BETTI NUMBERS FOR CERTAIN COHEN-MACAULAY TANGENT CONES

MESUT ŞAHİN ${ }^{\boxtimes}$ and NİL ŞAHİN

(Received 25 June 2018; accepted 12 July 2018)

Abstract

We compute Betti numbers for a Cohen-Macaulay tangent cone of a monomial curve in the affine 4 -space corresponding to a pseudo-symmetric numerical semigroup. As a byproduct, we also show that for these semigroups, being of homogeneous type and homogeneous are equivalent properties.

2010 Mathematics subject classification: primary 13H10; secondary 13P10, 14H20.
Keywords and phrases: numerical semigroup rings, monomial curves, tangent cones, Betti numbers, free resolutions.

1. Introduction

Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle=\left\{u_{1} n_{1}+\cdots+u_{k} n_{k} \mid u_{i} \in \mathbb{N}\right\}$ be a numerical semigroup generated by the positive integers n_{1}, \ldots, n_{k} with $\operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)=1$. For a field K, let $A=$ $K\left[X_{1}, X_{2}, \ldots, X_{k}\right]$ and let $K[S]$ be the semigroup ring $K\left[t^{n_{1}}, t^{n_{2}}, \ldots, t^{n_{k}}\right]$ of S. Then $K[S] \simeq A / I_{S}$, where I_{S} is the kernel of the surjection $\phi_{0}: A \rightarrow K[S]$, associating X_{i} to $t^{n_{i}}$. If C_{S} is the affine curve with parameterisation

$$
X_{1}=t^{n_{1}}, X_{2}=t^{n_{2}}, \ldots, X_{k}=t^{n_{k}}
$$

corresponding to S and $1 \notin S$, then the curve is singular at the origin. The smallest minimal generator of S is called the multiplicity of C_{S}. To understand this singularity, it is natural to study algebraic properties of the local ring $R_{S}=K\left[\left[t^{n_{1}}, \ldots, t^{n_{k}}\right]\right]$ with the maximal ideal $\mathrm{m}=\left\langle t^{n_{1}}, \ldots, t^{n_{k}}\right\rangle$ and its associated graded ring

$$
g r_{\mathrm{m}}\left(R_{S}\right)=\bigoplus_{i=0}^{\infty} \mathfrak{m}^{i} / \mathfrak{m}^{i+1} \cong A / I_{S}^{*},
$$

where $I_{S}^{*}=\left\langle f^{*} \mid f \in I_{S}\right\rangle$ with f^{*} denoting the least homogeneous summand of f. When K is algebraically closed, $K[S]$ is the coordinate ring of the monomial curve C_{S} and

[^0]$g r_{\mathrm{m}}\left(R_{S}\right)$ is the coordinate ring of its tangent cone. A natural set of invariants for these coordinate rings is the Betti sequence. We refer to Stamate's survey [12] for a comprehensive literature on this subject. The Betti sequence $\beta(M)=\left(\beta_{0}, \ldots, \beta_{k-1}\right)$ of an A-module M is the sequence consisting of the ranks of the free modules in a minimal free resolution \mathbf{F} of M, where
$$
\mathbf{F}: 0 \longrightarrow A^{\beta_{k-1}} \longrightarrow \cdots \longrightarrow A^{\beta_{1}} \longrightarrow A^{\beta_{0}}
$$

When $\beta\left(A / I_{S}^{*}\right)=\beta(K[S])$, the semigroup S is said to be of homogeneous type as defined in [6]. In particular, if a semigroup is of homogeneous type then the Betti sequence of its Cohen-Macaulay tangent cone can be obtained from a minimal free resolution of $K[S]$. To take advantage of this idea, Jafari and Zarzuela Armengou introduced the concept of a homogeneous semigroup in [8]. When the multiplicity of a monomial curve corresponding to a homogeneous semigroup is n_{i}, homogeneity guarantees the existence of a minimal generating set for I_{S} whose image under the map

$$
\pi_{i}: A \rightarrow \bar{A}=K\left[X_{1}, \ldots, \bar{X}_{i}, \ldots, X_{k}\right]
$$

is homogeneous, where $\pi\left(X_{i}\right)=\bar{X}_{i}=0$ and $\pi\left(X_{j}\right)=X_{j}$ for $i \neq j$. Together with the assumption of a Cohen-Macaulay tangent cone, this property is inherited by a standard basis of I_{S} and the authors of [8] were able to prove that S is of homogeneous type. The converse is not true in general: there exists a 3-generated numerical semigroup with a complete intersection tangent cone which is of homogeneous type but not homogeneous; see [8, Example 3.19]. They also ask in [8, Question 4.22] if there are 4-generated semigroups of homogeneous type which are not homogeneous having noncomplete intersection tangent cones. Since homogeneous-type semigroups have Cohen-Macaulay tangent cones, we restrict our attention to monomial curves having Cohen-Macaulay tangent cones in this article.

The problem of determining the Betti sequence for the tangent cone (see [12, Problem 9.9]) was studied for 4 -generated symmetric monomial curves by Mete and Zengin [10]. In this paper, we focus on the next interesting case of 4 -generated pseudo-symmetric monomial curves. Using the standard bases we obtained in [11], we determine the Betti sequence for the tangent cone, addressing [12, Problem 9.9] for 4 -generated pseudo-symmetric monomial curves having Cohen-Macaulay tangent cones, and prove that being homogeneous and being of homogeneous type are equivalent, answering [8, Question 4.22]. So, in most cases, there is no 4generated pseudo-symmetric numerical semigroup of homogeneous type which is not homogeneous. Before we state our main result, let us recall from [9] that a 4-generated semigroup $S=\left\langle n_{1}, n_{2}, n_{3}, n_{4}\right\rangle$ is pseudo-symmetric if and only if there are integers $\alpha_{i}>1$, for $1 \leq i \leq 4$, and $\alpha_{21}>0$ with $\alpha_{21}<\alpha_{1}-1$ such that

$$
\begin{aligned}
& n_{1}=\alpha_{2} \alpha_{3}\left(\alpha_{4}-1\right)+1, \\
& n_{2}=\alpha_{21} \alpha_{3} \alpha_{4}+\left(\alpha_{1}-\alpha_{21}-1\right)\left(\alpha_{3}-1\right)+\alpha_{3}, \\
& n_{3}=\alpha_{1} \alpha_{4}+\left(\alpha_{1}-\alpha_{21}-1\right)\left(\alpha_{2}-1\right)\left(\alpha_{4}-1\right)-\alpha_{4}+1, \\
& n_{4}=\alpha_{1} \alpha_{2}\left(\alpha_{3}-1\right)+\alpha_{21}\left(\alpha_{2}-1\right)+\alpha_{2} .
\end{aligned}
$$

Table 1. Examples of each case.

α_{21}	α_{1}	α_{2}	α_{3}	α_{4}	n_{1}	n_{2}	n_{3}	n_{4}	β_{0}	β_{1}	β_{2}	β_{3}
2	5	3	2	2	7	12	13	22	1	5	6	2
2	4	4	2	4	25	19	22	26	1	5	6	2
2	4	4	2	5	33	23	28	26	1	5	7	3
2	5	4	2	4	25	20	35	30	1	6	9	4
1	3	2	3	3	13	14	9	15	1	5	6	2
3	6	3	4	6	61	82	51	63	1	6	8	3
1	3	2	2	4	13	11	12	9	1	5	6	2
1	4	2	2	4	13	12	19	11	1	5	7	3

Then the toric ideal I_{S} is given by $I_{S}=\left\langle f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\rangle$ with

$$
\begin{gathered}
f_{1}=X_{1}^{\alpha_{1}}-X_{3} X_{4}^{\alpha_{4}-1}, \quad f_{2}=X_{2}^{\alpha_{2}}-X_{1}^{\alpha_{21}} X_{4}, \quad f_{3}=X_{3}^{\alpha_{3}}-X_{1}^{\alpha_{1}-\alpha_{21}-1} X_{2}, \\
f_{4}=X_{4}^{\alpha_{4}}-X_{1} X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}-1}, \quad f_{5}=X_{1}^{\alpha_{21}+1} X_{3}^{\alpha_{3}-1}-X_{2} X_{4}^{\alpha_{4}-1} .
\end{gathered}
$$

The Betti sequence of $K[S]$ for a 4 -generated pseudo-symmetric semigroup is $\beta(K[S])=(1,5,6,2)$ by [1]. Hence, S is of homogeneous type if and only if the Betti sequence of the tangent cone is also $\beta\left(A / I_{S}^{*}\right)=(1,5,6,2)$. We refer the reader to [3] for the Betti sequence of $K[S]$ for 4 -generated almost-symmetric semigroups.

Our main result is as follows.
Theorem 1.1. Let S be a 4-generated pseudo-symmetric semigroup with a CohenMacaulay tangent cone. Then the Betti sequence $\beta\left(A / I_{S}^{*}\right)$ of the tangent cone is:

- $\quad \beta\left(A / I_{S}^{*}\right)=(1,5,6,2)$ if n_{1} is the multiplicity;
- $\beta\left(A / I_{S}^{*}\right)=(1,5,6,2)$ if n_{2} is the multiplicity and $\alpha_{1}=\alpha_{4}$;
$\beta\left(A / I_{S}^{*}\right)=(1,5,7,3)$ if n_{2} is the multiplicity and $\alpha_{1}<\alpha_{4}$;
$\beta\left(A / I_{S}^{*}\right)=(1,6,9,4)$ if n_{2} is the multiplicity and $\alpha_{1}>\alpha_{4}$;
- $\quad \beta\left(A / I_{S}^{*}\right)=(1,5,6,2)$ if n_{3} is the multiplicity and $\alpha_{2}=\alpha_{21}+1$;
$\beta\left(A / I_{S}^{*}\right)=(1,6,8,3)$ if n_{3} is the multiplicity and $\alpha_{2}<\alpha_{21}+1$;
- $\quad \beta\left(A / I_{S}^{*}\right)=(1,5,6,2)$ if n_{4} is the multiplicity and $\alpha_{3}=\alpha_{1}-\alpha_{21}$; $\beta\left(A / I_{S}^{*}\right)=(1,5,7,3)$ if n_{4} is the multiplicity and $\alpha_{3}<\alpha_{1}-\alpha_{21}$.

We illustrate in Table 1 that there are pseudo-symmetric monomial curves with Cohen-Macaulay tangent cones in all of these cases.

We make repeated use of the following effective result as in $[7,8,12]$ in order to reduce the number of cases for determining the Betti numbers of the tangent cones.

Lemma 1.2. Assume that the multiplicity of the monomial curve C_{S} is n_{i}. Suppose that the K-algebra homomorphism $\pi_{i}: A \rightarrow \bar{A}=K\left[X_{1}, \ldots, \bar{X}_{i}, \ldots, X_{k}\right]$ is defined by $\pi_{i}\left(X_{i}\right)=\bar{X}_{i}=0$ and $\pi_{i}\left(X_{j}\right)=X_{j}$ for $i \neq j$, and set $\bar{I}=\pi_{i}\left(I_{S}^{*}\right)$. If the tangent cone $g r_{\mathrm{m}}\left(R_{S}\right)$ is Cohen-Macaulay, then the Betti sequences of $g r_{\mathrm{m}}\left(R_{S}\right)$ and of \bar{A} / \bar{I} are the same.

Proof. If the tangent cone $g r_{\mathrm{m}}\left(R_{S}\right)$ is Cohen-Macaulay, then X_{i} is regular on A / I_{S}^{*}. The result follows from the well-known fact that Betti sequences are the same up to a regular sequence.

Therefore, the problem of determining the Betti sequence of the tangent cone is reduced to computing the Betti sequence of the ring \bar{A} / \bar{I}. In all proofs about the minimal free resolution of \bar{A} / \bar{I} we use the following criterion by Buchsbaum-Eisenbud to confirm the exactness, leaving the not so difficult task of checking if it is a complex to the reader.

Theorem 1.3 [2, Corollary 2]. Let

$$
0 \longrightarrow F_{k-1} \xrightarrow{\phi_{k-1}} \cdots \xrightarrow{\phi_{2}} F_{1} \xrightarrow{\phi_{1}} F_{0}
$$

be a complex of free modules over a Noetherian ring A. Let $\operatorname{rank}\left(\phi_{i}\right)$ be the size of the largest nonzero minor of the matrix describing ϕ_{i} and let $I\left(\phi_{i}\right)$ be the ideal generated by the minors of maximal rank. Then the complex is exact if and only if:
(a) $\operatorname{rank}\left(\phi_{i+1}\right)+\operatorname{rank}\left(\phi_{i}\right)=\operatorname{rank}\left(F_{i}\right)$; and
(b) $I\left(\phi_{i}\right)$ contains an A-sequence of length i
for $1 \leq i \leq k-1$.
The structure of the paper is as follows. We treat the cases where S is homogeneous in the next section and, when S is not homogeneous, we find the minimal free resolution of the ring \bar{A} / \bar{I} in each subsequent section, completing the proof of Theorem 1.1 by virtue of Lemma 1.2. We refer the reader to [4] for the basics of commutative algebra as we use Singular [5] in our computations.

2. Homogeneous cases

In this section, we characterise which pseudo-symmetric 4-generated semigroups are homogeneous. We start by recalling basic definitions from [8]. The Apéry set of S with respect to $s \in S$ is defined to be $A P(S, s)=\{x \in S \mid x-s \notin S\}$ and the set of lengths of s in S is

$$
L(s)=\left\{\sum_{i=1}^{k} u_{i} \mid s=\sum_{i=1}^{k} u_{i} n_{i}, u_{i} \geq 0\right\} .
$$

Note that $L(s)$ is the set of standard degrees of monomials $X_{1}^{u_{1}} \cdots X_{k}^{u_{k}}$ of S-degree $\operatorname{deg}_{S}\left(X_{1}^{u_{1}} \cdots X_{k}^{u_{k}}\right)=s$. A subset $T \subset S$ is said to be homogeneous if either it is empty or $L(s)$ is a singleton for all s with $0 \neq s \in T$. If n_{i} is the smallest among $n_{1}, n_{2}, \ldots, n_{k}$, the semigroup S is said to be homogeneous if the Apéry set $A P\left(S, n_{i}\right)$ is homogeneous.

Proposition 2.1. Let S be a 4-generated pseudo-symmetric numerical semigroup. Then S is homogeneous if and only if:

- n_{1} is the multiplicity; or
- n_{2} is the multiplicity and $\alpha_{1}=\alpha_{4}$; or
- n_{3} is the multiplicity and $\alpha_{2}=\alpha_{21}+1$; or
- n_{4} is the multiplicity and $\alpha_{3}=\alpha_{1}-\alpha_{21}$.

Proof. By [8, Corollary 3.10], S is homogeneous if and only if there exists a set E of minimal generators for I_{S} such that every nonhomogeneous element of E has a term that is divisible by X_{i} when n_{i} is the multiplicity. Şahin and Şahin [11, Corollary 2.4] states that indispensable binomials of I_{S} are $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$ if $\alpha_{1}-\alpha_{21}>2$ and are $\left\{f_{1}, f_{2}, f_{3}, f_{5}\right\}$ if $\alpha_{1}-\alpha_{21}=2$. Therefore, they must appear in every minimal generating set. Let us take $E=\left\{f_{1}, \ldots, f_{5}\right\}$ in order to prove sufficiency of the conditions.

- Since each $f_{j}(j=1, \ldots, 5)$ has a term that is divisible by X_{1}, when n_{1} is the multiplicity, S is always homogeneous.
- The only binomial in E that has no monomial term divisible by X_{2} is f_{1}. Hence, when n_{2} is the multiplicity and $\alpha_{1}=\alpha_{4}$, it follows that f_{1} and thus S is homogeneous.
- The only binomial in E that has no monomial term divisible by X_{3} is f_{2}. Hence, when n_{3} is the multiplicity and $\alpha_{2}=\alpha_{21}+1, f_{2}$ and thus S is homogeneous.
- Similarly, only f_{3} has no monomial term that is divisible by X_{4} and it is homogeneous when $\alpha_{3}=\alpha_{1}-\alpha_{21}$. Hence, S is homogeneous if n_{4} is the multiplicity.

For the necessity of these conditions, recall that f_{1}, f_{2} and f_{3} are indispensable, so they must be homogeneous when the multiplicity is n_{2}, n_{3} and n_{4}, respectively.

3. The proof when the multiplicity is \boldsymbol{n}_{1}

If the tangent cone is Cohen-Macaulay and the semigroup is homogeneous, it is known that the semigroup is of homogeneous type. When n_{1} is the multiplicity, the pseudo-symmetric semigroup is always homogeneous by Proposition 2.1 and hence the Betti sequence is $(1,5,6,2)$ in this case.

4. The proof when the multiplicity is $\boldsymbol{n}_{\mathbf{2}}$

Let n_{2} be the multiplicity and suppose that the tangent cone is Cohen-Macaulay. If $\alpha_{1}=\alpha_{4}$, then the Betti sequence is $(1,5,6,2)$ by Proposition 2.1. We treat the cases $\alpha_{1}<\alpha_{4}$ and $\alpha_{1}>\alpha_{4}$ separately.
4.1. The proof in the case $\alpha_{1}<\alpha_{4}$. In this case, $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$ is a standard basis of I_{S} by [11, Lemma 3.8]. Since \bar{I} is the image of I_{S}^{*} under the map π_{2} sending only X_{2} to 0 , it follows that \bar{I} is generated by

$$
G_{*}=\left\{X_{1}^{\alpha_{1}}, X_{1}^{\alpha_{21}} X_{4}, X_{3}^{\alpha_{3}}, X_{4}^{\alpha_{4}}, X_{1}^{\alpha_{21}+1} X_{3}^{\alpha_{3}-1}\right\} .
$$

We prove the claim by demonstrating that the complex

$$
0 \longrightarrow A^{3} \xrightarrow{\phi_{3}} A^{7} \xrightarrow{\phi_{2}} A^{5} \xrightarrow{\phi_{1}} A \longrightarrow 0
$$

is a minimal free resolution of \bar{A} / \bar{I} by virtue of Lemma 1.2 , where

$$
\begin{gathered}
\phi_{1}=\left[\begin{array}{lllllll}
X_{1}^{\alpha_{1}} & X_{1}^{\alpha_{21}} X_{4} & X_{3}^{\alpha_{3}} & X_{4}^{\alpha_{4}} & X_{1}^{\alpha_{21}+1} X_{3}^{\alpha_{3}-1}
\end{array}\right], \\
\phi_{2}=\left[\begin{array}{ccccccc}
0 & X_{4} & 0 & 0 & X_{3}^{\alpha_{3}-1} & 0 & 0 \\
0 & -X_{1}^{\alpha_{1}-\alpha_{21}} & X_{1} X_{3}^{\alpha_{3}-1} & X_{4}^{\alpha_{4}-1} & 0 & 0 & -X_{3}^{\alpha_{3}} \\
X_{1}^{\alpha_{21}+1} & 0 & 0 & 0 & 0 & X_{4}^{\alpha_{4}} & X_{1}^{\alpha_{21}} X_{4} \\
0 & 0 & 0 & -X_{1}^{\alpha_{21}} & 0 & -X_{3}^{\alpha_{3}} & 0 \\
-X_{3} & 0 & -X_{4} & 0 & -X_{1}^{\alpha_{1}-\alpha_{21}-1} & 0 & 0
\end{array}\right]
\end{gathered}
$$

and

$$
\phi_{3}=\left[\begin{array}{ccc}
-X_{4} & 0 & 0 \\
0 & X_{3}^{\alpha_{3}-1} & 0 \\
X_{3} & X_{1}^{\alpha_{1}-\alpha_{21}-1} & 0 \\
0 & 0 & -X_{3}^{\alpha_{3}} \\
0 & -X_{4} & 0 \\
0 & 0 & X_{1}^{\alpha_{21}} \\
X_{1} & 0 & -X_{4}^{\alpha_{4}-1}
\end{array}\right] .
$$

It is easy to check that $\operatorname{rank} \phi_{1}=1, \operatorname{rank} \phi_{2}=4, \operatorname{rank} \phi_{3}=3$. So, we show that $I\left(\phi_{i}\right)$ contains a regular sequence of length i for all $i=1,2,3$. Since this is obvious for $i=1$, we only discuss the other cases. For the matrix ϕ_{2}, the 4 -minor corresponding to the rows $1,2,4,5$ and columns $1,5,6,7$ is computed to be $-X_{3}^{3 \alpha_{3}}$. Similarly, the 4-minor corresponding to the rows $2,3,4,5$ and columns $1,2,4,5$ is $X_{1}^{2 \alpha_{1}}$. As these minors are relatively prime, the ideal $I\left(\phi_{2}\right)$ contains a regular sequence of length 2 . The 3-minor of ϕ_{3} corresponding to the rows $1,5,7$ is $-X_{4}^{1+\alpha_{4}}$, to the rows $2,3,4$ is $X_{3}^{2 \alpha_{3}}$ and to the rows $3,6,7$ is $X_{1}^{\alpha_{1}}$. As they are powers of different variables, they constitute a regular sequence of length 3 .
4.2. The proof in the case $\alpha_{1}>\alpha_{4}$. In this case, a standard basis of I_{S} is $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=X_{1}^{\alpha_{1}+\alpha_{21}}-X_{2}^{\alpha_{2}} X_{3} X_{4}^{\alpha_{4}-2}\right\}$ by [11, Lemma 3.8]. Since \bar{I} is the image of I_{S}^{*} under the map π_{2} sending only X_{2} to 0 , it follows that \bar{I} is generated by

$$
G_{*}=\left\{X_{3} X_{4}^{\alpha_{4}-1}, X_{1}^{\alpha_{21}} X_{4}, X_{3}^{\alpha_{3}}, X_{4}^{\alpha_{4}}, X_{1}^{\alpha_{21}+1} X_{3}^{\alpha_{3}-1}, X_{1}^{\alpha_{1}+\alpha_{21}}\right\} .
$$

We prove the claim by demonstrating that the complex

$$
0 \longrightarrow A^{4} \xrightarrow{\phi_{3}} A^{9} \xrightarrow{\phi_{2}} A^{6} \xrightarrow{\phi_{1}} A \longrightarrow 0
$$

is a minimal free resolution of \bar{A} / \bar{I} by virtue of Lemma 1.2 , where

$$
\phi_{1}=\left[\begin{array}{llllll}
X_{3} X_{4}^{\alpha_{4}-1} & X_{1}^{\alpha_{21}} X_{4} & X_{3}^{\alpha_{3}} & X_{4}^{\alpha_{4}} & X_{1}^{\alpha_{21}+1} X_{3}^{\alpha_{3}-1} & X_{1}^{\alpha_{1}+\alpha_{21}}
\end{array}\right],
$$

ϕ_{2} is given by

$$
\left[\begin{array}{ccccccccc}
-X_{4} & 0 & 0 & 0 & 0 & X_{1}^{\alpha_{21}} & 0 & X_{3}^{\alpha_{3}-1} & 0 \\
0 & 0 & -X_{1}^{\alpha_{1}} & -X_{1} X_{3}^{\alpha_{3}-1} & -X_{4}^{\alpha_{4}-1} & -X_{3} X_{4}^{\alpha_{4}-2} & 0 & 0 & X_{3}^{\alpha_{3}} \\
0 & -X_{1}^{\alpha_{21}+1} & 0 & 0 & 0 & 0 & 0 & -X_{4}^{\alpha_{4}-1} & -X_{1}^{\alpha_{21}} X_{4} \\
X_{3} & 0 & 0 & 0 & X_{1}^{\alpha_{21}} & 0 & 0 & 0 & 0 \\
0 & X_{3} & 0 & X_{4} & 0 & 0 & -X_{1}^{\alpha_{1}-1} & 0 & 0 \\
0 & 0 & X_{4} & 0 & 0 & 0 & X_{3}^{\alpha_{3}-1} & 0 & 0
\end{array}\right]
$$

and

$$
\phi_{3}=\left[\begin{array}{cccc}
0 & -X_{1}^{\alpha_{21}} & 0 & 0 \\
X_{4} & 0 & 0 & 0 \\
0 & 0 & -X_{3}^{\alpha_{3}-1} & 0 \\
X_{3} & 0 & X_{1}^{\alpha_{1}-1} & 0 \\
0 & X_{3} & 0 & 0 \\
0 & -X_{4} & 0 & -X_{3}^{\alpha_{3}-1} \\
0 & 0 & X_{4} & 0 \\
0 & 0 & 0 & X_{1}^{\alpha_{21}} \\
X_{1} & 0 & 0 & -X_{4}^{\alpha_{4}-2}
\end{array}\right] .
$$

It is easy to check that $\operatorname{rank} \phi_{1}=1, \operatorname{rank} \phi_{2}=5, \operatorname{rank} \phi_{3}=4$. So, we show that $I\left(\phi_{i}\right)$ contains a regular sequence of length i for all $i=1,2,3$. Since this is obvious for $i=1$, we only discuss the other cases. For the matrix ϕ_{2}, the 5 -minor corresponding to the rows $1,2,3,5,6$ and columns $1,3,4,5,8$ is computed to be $-X_{4}^{1+2 \alpha_{4}}$. Similarly, the 5minor corresponding to the rows $1,2,4,5,6$ and columns $1,2,7,8,9$ is $-X_{3}^{3 \alpha_{3}}$. As these minors are powers of different variables, the ideal $I\left(\phi_{2}\right)$ contains a regular sequence of length 2. The 4 -minor of ϕ_{3} corresponding to the rows $1,4,8,9$ is $X_{1}^{2 \alpha_{21}+\alpha_{1}}$, to the rows $3,4,5,6$ is $X_{3}^{2 \alpha_{3}}$ and to the rows $2,6,7,9$ is $-X_{4}^{1+\alpha_{4}}$. As they are powers of different variables, they constitute a regular sequence of length 3 .

5. The proof when the multiplicity is \boldsymbol{n}_{3}

Suppose that the tangent cone is Cohen-Macaulay. If $\alpha_{2}=\alpha_{21}+1$, then the Betti sequence is $(1,5,6,2)$ by Proposition 2.1. If $\alpha_{2}<\alpha_{21}+1$, then by [11, Lemma 3.12] a minimal standard basis for I_{S} is either $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=X_{1}^{\alpha_{1}-1} X_{4}-X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}}\right\}$ or $\left\{f_{1}, f_{2}, f_{3}, f_{4}^{\prime}=X_{4}^{\alpha_{4}}-X_{2}^{\alpha_{2}-2} X_{3}^{2 \alpha_{3}-1}, f_{5}, f_{6}\right\}$. Since π_{3} sends only X_{3} to 0 , it follows that in both cases the ideal $\bar{I}=\pi_{3}\left(I_{S}^{*}\right)$ is generated by

$$
G_{*}=\left\{X_{1}^{\alpha_{1}}, X_{2}^{\alpha_{2}}, X_{1}^{\alpha_{1}-\alpha_{21}-1} X_{2}, X_{4}^{\alpha_{4}}, X_{2} X_{4}^{\alpha_{4}-1}, X_{1}^{\alpha_{1}-1} X_{4}\right\} .
$$

We prove the claim by demonstrating that the complex

$$
0 \longrightarrow A^{3} \xrightarrow{\phi_{3}} A^{8} \xrightarrow{\phi_{2}} A^{6} \xrightarrow{\phi_{1}} A \longrightarrow 0
$$

is a minimal free resolution of \bar{A} / \bar{I} by virtue of Lemma 1.2 , where

$$
\begin{gathered}
\phi_{1}=\left[\begin{array}{llllllll}
X_{1}^{\alpha_{1}} & X_{2}^{\alpha_{2}} & X_{1}^{\alpha_{1}-\alpha_{21}-1} X_{2} & X_{4}^{\alpha_{4}} & X_{2} X_{4}^{\alpha_{4}-1} & X_{1}^{\alpha_{1}-1} X_{4}
\end{array}\right], \\
\phi_{2}=\left[\begin{array}{cccccccc}
0 & -X_{4} & 0 & 0 & 0 & 0 & X_{2} & 0 \\
0 & 0 & X_{1}^{\alpha_{1}-\alpha_{21}-1} & 0 & -X_{4}^{\alpha_{4}-1} & 0 & 0 & 0 \\
-X_{4}^{\alpha_{4}-1} & 0 & -X_{2}^{\alpha_{2}-1} & 0 & 0 & -X_{1}^{\alpha_{21}} X_{4} & -X_{1}^{\alpha_{21}+1} & 0 \\
0 & 0 & 0 & X_{2} & 0 & 0 & 0 & X_{1}^{\alpha_{1}-1} \\
X_{1}^{\alpha_{1}-\alpha_{21}-1} & 0 & 0 & -X_{4} & X_{2}^{\alpha_{2}-1} & 0 & 0 & 0 \\
0 & X_{1} & 0 & 0 & 0 & X_{2} & 0 & -X_{4}^{\alpha_{4}-1}
\end{array}\right]
\end{gathered}
$$

and

$$
\phi_{3}=\left[\begin{array}{ccc}
0 & -X_{2}^{\alpha_{2}-1} & -X_{1}^{\alpha_{21}} X_{4} \\
-X_{2} & 0 & 0 \\
0 & X_{4}^{\alpha_{4}-1} & 0 \\
0 & 0 & -X_{1}^{\alpha_{1}-1} \\
0 & X_{1}^{\alpha_{1}-\alpha_{21}-1} & 0 \\
X_{1} & 0 & X_{4}^{\alpha_{4}-1} \\
-X_{4} & 0 & 0 \\
0 & 0 & X_{2}
\end{array}\right] .
$$

It is easy to check that $\operatorname{rank} \phi_{1}=1, \operatorname{rank} \phi_{2}=5, \operatorname{rank} \phi_{3}=3$. So, we show that $I\left(\phi_{i}\right)$ contains a regular sequence of length i for all $i=1,2,3$. Since this is obvious for $i=1$, we only discuss the other cases. For the matrix ϕ_{2}, the 5 -minor corresponding to the rows $1,2,3,5,6$ and columns $1,2,4,5,8$ is computed to be $-X_{4}^{3 \alpha_{4}-1}$. Similarly, the 5 -minor corresponding to the rows $2,3,4,5,6$ and columns $1,2,3,7,8$ is $-X_{1}^{3 \alpha_{1}-\alpha_{21}-1}$. As these minors are powers of different variables, the ideal $I\left(\phi_{2}\right)$ contains a regular sequence of length 2 . The 3 -minor of ϕ_{3} corresponding to the rows $1,2,8$ is $-X_{2}^{\alpha_{2}+1}$, to the rows $3,6,7$ is $-X_{4}^{2 \alpha_{4}-1}$ and to the rows $4,5,6$ is $X_{1}^{2 \alpha_{1}-\alpha_{21}-1}$. As they are powers of different variables, they constitute a regular sequence of length 3 .

6. The proof when the multiplicity is \boldsymbol{n}_{4}

Suppose that the tangent cone is Cohen-Macaulay. If $\alpha_{3}=\alpha_{1}-\alpha_{21}$, then the Betti sequence is $(1,5,6,2)$ by Proposition 2.1. If $\alpha_{3}<\alpha_{1}-\alpha_{21}$, then a minimal standard basis for I_{S} is $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$ by [11, Lemma 3.17]. Since $\bar{I}=\pi_{4}\left(I_{S}^{*}\right)$, under the map π_{4} sending only X_{4} to 0 , it is generated by

$$
G_{*}=\left\{X_{1}^{\alpha_{1}}, X_{2}^{\alpha_{2}}, X_{3}^{\alpha_{3}}, X_{1} X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}-1}, X_{1}^{\alpha_{21}+1} X_{3}^{\alpha_{3}-1}\right\}
$$

We prove the claim by demonstrating that the complex

$$
0 \longrightarrow A^{3} \xrightarrow{\phi_{3}} A^{7} \xrightarrow{\phi_{2}} A^{5} \xrightarrow{\phi_{1}} A \longrightarrow 0
$$

is a minimal free resolution of \bar{A} / \bar{I} by virtue of Lemma 1.2 , where

$$
\begin{gathered}
\phi_{1}=\left[\begin{array}{llllll}
X_{1}^{\alpha_{1}} & X_{2}^{\alpha_{2}} & X_{3}^{\alpha_{3}} & X_{1} X_{2}^{\alpha_{2}-1} & X_{3}^{\alpha_{3}-1} & X_{1}^{\alpha_{21}+1} X_{3}^{\alpha_{3}-1}
\end{array}\right], \\
\phi_{2}=\left[\begin{array}{ccccccc}
0 & X_{2}^{\alpha_{2}} & 0 & 0 & X_{3}^{\alpha_{3}-1} & 0 & 0 \\
0 & -X_{1}^{\alpha_{1}} & -X_{1} X_{3}^{\alpha_{3}-1} & 0 & 0 & 0 & -X_{3}^{\alpha_{3}} \\
-X_{1}^{\alpha_{21}+1} & 0 & 0 & 0 & 0 & -X_{1} X_{2}^{\alpha_{2}-1} & X_{2}^{\alpha_{2}} \\
0 & 0 & X_{2} & -X_{1}^{\alpha_{21}} & 0 & X_{3} & 0 \\
X_{3} & 0 & 0 & X_{2}^{\alpha_{2}-1} & -X_{1}^{\alpha_{1}-\alpha_{21}-1} & 0 & 0
\end{array}\right]
\end{gathered}
$$

and

$$
\phi_{3}=\left[\begin{array}{ccc}
0 & -X_{2}^{\alpha_{2}-1} & 0 \\
0 & 0 & -X^{\alpha_{3}-1} \\
-X_{3} & 0 & X_{1}^{\alpha_{1}-1} \\
0 & X_{3} & X_{1}^{\alpha_{1}-\alpha_{21}-1} X_{2} \\
0 & 0 & X_{2}^{\alpha_{2}} \\
X_{2} & X_{1}^{\alpha_{21}} & 0 \\
X_{1} & 0 & 0
\end{array}\right] .
$$

It is easy to check that $\operatorname{rank} \phi_{1}=1, \operatorname{rank} \phi_{2}=4, \operatorname{rank} \phi_{3}=3$. So, we show that $I\left(\phi_{i}\right)$ contains a regular sequence of length i for all $i=1,2,3$. Since this is obvious for $i=1$, we only discuss the other cases. For the matrix ϕ_{2}, the 4-minor corresponding to the rows $1,3,4,5$ and columns $2,3,4,7$ is computed to be $X_{2}^{3 \alpha_{2}}$. Similarly, the 4minor corresponding to the rows $2,3,4,5$ and columns $1,2,4,5$ is $-X_{1}^{2 \alpha_{1}+\alpha_{21}}$. As these minors are relatively prime, the ideal $I\left(\phi_{2}\right)$ contains a regular sequence of length 2 . The 3 -minor of ϕ_{3} corresponding to the rows $1,5,6$ is $-X_{2}^{2 \alpha_{2}}$, to the rows $2,3,4$ is $X_{3}^{1+\alpha_{3}}$ and to the rows $3,6,7$ is $-X_{1}^{\alpha_{1}+\alpha_{21}}$. As they are powers of different variables, they constitute a regular sequence of length 3 .

Acknowledgement

The authors thank the anonymous referee for comments improving the presentation of the paper.

References

[1] V. Barucci, R. Fröberg and M. Şahin, 'On free resolutions of some semigroup rings', J. Pure Appl. Algebra 218(6) (2014), 1107-1116.
[2] D. Buchsbaum and D. Eisenbud, 'What makes a complex exact?', J. Algebra 25 (1973), 259-268.
[3] K. Eto, 'Almost Gorenstein monomial curves in affine four space', J. Algebra 488 (2017), 362-387.
[4] G.-M. Greuel and G. Pfister, A Singular Introduction to Commutative Algebra (Springer, BerlinHeidelberg, 2002).
[5] G.-M. Greuel, G. Pfister and H. Schönemann, 'Singular 2.0. A computer algebra system for polynomial computations', Centre for Computer Algebra, University of Kaiserslautern, 2001, http://www.singular.uni-kl.de.
[6] J. Herzog, M. E. Rossi and G. Valla, 'On the depth of the symmetric algebra', Trans. Amer. Math. Soc. 296(2) (1986), 577-606.
[7] J. Herzog and D. I. Stamate, 'On the defining equations of the tangent cone of a numerical semigroup ring', J. Algebra 418 (2014), 8-28.
[8] R. Jafari and S. Zarzuela Armengou, 'Homogeneous numerical semigroups', Semigroup Forum (2018), doi:10.1007/s00233-018-9941-6.
[9] J. Komeda, 'On the existence of Weierstrass points with a certain semigroup', Tsukuba J. Math. 6(2) (1982), 237-270.
[10] P. Mete and E. E. Zengin, 'Minimal free resolutions of the tangent cones of Gorenstein monomial curves', arXiv:1801.04956.
[11] M. Şahin and N. Şahin, 'On pseudo symmetric monomial curves', Comm. Algebra 46(6) (2018), 2561-2573.
[12] D. I. Stamate, 'Betti numbers for numerical semigroup rings', in: Multigraded Algebra and Applications - NSA 24, 2016, Springer Proceedings in Mathematics and Statistics, 238 (eds. V. Ene and E. Miller) (Springer, Cham, 2018).

MESUT ŞAHİN, Department of Mathematics, Hacettepe University, Beytepe, 06800, Ankara, Turkey
e-mail: mesut.sahin@hacettepe.edu.tr
NiL ŞAHİN, Department of Industrial Engineering, Bilkent University, Ankara, 06800, Turkey
e-mail: nilsahin@bilkent.edu.tr

[^0]: The authors were supported by the project 114 F 094 under the program 1001 of the Scientific and Technological Research Council of Turkey.
 (c) 2018 Australian Mathematical Publishing Association Inc.

