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Abstract Acontracting game under asymmetric information specific to two-echelon
supply chain coordination between a retailer of unknown type and a supplier is studied.
When the parameter which is private information to the retailer (holding cost) is known
up to an interval of uncertainty, a uniform discrete approximation for retailer types
leads to closed-form solutions where the joint (coordinated) optimal order quantity
for a modified holding cost plays a major role. Furthermore, the closed-form solutions
result in increasing information rent for higher types under easy-to-verify conditions
involving strict lower limits on the total holding costs of retailer and supplier and the
difference between uncoordinated optimal costs of consecutive retailer types.

Keywords Two-echelon supply chain coordination · Incentives · Principal-agent
problem · Convex optimization

1 Introduction

The purpose of this brief paper is to identify cases of a two-echelon supply chain
coordination game under asymmetric information where the problem is solved in
closed-form. Departing from the setting of [1] it considers a retailer and a supplier
where the retailer has market power to enforce any production quantity on the supplier
who does not know the retailer’s holding cost (referred to as the retailer type). The
supplier, to minimize his costs by inducing different behaviour of the retailer, offers
a menu of contracts to the retailer, while ensuring individual rationality (participation
incentive) and incentive compatibility (incentive to report the true holding cost) on
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the part of the retailer. The problem is well-studied in various papers under different
assumptions (see e.g., continuum of types [1,2], roles of retailer and supplier swapped
[3], two-dimensional retailer types [4], supplier setup cost being an additional decision
variable [5], two retailer types and no supplier holding cost [6]), and can be situated in
the more general literature on contract design, economic incentives and the principal-
agent problem; see [7]. In particular, we concentrate on a model where the holding
cost parameter of the retailer can be any one of a finite number of types as in [6,8].
The contribution of the present paper is to derive in Proposition 1 and Theorem 1 full
(explicit) solutions for multiple types when the retailer types are equally likely, and
the holding cost parameters of consecutive retailer types differ by a constant, which
would typically be the case when one can only pinpoint an interval of uncertainty
on the holding cost of the retailer and defines a discrete uniform distribution on the
interval of uncertainty. It is usually difficult to give a closed-form solution in general
for this type of model; e.g., [6,8] give a full solution for two retailer types only. Our
closed-form results depend on the joint (coordinated) optimal order quantity for a
shifted holding cost. They also provide additional insights since the conditions under
which they hold are expressed as strict lower bounds on the total holding costs of
retailer and supplier, and on the difference between uncoordinated optimal costs of
consecutive retailer types. In particular, the results (e.g., Proposition 1 and part of
Theorem 1) are valid under the condition (among others) that the total holding cost for
the supplier and each assumed retailer type exceeds a (decreasing with type) multiple
of the uniform increase in holding cost, and if the difference between uncoordinated
optimal costs of consecutive retailer types is larger (up to a problem-specific constant)
than a quantity involving the increment in holding cost between consecutive retailer
types and the joint (coordinated) optimal order quantity for a shifted holding cost.
Furthermore, the (easy to check) conditions guarantee (at least in some parts of our
results) increasing information rents to higher types, as is typically the case in economic
theory.

2 Two-echelon supply chain coordination

The setting involves a retailer and a supplier. The retailer faces external demand with
known rate d > 0. Demand must be satisfied. Hence, there is no backlogging. The
supply chain is using a pull ordering strategy, i.e., the retailer places orders at the
supplier. The retailer follows a cost minimizing optimal policy. The supplier may
decrease his costs by convincing the retailer to modify the ordering policy. Every
time an order is placed at the supplier, the retailer incurs a fixed ordering cost equal
to f > 0. Lead times are assumed to be zero, and the retailer is assumed to have a
holding cost equal to h > 0, which is unknown to the supplier. The retailer who is
minimizing costs, places an order if and only if his inventory is depleted. Using the
well-known economic order quantity (EOQ) model the per-unit time cost function of
the retailer is given as:

φR(x) = f d
1

x
+ 1

2
hx,
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which admits the minimizer x∗
R = √

2d f/h. The supplier has a similar cost structure
with a fixed setup cost equal to F > 0, and a holding cost equal to H > 0, while
production takes place at the constant rate p > 0 (production rate p should be greater
than or equal demand rate d). To minimize costs, the supplier produces using a just-
in-time lot-for-lot policy. The per-unit time cost function of the supplier is

φS(x) = Fd
1

x
+ 1

2
H
d

p
x,

which isminimized at x∗
S = √

2pF/H . Both the supplier and the retailer act according
to their own interests and therefore, their optimal order quantities are most likely sub-
optimal for the entire supply chain unless they coordinate to lower the joint total costs.
If they cooperated their joint cost function would be

φJ (x) = d( f + F)
1

x
+ 1

2

(
h + H

d

p

)
x,

which would be minimized at the optimal joint order quantity

x∗
J =

√
2d( f + F)/

(
h + H

d

p

)
. (1)

It can be shown that x∗
j lies between the individual optimal order quantities x∗

R , x
∗
S of

the retailer and the supplier, respectively (c.f. [8]).
The retailer is a rational agent minimizing his costs and has market power to dictate

any order quantity on the supplier. The retailer chooses his own optimal order quantity
(which is equal to the production quantity x∗

R) unless there is an incentive to do
otherwise offered by the supplier who wishes to decrease his costs. Such an incentive
is usually implemented in the form of a side payment from the supplier to the retailer.
In case the incentive scheme is accepted by the retailer, the effect is that the costs
decrease for the entire supply chain. Thus, it is assumed that the supplier offers a
menu of contracts (xk, zk), k = 1, . . . , K , to the retailer, where zk is a side payment to
the retailer in the k-th contract. More precisely, the supplier not knowing precisely the
holding cost of the retailer, reckons that the potential holding cost values can be one of
{h1, h2, . . . , hK }, where h1 < h2 < · · · < hK . We shall refer to k ∈ K = {1, . . . , K }
as the type of the retailer. Hence, the supplier designs a menu of K individually
rational contracts to offer to the retailer, applying the general theory of principal-agent
problems as in [7], or more precisely the case of a contracting or screening game
(hence, the choice of the contract type by the retailer is taken as an indication of
his holding cost value). Let ωk represent the probability (or weight) of type k, and
φk∗
R = √

2 f dhk the optimal cost of the retailer if he ordered his EOQ (we refer to this
cost as the “uncoordinated optimal cost” of a retailer of type k) .

Let φk
R(x) = f d 1

x + 1
2hkx denote the per unit time cost function of the retailer

of type k, for k = 1, . . . , K . Invoking the Revelation Principle the supplier faces the
following non-convex optimization problem:
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min
∑
k∈K

ωk(φS(xk) + zk)

subject to

φk
R(xk) − zk ≤ φk∗

R , ∀k ∈ K (2)

φk
R(xk) − zk ≤ φk

R(x�) − z�, ∀k, � ∈ K
xk ≥ 0, ∀k ∈ K, (3)

where he minimizes the expected cost (or weighted total cost) subject to constraints
inducing a certain kind of behaviour on the part of the retailer. The constraints of the
model are 1. individual rationality constraints (2) that expresses the requirement that
the retailer is not worse off compared to his optimal order quantity, and 2. incentive
compatibility constraints (3) to induce the retailer not to misreport his type. In [8] this
model is studied at length with properties of optimal contracts and explicit solution
for two retailer types. In the present section we shall obtain an explicit solution of the
problemwithmultiple retailer types under some conditions on the problem parameters
that are quite easy to check. Furthermore, our results are valid for a uniform discrete
approximation to the unknown holding cost parameter of the retailer and under some
additional conditions.

Let us define the information rent variables

yk = zk − (φk
R(xk) − φk∗

R ) ≥ 0, ∀k ∈ K.

With this definition we obtain a convex optimization problem, referred to as (2ECH),
equivalent to the original non-convex problem above.

min
∑
k∈K

ωk

(
φS(xk) + φk

R(xk) + yk − φk∗
R

)

subject to

y� − yk + 1

2
(h� − hk)x� ≤ φ�∗

R − φk∗
R , ∀k, � ∈ K

xk, yk ≥ 0, ∀k ∈ K.

By Lemmas 3.3 and 3.4 of [8] we know the following facts that are easy to prove:
1. any feasible menu of contracts satisfies x1 ≥ x2 ≥ · · · ≥ xK , and 2. the adjacent
incentive compatibility constraints suffice to ensure general incentive compatibility
constraints above. Hence we can simplify the problem above to the following problem
(2ECHSC):

min
∑
k∈K

ωk

(
φS(xk) + φk

R(xk) + yk − φk∗
R

)
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subject to

yk+1 − yk + 1

2
(hk+1 − hk)xk+1 ≤ φk+1∗

R − φk∗
R , ∀k = 1, . . . , K − 1,

yk − yk+1 + 1

2
(hk − hk+1)xk ≤ φk∗

R − φk+1∗
R , ∀k = 1, . . . , K − 1,

yk ≥ 0, ∀k ∈ K,

x1 ≥ x2 ≥ · · · ≥ xK ≥ 0.

The above is a linearly constrained convex optimization problem solvable using off-
the-shelf solvers. It was solved by a cutting plane algorithm in [8]. Its specific separable
structure helps in identifying closed-form solutions as we shall see next.

3 Explicit solutions

Now we shall obtain closed-form solutions under certain conditions that are very easy
to check. In particular, our results are valid under the assumption that all types have
equal weights and all consecutive holding cost values differ by the same constant,
provided that some other conditions on the problem parameters are satisfied. These
two assumptions (equal weights and uniform difference) could be fulfilled for instance
when the supplier is faced with an interval of uncertainty [h, h̄] for the retailer holding
cost, and having no prior probabilistic information on the true holding cost value of the
retailer, adopts a discrete uniform distribution on the interval by choosing K equally
spaced values, by �h, in the interval [h, h̄] including the end-points.

We begin the analysis with a simple observation that is useful in solving for the
information rent variables when the remaining variables are fixed.

Lemma 1 If all ak ≥ 0 (with bk ≥ ak), fk > 0 for all k ∈ K, then the following
optimization problem

min
yk

m∑
k=1

fk yk

subject to

ak ≤ yk+1 − yk ≤ bk, ∀k = 1, . . . ,m − 1,

yk ≥ 0, ∀k = 1, . . . ,m,

admits an optimal solution of the form y∗
1 = 0 and y∗

k = ∑k−1
i=1 ai for k = 2, . . . ,m.

Proof By a change of variables�i = yi+1−yi for all i = 1, . . . ,m−1, and observing
that we can always set y1 = 0 at optimality, we obtain the equivalent problem

min
�i

m∑
i=2

fi

(
i−1∑
k=1

�k

)
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subject to

ci ≤ �i ≤ ci+1, ∀i = 1, . . . ,m − 1,

which is solved at �∗
i = ci , i = 1, . . . ,m − 1. �	

Now, under the uniform discrete approximation to the holding cost values if 1. the
joint supplier holding cost and the holding cost of the kth retailer type is greater than
a positive constant, namely the uniform increment �h in holding cost times K − k,
and 2. if the incremental difference between uncoordinated optimal total costs of the
consecutive types k + 1 and k differ by a quantity larger than an easily computable
number, then we have a closed-form solution of problem (2ECH). Define for conve-
nience the quantity x(H, h) as the joint (coordinated) optimal order quantity viewed
as a function of H and h, [it is in fact x∗

J already defined in (1)]:

x(H, h) =
√
2d( f + F)/

(
h + H

d

p

)
. (4)

We shall see below that the optimal order quantities for each retailer type k corresponds
to a coordinated joint optimal order quantity between the supplier and retailer for a
modification of the holding cost. The result is valid if the total holding cost for the
supplier and each retailer type exceeds a (decreasingwith type)multiple of the uniform
increase in holding cost, and if the difference between uncoordinated optimal costs
of consecutive retailer types is larger than the product of increment in holding cost
with the the joint (coordinated) optimal order quantity for a shifted holding cost.
For ease of notation, we define Ck+1,k = √

2 f d(hk + �h) − √
2 f dhk for all k =

1, . . . , K −1. The parameterCk+1,k represents the increase in the “optimal cost value”
(in an uncoordinated environment) of retailer type k+1 with respect to type k. Notice
that Ck+1,k is a decreasing function of k.

Proposition 1 For uniform types (ωk = ω for all k ∈ K), and equidistant holding
costs (hk+1 − hk = �h for all k = 1, . . . , K − 1), if

H
d

p
+ hk > �h(K − k), ∀k = 1, . . . , K − 1, (5)

and

Ck+1,k >
1

2
x(H, hk − (K − k)�h)�h, ∀k = 1, . . . , K − 1, (6)

then
x∗
k = x(H, hk − (K − k)�h), ∀k = 1, . . . , K (7)

and

y∗
k =

k−1∑
i=1

(
Ci+1,i − 1

2
x(H, hi − (K − i)�h)�h

)
, ∀k = 1, . . . , K . (8)

solve problem (2ECH).
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Proof We omit the non-negativity and monotonicity constraints on the x vari-
ables. Our construction will satisfy these automatically. The first-order conditions
(that are necessary and sufficient due to convexity1) with respect to variables xk ,
k = 1, . . . , K are expressed as follows using non-negative Lagrange multipliers
λL
1 , λU2 , λL

2 , . . . , λUK−1, λ
L
K−1, λ

U
K :

−d( f + F)

x21
+ 1

2

(
h1 + H

d

p

)
− 1

2
�hλL

1 = 0

−d( f + F)

x2k
+ 1

2

(
hk + H

d

p

)
+ 1

2
�hλUk − 1

2
�hλL

k = 0 ∀k = 2, . . . , K − 1,

−d( f + F)

x2K
+ 1

2

(
hK + H

d

p

)
+ 1

2
�hλUK = 0,

and we have the dual feasibility and complementarity conditions:

1 + λL
1 − λU2 ≥ 0 ⊥ y1 ≥ 0,

1 − λL
k−1 + λUk + λL

k − λUk+1 ≥ 0 ⊥ yk ≥ 0, k = 2, . . . , K − 1,

1 + λUK − λL
K−1 ≥ 0 ⊥ yK ≥ 0

where the notation . . . ≥ 0 ⊥ yk ≥ 0 denotes the complementarity condition between
the dual constraint and the variable yk . Notice that from the pair of non-negative dual
multipliers λUk , λL

k at most one can assume a positive value at optimality.
Now, set the dual λmultipliers as follows: λUk = 0, λL

k = K −k for k = 1, . . . , K −
1, and λUK = 0. These values are all positive and satisfy the conditions as equalities,
i.e., we have

1 − λL
k−1 + λUk + λL

k − λUk+1 = 0, k = 1, . . . , K − 1,

1 + λUK − λL
K−1 = 0,

with the exception of

1 + λL
1 − λU2 > 0.

The first-order conditions above with respect to the x variables are satisfied by the x∗
k

given in the statement of the proposition along with our choice of λ values. They also
satisfy non-negativity by (5), and the monotonicity constraints. With the choice of the
yk as in the proposition we have positive (non-negative since y1 = 0) values for all
the y variables due to condition (6), and they are in complementarity with the above
inequalities. Furthermore, for our choice of x∗

k ’s, one simply finds optimal information
rents by solving the linear optimization problem [notice that x∗

k satisfy the conditions
ak > 0, k = 1, . . . , K − 1 if (6) hold]:

1 Recall that with linear constraints the Slater condition is not needed, c.f. [9].
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min
yk

∑
k∈K

ωk yk

subject to

ak ≤ yk+1 − yk ≤ bk, ∀k = 1, . . . , K − 1,

yk ≥ 0, ∀k = 1, . . . , K ,

where ak = φk+1∗
R − φk∗

R − 1
2�hx∗

k and bk = φk+1∗
R − φk∗

R − 1
2�hx∗

k+1, for all
k = 1, . . . , K − 1. Since, under the conditions of the proposition we have ak < bk ,
and ak ≥ 0 for all k = 1, . . . , K − 1 then we can invoke Lemma 1 and assert that
y∗
k = ∑k−1

i=1 ai with y∗
1 = 0.

Therefore, we have constructed an optimal solution for the problem ignoring non-
negativity and monotonicity constraints on the x variables. However, our optimal
solution for a relaxation of the original problem is also feasible, and hence optimal for
the original problem. �	
Under the conditions of the proposition, we obtain that the optimal information rents
are increasing in retailer type. However, this is not always the case when we deviate
from the conditions of the proposition. Consider an example from [8] with 3 types,
F = 1, H = 5 f = 6, and h1 = 1, h2 = 2, h3 = 6, d = p = 1 and unit weights.
In this case, optimal information rents y∗

k for types k = 1, 2, 3 are found to be equal
to 0, 0.435 and 0.021, respectively. The difficulty in solving such cases in closed-
form stems from the difficulty of solving the information rent problem in parametric
form optimally when there exists k such that ak = bk , and there are negative valued
aks at an optimal solution. In such cases, Lemma 1 is no longer valid. This situation
occurs when two consecutive types are offered the same contract at optimality. This
is precisely the case at k = 1 in this example, since both types 1 and 2 are offered the
same contract at the optimum.

On the other hand, one can easily find examples where the conditions of Proposition
1 are fulfilled. For example consider an interval of uncertainty for the holding cost
parameter given as [9/8, 38/8]. Creating K = 30 equally likely types with�h = 1/8,
d = p = 1, f = 9, F = 1, H = 4, all conditions hold, and one readily obtains the
solution applying the formulae given.

A further explicit result is given below in Theorem 1 where the optimal order
quantities are now modifications of the coordinated joint optimal order quantity for
an adjusted holding cost value. We also need the additional conditions (9)–(11) which
essentially depend on the existence of a cut-off or separator type k∗ which is the
smallest value of the type index k such that conditions (5)–(6) are assumed to hold
for all types with index larger than or equal to k∗ whereas for smaller indices other
conditions should apply. When k∗ does not exist we can construct an optimal solution
under different conditions.

Theorem 1 Assume uniform types (ωk = ω for all k ∈ K), and equidistant holding
costs (hk+1 − hk = �h for all k = 1, . . . , K − 1). Then we have the following:
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1. If there exists a “separator index value” k∗ ∈ K\{K } such that conditions (5)–(6)
hold for k = k∗, k∗ + 1, . . . , K − 1, i.e., k∗ is the smallest index such that

x(H, hk∗ − (K − k∗)�h) <
2Ck∗+1,k∗

�h

with

2C2
k∗,k∗−1

�h

[
hk∗−1 + H

d

p
− (K − k∗ + 1)�h

]
≤ d( f + F)�h, (9)

d( f + F)�h ≤ 4
C2
k,k−1C

2
k+1,k

C2
k,k−1 − C2

k+1,k

, ∀k = 2, . . . , k∗ − 1, (10)

and,

x(H, hk) <
2Ck+1,k

�h
, ∀k = 1, . . . , k∗ − 1, (11)

then

x∗
k = 2Ck+1,k/�h, ∀k = 1, . . . , k∗ − 1

x∗
k = x(H, hk − (K − k)�h), ∀k = k∗, . . . , K

with

y∗
k =

k−1∑
i=k∗

(
Ci+1,i − 1

2
x(H, hi − (K − i)�h))�h

)
, ∀k = k∗ + 1, . . . , K ,

and the remaining information rent variables equal to zero, solve (2ECH).
2. Under the conditions a, b, and c below:

a. there does not exist k∗ ∈ K\{K } such that conditions (5)–(6) hold
b. there exists k, k̄ ∈ K such that ∃k : k < k < k̄ and, we have

x(H, hk) <
2Ck+1,k

�h
, ∀k = 1, . . . , k

and

2Ck+1,k

�h
≤ x(H, hk) ≤ 2Ck,k−1

�h
, ∀k = k + 1, . . . , k̄ − 1,

x(H, hk) >
2Ck,k−1

�h
, ∀k = k̄, . . . , K

123



670 M. Ç. Pınar

with inequalities

d( f + F)�h ≥ 2C2
k+1,k(hk − �h + Hd/p)

�h
(12)

d( f + F)�h ≤
2C2

k̄,k̄−1
(hk̄ + �h + Hd/p)

�h
(13)

valid,
c.

d( f + F)�h ≤ 4
C2
k,k−1C

2
k+1,k

C2
k,k−1 − C2

k+1,k

, ∀k = 2, . . . , k and k = k̄, . . . , K − 1,

(14)
the following choice of

x∗
k = 2Ck+1,k/�h ∀k = 1, . . . , k

x∗
k = x(H, hk) ∀k = k + 1, . . . , k̄ − 1

x∗
k = 2Ck,k−1/�h ∀k = k̄, . . . , K

with all information rent variables equal to zero solves (2ECH).

Proof We again ignore for the time being the non-negativity and monotonicity condi-
tions. The proof proceeds as the proof of Proposition 1 by constructing a primal-dual
pair of solutions satisfying KKT conditions which are sufficient as the problem is
convex with linear constraints.

For part 1, let k∗ be the index value fulfilling the stated conditions.
The first-order conditions with respect to variables xk , k = 1, . . . , k∗ − 1 are

expressed as follows using non-negative Lagrangemultipliers λL
1 , λU2 , λL

2 , . . . , λUk∗−1,

λL
k∗−1:

−d( f + F)

x21
+ 1

2

(
h1 + H

d

p

)
− 1

2
�hλL

1 = 0

−d( f + F)

x22
+ 1

2

(
h2 + H

d

p

)
+ 1

2
�hλU2 − 1

2
�hλL

2 = 0,

and so on until

−d( f + F)

x2k∗−1

+ 1

2

(
hk∗−1 + H

d

p

)
+ 1

2
�hλUk∗−1 − 1

2
�hλL

k∗−1 = 0.

We set the information variables yk to zero for k = 1, . . . , k∗ − 1, and we choose

λL
k = 2C2

k+1,k(hk+Hd/p) − d( f + F)�h2

2�hC2
k+1,k

>0, and λUk = 0, k = 1, . . . , k∗ − 1,
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(positivity of λL
k is a consequence of (11)) and xk = 2Ck+1,k/�h, k = 1, . . . , k∗ − 1.

Now, by simple algebra it is verified that these choices for y, x and λ satisfy the
KKT conditions using the conditions (10)–(11). In particular, the fact that the dual
constraints

1 − λL
k−1 + λUk + λL

k − λUk+1 ≥ 0, k = 1, . . . , k∗ − 1,

(with λUk∗ = 0, see below) hold with our choice of λ multipliers is a consequence
of condition (10). Furthermore, these are in complementarity with our choice of y
variables.

Now, we pass to the part k = k∗, k∗ + 1, . . . , K . Here we shall mimic the proof
of Proposition 1. Namely, our construction will satisfy the KKT conditions for k =
k∗, k∗ + 1, . . . , K as in Proposition 1. More precisely, we consider the first-order
conditions with respect to the x variables:

−d( f + F)

x2k
+ 1

2

(
hk + H

d

p

)
+ 1

2
�hλUk − 1

2
�hλL

k = 0 ∀k = k∗, . . . , K − 1,

−d( f + F)

x2K
+ 1

2

(
hK + H

d

p

)
+ 1

2
�hλUK = 0,

and we have the dual feasibility and complementarity conditions:

1 − λL
k−1 + λUk + λL

k − λUk+1 ≥ 0 ⊥ yk ≥ 0, k = k∗, . . . , K − 1,

1 + λUK − λL
K−1 ≥ 0 ⊥ yK ≥ 0.

Then we set yk∗ = 0 and λL
k = K − k, λUk = 0 for k = k∗, k∗ + 1, . . . , K . Using

inequalities (6)–(10), it takes a simple algebraic verification to check that with the x
and y variables set as in the statement of the theorem along with the aforementioned
choices of dual variables, we have primal feasibility and the KKT conditions satisfied.
Notice that for k = k∗ − 1 condition (6) does not hold; however, our condition (9)
ensures that 1 − λL

k∗−1 + λL
k∗ ≥ 0. Since our optimal point for a relaxed problem

satisfies the neglected non-negativity and monotonocity on the x variables, the proof
of Part 1 is complete.

For Part 2, there is no index value k∗ satisfying (5)–(6) for k = k∗, k∗+1, . . . , K−1.
Therefore, we are unable to use (7) for x variables since violation of (5) makes the
expression under the square root negative. Furthermore, it is not possible to reuse (8) to
set the y variables since this may result in negative values as (6) is violated. However,
we shall construct a different solution. In this case, we set all information rent variables
yk to zero, by hypothesis we have “separated” (i.e., ∃k : k < k < k̄) special types, k
and k̄ such that 1. for k = 1, . . . , k x(H, hk) <

2Ck+1,k
�h , and 2. for k = k+1, . . . , k̄−1,

2Ck+1,k
�h ≤ x(H, hk) ≤ 2Ck,k−1

�h , 3. for k = k̄, . . . , K x(H, hk) >
2Ck,k−1

�h .
We note that our construction for x in this part of the theorem (as in the first part)

is monotone decreasing since Ck+1,k is monotone decreasing. Now, for all indices up
to k we set the x variables as
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x∗
k = 2Ck+1,k/�h,

and, the λUk = 0, and λL
k = 2C2

k+1,k (hk+Hd/p)−d( f +F)�h2

2�hC2
k+1,k

> 0 for k = 1, . . . , k. Due to

condition (9) these choices satisfy the KKT conditions (since we set below λUk+1 = 0).

For k = k + 1, . . . , k̄ − 1 we set

x∗
k = x(H, hk),

and the λUk = 0, and λL
k = 0. Again, it is easy to check that under the conditions of

the theorem, the KKT conditions hold for the aforementioned indices. The only index
value where one has to be careful is for k+1 to make sure that 1−λL

k ≥ 0. This holds
provided that condition (12) is verified.

For k = k̄, . . . , K we set

x∗
k = 2Ck,k−1/�h,

λL
k = 0 and λUk = −2C2

k,k−1(hk+Hd/p)+d( f +F)�h2

2�hC2
k,k−1

> 0. The KKT conditions are

verified to hold for all indices k = 1, . . . , k̄ − 1 using straightforward algebraic
manipulation. Concerning the (border) dual inequality inKKTconditions for k = k̄−1
we have to make sure that λU

k̄
≤ 1, which is ensured due to (13).

If one of the index values k or k̄ (or both) cannot be found then one extends the
arguments above to a larger number of indices, depending on whichever case applies.

�	
In the terminology of [8], Proposition 1 corresponds to the right-tree pattern. For

reasons of symmetry, one would expect a similar result for the left-tree pattern. How-
ever, the reader is warned that conditions might have to change in that case. A similar
remark holds for Theorem 1. Further research is needed regarding this point.

Note that all one has to do to apply Proposition 1 and Theorem 1 is to compute
the quantities x(H, hk − (K − k)�h), x(H, hk) and Ck,k+1 for all k and then check
conditions ensuring the validity of the Proposition 1 and Theorem 1. This can be
accomplished by a very simple calculation. Hence, one does not need a specialized
algorithm or a general-purpose algorithm to solve the special cases studied in the
paper. A simple loop will suffice.

As an illustration, for an interval of uncertainty for the holding cost given as
[4/3, 44/3] and creating K = 40 equally likely types with �h = 1/3, d = p = 1,
f = 9, F = 1, H = 4, we have k∗ = 33, and the optimal information rent variables
values are zero from y1 to y33 while y34 = 0.001, y35 = 0.004, y36 = 0.009, and so
on. The optimal menu quantities xk are found using part 1 of Theorem 1. When we
make �h = 3 with h1 = 4 in this example, all information rent variables take value
zero at optimality, and optimal menu quantities x∗

k are found by Part 2 of Theorem 1.
With respect to the indices k, k̄, in this numerical example k = 6 and k̄ = 18. I.e.,
optimal values of x variables for k = 1, . . . , 6 are obtained by setting to the value
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2Ck+1,k/�h; for those k = 7, . . . , 17 the optimal joint order quantity gives the solu-
tion, and for those k = 18, . . . , 40 the value 2Ck,k−1/�h is used. Indeed, the quantity
d( f + F)�h is equal to 30 in this instance and with respect to inequalities (12) and
(13), it is sandwiched between 26.377 and 31.296. Note that if one chooses a larger
�h, equal to, say 56, we have k = 0 while k̄ = 7. On the other hand, with h1 = 4,
�h = 3, other parameters being equal, no k̄ is observed while k = 6.

4 Concluding remarks

In this paper, we studied a two-echelon supply chain coordination game between a
retailer and a supplier who does not know the true holding cost parameter of the
retailer and offers a menu of contracts to reshape the behaviour of the retailer in order
to minimize his costs. While the problem is in general difficult to solve in closed
form (however, it is easy to solve numerically since it is transformed into a convex
optimization problem in [8]), we computed an explicit optimal solution, namely when
the supplier addresses the uncertainty about the retailer’s holding cost using a uniform
discrete approximation, and some strict lower bounds and some inequalities (defined
in terms of problem parameters and easy to check) hold.
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