈ Q :

pγ (j) − pj ≤ vγ (j),γ (j) − vγ (j),j j ∈ Q . (20)

Since γ (j) ∈ Q for each j ∈ Q ,
∑

j∈Q pγ (j) −
∑

j∈Q pj = 0. Thus, summing up the inequalities in (20) we get

0 ≤

∑
j∈Q

vγ (j),γ (j) −

∑
j∈Q

vγ (j),j,

which contradicts (19). □

We have just shown that feasible permutations, i.e. those leading to envy-free prices, are v-maximum. Let us now show
that the converse of Lemma 1 is also true and conclude that the set of permutations encoding envy-free prices are simply the
set of v-maximum perfect matchings. The analysis pertains to the question posed in Section 2: which properties should an
envy-free allocation have to guarantee the existence of prices fulfilling (i), (ii)? The answer is that an envy-free price vector
for some allocation exists if and only if the allocation is a welfare maximizer. To prove the result, for a given permutation π ,
we begin by constructing a weighted network ⟨G,wπ

⟩ with appropriate costs on arcs such that FR(π ) is non-empty if and
only if shortest paths are well defined in ⟨G,wπ

⟩ as in [5,17]. In this construction, G = (N ∪ {0}, A = A0 ∪ A1) is a digraph
where A0 = {(i, 0) : i ∈ N} and A1 = {(i, j) : i ∈ N, j ∈ N \ {i}}.

Assign each (i, 0) ∈ A0 the weight wπ
i0 = vπ (i),i, and each (i, j) ∈ A1 the weight wπ

ij = vπ (i),i − vπ (i),j. With the weights so
constructed, the shortest paths of G into node 0 are well defined if and only if G contains no negative-weight directed cycle.
With this in mind, let us prove the following lemma.
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Lemma 2. If π ∈ Π solves the Perfect Matching problem (16), then FR(π ) ̸= ∅.

Proof. Upon items renaming, suppose that the π solving (16) is the identity-permutation. Let us show that ⟨G,wπ
⟩ has no

cycle of negative weight. Indirectly, assume that C = i1 → i2 → · · · → it → i1 is a negative-weight cycle. Since no arcs
leave node 0, it follows 0 ̸∈ C . In other words,∑

(i,j)∈C

wπ
ij =

∑
(i,j)∈C

(vi,i − vi,j) =

t∑
l=1

vil,il −

t−1∑
l=1

vil,il+1 − vit ,i1 < 0.

But the above inequality contradicts π being v-maximum. Consequently, the shortest paths from each i ∈ N to node 0 are
well defined, and their lengths pi verify constraints (5)–(6), which correspond the optimality conditions for the shortest path
problem; see [1]. To conclude FR(π ) ̸= ∅ it remains now to prove (7), that is, the lengths pi are non-negative. Let Pi ⊆ A
denote a generic (i, 0)-path, say Pi = {(i1, i2), (i2, i3) . . . , (it−1, it )} with i1 = i and it = 0. Its length is∑

a∈Pi

wπ
a =

t−1∑
l=1

vil,il −

t−2∑
l=1

vil,il+1 ≥ vit−1,i1

since, again,π is a v-maximumperfect matching. But vit ,i1 ≥ 0: hence pi, theminimum of a set of non-negative path lengths,
is itself non-negative. □

After Lemma 2, to solve Envy-free Perfect Matching it is sufficient to consider optimal solutions to (16). The following
result states that any two such solutions are equivalent in terms of the feasible regions (5)–(7) they induce.

Lemma 3. Let π, γ ∈ P be distinct permutations, both maximizing (16). Then, FR(π ) = FR(γ ).

Proof. As in Lemma 1, let π be the identity-permutation and p̂ ∈ FR(π ), that is:

p̂i ≤ vi,i i ∈ N (21)

p̂i − p̂j ≤ vi,i − vi,j i ∈ N, j ∈ N \ {i} (22)

p̂i ≥ 0 i ∈ N. (23)

Let us show that p̂ ∈ FR(γ ). For the converse, we can exchange the roles of π and γ and be done by symmetry.
For a given permutation α ∈ Π , let us define a component as a subset of N , say H , such that for i ∈ H , α(i) ̸= i and

α(i) ∈ H . Let H1, . . . ,Ht be such components for permutation γ . Since γ ̸= π , t ≥ 1.
Since both π and γ are v-maximum perfect matchings,∑

i∈Hk

vi,i =

∑
i∈Hk

vγ (i),i for k ∈ {1, . . . , t}. (24)

In order to conclude that p̂ ∈ FR(γ ), we need to show that (21)–(22) imply the consistency of the following system:

p̂i ≤ vγ (i),i i ∈ N
p̂i − p̂j ≤ vγ (i),i − vγ (i),j i ∈ N, j ∈ N \ {i}.

Let {r, s} be an arbitrary distinct pair from N . To guarantee the consistency of the above system, it is enough to show
that

p̂r ≤ vγ (r),r (25)

p̂r − p̂s ≤ vγ (r),r − vγ (r),s. (26)

If γ (r) = r , taking i = r and j = s in (21)–(22) will directly imply (25) and (26). So assume r ∈ Q for some component
Q ∈ {H1, . . . ,Ht}. Without loss of generality, let q = |Q | and i1, i2, . . . , iq be an ordering of the elements in Q such that
(ik, ik+1) ∈ Mγ for k ∈ {1, . . . , q − 1} and (iq, i1) ∈ Mγ . Since (i, i) ̸∈ Mγ for any i ∈ Q and γ (i) ∈ Q for any i ∈ Q , such an
ordering is readily available. Moreover, since the ordering is cyclical, it is possible to view r as i1, namely the first element
in this ordering. Because p̂ ∈ FR(π ), the following inequalities hold:

p̂i1 − p̂i2 ≤ vi1,i1 − vi1,i2

p̂i2 − p̂i3 ≤ vi2,i2 − vi2,i3

. . . (27)
p̂iq−1 − p̂iq ≤ viq−1,iq−1 − viq−1,iq .
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Summing inequalities (27) we obtain

p̂i1 − p̂iq ≤

q−1∑
k=1

vk,k −

q−1∑
k=1

vik,ik+1 .

As
∑

i∈Q vi,i =
∑

i∈Q vγ (i),i by (24), we have

p̂i1 − p̂iq ≤

q−1∑
k=1

vk,k −

q−1∑
k=1

vik,ik+1 = viq,i1 − viq,iq . (28)

Writing (21) for i = iq, we have

p̂iq ≤ viq,iq . (29)

Finally, summing up (28) and (29), we conclude that

p̂i1 ≤ viq,i1 = vγ (i1),i1

or that inequality (25) holds since r = i1. Now we proceed to show that (26) holds. The case when s = iq is directly implied
from (28). If s ̸= iq, applying (22) for i = iq and j = s, we have

p̂iq − p̂s ≤ viq,iq − viq,s. (30)

Now, summing up (28) and (30) and substituting r = i1 and γ (r) = iq, we attain (26) as desired. □

The above result answers ‘yes’ to the question: are welfare-maximizing allocations all equivalent from the viewpoint of
the revenue that the corresponding envy-free prices guarantee to the seller? We can now derive the main result:

Theorem 1. Envy-free Perfect Matching can be solved in O(n3) time.

Proof. Lemmas 1–3 imply that in order to solve Envy-free PerfectMatching, it suffices to consider an arbitrary v-maximum
perfect matching π . Since both Perfect Matching (17) and checking inequalities (5)–(7) boil down to a linear program, the
problem belongs to the class P . The best algorithm to solve weighted bipartite perfect matching uses a Fibonacci heap and
has complexity O(n3); [8]. On the other hand, as observed in Lemma 1, prices pi fulfilling (5)–(7) are computed by shortest
(i, 0)-paths, which requires O(n3) time with Bellman-Ford algorithm. The overall complexity follows. □
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