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Abstract
Bilateral trade problem is the most common market interaction in which a seller and
a buyer bargain over an indivisible object, and the valuation of each agent about the
object is private information. We investigate the cases where mechanisms satisfying
Dominant Strategy Incentive Compatibility (DIC) and Ex-post Individual Rationality
(EIR) properties can exhibit robust performance in the face of imprecision in prior
structure. We start with the general mathematical formulation for the bilateral trade
problem with DIC, EIR properties. We derive necessary and sufficient conditions for
DIC, EIR mechanisms to be Ex-post efficient at the same time. Then, we define a new
property—Allocation Maximality—and prove that the Posted Price mechanisms are
the onlymechanisms that satisfyDIC,EIRandAllocationMaximal properties.We also
show that Posted Price mechanism is not the only mechanism that satisfies DIC and
EIR properties. The last part of the paper introduces different sets of priors for agents’
types and consequently allows ambiguity in the problem framework. We derive robust
counterparts and solve them numerically for the proposed objective function under
box and φ-divergence ambiguity specifications. Results suggest that restricting the
feasible set to Posted Price mechanisms can decrease the objective value to different
extents depending on the uncertainty set.
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1 Introduction

In general, mechanism design is about investigating the necessary and sufficient con-
ditions to achieve desired social, environmental or economic outcomes under many
assumptions such as individuals’ self-interest and incomplete information. It can be
said that mechanism design provides an optimization framework in strategic level. In
the literature, mechanism design is referred to as a subfield of microeconomics and
game theory but there is a distinct difference between game theory and mechanism
design. While game theory looks for methods to predict the outcome of a given game,
mechanism design takes the reverse path. In mechanism design, we start with a given
desirable outcome and try to design a gamewhich produces it. For example, let us con-
sider a bargaining problem between a risk neutral seller and buyer over an indivisible
object. Each individual’s valuation about the object is assumed to be an independent
random variable and private information. These two individuals will participate in
some bargaining mechanism to make a decision about two important issues. Should
the object be transferred from the seller to the buyer? If the answer is yes, then what is
the transfer price? This well-known problem is referred to as “Bilateral Trading prob-
lem” in the mechanism design literature. One of the pioneering studies in bilateral
trading problem was done by Myerson and Satterthwaite (1983). The authors show
that when there exists a continuous common prior1 over traders’ valuations known to
all participants, then it is impossible to have an Ex-post efficient2 mechanism which
satisfies the following three properties:

1. Bayesian Incentive Compatible:

A mechanism is Bayesian Incentive Compatible if truth telling is a Bayesian Nash
equilibrium.

2. Interim Individual Rationality:

Interim Individual Rationality requires that each individual has nonnegative expected
gains from the trade.

3. Budget Balancing:

There is no external funding source, and the payment made by the buyer equals to the
payment received by the seller.

Later, Hagerty and Rogerson (1987) criticized this study in particular and mecha-
nisms with common prior assumption in general for the following reasons:Most of the
time, it is hard to derive exactly the traders’ priors or it is possible that we encounter
with a variety of priors over time. So the authors proposed an alternative mechanism
which shows robust performance with respect to variations in prior structure.

In their mechanism, the Bayesian Incentive Compatible and Interim Individual
Rationality properties are replaced with Dominant Strategy Incentive Compatibility
(DIC) and Ex-post Individual Rationality (EIR), respectively. A mechanism is called
Dominant Strategy Incentive Compatible if telling the truth is a weakly dominant

1 The assumption that each state of the world is an independent draw from a commonly known distribution
is called common prior assumption.
2 The buyer gets the object if and only if the buyer’s valuation is higher than the seller’s.
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Robust bilateral trade with discrete types

strategy. Ex-post Individual Rationality means that regardless of the other agent’s
type, both traders find it beneficial to participate in the bargain.

When we look at the literature on bilateral trade problem with discrete types, we
notice that most of the works focus on Bayesian Incentive Compatible, Interim Indi-
vidually Rational mechanisms. When both agents have two types, Matsuo (1989)
finds necessary and sufficient conditions on the agent beliefs so that Budget balanced,
Ex-post efficient mechanism is possible. Othman and Sandholm (2009) draws sam-
ples with respect to different distributions to check the feasibility of Ex-post efficient
bilateral trade. The authors conclude that as the cardinality of type set increases fre-
quency of Ex-post efficiency decreases. Kos andManea (2009) proves that there exists
an Ex-post efficient, Ex-post Budget balanced mechanism if and only if a VCG-like
mechanism does not run an expected deficit. The authors also consider the multiple
buyers case and the effect of an additional buyer to the existence of Ex-post effi-
cient mechanism. Lastly, the authors deal with the mechanism maximizing total gains
from trade. Flesch et al. (2013) focus on Ex-post Individually Rational mechanisms
and show that Ex-post efficiency is possible if the cardinality of the type set is less
than or equal to five. One of the main results of Flesch et al. (2016) states that for
any Ex-post efficient mechanism, there exists prior distributions such that it is also
Bayesian Incentive Compatible and Interim Individually Rational. To the best of our
knowledge, there are only two studies in the literature that consider DIC, EIR mech-
anisms with discrete types: Carroll (2017) and Pınar (2018). Carroll (2017) considers
a non-trivial case when each agent has two types and shows that first-best welfare
(Ex-post efficiency) is infeasible, while Pınar (2018) considers the robust trade mech-
anisms in the presence of an intermediary, i.e., when budget balance requirement is
relaxed.

Recently, Vohra (2011, 2012) developed a linear programming approach to tackle
problems in economics under discrete type spaces. His line of research was then fol-
lowed by other researchers to investigate some celebrated problems in the literature.
Bayrak and Pınar (2016) re-examines the optimal mechanism from Vohra (2012) and
arrives at a conclusion that second price auction is suboptimal since the principal can
do better with a slight modification. Koçyiğit et al. (2018) investigate maximizing
the worst case revenue in an auction with single seller and multiple buyers where
all agents are ambiguity-averse. Bayrak et al. (2017) consider the optimal mecha-
nism for the ambiguity-averse principal utilizing costly inspection instead of monetary
transfers.

Against this background, the purpose of present paper is to reconsider properties
and results of robust mechanism design for bilateral trading problem under discrete
framework, and various specifications for the set of priors. The main contributions and
novelty of the present paper can be summarized as follows: Note that the all findings
and results are for discrete type setting.

– We propose necessary and sufficient conditions so that Ex-post efficiency can be
obtained together with DIC and EIR.

– We show by an example that Posted Price mechanisms are not the only DIC, EIR
mechanisms, which is the case in continuous type space as proved by Hagerty and
Rogerson (1987).
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– We define a new property called Allocation Maximality and prove that the Posted
Price mechanisms are the only mechanisms that satisfy DIC, EIR and Allocation
Maximal properties.

– We consider ambiguity in the problem framework originating from different sets
of priors for agents types. Then, robust counterparts from the perspective of an
ambiguity-averse intermediary are derived, and related computational results are
discussed.

The rest of the paper proceeds as follows: In the next section, we define the proposed
problem and give the related assumptions and concepts.We then formulate the bilateral
trade problemunderDIC,EIRpropertieswith discrete types. InSect. 2,we also provide
intuition about the necessary and sufficient conditions for a DIC, EIR mechanism to
also be Ex-post efficient. In Sect. 3, the relations between the newly defined Allocation
Maximal property and Posted Price mechanisms are scrutinized, and we prove that
the Posted Price mechanisms are the only AllocationMaximal DIC, EIRmechanisms.
In Sect. 4, we derive the robust counterparts for the bilateral trade problem while
the intermediary wants to maximize seller’s expected revenue. The proposed models
consider ambiguity under box and φ-divergence-based sets, respectively. In Sect. 5,
computational results are provided, and the performance of the proposed models is
compared in terms of their objective function value. Finally, Sect. 6 concludes.

2 Problem statement

Suppose there is a risk neutral seller who owns an object and a risk neutral buyer
who wishes to buy that object. Let i and j denote the value of the object to the seller
and the buyer, respectively. These valuations are privately kept by traders. The value
that each trader assigns to the object is called type of that trader. The type of each
trader is an independent draw from the set T = {1, 2, . . . ,m}.3 Variables p and x are
defined to be trade probability and expected payment value, respectively, while gri j is
the probability mass function for the payment r conditional on the agents types i, j . A
mechanism that is Dominant Strategy Incentive Compatible and Ex-post Individually
Rational should satisfy the following system of nonlinear inequalities:

xi j − i pi j ≥ xk j − i pk j ∀i, j, k ∈ T (1)

j pi j − xi j ≥ j pik − xik ∀i, j, k ∈ T (2)

xi j = pi j
∑

r
rgri j ∀i, j ∈ T (3)

j∑

r=i
gri j = 1 ∀i, j ∈ T (4)

gri j ≥ 0 ∀r , i, j ∈ T (5)

pi j ≤ 1 ∀i, j ∈ T (6)

pi j ≥ 0 ∀i, j ∈ T . (7)

3 We work with more general discrete type sets in Proposition 1. However, we prefer the simple type set T
not to encumber the notation.
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Note that a continuous analog of these constraints is also the starting point of Hagerty
and Rogerson (1987). Obviously, constraints (6) and (7) ensure that trade probability
is between zero and one. Constraint (3) calculates the expected payment from trade
probability and payment distribution. Constraints (4) and (5) force gri j variables to
define a valid probability mass function. It is enough to consider gri j variables for
i ≤ r ≤ j because we are interested in EIR mechanisms. Finally, constraints (1)
and (2) represent the Dominant Strategy Incentive Compatibility for the seller and the
buyer, respectively. These constraints ensure that reporting a different type other than
the actual one will result in utility which is less than or equal to the case when the
type is truthfully reported for all possible types. It is clear that we are only interested
in the mechanisms in which the optimal strategy is to report truthfully. In order to
have a linear system of inequalities we want to take out the gri j variable and solve
the problem over xi j and pi j . Note that xi j variable should be zero if pi j = 0, and
otherwise xi j is bounded below and above by i pi j and j pi j , respectively. Therefore,
using the following system does not eliminate any EIR mechanisms and also gets rid
of the nonlinear equality:

xi j − i pi j ≥ xk j − i pk j ∀i, j, k ∈ T (1)

j pi j − xi j ≥ j pik − xik ∀i, j, k ∈ T (2)
xi j − i pi j ≥ 0 ∀i, j ∈ T (8)

j pi j − xi j ≥ 0 ∀i, j ∈ T (9)
pi j ≤ 1 ∀i, j ∈ T (6)

pi j ≥ 0 ∀i, j ∈ T . (7)

Constraints (8) and (9) bound the expected payment variable so that it satisfies the
EIR conditions. Given a mechanism satisfying the above system, one can easily find
the set of all EIR payment distributions gri j for all pi j > 0 using the following system:

j∑

r=i
rgri j = xi j/pi j ∀i, j ∈ T

j∑

r=i
gri j = 1 ∀i, j ∈ T

gri j ≥ 0 ∀r , i, j ∈ T .

Therefore, we continue our search for DIC, EIR mechanisms by considering the latter
system.Next,wewill look into the systemof inequalities (2) and (9)which corresponds
to the dual constraints of a shortest path problem:

j pi j − j pik ≥ xi j − xik ∀i, j, k ∈ T (2)

j pi j ≥ xi j ∀i, j ∈ T . (9)

This system is separable for each i ∈ T so thatwe can consider each of them separately.
Introducing a vertex for each type j and an arc between every successive type ( j+1, j)
of length j pi j − j pi j+1, we will obtain the network in Fig. 1 for all i ∈ T (also
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introduce a dummy node zero). Note that this network contains only a subset of the
arcs defined by constraints (2) and (9). Thus, if the corresponding primal shortest path
problem is unbounded, constraints (2) and (9) are infeasible. Then, we should not
have any negative cost cycles in the network. Let us consider the length of the cycle
j → j + 1 → j :

( j + 1)pi j+1 − ( j + 1)pi j + j pi j − j pi j+1 = pi j+1 − pi j ≥ 0.

A network with nonnegative cycle costs means that pi j variable should be non-
decreasing in j ∈ T . Besides, it can be shown that all shortest paths of the network are
represented in the given figure. To see this, consider the length of j → j + 1 · · · → k
in the given network:

( j + 1)pi j+1−( j + 1)pi j + · · · + kpik − kpik−1=kpik − ( j + 1)pi j −
k−1∑

l= j+1

pil

=kpik − kpi j −
k−1∑

l= j+1

(pil − pi j ),

which is less than or equal to kpik − kpi j , length of the arc ( j, k), since pi j variables
are monotone increasing in j . Now we consider the path j → j − 1 . . . → k:

( j − 1)pi j−1−( j − 1)pi j + · · · + kpik − kpik+1=kpik − ( j − 1)pi j +
j−1∑

l=k+1

pil

=kpik − kpi j +
j−1∑

l=k+1

(pil − pi j ),

which is again less than or equal to kpik − kpi j . Since this is true for all arcs, all
shortest paths are represented in Fig. 1. We use this fact in the following manner: take
pi0 = 0, xi0 = 0 and sum up the constraints corresponding to the shortest path from
node 0 to j which is actually the tightest upper bound on xi j variable:

j∑

k=1

(kpik − kpik−1) = j pi j −
j−1∑

k=1

pik ≥ xi j .

Similarly, by summing up the constraints corresponding to the shortest path from node
j to 0, we will obtain:

j∑

k=1

(k − 1)(pik−1 − pik) = −( j − 1)pi j +
j−1∑

k=1

pik ≥ −xi j ,
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1

0

2 j j + 1 m

0pi1

2pi2 − 2pi1

pi1 − pi2

(j + 1)pij+1 − (j + 1)pij

jpij − jpij+1

...

... ...

...

Fig. 1 Network of types where only the arcs between successive nodes are drawn

which turns out to be the tightest lower bound on xi j implied by constraints (2) and (9).
Our analysis on the dual shortest path problem for the buyer’s DIC and EIR constraints
led us to a relaxation as follows:

pim ≥ pim−1 ≥ · · · ≥ pi2 ≥ pi1 ∀i ∈ T

jpi j −
j−1∑

k=1
pik ≥ xi j ≥ ( j − 1)pi j −

j−1∑

k=1
pik ∀i, j ∈ T .

Vohra (2011) made extensive use of this duality relation to transform the buyer’s
Bayesian Incentive Compatibility and Interim Individual Rationality constraints. He
derives monotonicity of expected allocation variables and sets expected payment
variables equal to their respective upper bounds. His model has an objective which
maximizes total payments so that interchanging payment variables with their upper
bounds is optimal. However, in the first part of the current study, we do not restrict
our attention to any type of objective function in search of DIC, EIR mechanisms.
Therefore, we also derive the implied lower bound and arrive at a relaxed formulation.
Working with this relaxation proves to be useful for two reasons. First, Posted Price
mechanism,4 which is known to beDIC and EIR, can be formulated exactly bymaking
a slight change in the relaxed formulation. Second, given any allocation rule, it either
shows infeasibility or it narrows down the possible transfer rules that can be applied to
have a DIC, EIR mechanism. We will make these cases clear using specific examples
illustrated in Fig. 3.

Now, we also apply a similar approach to the seller’s DIC, EIR constraints which
can be written as:

i pk j − i pi j ≥ xk j − xi j ∀i, j, k ∈ T (1)

− i pi j ≥ −xi j ∀i, j ∈ T . (8)

Again consider these constraints as the dual of a shortest path problem. For all j ∈ T ,
this time we will obtain the network in Fig. 2. Dummy node m + 1 is connected to

4 In the Posted Price mechanism, the price of trade is posted by the planner and the agents trade at that
price or do not trade at all.
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1 2 i i+ 1 m

m+ 1

−mpmj (m+ 1)pmj

p2j − p1j

2p1j − 2p2j

ipi+1j − ipij

(i+ 1)pij − (i+ 1)pi+1j

...

... ...

...

Fig. 2 Network of types for constraints (1) and (8)

nodem, and pim+1, xim+1 are equal to zero. After constructing the network, we utilize
the same set of arguments in order to find the following set of inequalities:

p1 j ≥ p2 j ≥ · · · ≥ pm−1 j ≥ pmj ∀ j ∈ T
m∑

k=i+1
pkj + i pi j ≤ xi j ≤

m∑

k=i+1
pkj + (i + 1)pi j ∀i, j ∈ T .

Nonegative cost cycle argument requires pi j to bemonotone decreasing on i , and it can
be shown that all shortest paths are contained in the given network. The only difference
from the previous analysis is that we find the lower bound on xi j by considering the
path from node i to m + 1 following the arcs in Fig. 2. Upper bound is given by the
path from m + 1 to i .

At this point, we introduce the relaxed formulation which should be satisfied by
any DIC, EIR mechanism:

pim ≥ pim−1 ≥ · · · ≥ pi2 ≥ pi1 ∀i ∈ T (10)

p1 j ≥ p2 j ≥ · · · ≥ pm−1 j ≥ pmj ∀ j ∈ T (11)

j pi j −
j−1∑

k=1
pik ≥ xi j ≥ ( j − 1)pi j −

j−1∑

k=1
pik ∀i, j ∈ T (12)

m∑

k=i+1
pkj + i pi j ≤ xi j ≤

m∑

k=i+1
pkj + (i + 1)pi j ∀i, j ∈ T (13)

pi j ≤ 1 ∀i, j ∈ T (6)

pi j ≥ 0 ∀i, j ∈ T . (7)

A trivial solution of the above system is to set all trading probabilities to zero.
Although we do not allow any trade in this mechanism, it satisfies the DIC and EIR
conditions. Nobody is ex-post worse off by participating in the trade, and each trader’s
dominant strategy set contains reporting one’s true type. We present three examples
in Fig. 3 in order to investigate the relation between DIC, EIR mechanisms and the
relaxed formulation, where m = 5. These examples only specify allocation rules, but
we also need transfer rules to check if the mechanism satisfies DIC, EIR constraints
or not. As we shall see below, the relaxed formulation helps us track down the DIC,
EIR transfer rules.

Ex-post efficiency dictates that the trade should take place if and only if the buyer
has a higher valuation than the seller. Example (a) in Fig. 3 illustrates an Ex-post
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2 3 4 5
1

2

3

4

5

(a)

2 3 4 5
1

2

3

4

5

(b)

2 3 4 5
1

2

3

4

5

(c)

pxy = 1
pxy = 0.5

Fig. 3 Trade probabilities with different properties. a Ex-post efficient mechanism, b Posted Price mecha-
nism, c neither Ex-post efficient nor Posted Price mechanism

efficient allocation where the tie break rule leaves the good to the seller. It is easy
to check that Ex-post efficient mechanism (with any tie break rule) is not feasible in
the relaxed formulation because of the constraints (12) and (13). Therefore, we can
conclude that there does not exist anyDIC, EIR and Ex-post efficient mechanismwhen
both agents have type set T = {1, 2, 3, 4, 5}. However, this is not true in general, and
the following proposition gives conditions using general discrete type sets Tb and Ts
(not necessarily the firstm integers), for buyer and seller, respectively, so that Ex-post
efficiency can be obtained together with DIC and EIR. In order not to detract from the
flow of the paper, we give the proof in “Appendix.”

Proposition 1 For finite type sets Tb and Ts with strictly positive elements, there exists
a DIC, EIR, Ex-post efficient mechanism if and only if the convex hull of agents’
efficient type sets which are defined as T ∗

b = {bk ∈ Tb|bk > sl for some sl ∈ Ts} and
T ∗
s = {sk ∈ Ts |sk < bl for some bl ∈ Tb} have finite intersection.
As an immediate result of this proposition, if the buyer and seller have a common

type set T = {1, 2, . . . ,m}, which is the case in the current paper, Ex-post efficiency
can be obtained when m ≤ 3. In three types case, the posted price will be equal to 2
and efficient types will be {1, 2} for the seller and {2, 3} for the buyer. Adding an extra
type 4 will result in efficient type sets {1, 2, 3} and {2, 3, 4} whose convex hulls have
infinite intersection.

The other two examples in Fig. 3b, c, only specify allocation variables, but one can
use the relaxed formulation to elicit transfer variables.When pi j values of example (b)
are written in the relaxed formulation, it is easy to see that the only feasible solution
is setting xi j equal to three whenever pi j is equal to one. This is actually the Posted
Price mechanism with price set to three and it is a DIC, EIR mechanism. Similarly,
when we use pi j values in example (c), we see that the relaxed formulation gives
x13 = 1, x24 = 3, x35 = 2. For other transfer variables, we find following intervals,
x15 ∈ [2.5, 3.5], x14 ∈ [2.5, 3], x25 ∈ [3, 3.5]. We use another characteristic from
DIC mechanisms to find the unique solution in this case.

Lemma 1 When all elements in finite type set T are strictly positive, any DIC mech-
anism has xi j = xk j if and only if pi j = pkj holds for all i, j, k ∈ T . Similarly,
xi j = xik holds if and only if pi j = pik is satisfied for all i, j, k ∈ T .
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Proof Truthful reporting is a weakly dominant strategy if the following set of con-
straints are satisfied:

xi j − i pi j ≥ xk j − i pk j ∀i, j, k ∈ T (1)

j pi j − xi j ≥ j pik − xik ∀i, j, k ∈ T . (2)

For any pair of types i, k ∈ T , we have the following two constraints from inequality
(1):

xi j − i pi j ≥ xk j − i pk j ∀ j ∈ T
xkj − kpk j ≥ xi j − kpi j ∀ j ∈ T .

If xi j = xk j holds, we end up with i(pkj − pi j ) ≥ 0 and k(pi j − pkj ) ≥ 0. Then, for
any j ∈ T , we should also have pi j = pkj since all elements in T are strictly positive.
Other parts can be proven similarly. �	

The intuition behind Lemma 1 is that whenever one of these equalities holds, there
is a profitable deviation for some type if the other equality does not hold. Therefore,
transfer rule in example (c) should be x15 = x14 = x25 = x24 = 3. Along with this
transfer rule, example (c) satisfies DIC, EIR constraints. Note that finding DIC, EIR
transfer rules from the relaxed formulation is not generally easy.

Therefore, we found a DIC, EIR mechanism, example (c), which is not a Posted
Price mechanism. Recall that according to Hagerty and Rogerson (1987) every DIC,
EIRmechanism is a Posted Pricemechanismwhen agents have continuous type space.
Our example (c) showed that DIC, EIR constraints for the discrete type space are
also satisfied by other solutions, a testimony to the discrepancy between continuous
and discrete type space. In the following section, we will use the proposed relaxed
formulation to show that Posted Price mechanisms can be formulated exactly.

3 Posted Price and AllocationMaximal mechanisms

In this section, we show that using the constraints of the relaxed formulation, we
can formulate Posted Price mechanisms. We start our discussion by referring to the
following set of inequalities as the final relaxed formulation (FRF). We get rid of
transfer variables and use their upper and lower bounds given in (12) and (13) to come
up with constraint (14). Obviously any DIC and EIR mechanism should satisfy FRF:

pim ≥ pim−1 ≥ · · · ≥ pi2 ≥ pi1 ∀i ∈ T (10)

p1 j ≥ p2 j ≥ · · · ≥ pm−1 j ≥ pmj ∀ j ∈ T (11)

( j − i)pi j ≥
j−1∑

k=1

pik +
m∑

k=i+1

pkj ∀i, j ∈ T (14)

pi j ≤ 1 ∀i, j ∈ T (6)

pi j ≥ 0 ∀i, j ∈ T . (7)
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2 3
1

2

3

(d)

2 3
1

2

3

(e)

2 3
1

2

3

(f)

pxy = 1

Fig. 4 Trade probabilities with different properties. d Ex-post efficient mechanism, e Posted Price mecha-
nism with unique price 2, f Posted Price mechanism with unique price 1

First, we investigate another set of examples when T = {1, 2, 3} in order to clarify
the relation between DIC, EIR mechanisms and FRF. Monotonicity and bounding
constraints for p variables are obviously satisfied for all three examples in Fig. 4. We
will check the constraint (14) for Ex-post efficient example (d):

2p13 ≥ p11 + p12 + p23 + p33 gives 2 = 2
p12 ≥ p11 + p22 gives 1 ≥ 0
p23 ≥ p22 + p33 gives 1 ≥ 0.

Example (d) is a Posted Price mechanism with unique price two but its tie break
rule awards the good to the seller unlike example (e). Posted Price mechanism in
example (e) has another characteristic apart from being DIC, EIR, Ex-post efficient.
It satisfies the constraint (14) with equality for all i, j ∈ T . It is easy to see that
example (f) also satisfies the constraint (14) with equality and we cannot increase any
pi j variable without decreasing another one first. A mechanism with no trade also
satisfies constraint (14) with equality, but we can increase p1m as long as m > 1.
When the cardinality of the type set gets bigger than three, we no longer have Ex-
post Efficiency. However, in this case how much efficiency one can capture becomes
a relevant question. To answer this question, we define the concept of Allocation
Maximality and prove that a feasible mechanism in the FRF is Allocation Maximal
only if it is a Posted Price mechanism.

Definition 1 An allocation rule, p∗, that is feasible in FRF is Allocation Maximal if
and only if there does not exist any other mechanism, p, feasible in FRF such that
pii ≥ p∗

i i for all i ∈ T and pkk > p∗
kk for some k ∈ T .

In order to show the structure of Allocation Maximal mechanisms of FRF, we will
need the following result.

Lemma 2 The following two equations are equivalent for mechanisms feasible in FRF.

( j − i)pi j =
j−1∑

k=i

pik +
j∑

k=i+1

pkj ∀i, j ∈ T (15)
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pi j =
j∑

k=i

pkk ∀i, j ∈ T . (16)

Proof Firstly notice that we can change the constraint (14) with the following:

( j − i)pi j ≥
j−1∑

k=i

pik +
j∑

k=i+1

pkj ∀i, j ∈ T .

We only need to consider p variables that satisfy i ≤ j in the right-hand side. This is
because constraint (14) forces pi j to be zero if i > j is satisfied. Nowwe can continue
with the proof.

Equivalence is obvious for the cases when i is greater than or equal to j since
neither constraint is restrictive in this case. Therefore, we will consider remaining
cases. Assume that (15) holds for all i, j ∈ T . We will use induction to show that if
(15) holds, then (16) also holds. For the base case, j = i + 1, equivalence is simple:

pi j =
j−1∑

k=i

pik +
j∑

k=i+1

pkj =
j∑

k=i

pkk .

Assume that (16) holds for all i, j ∈ T such that j ≤ i + q. Then, consider
j = i + q + 1:

(q + 1)pi j =
j−1∑

k=i

pik +
j∑

k=i+1

pkj =
j−1∑

k=i

k∑

l=i

pll +
j∑

k=i+1

j∑

l=k

pll

=
j−1∑

k=i

( j − k)pkk +
j∑

k=i+1

(k − i)pkk = ( j − i)
j∑

k=i

pkk

= (q + 1)
j∑

k=i

pkk .

Now assume that (16) holds for all i, j ∈ T . Then, we can rewrite the right-hand
side of (15) as:

j−1∑

k=i

pik +
j∑

k=i+1

pkj =
j−1∑

k=i

k∑

l=i

pll +
j∑

k=i+1

j∑

l=k

pll

=
j−1∑

k=i

( j − k)pkk +
j∑

k=i+1

(k − i)pkk = ( j − i)
j∑

k=i

pkk = ( j − i)pi j .

�	
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Proposition 2 An allocation rule that is feasible in FRF is Allocation Maximal if and
only if p1m is equal to one and pi j = ∑ j

k=i pkk holds for all i, j ∈ T .

Proof Assume that p is Allocation Maximal but equality (16) is not satisfied. Then,
using Lemma 2, we also know equality (15) is not satisfied for some i, j ∈ T . We will
show that we can increase some pii and still get feasibility in FRF which contradicts
the Allocation Maximality of p.

First, notice that such a profile would have strictly positive difference, j − i . If
difference is less than or equal to zero then equality (15) should be satisfied because
of the monotonicity and non-negativity constraints. Then, we only need to consider
profiles with j − i > 0. Consider the profile (x, y) which does not satisfy equality
(15) and have the minimum difference, y − x , among all such profiles:

(y − x)pxy >

y−1∑

n=x

pxn +
y∑

n=x+1

pny .

Then, we know that (15) holds for all profiles (k, l) such that (l − k) < (y− x). Using
the induction argument from the proof of Lemma 2, we can show that equivalence
holds for such profiles:

(l − k)pkl =
l−1∑

n=k
pkn + ∑l

n=k+1 pnl ∀k, l ∈ T such that (l − k) < (y − x)

pkl =
l∑

n=k
pnn ∀k, l ∈ T such that (l − k) < (y − x).

For profile (x, y), we can write the following:

(y − x)pxy >

y−1∑

n=x

pxn +
y∑

n=x+1

pny = (y − x)
y∑

n=x

pnn .

Then, using this result and constraint (14), we can conclude that:

pi j >

j∑

n=i

pnn ∀i, j ∈ T such that j ≥ y and i ≤ x,

which means that p1m >
∑m

n=1 pnn . Now define ε = 1 − ∑m
n=1 pnn so that we can

exhibit a contradiction using p∗ defined as follows:

p∗
nn = pnn + ε/m ∀n ∈ T ,

p∗
i j =

j∑

n=i
p∗
nn ∀i, j ∈ T .
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Because of the construction of p∗
i j variables, we know that monotonicity constraints

hold and constraint (15) and (16) are satisfied with equality. Since p∗
i i > pii for all

i ∈ T , the existence of p∗ contradicts the Allocation Maximality of p.
Now assume that p is Allocation Maximal, pi j = ∑ j

n=i pnn holds for all i, j ∈ T
but p1m is less than one. Then, we can construct a new allocation rule p∗ that is feasible
in FRF by increasing pnn for all n ∈ T by ε = (1 − p1m)/m as above. By Definition
1, p is not Allocation Maximal. This is a contradiction.

Now assume that we have an allocation rule that is feasible in FRF and it satisfies
p1m = 1 and pi j = ∑ j

n=i pnn holds for all i, j ∈ T . Using Lemma 2, we also have
equality (15) satisfied for all i, j ∈ T . Assume to the contrary that there exists a p∗
feasible in FRF such that p∗

i i ≥ pii for all i ∈ T and p∗
kk > pkk for some k ∈ T .

Then, we have the following inequality:

m∑

n=1

p∗
nn >

m∑

n=1

pnn = p1m = 1.

Using induction argument as in the proof of Lemma 2, one can also show that p∗
i j ≥

∑ j
n=i p

∗
nn should hold for any i, j ∈ T . Therefore, p∗

1m ≥ ∑m
n=1 p

∗
nn > 1, which

means p∗ is not feasible in FRF and this is a contradiction. �	
We now show that all Allocation Maximal allocation rules in FRF are Posted Price

mechanisms. We first need to define the Posted Price mechanism in general form. The
seller (or the intermediary, if there is one) announces that he will post a price according
to some distribution F and its probability mass function f . After observing the posted
price, the buyer and the seller decide if they want to trade or not. Assuming that agents
always favor trade more than status quo, we can write the Posted Price mechanism as:

pi j = F( j) − F(i − 1), xi j =
j∑

n=i

n fn, ∀i, j ∈ T .

In other words, trade probability, pi j , is equal to the probability that posted price is
in the set {i, i + 1, . . . , j − 1, j}. Transfer value, xi j , is equal to expected payment
with respect to posted price probability mass function. The above definition of Posted
Price mechanism allows the seller (intermediary) to pick a price distribution which
will enable him to randomize the posted price he will announce.

Proposition 3 A DIC, EIR mechanism is Allocation Maximal if and only if it is a
Posted Price mechanism with the price mass function

∑m
n=1 f (n) = 1 where trade is

preferred to status quo.

Proof Assume that a DIC, EIR mechanism (p, x) is Allocation Maximal. Then, allo-
cation rule p should be feasible in the FRF. By Proposition 2, we have p1m = 1 and
pi j = ∑ j

n=i pnn holds for all i, j ∈ T . From constraints (12) and (13), we can write
the following bounds for the transfer rule:
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j pi j −
j−1∑

k=i

pik ≥ xi j ≥
j∑

k=i+1

pkj + i pi j

j
j∑

n=i

pnn −
j−1∑

k=i

k∑

n=i

pnn ≥ xi j ≥
j∑

k=i+1

j∑

n=k

pnn + i
j∑

n=i

pnn

j
j∑

n=i

pnn −
j−1∑

k=i

( j − k)pnn ≥ xi j ≥
j∑

k=i+1

(k − i)pnn + i
j∑

n=i

pnn

j∑

n=i

npnn ≥ xi j ≥
j∑

n=i

npnn .

We see that there is only one transfer rule feasible in the relaxation. This mechanism
is equivalent to the following Posted Price mechanism with probability mass function
f :

fi = pii ∀i ∈ T ⇒ pi j = F( j) − F(i − 1), xi j =
j∑

n=i

n fn, ∀i, j ∈ T .

Since p1m is equal to one, we have
∑m

n=1 f (n) = 1. This mechanism awards the good
to the buyer when both agents have the same type equal to the posted price. In other
words, trade is preferred to status quo where seller keeps the good. Since we utilized
Proposition 2 giving necessary and sufficient conditions, the proof is complete. �	
Corollary 1 The following system of equations is DIC-EIR implementable, and every
feasible solution is a Posted Price mechanism where trade is preferred to status quo.

xi j = j pi j −
j−1∑

k=i

pik ∀ i, j ∈ T (17)

xi j = i pi j +
j∑

l=i+1

pl j ∀ i, j ∈ T (18)

pi j ≤ 1 ∀i, j ∈ T (6)

pi j ≥ 0 ∀i, j ∈ T . (7)

(10) , (11).

The proof directly follows from Lemma 2 and the definition of Posted Price
mechanism. Restricting the allocation variables to be binary gives all Posted Price
mechanisms with unique price where trade is preferred to status quo. Giving positive
probability to more than one price might not be preferable due to practical concerns.
Therefore, we will also investigate Posted Price mechanisms with a unique posted
price and analyze its performance compared to Posted Price mechanism with not
necessarily unique price in Sect. 5.
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4 Bilateral trading under ambiguity

Until this point, we were interested in the general characteristics of DIC, EIR mech-
anisms. However, such analysis does not give specific information that a seller would
need in practice. In order to specify the optimal trade probabilities and expected
transfers, we need an objective function and an assumption about the priors. By relax-
ing the unique common prior assumption, which is commonly used in the literature,
we introduce ambiguity into the problem framework. To deal with non-unique prior,
we consider bilateral trading problem from the perspective of an ambiguity-averse
seller.

As in Gilboa and Schmeidler (1989), we maximize the worst case expected util-
ity of the seller subject to DIC, EIR constraints. The bilateral trade problem with
ambiguity-averse agents was also considered by De Castro and Yannelis (2010). The
authors show that when all agents are ambiguity-averse, for some class of max–min
preferences DIC, EIR mechanisms are Ex-post efficient. For other examples of mech-
anism design problems with ambiguity, we refer to Bose et al. (2006) and Pınar and
Kızılkale (2017). In the following two sections, we consider two types of ambiguity
specifications. The first set based on interval uncertainty is one of themost widely used
polyhedral uncertainty sets in robust combinatorial optimization literature. Interval
uncertainty sets have been applied for a variety of problems in the fields of economics,
production, transportation, etc. The reader may refer to Kouvelis and Yu (2013) for use
of robustness approach in different environments. The second set is constructed based
on φ-divergence ambiguity sets which reflects distributional robustness. As the uncer-
tainty set constructed around the nominal distribution covers all possible probability
distributions in that range, the φ-divergence-based ambiguity region is in accordance
with the DIC concept of robust mechanism design.

4.1 Bilateral tradingmechanism under box ambiguity set

In this section, we derive the robust counterpart for bilateral trading problem under
box ambiguity set. First let us write our objective function as follows:

max
x,p∈X

⎧
⎨

⎩
min
h ∈U

∑

i, j

hi j
(
xi j − i pi j

)
⎫
⎬

⎭
, (19)

where hi j is density of joint distribution of agents type, X contains the constraints
acting on p and x depending on the model used, and U is a set of ambiguity for the
prior h and defined as follows:

U =
⎧
⎨

⎩
li j ≤ hi j ≤ ui j ,

∑

i, j

hi j = 1

⎫
⎬

⎭
.
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In this step, we propose a linear programming model for the robust counterpart of this
problem using Lagrangian duality. Let us consider the inner part of Eq. (19) separately
as follows:

min
li j≤hi j≤ui j

∑

i, j

hi j (xi j − i pi j )

s.t:
∑

i, j

hi j = 1.

then the Lagrangian can be written as:

L(h, μ) =
∑

i, j

hi j (xi j − i pi j ) + μ

⎛

⎝
∑

i, j

hi j − 1

⎞

⎠ ,

and the dual function is:

g(μ) = min
h

L(h, μ) = −μ + min
h

∑

i, j

hi j (xi j − i pi j + μ),

so the Lagrange dual problem is:

max
μ

− μ +
∑

i, j

(
li j (xi j − i pi j + μ)+ + ui j (xi j − i pi j + μ)−

)
,

as a result we obtain the following optimization problem as the robust counterpart
problem:

max
x,p∈X ,μ,a,b

∑

i, j

− μ + li j ai j − ui j bi j

s.t: xi j − i pi j + μ = ai j − bi j ∀i, j ∈ T ,

ai j , bi j ≥ 0 ∀i, j ∈ T .

4.2 Bilateral tradingmechanism under�-divergence ambiguity set

In this section, we derive robust counterpart for our objective function under
φ-divergence-based ambiguity region. Using φ-divergence measures, we probabilis-
tically ensure that the ambiguity set contains the true distribution with a desired level
of confidence. This is the main advantage of ambiguity sets based on φ-divergence
measures over those based on box ambiguity. The reader can refer to Bayraksan and
Love (2015) and Ben-Tal et al. (2010) for other advantages and applications related
to φ-divergence measures in robust optimization problems, specially in data-driven
setting. The construction of the uncertainty region from the given data is out of scope
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Table 1 φ-Divergence measures

Divergence measure φ(t) φ∗(s) Iφ(h, g)

Burg entropy − log(t) + t − 1 − log(1 − s), s < 1
∑

i gi log(
gi
hi

)

Kullback–Leibler t log(t) − t + 1 es − 1
∑

i hi log
(
hi
gi

)

χ2-Distance 1
t (t − 1)2 2 − 2

√
1 − s, s < 1

∑
i

(hi−gi )
2

hi

Hellinger distance (
√
t − 1)2 s

1−s , s < 1
∑

i (
√
hi − √

gi )
2

of this paper. However, we refer the interested reader to Ben-Tal et al. (2013) which
explains how to obtain an approximate uncertainty set for probability vectors h around
nominal distribution, ĥ, as confidence set of confidence level at least (1−α), for exam-
ple. φ-divergence measures are commonly used to reflect the distance between two
probability distributions and defined as follows:

Theφ-divergencemeasure between twoprobability distributionsh = (h1, . . . , hn)T

≥ 0 and g = (g1, . . . , gn)T ≥ 0 in IRn is

Iφ(h, g) =
n∑

i=1

hi φ

(
hi
gi

)

, φ ∈ Φ,

whereΦ is the class of all convex functionsφ(t), t ≥ 0 such thatφ(1) = 0, 0φ(0/0) =
0 and 0φ(p/0) = limu→∞ φ(u)/u.

We suppose that h comes from an uncertainty set constructed around a prior which
can be derived from historical data, forecasting, simulation, etc., and four well-known
φ-divergence functionals are applied as a measure of distance. Table 1 shows their
characteristics (see Ben-Tal et al. 2013 for other specifications and choices for φ). The
reader may also refer to Pardo (2005) for detailed and comprehensive review on this
subject.

Consider the following robust linear constraint:

(a + Bh)T x ≤ d ∀h ∈ M, (20)

where a ∈ IRn, B ∈ IRn×m, d ∈ IR are given parameters; h ∈ IRm is the uncertain
parameter; x ∈ IRn is the optimization vector and the uncertainty region M is given
by

M =
{
h ∈ IRm| h ≥ 0, eT h = 1, Iφ(h, g) ≤ ρ

}
, (21)

where ρ controls the ambiguity level. The large value of ρ means that our confidence
in data is low, and small value for ρ indicates that we trust in data.
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Ben-Tal et al. (2013) proves that:

Theorem 1 A vector x ∈ IR satisfies (20)with uncertainty regionM such that h ∈ M
if and only if there exist η ∈ IR and λ ∈ such that (x, λ, η) satisfies

⎧
⎨

⎩

aT x + η + ρλ + λ
m∑

i=1
hiφ∗

(
bTi x−η

λ

)

≤ d,

λ ≥ 0.

In Theorem 1, bi are the i th column of B and φ∗: IR → IR ∪ {∞} is the conjugate
function of φ which is defined as follows:

φ∗(s) = sup
t≥0

{st − φ(t)}.

Now let us reconsider the objective function of proposed problem with the uncer-
tainty region defined by M as follows:

max
x,p∈X

⎧
⎨

⎩
min
h ∈M

∑

i, j

hi j
(
xi j − i pi j

)
⎫
⎬

⎭
,

which is equal to:

max
x,p∈X ,h∈M,β

⎧
⎨

⎩
β |

∑

i, j

hi j
(
xi j − i pi j

) ≥ β

⎫
⎬

⎭
. (22)

Using Theorem 1 and Table 1, we can derive the robust counterpart for (22) with
different divergence measures as follows:

Burg entropy

max
x,p∈X ,λ≥0,η

⎧
⎨

⎩
−η − ρλ − λ

∑

i, j

(

hi j

(

− log

(

1 −
(

− (
xi j − i pi j

) − η

λ

))))⎫
⎬

⎭
,

Kullback–Leibler

max
x,p∈X ,λ≥0,η

⎧
⎨

⎩
−η − ρλ − λ

∑

i, j

⎛

⎝hi j

⎛

⎝e

( −(xi j−i pi j)−η

λ

)

− 1

⎞

⎠

⎞

⎠

⎫
⎬

⎭
,
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Table 2 Results for models
without ambiguity

m h-Distribution OF3(x∗) OF2 OF1

5 Uniform 0.480 (4) 0.480 0.500

Normal 0.448 (5) 0.448 0.456

10 Uniform 0.840 (7) 0.840 0.861

Normal 0.942 (8) 0.942 0.953

15 Uniform 1.222 (11) 1.222 1.237

Normal 1.263 (11) 1.263 1.280

20 Uniform 1.592 (14) 1.592 1.609

Normal 1.557 (14) 1.557 1.573

χ2-distance:

max
x,p∈X ,λ≥0,η

⎧
⎨

⎩
−η − ρλ − λ

∑

i, j

⎛

⎝hi j

⎛

⎝2 − 2

√
√
√
√1 −

(
− (

xi j − i pi j
) − η

λ

)⎞

⎠

⎞

⎠

⎫
⎬

⎭
,

Hellinger distance

max
x,p∈X ,λ≥0,η

⎧
⎨

⎩
−η − ρλ − λ

∑

i, j

⎛

⎝hi j

⎡

⎣

(−(xi j−i pi j)−η

λ

)

1 −
(−(xi j−i pi j)−η

λ

)

⎤

⎦

⎞

⎠

⎫
⎬

⎭
.

We solve these models numerically, and the results are reported and discussed in
the next section.

5 Computational results

In this section, we present the computational results related to the problems with
the objective functions discussed in Sect. 4. For each problem, we construct three
models with different constraint sets. Model 1 is the general model for robust bilateral
trading model and considers the constraints (1), (2) and (6)–(9). We construct Model
2 by considering the constraints given in Corollary 1. This set of constraints lead to
Posted Price mechanisms. In Model 3, we consider the same constraints as in Model
2 but pi j ’s are defined as binary variables and as a result Model 3 is even tighter
than Model 2. This modification results in Posted Price mechanism with unique price
which is more applicable. We consider these three models in our computational study
to investigate how objective function value is changed if we want to apply the Posted
Price mechanism.

In each table, first column is labeled with “m” which denotes the cardinality of set
T . The second column entitled “h-distribution” specifies the distribution that h comes
from. We consider two types of distributions for this purpose, “Uniform” stands for
the uniform distribution such that hi j = 1/m2 and “Normal” refers to the normal
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Table 3 Results for models
under box ambiguity

m h-Distribution r OF3(x∗) OF2 OF1

5 Uniform 0.5 0.240 (4) 0.240 0.250

0.25 0.360 (4) 0.360 0.375

0.1 0.432 (4) 0.432 0.450

Normal 0.5 0.224 (5) 0.224 0.228

0.25 0.336 (5) 0.336 0.342

0.1 0.403 (5) 0.403 0.410

10 Uniform 0.5 0.420 (8) 0.420 0.431

0.25 0.630 (8) 0.630 0.646

0.1 0.756 (8) 0.756 0.775

Normal 0.5 0.471 (8) 0.471 0.477

0.25 0.707 (8) 0.707 0.715

0.1 0.848 (8) 0.848 0.858

15 Uniform 0.5 0.611 (11) 0.611 0.619

0.25 0.917 (11) 0.917 0.928

0.1 1.100 (11) 1.100 1.114

Normal 0.5 0.631 (11) 0.631 0.640

0.25 0.947 (11) 0.947 0.960

0.1 1.137 (11) 1.137 1.152

20 Uniform 0.5 0.796 (14) 0.796 0.804

0.25 1.194 (14) 1.194 1.207

0.1 1.433 (14) 1.433 1.448

Normal 0.5 0.778 (14) 0.778 0.787

0.25 1.167 (14) 1.167 1.180

0.1 1.401 (14) 1.401 1.416

distribution with N ∼ (m2 , (m8 )
2
). The last three columns provide objective function

values forModels 3,Model 2 andModel 1, respectively. The value between parenthesis
in the “OF3(x∗)” column is the unique price that has to be posted in Model 3 at
optimality. The problem instances were formulated in GAMS 23.3.3 and solved using
BARON (Tawarmalani and Sahinidis 2005) and COINIPOPT (Wächter and Biegler
2006) solvers.

In Table 2, we give results for the problem without ambiguity. This helps us to have
a clear insight about the behavior of the problem with ambiguity.

In Table 3, the results for the problem under box ambiguity set are illustrated. The
“r” column defines the range of the interval by specifying the upper and lower bounds
using the following formulae: ui j = hi j (1 + r) and li j = hi j (1 − r). We set three
values of 0.1, 0.25 and 0.5 for “r” which reflect low, medium and high ambiguity,
respectively. Results suggest that it is optimal for Posted Price mechanisms to have
unique price.

Results for the problem under different φ-divergence measures are summarized in
Tables 4, 5, 6 and 7. The column ρ is the same parameter introduced in (21) which
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Table 4 Results for models
under Burg Entropy divergence
measure

m h-Distribution ρ OF3(x∗) OF2 OF1

5 Uniform 0.1 0.168 (4) 0.173 0.196

0.01 0.358 (4) 0.358 0.378

0.001 0.439 (4) 0.439 0.459

Normal 0.1 0.146 (4) 0.169 0.195

0.01 0.318 (5) 0.328 0.346

0.001 0.404 (5) 0.404 0.419

10 Uniform 0.1 0.284 (7) 0.302 0.323

0.01 0.620 (7) 0.622 0.642

0.001 0.766 (7) 0.767 0.788

Normal 0.1 0.326 (7) 0.343 0.361

0.01 0.692 (8) 0.695 0.710

0.001 0.858 (8) 0.858 0.869

15 Uniform 0.1 0.400 (11) 0.427 0.448

0.01 0.883 (11) 0.892 0.911

0.001 1.107 (11) 1.107 1.123

Normal 0.1 0.412 (10) 0.439 0.461

0.01 0.918 (11) 0.921 0.940

0.001 1.146 (11) 1.146 1.164

20 Uniform 0.1 0.461 (12) 0.552 0.572

0.01 1.154 (14) 1.159 1.177

0.001 1.444 (14) 1.444 1.460

Normal 0.1 0.423 (12) 0.539 0.559

0.01 1.124 (14) 1.127 1.146

0.001 1.409 (14) 1.409 1.427

determines the uncertainty region around h. The three values that ρ can take are 0.1,
0.01 and 0.001, which correspond to high, medium and low ambiguity, respectively.

As to be expected, the first observation is that as the ambiguity increases, we see
that the objective function value decreases for all models and instances. Similarly,
when ambiguity decreases, the difference between objective function values in all
models also decreases and in low level of ambiguity the objective function values for
Model 2 andModel 3 are equal in most cases. This valuable result means that when we
encounter low level of ambiguity the proposed “Posted Price mechanism with unique
price” which is quite common practice can provide a solution without significant loss
of profit. We also observe that in the absence of ambiguity Model 2 and Model 3
provide the same solution which means that the Posted Price mechanisms with unique
price are the optimal mechanisms. However, this is not the case for the models with
ambiguity.

In Table 8, we summarize the amount of profit loss in percentage caused by the
application of the Posted Price mechanism. The “Uncertainty set” column specifies
the considered uncertainty set. The “Min”, “Max” and “Avg.” labels stand for the
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Table 5 Results for models
under Kullback–Leibler
divergence measure

m h-Distribution ρ OF3(x∗) OF2 OF1

5 Uniform 0.1 0.125 (4) 0.138 0.165

0.01 0.352 (4) 0.352 0.373

0.001 0.438 (4) 0.438 0.458

Normal 0.1 0.107 (4) 0.142 0.170

0.01 0.312 (4) 0.322 0.341

0.001 0.403 (5) 0.403 0.418

10 Uniform 0.1 0.204 (7) 0.234 0.259

0.01 0.609 (7) 0.612 0.633

0.001 0.765 (7) 0.765 0.786

Normal 0.1 0.249 (7) 0.270 0.293

0.01 0.681 (8) 0.684 0.700

0.001 0.857 (8) 0.857 0.868

15 Uniform 0.1 0.283 (10) 0.328 0.351

0.01 0.866 (11) 0.876 0.894

0.001 1.105 (11) 1.105 1.121

Normal 0.1 0.295 (10) 0.337 0.362

0.01 0.900 (11) 0.904 0.924

0.001 1.144 (11) 1.144 1.162

20 Uniform 0.1 0.363 (13) 0.421 0.444

0.01 1.132 (14) 1.138 1.157

0.001 1.441 (14) 1.441 1.458

Normal 0.1 0.353 (12) 0.413 0.435

0.01 1.101 (14) 1.106 1.125

0.001 1.407 (14) 1.407 1.424

minimum, maximum and average profit loss in percentage, respectively, considering
the instances presented in Tables 3, 4, 5, 6 and 7. The “Unique Posted Price” column
represents the difference between objective function values of Model 3 and Model
1, and the “Posted Price” column provides the difference between objective function
values of Model 2 and Model 1. For example, in the uncertainty set defined by Burg
Entropy divergence measure, on average we lose 7.2% of the objective function value
for optimal DIC, EIRmechanism if we insist on a Posted Pricemechanismwith unique
price.

6 Conclusion

In this study, we focused on the robust bilateral trade problemwith discrete types. First,
we formulated a general model for DIC, EIR mechanisms and considered its relax-
ation which proved to be useful in two different ways. Given any allocation rule, the
relaxation can be used to find transfer rules that give DIC, EIR mechanisms. Besides,
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Table 6 Results for models
under χ2-distance divergence
measure

m h-Distribution ρ OF3(x∗) OF2 OF1

5 Uniform 0.1 0.200 (4) 0.200 0.277

0.01 0.394 (4) 0.394 0.414

0.001 0.451 (4) 0.451 0.471

Normal 0.1 0.226 (4) 0.241 0.254

0.01 0.356 (5) 0.360 0.378

0.001 0.417 (5) 0.417 0.430

10 Uniform 0.1 0.442 (7) 0.449 0.469

0.01 0.685 (7) 0.687 0.707

0.001 0.787 (7) 0.788 0.809

Normal 0.1 0.492 (8) 0.506 0.521

0.01 0.766 (8) 0.766 0.779

0.001 0.883 (8) 0.883 0.894

15 Uniform 0.1 0.626 (10) 0.640 0.660

0.01 0.983 (11) 0.986 1.004

0.001 1.141 (11) 1.141 1.156

Normal 0.1 0.646 (11) 0.660 0.681

0.01 1.019 (11) 1.020 1.038

0.001 1.180 (11) 1.180 1.198

20 Uniform 0.1 0.802 (14) 0.831 0.850

0.01 1.283 (14) 1.284 1.302

0.001 1.487 (14) 1.487 1.504

Normal 0.1 0.786 (14) 0.809 0.829

0.01 1.251 (14) 1.251 1.269

0.001 1.453 (14) 1.453 1.470

constraints of the relaxation can be used to formulate Posted Price mechanisms which
are DIC and EIR. On the other hand, we show that Ex-post Efficiency can be obtained
together with DIC and EIR if and only if convex hull of agents’ efficient type sets
have finite intersection. When agents share the same type set with cardinality larger
than or equal to four, Ex-post efficiency is infeasible but one can consider Allocation
Maximal mechanisms. We showed that the Posted Price mechanisms are not the only
DIC, EIR mechanisms but they are the only ones satisfying Allocation Maximality
together with DIC, EIR. Lastly, we introduced different sets of priors and considered
the problem in the shoes of ambiguity-averse intermediary. To manage the ambiguity
in the probability distribution of agents types, we derived robust counterparts for the
proposed objective function under box and φ-divergence ambiguity specifications.We
also examined the performance of the proposed robust models based on an extensive
numerical study.
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Table 7 Results for models
under Hellinger distance
divergence measure

m h-Distribution ρ OF3(x∗) OF2 OF1

5 Uniform 0.1 0.066 (4) 0.087 0.106

0.01 0.309 (4) 0.309 0.329

0.001 0.422 (4) 0.422 0.442

Normal 0.1 0.056 (4) 0.094 0.113

0.01 0.272 (4) 0.284 0.306

0.001 0.385 (5) 0.386 0.403

10 Uniform 0.1 0.107 (7) 0.147 0.166

0.01 0.531 (7) 0.535 0.556

0.001 0.735 (7) 0.736 0.757

Normal 0.1 0.138 (7) 0.172 0.191

0.01 0.592 (8) 0.602 0.618

0.001 0.823 (8) 0.823 0.834

15 Uniform 0.1 0.150 (9) 0.205 0.223

0.01 0.754 (10) 0.764 0.784

0.001 1.060 (11) 1.060 1.077

Normal 0.1 0.155 (10) 0.210 0.229

0.01 0.780 (11) 0.789 0.809

0.001 1.098 (11) 1.098 1.116

20 Uniform 0.1 0.192 (12) 0.263 0.280

0.01 0.939 (14) 0.992 1.011

0.001 1.382 (14) 1.382 1.399

Normal 0.1 0.188 (12) 0.256 0.274

0.01 0.951 (14) 0.964 0.985

0.001 1.349 (14) 1.349 1.360

Table 8 Profit loss in percentage for different models

Uncertainty set Unique Posted Price (OF3) Posted Price (OF2)
Min Max Avg. Min Max Avg.

Box 1.0 4.0 1.8 1.0 4.0 1.8

Burg Entropy 1.1 25.1 7.2 1.1 13.3 3.9

Kullback–Leibler 1.2 37.1 9.2 1.2 16.5 4.8

χ2 1.1 27.8 4.6 1.1 27.8 3.6

Hellinger 1.0 50.4 14.2 1.0 18.0 5.5

Appendix

Proof of Proposition 1

Proof Assume that there exists a DIC, EIR and Ex-post Efficient mechanism (p∗, x)
but convex hull of sets T ∗

b and T ∗
s have infinite intersection. Then, there exist b j ∈ T ∗

b
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and si ∈ T ∗
s such that b j is strictly less than si . By definition of efficient type sets,

there exist types sl ∈ Ts and bk ∈ Tb satisfying sl < b j and bk > si . Then, we can
write sl < b j < si < bk so that pl j = plk = pik = 1 holds. We know from Lemma 1
that xl j = xlk = xik should also hold in order to satisfy DIC constraints. Given all this
information, let us check EIR constraints.We see that b j ≥ xl j ≥ sl and bk ≥ xik ≥ si
cannot be satisfied together with xl j = xik since we have b j < si . Hence, there is no
transfer rule we can use together with p∗ to have a DIC, EIR mechanism. This is a
contradiction.
Now we start from efficient type sets T ∗

b and T ∗
s whose convex hulls have finite

intersection. If both efficient type sets are empty, we have a trivial case bm ≤ s1 where
seller always values the good more. Then, any Posted Price mechanism imposes Ex-
post Efficiency. In the non-trivial case, both sets are non-empty and minimum type,
b, in T ∗

b should be bigger than or equal to maximum type, s̄, in T ∗
s . Here, any Posted

Price mechanism with unique price x ∈ [s̄, b] will be Ex-post efficient. Since all
Posted Price mechanisms are DIC, EIR, the proof is complete. �	
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