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a b s t r a c t 

We study the newsboy duopoly problem under asymmetric cost information. We extend the Lippman and 

McCardle (1997) of competitive newsboy to the case where the two firms are privately informed about 

their unit costs. The market demand is initially split between two firms and the excess demand for each 

firm is reallocated to the rival firm. We show the existence and uniqueness of a pure strategy equilibrium 

and characterize its structure. The equilibrium conditions have an interesting recursive structure that 

enables an easy computation of the equilibrium order quantities. Presence of strategic interactions creates 

incentives to increase order quantities for all firm types except the type that has the highest possible 

unit cost. Consequently, competition leads to higher total inventory in the industry. However, contrary to 

intuition, this is only true when the firms are non-identical. A firm’s equilibrium order quantity increases 

with a stochastic increase in the total industry demand or with an increase in his initial allocation of 

the total industry demand. We demonstrate our model and results in an application in a dual-sourcing 

procurement setting using data that obtained from a large manufacturing company. Finally, we provide 

a full characterization of the equilibrium of the game for the special case of uniform demand and linear 

market shares. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

The newsboy problem has played a central role at the con-

eptual foundations of stochastic inventory theory, and variants of

t have been used in analysis of decision problems - such as ca-

acity, allocation and overbooking - under demand uncertainty. In

he classical newsboy problem, a firm facing uncertain demand or-

ers a quantity of a perishable item prior to observing demand.

f the demand realization is less than the ordered quantity, then

he firm will have excess inventory in hand that will perish. If de-

and turns out to be more than the ordered quantity, then the

rm will miss the opportunity of additional profit. In the well-

nown characterization, the optimal order quantity, which bal-

nces the marginal expected cost of ordering one more unit against

he marginal expected revenue from satisfying an additional de-

and, is a critical quantile of the demand distribution. 

In the standard newsboy model, strategic interactions are as-

umed away by taking the demand faced by a firm as a model

rimitive. In many practical situations, however, the details of the
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arket interaction does matter for the order quantity decisions.

ome or all of a firm’s unsatisfied demand can be served by other

rms offering substitutes; and, vice versa, a firm may be able to

ell more than its initial market share in case the rival firm is un-

erstocked. Under such conditions, a firm’s payoff depends on rival

rms’, as well as its own, order quantities and appropriate analysis

f optimal inventory decisions requires a game theoretic approach.

he resulting model, dubbed the competitive newsboy model, has

een studied in the literature starting with the seminal works of

arlar (1988) , studying the case where the firms’ initial demands

re statistically independent, and Lippman and McCardle (1997) ,

tudying the cases where the demands faced by competing firms

re derived from a general class of rationing rules applied to the

otal industry demand. 

A natural extension of the competitive newsboy analysis

nvolves incorporating information asymmetry. Asymmetric in- 

ormation adds a new dimension to the competitive newsboy

roblem. Firms may be asymmetrically informed in a competitive

ewsboy setting due to two broad reasons. The firms may be

rivately informed about their cost and/or revenue structures.

lternatively, there may be asymmetric information regarding the

arket demand. Alternative specifications for the key structural el-

ments – e.g., the nature of information asymmetry, the structure
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of the market and firm demands – span a number of interesting

classes of models. Among these are models of newsboy oligopoly,

and models that allow arbitrary statistical dependence in firm

demands, and in cost structures. 

In this paper, we study the competitive newsboy problem with

asymmetric cost information. The competitive newsboy model we

study is built on Parlar (1988) and Lippman and McCardle (1997) .

The industry demand is random. There are two firms among whom

the industry demand is split. Each firm has private information

about their costs. If the demand that is allocated to one firm ex-

ceeds the order quantity of that firm, a portion of the excess

demand spills over to the rival firm. As standard in analysis of

games of incomplete information, we use the Bayesian–Nash equi-

librium as the solution concept. In a Bayesian–Nash equilibrium

each player’s strategy is a best response against the strategies of

the competing players. 

We show that a pure strategy Bayesian–Nash equilibrium ex-

ists for the newsboy duopoly with asymmetric information under

a fairly general set of assumptions. When there are two firms and

two possible types for each firm, we show that the presence of

strategic interactions creates incentives to order more for all firm

types except the type that has the highest possible unit cost, who

orders as a monopolist for his portion of the demand. Therefore,

competition leads to higher total inventory in the industry. How-

ever, this is not true, if the firms are identical. The equilibrium con-

ditions have an interesting recursive structure that enables an easy

computation of the equilibrium order quantities. Comparative stat-

ics analysis shows that a stochastic increase in market demand or

an increase in one firm’s initial allocation of the total industry de-

mand lead to higher inventory for that firm. We finally derive a

complete characterization of the equilibrium and its comparative

statics for the case of uniform demand and linear split rule. 

The particular version of the newsvendor competition we study

here has applications in a variety of settings. For example, in many

procurement environments, buyers use multiple suppliers, each of

which gets a pre-determined portion of the buyer’s total procure-

ment. This is usually done to protect the buyer from supply in-

terruptions and hold-up risk. The buyer may be a manufacturer

that uses the procured item to manufacture its own good which

has an uncertain demand. In some of these cases, the buyer is un-

willing to commit to a quantity and only specifies the percentage

of its total procurement that it will allocate to each supplier. If a

particular supplier cannot make his portion of the supply entirely

available, the manufacturer will turn to other suppliers which may

have supply beyond their share. Since suppliers have to produce or

build capacity in advance of the materialization of final demand,

this leads to a newsvendor type competition among suppliers. Ob-

viously, unit costs are private information for the suppliers in this

case. In Section 4.7 , we provide an application in this context us-

ing data that we collected from procurement bidding events of a

large manufacturing company. The analysis shows that there can

be pronounced differences in suppliers’ order quantities as they

consider spillover demand and private information in their deci-

sions. In some cases, the spillover effect may be so significant that

the buyer may increase its fill rate by allocating more of its de-

mand to a higher cost supplier. 

The rest of this paper is organized as follows. In Section 2 ,

we review the related literature. In Section 3 , we introduce a

model of inventory competition under asymmetric information.

Section 4 presents our main results on the characterization of equi-

librium and comparative statics analysis. We present the full char-

acterization of equilibrium in a parametric version of the model

under uniform demand distribution and a linear split rule in

Section 5 . We conclude and suggest some avenues for future re-

search in Section 6 . All proofs as well as detailed derivations are

contained in the Appendix. 
. Literature review 

The literature on multiple item inventory problem with substi-

ution dates back to the paper by McGillivray and Silver (1978) .

owever, the role of competition has not been studied until the pi-

neering work of Parlar (1988) . Parlar studies a competitive news-

oy problem with two firms managing two substitutable items fac-

ng independent demands. A deterministic fraction of unsatisfied

emand for each item can be substituted to the other item, if that

tem has excess stock. It is shown that a unique Nash equilibrium

xists. It is also shown that total profits of two competing firms are

ess than that would have been obtained if they were to cooperate.

ang and Parlar (1994) and Netessine and Rudi (2003) extend the

nalysis of Parlar for three and n firms cases, respectively. 

This paper is closely related to the work of Lippman and Mc-

ardle (1997) who consider the competitive newsboy problem un-

er a general setting with respect to how initial demands are gen-

rated and how excess demand is reallocated. It is assumed that

ach firm’s initial demand is a result of an allocation of the indus-

ry demand which is a random variable. In deterministic rules, a

pecific deterministic function of the industry demand is allocated

o each firm in competition. In stochastic rules, a firm’s initial al-

ocation depends on the outcome of a random variable (indepen-

ent demands as in Parlar (1988) can be shown to be a special

ase of stochastic splitting). If a firm’s initial demand exceeds its

rder quantity, a non-decreasing function of the excess demand is

eallocated to each other firm. Lippman and McCardle (1997) show

he existence of an equilibrium in the general setting. For the case

f symmetric firms and continuous distributions of effective de-

and for each firm, they also show the uniqueness of the equilib-

ium. For the case of two firms, they show that competition leads

o higher inventory in the system. 

Since these pioneering work, inventory competition gained in-

erest in operations research literature. Other lines of research in

his area include papers that consider the effect of competition

n a supplier in the upper echelon ( Anupindi & Bassok, 1999 ), dy-

amic consumer choice ( Mahajan & van Ryzin, 2003 ), the effect of

equential moves ( Serin, 2007 ), reactive capacity ( Li & Ha, 2008 ),

oss aversion ( Liu, Song, & Wu, 2013 ), predictably irrational behav-

or ( Ovchinnikov, Moritz, & Quiroga, 2015 ) and simultaneous price

nd inventory competition in revenue management ( Zhao, Atkins,

u, & Zhang, 2017 ). 

There are other papers in operations literature where competi-

ion carries on for multiple periods and backordering is possible. In

all and Porteus (20 0 0) and Liu, Shang, and Wu (2007) , two firms

ompete on product availability which impacts the market share in

uture periods. However, within each period that is modeled as a

ewsvendor problem, no substitution occurs. Netessine, Rudi, and

ang (2006) model substitution to a competing firm in the cur-

ent period as well as backordering in future periods. 

To our knowledge, the only study in the operations literature

hat incorporates the effect of private information on horizon-

al competition, in particular its effect on equilibrium behavior of

rms competing on inventory or product availability is by Jiang,

etessine, and Savin (2011) . In their study, the players have asym-

etric information about future demand. Since they assume that

he demand information is limited to the support of the distri-

ution, they follow an approach taken in the robust optimiza-

ion literature and assume that the players minimize absolute re-

ret. They show that there exists a Nash equilibrium for the game

nd provide a characterization. Among other results, their anal-

sis shows that the total inventory carried by the newsvendors

ncreases with information asymmetry and may even be larger

han the maximum total demand. In addition, they show that a

ewsvendor may not be better off by having better information

bout its own demand distribution than its competitors. 
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1 For example, by taking share functions parameterized by the substitution pa- 

rameters, z 1 (D, a 1 ) = s (D ) + a 1 ̂ s (D ) and z 2 (D, a 2 ) = ̂  s (D ) + a 2 s (D ) , the analysis be- 

low can be extended to the more general case. 
2 The terms ex ante, interim and ex post refer to conditioning with respect to the 

realizations of firm types. Throughout, demand remains uncertain. That is, no new 

information becomes available about market demand, and, thus, all expressions are 

ex ante with respect to demand. 
We restricted our literature review on the horizontal inventory

ompetition. There is a vast body of operations literature where in-

entory competition takes place between different echelons with

arly work that include Cachon (2001) and Cachon and Zipkin

1999) and recent work that include Cao, Wan, and Lai (2013) , Lee

nd Yang (2013) , and Spiliotopoulou, Donohue, Gurbuz, and Heese

2018) . 

The asymmetric information newsvendor duopoly game we

tudy can be transformed to a supermodular game. Supermodular

ames were first introduced by Topkis (1979) who show that there

xists at least one pure strategy Nash equilibrium in a full informa-

ion supermodular game. Milgrom and Roberts (1990) show that

 large class of games in economics literature are supermodular

nd thus have equilibrium. Supermodularity is also used recently

o study games in operations literature. Examples include Lippman

nd McCardle (1997) , Bernstein and Federgruen (2003) and Cachon

2001) . Vives (1990) uses supermodularity to show the existence

f pure strategy Nash equilibrium for compact action spaces and

omplete separable metric type spaces. This work is extended by

they (2001) to include a larger class of type and strategy spaces

hich satisfy the single crossing condition. van Zandt and Vives

2007) shows the existence of Bayesian–Nash equilibrium for su-

ermodular asymmetric information games when type sets are dis-

rete and action sets are continua. Our model of asymmetric in-

ormation newsvendor duopoly is an instance of the general class

f incomplete information games studied in van Zandt and Vives

2007) . 

. A model of newsvendor duopoly 

We consider an industry served by two firms i = 1 , 2 that offer

wo substitutable items. Throughout, we assume that the two firms

re risk-neutral. 

.1. Industry and firm demands 

The total industry demand D is a continuous positive random

ariable with an everywhere positive density function g (). Thus,

he distribution function G (), and the survival function G () , where

 (x ) = 1 − G (x ) = P r(D ≥ x ) , are strictly monotonic. 

As in Lippman and McCardle (1997) , demand faced by each firm

s determined in a two-step rationing process. First, for any realiza-

ion, d , of random market demand, initial market shares of the two

rms are determined by a deterministic function s such that firm

’s initial market share is s ( d ) and that of firm 2 is ˆ s (d) = d − s (d) .

he share function s satisfies 0 < s ( d ) < d for all d . To guarantee that

oth market shares are increasing in market demand realization,

e assume 0 < s ′ ( d ) < 1. 

A given initial market share function s induces random de-

ands faced by firm 1, D 1 = s (D ) , and firm 2, D 2 = ˆ s (D ) = D −
 (D ) . By construction, the initial demands faced by the two firms,

 D 1 , D 2 ), are comonotonic since both are deterministic monotone

unctions of the industry demand. 

In the second step, given realized market demand and the or-

er quantities of the two firms, if firm j is stocked out, then some

ortion, a i , of firm j ’s underage goes to firm i . Thus, the effective

emand R i for firm i is the sum of initial allocation and the reallo-

ation: 

 i (Q j ) = D i + a i (D j − Q j ) 
+ . 

here (x ) + denotes max { x , 0} and a i ∈ [0, 1] for i = 1 , 2 is the de-

and substitution rate from firm j to i and is assumed to be de-

erministic. For notational simplicity, we suppress the dependence

f the effective demand on other arguments. The effective demand

f firm i , R i , is a continuous random variable and its distribution is

nduced by the distributions of initial demands. Effective demands
 R 1 ( Q 2 ), R 2 ( Q 1 )) are also comonotonic random variables for all val-

es of Q 1 and Q 2 . 

As one of the first attempts to incorporate private information

nto the competitive newsvendor problem, we take the two items

roduced by the two firms as perfect substitutes: a 1 = a 2 = 1 . This

ssumption is primarily for reduction in model dimensions and no-

ational economy. While this is not without loss of generality, per-

ect substitutes assumption is well-justified in many industrial set-

ings. For example, in a procurement environment briefly discussed

n Section 4.7 , potential suppliers go through a qualification pro-

ess or the buyer has very detailed specifications of all terms, so

hat the buyer is indifferent between the products of the two firms

hat are selected, and the entire demand not satisfied in one firm

pills over to the other firm. We leave many interesting and impor-

ant issues related to finer details of the substitution possibilities

o future work. However, our main findings (equilibrium existence

nd qualitative features of the equilibrium) are not affected by this

ssumption 

1 . 

.2. Cost and information structures 

Firm i pays a unit cost for the items that he purchases. We take

he type set of firm i , denoted C i , as the set of values his unit cost

an take. Firm i ’s type is governed by a probability measure p i over

 i . Type distributions of the two firms are independent. Each firm

bserves his own cost prior to deciding his order quantity, but he

oes not observe the other firm’s cost. From firm j ’s perspective,

rm i ’s unit cost is a random variable C i with support C i and dis-

ribution p i . 

In this paper, we focus on the case with discrete type sets.

pecifically, the unit cost of each firm can take one of two val-

es, i.e., C i = { c iL , c iH } with c iL < c iH . We assume that firm 1’s unit

ost is c 1 H with probability p 1 (c 1 H ) = p and c 1 L with probabil-

ty p 1 (c 1 L ) = 1 − p 1 (c 1 H ) = (1 − p ) and firm 2’s unit cost is c 2 H 
ith probability p 2 (c 2 H ) = q and c 2 L with probability p 2 (c 2 L ) =
 − p 2 (c 2 H ) = (1 − q ) . With appropriate relabeling of the players,

e take c 1 H ≤ c 2 H . 

We assume that salvage prices and back-order costs are 0. (The

nalysis can easily be extended to relax this assumption.) We also

ssume, without loss of generality, that each firm earns a normal-

zed revenue of 1 per unit of good he sells. This normalization can

e achieved by changing the unit of measurement for costs. Under

his normalization, we have c 2 H ≤ 1. In fact, all our results remain

nchanged if one were to take per unit revenues, instead of unit

osts, as the source of private information. 

Finally, all elements of the model except the cost realizations

re common knowledge at the time the order quantity decisions

re made. 

.3. Actions, strategies and payoffs 

For each player i the order quantities are the action sets, Q i =
0 , Q i ] , where Q i is the optimal order quantity of firm i assuming

hat he gets all of the industry demand D with the smallest pos-

ible value of c i . Finally, firm i ’s expected payoff is �i : Q × C → �
here C = C 1 × C 2 and Q = Q 1 × Q 2 . 

A pure strategy for player i is a function which maps his type

nto his action set, Q i : C i → Q i where Q i ( c i ) is the strategy choice

or type c i of player i . Player i ’s interim 

2 expected payoff �i is his
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expected profit conditional on his realized type c i and order quan-

tity Q , when his rival follows the strategy Q j (): 

�i (c i , Q ) = E C j [ πi (Q, Q j (C j ) , c i )] = 

∑ 

c j ∈C j 
p j (c j ) πi (Q, Q j (c j ) , c i ) , 

where, conditional on C j = c j , 

πi (Q, Q j (c j ) , c i ) = E R i (Q j (c j )) 

[
min { R i (Q j (c j )) , Q} ] − c i Q 

is the player’s ex post profit when his unit cost is c i and his order

quantity is Q . 

4. Equilibrium order quantities 

A strategy profile Q 

∗ = (Q 

∗
1 
() , Q 

∗
2 
()) is a Bayesian–Nash equilib-

rium if, for each player i , and each type c i ∈ C i of player i , 

Q 

∗
i (c i ) ∈ arg max 

Q∈Q i 

∑ 

c j ∈C j 
p j (c j ) πi (Q, Q j (c j ) , c i ) . 

Let Q iL = Q i (c iL ) be the order quantity of player i if his cost is

c iL and let Q iH = Q i (c iH ) be the order quantity of player i if his cost

is c iH . Let (Q 

∗
1 L 

, Q 

∗
1 H 

, Q 

∗
2 L 

, Q 

∗
2 H 

) denote a Bayesian–Nash equilibrium.

Interim expected payoffs conditional on own cost realizations are: 

�1 (c 1 L , Q 1 L ) = q E[ min { R 1 (Q 2 H ) , Q 1 L } ] 
+(1 − q ) E[ min { R 1 (Q 2 L ) , Q 1 L } ] − c 1 L Q 1 L , 

�1 (c 1 H , Q 1 H ) = q E[ min { R 1 (Q 2 H ) , Q 1 H } ] 
+(1 − q ) E[ min { R 1 (Q 2 L ) , Q 1 H } ] − c 1 H Q 1 H , 

�2 (c 2 L , Q 2 L ) = p E[ min { R 2 (Q 1 H ) , Q 2 L } ] 
+(1 − p) E[ min { R 2 (Q 1 L ) , Q 2 L } ] − c 2 L Q 2 L , 

�2 (c 2 H , Q 2 H ) = p E[ min { R 2 (Q 1 H ) , Q 2 H } ] 
+(1 − p) E[ min { R 2 (Q 1 L ) , Q 2 H } ] − c 2 H Q 2 H . 

A standard property of newsvendor models is that

∂ E R [ min { R, Q} ] /∂ Q = P r(R ≥ Q ) . Thus, taking the derivative of

each type’s payoff with respect to his action, the Bayesian–

Nash equilibrium order quantities (Q 

∗
1 L 

, Q 

∗
1 H 

, Q 

∗
2 L 

, Q 

∗
2 H 

) satisfy the

following conditions: 

q P r(R 1 (Q 2 H ) ≥ Q 1 L ) + (1 − q ) P r(R 1 (Q 2 L ) ≥ Q 1 L ) − c 1 L = 0 , (1)

q P r(R 1 (Q 2 H ) ≥ Q 1 H ) + (1 − q ) P r(R 1 (Q 2 L ) ≥ Q 1 H ) − c 1 H = 0 , (2)

p P r(R 2 (Q 1 H ) ≥ Q 2 L ) + (1 − p) P r(R 2 (Q 1 L ) ≥ Q 2 L ) − c 2 L = 0 , (3)

p P r(R 2 (Q 1 H ) ≥ Q 2 H ) + (1 − p) P r(R 2 (Q 1 L ) ≥ Q 2 H ) − c 2 H = 0 . (4)

Note that when the price ( w i ), salvage value ( ν i ) and backo-

rder cost ( g i ) are non-zero, Eqs. (1,4) can be easily extended us-

ing a general newsvendor approach. In this case, the last term on

the left-hand-side of Eqs. (1,4) needs to be equal to c o / (c u + c o )

where c o is cost of overage per unit and c u is cost of underage

per unit. For example, for Eq. (1) , the last term will be equal to

(c 1 L − ν1 ) / (w 1 + g 1 − ν1 ) . 

Note also that the type space C i for each firm can be extended

to incorporate more general discrete probability distributions. For

example, for each firm’s cost may take one of three values: low

( c iL ), medium ( c iM 

) and high ( c iH ) with different probabilities lead-

ing to now nine equations rather than the four in ( 1,4 ). While this

extension complicates the notation and further analysis and lead

to different mathematical expressions for equilibrium characteriza-

tion, structural results and insights are not expected to be substan-

tially different as is the case in most game theory applications (for

a rare exception, see Kerschbamer & Maderner, 1998 . Therefore, we

leave this extension for future work in this area. 
.1. Equilibrium existence 

Equilibrium exists under more general assumptions than we

ake. For instance, the theorem below is valid for arbitrary type

ets, not only discrete types. Furthermore, as noted by Lippman

nd McCardle (1997) in their model of complete information, the

xistence of equilibrium does not require any assumption on the

plit functions, or on the joint distribution of the initial demands. 

van Zandt and Vives (2007) show the existence of Bayesian–

ash equilibrium for supermodular asymmetric information games

hen type sets are discrete and action sets are continua. Our

odel of asymmetric information newsvendor duopoly is an in-

tance of the general class of incomplete information games stud-

ed in van Zandt and Vives (2007) . To establish the existence of

ure strategy equilibrium we verify that the equilibrium existence

onditions in van Zandt and Vives (2007) are satisfied in our set-

ing. These conditions are: (i) the payoff function π i is supermod-

lar in Q i , (ii) it has increasing differences in ( Q i , Q j ), and (iii) it

as increasing differences in ( Q i , t i ), where t i = −c i . 

heorem 1. A pure strategy Nash equilibrium exists for the newsven-

or duopoly game with asymmetric information. 

.2. Preliminary observations on the equilibrium 

In characterizing the structure of equilibrium, some preliminary

emarks will be useful. We start with some observations on the

est response functions. We then examine optimal order quantities

n the absence of strategic interactions to establish a baseline. 

Our first claim exploits the assumption that the split functions

 ( ·) and ˆ s (·) are deterministic and increasing, thus invertible. 

laim 1. min { s −1 (x ) , ̂  s −1 (y ) } ≤ x + y ≤ max { s −1 (x ) , ̂  s −1 (y ) } . 
The best response functions of the two types of firm

, (Q 

∗
1 L 

(Q 2 L , Q 2 H ) , Q 

∗
1 H 

(Q 2 L , Q 2 H )) , and those of firm 2,

(Q 

∗
2 L 

(Q 1 L , Q 1 H ) , Q 

∗
2 H 

(Q 1 L , Q 1 H )) , solve: 

q P r(R 1 (Q 2 H ) ≥ Q 

∗
1 L ) + (1 − q ) P r(R 1 (Q 2 L ) ≥ Q 

∗
1 L ) − c 1 L = 0 , 

q P r(R 1 (Q 2 H ) ≥ Q 

∗
1 H ) + (1 − q ) P r(R 1 (Q 2 L ) ≥ Q 

∗
1 H ) − c 1 H = 0 , 

p P r(R 2 (Q 1 H ) ≥ Q 

∗
2 L ) + (1 − p) P r(R 2 (Q 1 L ) ≥ Q 

∗
2 L ) − c 2 L = 0 , 

p P r(R 2 (Q 1 H ) ≥ Q 

∗
2 H ) + (1 − p) P r(R 2 (Q 1 L ) ≥ Q 

∗
2 H ) − c 2 H = 0 . 

Since R i ( Q ) and, hence, Pr ( R i ( Q ) ≥ Q i ) are non-increasing in Q ,

est response functions for both types of both players are non-

ncreasing in both arguments. 

Stand-alone order quantities in the absence of competitive in-

eractions will play a useful role as a baseline. We denote by

(Q 

o 
1 L 

, Q 

o 
1 H 

, Q 

o 
2 L 

, Q 

o 
2 H 

) the vector of optimal order quantities for the

ase with no spillovers (i.e., no competitive interaction). 

emma 1. The vector of stand-alone order quantities

(Q 

o 
1 L 

, Q 

o 
1 H 

, Q 

o 
2 L 

, Q 

o 
2 H 

) is the unique solution to the system of equa-

ions: 

 r(D 1 ≥ Q 1 L ) = c 1 L , P r(D 1 ≥ Q 1 H ) = c 1 H , 

P r(D 2 ≥ Q 2 L ) = c 2 L , P r(D 2 ≥ Q 2 H ) = c 2 H . 

The ranking of optimal order quantities of the two types of a

layer is straightforward - the higher a firms’ unit cost the lower

is stand-alone order quantity: Q 

o 
1 L 

≥ Q 

o 
1 H 

and Q 

o 
2 L 

≥ Q 

o 
2 H 

. 

In contrast, comparison of the order quantities across firms is

omplicated by the fact that relative rankings of the firms’ market

hares and unit costs are not a priori restricted. In general, depend-

ng on the relative orderings of market shares and unit costs, all

ankings of the four order quantities (Q 

o 
1 L 

, Q 

o 
1 H 

, Q 

o 
2 L 

, Q 

o 
2 H 

) that are

ompatible with the orderings Q 

o 
1 L 

≥ Q 

o 
1 H 

and Q 

o 
2 L 

≥ Q 

o 
2 H 

are possi-

le. 
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One needs further assumptions on market shares and unit costs

o be able to rank the stand-alone order quantities of the two

rms. For example, if unit costs and initial market shares are per-

ectly negatively correlated (so that the initial market share of the

rm with the lower unit cost exceeds that of the firm with higher

nit cost for all demand realizations) then stand-alone order quan-

ities are ordered in the same way as initial market shares. 

Note, on the other hand, that stock-out levels, (P r(D i ≥ Q 

o 
ix 
) : i ∈

 1 , 2 } , x ∈ { L, H} ) , are ordered the same way as the unit costs. This

imple observation, combined with our assumption that initial de-

ands of the two firms are monotone functions of a common mar-

et demand, allows a complete ordering of the transformed order

uantities: 

laim 2. For x , y ∈ { L , H }, s −1 (Q 

o 
1 x 

) ≥ ˆ s −1 (Q 

o 
2 y 

) if and only if c 1 x ≤ c 2 y .

Returning to the analysis of the equilibrium conditions, we first

ote an observation on the stock-out probability of firm i with or-

er level Q i . For firm 1: 

 r(R 1 (Q 2 ) ≥ Q 1 ) = P r(D 1 + (D 2 − Q 2 ) 
+ ≥ Q 1 ) 

= P r(s (D ) + ( ̂  s (D ) − Q 2 ) 
+ ≥ Q 1 ) 

= P r(D ≥ ˆ s −1 (Q 2 ) , D ≥ Q 1 + Q 2 ) 

+ P r(D ≤ ˆ s −1 (Q 2 ) , D ≥ s −1 (Q 1 )) . 

imilarly, for firm 2: 

 r(R 2 (Q 1 ) ≥ Q 2 ) = P r(D 2 + (D 1 − Q 1 ) 
+ ≥ Q 2 ) 

= P r( ̂  s (D ) + (s (D ) − Q 1 ) 
+ ≥ Q 2 ) 

= P r(D ≥ s −1 (Q 1 ) , D ≥ Q 2 + Q 1 ) 

+ P r(D ≤ s −1 (Q 1 ) , D ≥ ˆ s −1 (Q 2 )) . 

Second, we observe that low-cost type of each player orders a

arger quantity than his high-cost type in equilibrium. 

laim 3. (i) Q 

∗
1 L 

> Q 

∗
1 H 

, (ii) Q 

∗
2 L 

> Q 

∗
2 H 

. 

Using stand-alone order quantities as a baseline, the next claim

hows that order quantities strictly less than the stand-alone or-

er quantities are dominated. Thus, presence of spillovers leads to

rder quantities that are no less than the order quantities with-

ut spillovers. This means that total industry inventory does not

ecrease due to strategic behavior considering spillover demand. 

laim 4. (i) Q 

∗
1 L 

≥ Q 

o 
1 L 

, (ii) Q 

∗
1 H 

≥ Q 

o 
1 H 

, (iii) Q 

∗
2 L 

≥ Q 

o 
2 L 

, (iv) Q 

∗
2 H 

≥
 

o 
2 H 

. 

The following lemma identifies a useful boundary condition

hat ties the equilibrium order quantity of one of the players to the

tand-alone order quantity for the high-cost type of that player. 

emma 2. In a Bayesian–Nash equilibrium either (i) Q 

∗
2 H = Q 

o 
2 H 

or

ii) Q 

∗
1 H 

= Q 

o 
1 H 

. 

Next, equilibrium order quantities of high-cost types of the two

rms are ordered up to transformation by initial market shares: 

emma 3. s −1 (Q 

∗
1 H ) ≥ ˆ s −1 (Q 

∗
2 H ) . 

Finally, in equilibrium, the firm with highest possible unit cost

rders his optimal quantity under no competition. 

emma 4. Q 

∗
2 H = Q 

o 
2 H 

. 

When c 1 H = c 2 H , high-cost types of both firms order their op-

imal quantities under no competition, i.e., Q 

∗
2 H 

= Q 

o 
2 H 

and Q 

∗
1 H 

=
 

o 
1 H 

. 

As a final observation, we note that the best response function

f the second firm’s high-cost type is flat at its stand-alone level

hen the order quantities of the first firm’s two types exceed their

espective stand-alone levels: 

∗ o o o 
emma 5. Q 

2 H 
(x, y ) = Q 

2 H 
for all (x, y ) ≥ (Q 

1 L 
, Q 

1 H 
) . t  
.3. Structure of the equilibrium 

Summarizing the observations in the previous sub-section, un-

er the player labeling with c 1 H ≤ c 2 H , the conditions for equilib-

ium can be stated as follows: 

 P r(R 1 ( ̂  s ( G 

−1 
(c 2 H ))) ≥ Q 

∗
1 L ) + (1 − q ) P r(R 1 (Q 

∗
2 L ) ≥ Q 

∗
1 L ) = c 1 L , 

 P r(R 1 ( ̂  s ( G 

−1 
(c 2 H ))) ≥ Q 

∗
1 H ) + (1 − q ) P r(R 1 (Q 

∗
2 L ) ≥ Q 

∗
1 H ) = c 1 H , 

p P r(R 2 (Q 

∗
1 H ) ≥ Q 

∗
2 L ) + (1 − p) P r(R 2 (Q 

∗
1 L ) ≥ Q 

∗
2 L ) = c 2 L , 

Q 

∗
2 H = 

ˆ s ( G 

−1 
(c 2 H )) . 

We can now state the main theorem of this paper that charac-

erizes the structure of equilibrium order quantities. 

heorem 2. (Q 

∗
1 L 

, Q 

∗
1 H 

, Q 

∗
2 L 

, Q 

∗
2 H 

) is a Bayesian–Nash equilibrium if

nd only if 

(1 ) Q 

∗
2 H = 

ˆ s ( G 

−1 
(c 2 H )) 

2) Q 

∗
1 L , Q 

∗
1 H and Q 

∗
2 L satisfy one of the following sets of conditions: 

(i ) q G (Q 

∗
1 L + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − q ) G (s −1 (Q 

∗
1 L )) = c 1 L ( i 1 )

 G (Q 

∗
1 H + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − q ) G (s −1 (Q 

∗
1 H )) = c 1 H ( i 2 )

p G (Q 

∗
2 L + Q 

∗
1 H ) + (1 − p) G (Q 

∗
2 L + Q 

∗
1 L ) = c 2 L ( i 3 )

ˆ 
 

−1 (Q 

∗
2 L ) ≥ s −1 (Q 

∗
1 L ) ( i 4 )

(ii ) q G (Q 

∗
1 L + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − q ) G (Q 

∗
2 L + Q 

∗
1 L ) = c 1 L ( ii 1 )

 G (Q 

∗
1 H + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − q ) G (s −1 (Q 

∗
1 H )) = c 1 H ( ii 2 )

p G (Q 

∗
2 L + Q 

∗
1 H ) + (1 − p) G ( ̂  s −1 (Q 

∗
2 L )) = c 2 L ( ii 3 )

 

−1 (Q 

∗
1 L ) > 

ˆ s −1 (Q 

∗
2 L ) ≥ s −1 (Q 

∗
1 H ) ( ii 4 )

(iii ) q G (Q 

∗
1 L + ̂  s ( G 

−1 
(c 2 H ))) + (1 − q ) G (Q 

∗
1 L + ̂  s ( G 

−1 
(c 2 L ))) = c 1 L 

( iii 1 ) 

 G (Q 

∗
1 H + ̂  s ( G 

−1 
(c 2 H ))) + (1 − q ) G (Q 

∗
1 H + ̂  s ( G 

−1 
(c 2 L ))) = c 1 H ( iii 2 )

 

∗
2 L = 

ˆ s ( G 

−1 
(c 2 L )) ( iii 3 )

 

−1 (Q 

∗
1 H ) > 

ˆ s −1 (Q 

∗
2 L ) ( iii 4 )

Before we proceed with discussion of properties of the equilib-

ium, we first show that it is unique. 

heorem 3. The vector of order quantities (Q 

∗
1 L , Q 

∗
1 H , Q 

∗
2 L , Q 

∗
2 H ) in

heorem 2 is unique. 

Uniqueness of solutions for each block of equations is a

traightforward consequence of the continuity of the demand dis-

ribution. To establish uniqueness of the equilibrium, we rule out

he possibility that the two or more blocks of equations may have

olutions that also satisfy the corresponding inequality. This is

one in the Appendix A.4 . 

A notable pattern in the equilibria across the model space is

he recursive structure of the order quantities. This pattern greatly
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simplifies the computation of equilibrium order quantities. The or-

der quantity of the player type with highest unit cost is deter-

mined based on the demand distribution, the split function and

his unit cost, independently of other parameters of the game. The

remaining equilibrium quantities are obtained recursively. At each

step, substituting for the previously computed equilibrium values,

a single equation is solved for a single unknown equilibrium quan-

tity. 

The recursive pattern of the equilibrium quantities reflect the

fact that the equilibrium is partially dominance-solvable, which in

turn is a consequence of the supermodular structure of the game.

By Claim 4 above, any quantity strictly less than the stand-alone

order quantity is strictly dominated by the stand-alone order quan-

tity for every type. Given this fact and Lemma 5 , order quantities

strictly greater than the stand-alone order quantity are also dom-

inated by the stand-alone order quantity for the highest cost type

( c 2 H ). Thus, a two-step reasoning pins the equilibrium behavior of

the highest cost type. 

The equilibrium described in Theorem 2 can also be understood

by following a recursive argument in effective demands. We first

explain this for case (i) . First, the order quantity for firm 2 when

he has the high cost ( Q 

∗
2 H 

) is determined using its stand-alone op-

timal order quantity. This updates the effective demand for firm 1.

Under condition ( i 4 ) this leads to determining the order quantity

for firm 1 when he has the low cost ( Q 

∗
1 L 

) using ( i 1 ) and the or-

der quantity for firm 1 when he has the high cost ( Q 

∗
1 H 

) using ( i 2 ).

Determining Q 

∗
1 L and Q 

∗
1 H updates the effective demand for firm 2

and the order quantity for that firm when he has the low cost can

be found using ( i 3 ). In case (ii) , the order quantity for firm 1 when

he has the high cost ( Q 

∗
1 H 

) is found using ( ii 2 ). The order quantity

for firm 2 when he has the low cost ( Q 

∗
2 L ) can then be found using

( ii 3 ). Finally, the order quantity for firm 1 when has the low cost

( Q 

∗
1 L 

) can be determined using ( ii 1 ). In case (iii) , the order quan-

tity for firm 2 when he has low cost ( Q 

∗
2 L ) is also found using his

stand-alone optimal order quantity. Determining Q 

∗
2 L 

and Q 

∗
2 H 

up-

dates the effective demand for firm 1. The order quantities for firm

1 for both types are then determined using ( iii 1 ) and ( iii 2 ). 

4.4. Corollaries 

In this sub-section we consider several corollaries of

Theorem 2 for special cases of the general model. The first

corollary considers a model with ex ante symmetric cost struc-

tures without restricting the initial market shares. In the second

corollary, we impose a restriction on the initial market share

function so that one of the firms has larger initial market share

for all demand realizations. Corollary 3 presents the equilibrium

for the case with fully symmetric firms where both initial market

shares and ex ante cost structures are identical. In Corollary 4 , we

remove the restrictions on the initial market shares and consider

an extreme form of ex ante cost asymmetry: one firm’s unit costs

are uniformly higher than the other firm’s unit costs for all type

realizations. Finally, in Corollary 5 , we consider a model with sym-

metric initial market shares and unrestricted ex ante asymmetries

in the cost structures. As these corollaries are obtained through

straightforward substitutions, we omit the proofs. 

Corollary 1. If the two firms are ex ante symmetric with respect

to costs, that is, c 1 H = c 2 H = c H , c 1 L = c 2 L = c L , and p = q, then

(Q 

∗
1 L 

, Q 

∗
1 H 

, Q 

∗
2 L 

, Q 

∗
2 H 

) is a Bayesian–Nash equilibrium if and only if 

(1 ) Q 

∗
1 H = s ( G 

−1 
(c H )) , Q 

∗
2 H = 

ˆ s ( G 

−1 
(c H )) 

( 2) and Q 

∗
1 L and Q 

∗
2 L satisfy one of the following sets of conditions:

(i ) p G (Q 

∗
1 L + 

ˆ s ( G 

−1 
(c H ))) + (1 − p) G (s −1 (Q 

∗
1 L )) = c L ( i 1 )
p G (Q 

∗
2 L + s ( G 

−1 
(c H ))) + (1 − p) G (Q 

∗
2 L + Q 

∗
1 L ) = c L ( i 2 )

ˆ 
 

−1 (Q 

∗
2 L ) ≥ s −1 (Q 

∗
1 L ) ( i 3 )

(ii ) p G (Q 

∗
1 L + 

ˆ s ( G 

−1 
(c H ))) + (1 − p) G (Q 

∗
2 L + Q 

∗
1 L ) = c L ( ii 1 )

p G (Q 

∗
2 L + s ( G 

−1 
(c H ))) + (1 − p) G ( ̂  s −1 (Q 

∗
2 L )) = c L ( ii 2 )

 

−1 (Q 

∗
1 L ) > 

ˆ s −1 (Q 

∗
2 L ) ( ii 3 )

Further simplification is possible under the assumption that ini-

ial market shares of the two firms are uniformly ranked, i.e., one

rm’s initial market share is higher than the other’s for all demand

ealizations. By relabeling firms if necessary, we can take initial

arket shares to favor firm 1: s ( d ) ≥ d /2. 

orollary 2. If c 1 H = c 2 H = c H , c 1 L = c 2 L = c L , p = q and s (d) =
ˆ  (d) ≥ d/ 2 for all demand levels d , then (Q 

∗
1 L 

, Q 

∗
1 H 

, Q 

∗
2 L 

, Q 

∗
2 H 

) is a

ayesian–Nash equilibrium if and only if 

Q 

∗
1 H = s ( G 

−1 
(c H )) , Q 

∗
2 H = 

ˆ s ( G 

−1 
(c H )) and 

Q 

∗
1 L and Q 

∗
2 L solv e : 

p G (Q 

∗
1 L + 

ˆ s ( G 

−1 
(c H ))) + (1 − p) G (s −1 (Q 

∗
1 L )) = c L 

p G (Q 

∗
2 L + s ( G 

−1 
(c H ))) + (1 − p) G (Q 

∗
2 L + Q 

∗
1 L ) = c L 

When the two firms are fully symmetric in terms of cost struc-

ures and initial market shares, we get a fully symmetric equilib-

ium. 

orollary 3. Assume that the two firms are ex ante symmetric with

espect to costs. That is, c 1 H = c 2 H = c H , c 1 L = c 2 L = c L , and p = q .

urthermore, let s (d) = ˆ s (d) = d/ 2 for all demand levels d. Then

(Q 

∗
1 L 

, Q 

∗
1 H 

, Q 

∗
2 L 

, Q 

∗
2 H 

) is a Bayesian–Nash equilibrium if and only if 

 

∗
1 H = Q 

∗
2 H = Q 

∗
H = (1 / 2)( G 

−1 
(c H )) and 

 

∗
1 L = Q 

∗
2 L = Q 

∗
L where Q 

∗
L solv es 

p G (Q 

∗
L + (1 / 2) G 

−1 
(c H )) + (1 − p) G (2 Q 

∗
L ) = c L . 

The next corollary looks at the case where one firm has a cost

dvantage for all cost realizations. 

orollary 4. Assume that c 1 L ≤ c 1 H ≤ c 2 L ≤ c 2 H . Then (Q 

∗
1 L , Q 

∗
1 H ,

 

∗
2 L 

, Q 

∗
2 H 

) is a Bayesian–Nash equilibrium if and only if 

 

∗
2 H = 

ˆ s ( G 

−1 
(c 2 H )) 

 

∗
2 L = 

ˆ s ( G 

−1 
(c 2 L )) 

p G (Q 

∗
1 L + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − p) G (Q 

∗
1 L + 

ˆ s ( G 

−1 
(c 2 L ))) = c 1 L 

p G (Q 

∗
1 H + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − p) G (Q 

∗
1 H + 

ˆ s ( G 

−1 
(c 2 L ))) = c 1 H . 

Corollary 4 uses the fact that s −1 (Q 

∗
1 H ) ≥ s −1 (Q 

o 
1 H 

) ≥ ˆ s −1 (Q 

o 
2 L 

) =
ˆ  −1 (Q 

∗
2 L 

) which satisfies condition ( iii 4 ) for case (iii) of Theorem 2 .

As a final corollary, we present the equilibrium order quantities

or symmetric initial market shares. In this special case, the equi-

ibrium conditions can be stated explicitly in terms of the exoge-

ous cost parameters, in contrast to the implicit characterization

n Theorem 2 . For each of the three possible orderings of the unit

ost parameters, we have a different set of equilibrium conditions. 
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Table 1 

Comparative statics. 

Cases Quantities Conditions c 1 L c 1 H p c 2 L c 2 H q 

Q ∗2 H 0 0 0 0 − 0 

(i) Q ∗1 L − 0 0 0 + + 

Q ∗1 H 0 − 0 0 + + 

Q ∗2 L G (Q ∗1 L + Q ∗2 L ) > 0 + + + − − −
Q ∗2 L G (Q ∗1 L + Q ∗2 L ) = 0 0 + + − − −

(ii) Q ∗1 L G (Q ∗1 L + Q ∗2 L ) > 0 − − − + + + 

Q ∗1 L G (Q ∗1 L + Q ∗2 L ) = 0 − 0 0 0 + + 

Q ∗1 H 0 − 0 0 + + 

Q ∗2 L 0 + + − − −
(iii) Q ∗1 L G (Q ∗1 L + Q ∗2 L ) > 0 − 0 0 + + + 

Q ∗1 L G (Q ∗1 L + Q ∗2 L ) = 0 − 0 0 0 + + 

Q ∗1 H G (Q ∗1 H + Q ∗2 L ) > 0 0 − 0 + + + 

Q ∗1 H G (Q ∗1 H + Q ∗2 L ) = 0 0 − 0 0 + + 

Q ∗2 L 0 0 0 − 0 0 
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orollary 5. Assume that s (d) = ˆ s (d) = d/ 2 . Then (Q 

∗
1 L , Q 

∗
1 H ,

 

∗
2 L , Q 

∗
2 H ) is a Bayesian–Nash equilibrium if and only if 

(1 ) Q 

∗
2 H = (1 / 2) G 

−1 
(c 2 H ) 

( 2) Q 

∗
1 L , Q 

∗
1 H and Q 

∗
2 L satisfy one of the following sets of conditions:

(i ) I f ] c 2 L ≤ c 1 L ≤ c 1 H ≤ c 2 H 

q G (Q 

∗
1 L + (1 / 2) G 

−1 
(c 2 H )) + (1 − q ) G (2 Q 

∗
1 L ) = c 1 L 

( i 1 ) 

 G (Q 

∗
1 H + (1 / 2) G 

−1 
(c 2 H )) + (1 − q ) G (2 Q 

∗
1 H ) = c 1 H ( i 2 )

p G (Q 

∗
2 L + Q 

∗
1 H ) + (1 − p) G (Q 

∗
2 L + Q 

∗
1 L ) = c 2 L ( i 3 )

(ii ) I f c 1 L ≤ c 2 L ≤ c 1 H ≤ c 2 H 

q G (Q 

∗
1 L + (1 / 2) G 

−1 
(c 2 H ))) + (1 − q ) G (Q 

∗
2 L + Q 

∗
1 L ) = c 1 L 

( ii 1 ) 

 G (Q 

∗
1 H + (1 / 2) G 

−1 
(c 2 H )) + (1 − q ) G (2 Q 

∗
1 H ) = c 1 H ( ii 2 )

p G (Q 

∗
2 L + Q 

∗
1 H ) + (1 − p) G (2 Q 

∗
2 L ) = c 2 L ( ii 3 )

(iii ) I f c 1 L ≤ c 1 H ≤ c 2 L ≤ c 2 H 

 G (Q 

∗
1 L + (1 / 2) G 

−1 
(c 2 H )) + (1 −q ) G (Q 

∗
1 L + (1 / 2) G 

−1 
(c 2 L )) = c 1 L 

( iii 1 ) 

 G (Q 

∗
1 H + (1 / 2) G 

−1 
(c 2 H )) + (1 − q ) G (Q 

∗
1 H + (1 / 2) G 

−1 
(c 2 L )) = c 1 H 

( iii 2 ) 

 

∗
2 L = (1 / 2) G 

−1 
(c 2 L ) ( iii 3 )

.5. Intra-equilibrium comparisons 

As noted in Claim 3 above, equilibrium is monotone: low-cost

ype of a firm orders a larger quantity than his high-cost type.

ithout further restrictions on the initial market shares and the

evel of unit costs, this is about the extent of what can be said

egarding intra-equilibrium comparisons. That is, no general rank-

ng of order quantities across firms is possible without imposing

urther structure on the model. Furthermore, even under normal-

zation an analog of Claim 2 does not hold for equilibrium or-

er quantities. The only possible ranking is the one provided in

emma 3 that ranks the normalized equilibrium order quantities

f the high-cost types of the two firms. 

An interesting observation can be made using the characteri-

ation in Corollary 4 in the previous section to illustrate a general

henomenon of inter-type externality. Note that the condition

n Corollary 4 is only a sufficient condition and the equilibrium

haracterization there remains valid for a range of unit costs

ith c 2 L < c 1 H < c 2 H as long as condition ( iii 4 ) for case (iii) of

heorem 2 is satisfied. In this equilibrium, both types of firm 2

hoose an order quantity equal to his stand-alone quantity while it

s common knowledge that firm 1 may have larger unit cost. That

s, low-cost type firm 2 ignores spillover from the less efficient

ype of the rival firm. This is due to the fact that high-cost type

f firm 1, while less efficient than the low-cost type firm 2, selects

 large order quantity expecting spillover demand from the less

fficient type of firm 2. The increased order quantity of the firm

 H forces firm 2 L to stick to Q 

o . 

2 L 
.6. Comparative statics 

Comparative static analysis of the equilibrium and payoffs with

espect to the exogenous parameters of the model is done in two

arts. We first establish general comparative statics results with

espect to two exogenous functions in the model, namely, the de-

and and the market share function. Then we derive explicit com-

arative static expressions for the scalar parameters. 

heorem 4. Let D A and D B be two positive random variables such

hat D A dominates D B under first order stochastic dominance. Then,

he equilibrium order quantities with industry demand D A are larger

han the equilibrium order quantities with industry demand D B . 

heorem 5. If s A ( d ) > s B ( d ) for all positive real numbers d , then the

quilibrium order quantities of both types of firm 1 (firm 2) are larger

respectively, smaller) when the split function is s A than the order

uantities under s B .) 

In Table 1 , we provide the signs of all first order derivatives of

quilibrium order quantities with respect to the exogenous scalar

arameters, c 1 L , c 1 H , p , c 2 L , c 2 H and q . The explicit expressions

or the comparative statics derivatives themselves are provided in

ppendix A.7 . Cases ( i ), ( ii ) and ( iii ) correspond to the cases in

heorem 2 . 

As expected, the equilibrium order quantities for both play-

rs are non-increasing with respect to their own costs and non-

ecreasing with respect to their rival’s costs. In equilibrium, each

layer orders more as his rival’s probability of being high type in-

reases. Conversely, each player orders less as his own probabil-

ty of being high type increases. This is due to information asym-

etry between players and can be explained as follows. Suppose

he probability of being high type for firm 1 is increasing. In this

ase, firm 2 will be ordering more since he will anticipate a higher

hance of low order quantity from firm 1. This will lead firm 1

o expect less spillover from firm 2 and hence order less himself.

hether these monotonicities are strict or not depend on specific

ases and conditions as given in Table 1 . The only exception to

hese results is that firm 2’s (the firm with larger high cost) equi-

ibrium order quantity when his type is high only depends on its

wn cost as shown in Theorem 2 . 

.7. An application 

In order to demonstrate the use of the model we developed in

his paper, we provide an example in a dual sourcing procurement

etting. Dual sourcing or multiple sourcing in general is used ex-

ensively in many industries to protect the buyer from supply in-

erruptions and hold-up risk ( Burke, Carrillo, & Vakharia, 2007 ).
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Table 2 

Example. 

Q o 1 L Q o 1 H Q o 2 L Q o 2 H ExpInv o FillRate o 

σ s ˆ c 1 L , ̂  c 1 H ˆ c 2 L , ̂  c 2 H Q ∗1 L Q ∗1 H Q ∗2 L Q ∗2 H ExpInv ∗ FillRate ∗

A 12,0 0 0 0.75 90,100 100,110 60,854 58,288 19,921 19,017 79,040 87.25% 

61,537 58,463 20,167 19,017 79,592 87.73% 

B 12,0 0 0 0.75 93,97 103,107 60,142 59,122 19,675 19,316 79,127 87.35% 

60,693 59,333 19,675 19,316 79,508 87.68% 

C 12,0 0 0 0.75 95,95 105,105 59,643 59,643 19,500 19,500 79,144 87.36% 

60,024 60,024 19,500 19,500 79,525 87.70% 

D 12,0 0 0 0.50 90,100 100,110 40,569 38,859 39,841 38,035 78,652 86.90% 

42,055 39,126 40,075 38,035 79,645 87.77% 

E 12,0 0 0 0.25 90,100 100,110 20,285 19,429 59,762 57,052 78,264 86.54% 

22,622 19,662 59,873 57,052 79,604 87.72% 

F 15,0 0 0 0.75 90,100 100,110 59,380 56,173 19,338 18,209 76,550 84.06% 

60,234 56,391 19,646 18,209 77,240 84.66% 

G 18,0 0 0 0.75 90,100 100,110 57,906 54,057 18,756 17,401 74,060 80.87% 

58,931 54,319 19,126 17,401 74,889 81.59% 
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The buyer allocates each supplier it selects a portion of its to-

tal procurement of a particular item or a group of items. The

selection and allocation decisions can be carried out using a re-

verse auction ( Bichler, Guler, & Mayer, 2015; Tunca & Wu, 2009 ).

In some of these procurement settings, the buyer is a manufac-

turer and uses the procured item as a raw material to manufac-

ture its own good which has an uncertain final demand. In some

cases, the buyer may seek to shift the risk of uncertainty in de-

mand to its suppliers and commit each supplier a percentage of

its total requirement, rather than in number of units. For exam-

ple, Hewlett-Packard’s procurement commitment from a particular

supplier may be a pre-specified percent of the total requirement

(a.k.a. total available market) in a given fiscal period ( Nagali et al.,

2008 ). In general, it may take time to produce or build up capacity

for the item. Therefore, the suppliers may need to make quantity

decisions prior to observing demand. This requires each supplier

to solve a newsvendor problem to determine its supply quantity.

Obviously, if the demand allocated to a supplier exceeds its supply,

the buyer can use the other supplier’s excess supply, if any, leading

to a newsvendor competition among suppliers. Clearly, in this case,

the cost information is private to each supplier, making the game

an asymmetric information game such as the one we consider in

this paper. 

For this example, we use data that we have previously col-

lected in Ş en, Yaman, Güler, and Körpeo ̆glu (2014) from procure-

ment bidding events of a large manufacturing company. For one

of its components, the company forecasts that the total available

market will be 89,0 0 0 units. The company allocates 75% of the

total available market to a low cost supplier (supplier 1) which

will supply the parts at w 1 = $121 per unit, while the remaining

25% is allocated to another supplier (supplier 2) which will sup-

ply them at w 2 = $128 per unit. It is assumed that the demand is

distributed Normally with mean ( μ) equal to the point forecast of

89,0 0 0 units. We denote ˆ c i j = c i j w i , i ∈ {1, 2}, and j ∈ { L , H }. We an-

alyze various scenarios for ˆ c i j to understand the effect of informa-

tion asymmetry. We also study the effect of the standard deviation

of the Normal distribution σ to understand the effect of demand

uncertainty for this problem. Note that we have μ> 4 σ ensuring

that the probability of negative demand is negligibly small. Finally,

we consider the effect of the split function, which is described by

s (d) = sd in this case, where 100 s is the percent of total available

market to be procured from supplier 1. 

The results of our analysis for seven instances is given in

Table 2 . For each instance, the first row of Columns 6–9 report the

individual newsvendor order quantities without considering the ef-

fect of spillover demand. The second row of Columns 6–9 report

the equilibrium order quantities. Columns 10 and 11 report the

corresponding expected total inventory from two suppliers and ex-
ected fill rates (percent of total demand that can be satisfied by

he total inventory created by two suppliers). 

In the base instance A , σ = 12 , 0 0 0 , s = 0 . 75 and

( ̂ c 1 L , ̂  c 1 H , ̂  c 2 L , ̂  c 2 H ) = ( 90 , 100 , 100 , 110 ) . The spillover competition

eads to 552 more units of total inventory in expectation, resulting

n approximately 0.5% increase in the expected fill rate. When

( ̂ c 1 L , ̂  c 1 H , ̂  c 2 L , ̂  c 2 H ) = ( 93 , 97 , 103 , 107 ) in instance B , the asymmetry

n cost information decreases. This decreases the total inventory in

he Newsvendor competition, whereas the total inventory in the

o-competition benchmark is higher than the total inventory in

nstance A . When ( ̂ c 1 L , ̂  c 1 H , ̂  c 2 L , ̂  c 2 H ) = ( 95 , 95 , 105 , 105 ) in instance

 , there is no longer information asymmetry in the game. There

s a slight increase in total inventory in this case, as the positive

ffect of cost parameters on order quantities dominates the nega-

ive effect of lower strategic interactions due to the elimination of

nformation asymmetry. 

In instance D , percentage split of supplier 1 (lower cost sup-

lier since c 1 L ≤ c 2 L and c 1 H ≤ c 2 H ) is reduced to 50% from 75% in

nstance A . As expected, this leads to reduced total inventory for

he no-interaction model. Interestingly, when the suppliers com-

ete for the spillover demand, this leads to higher total inventory

or the buyer. As the percentage allocation of supplier 1 is further

educed to 25% in instance E , the effect of increased cost domi-

ates and the total inventory goes down. 

The standard deviation of the demand is first increased to

5,0 0 0 in instance F and then to 18,0 0 0 in instance G . The effect of

his on both no competition and competition models is less inven-

ory. However, the effect of spillover competition becomes more

ronounced as the uncertainty goes up. 

. A Special Case: Uniform demand and linear market shares 

In this section, we present the full explicit characterization of

he equilibrium and the corresponding payoff functions for uni-

ormly distributed demand and linear market share functions:

 ∼ Uniform (0, 1), and s (D ) = sD and ˆ s (D ) = (1 − s ) D . Under uni-

orm demand and linear market shares, an instance of the model

s represented by 7 parameters: ( c 1 L , c 1 H , c 2 L , c 2 H , p , q , s ). 

As shown in Section 4 , while Q 

∗
2 H 

= (1 − s )(1 − c 2 H ) , solution

o Q 

∗
1 L 

, Q 

∗
1 H 

and Q 

∗
2 L 

(and the corresponding payoffs) requires a de-

ailed analysis. 

.1. A partition of the parameter space 

Detailed analysis, provided in Appendix A.8 , lead to 8 regions in

he parameter space. In each of the 8 regions, different equilibrium

uantities and payoff functions are valid. In other words, in each of

hese regions the equilibrium structure (functional form) of at least
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Table 3 

Functional forms of endogenous variables by parameter region. 

Region Q 1 L Q 1 H Q 2 L π1 ( c 1 L , c 2 L ) π1 ( c 1 H , c 2 L ) π2 ( c 1 L , c 2 L ) π2 (c 1H , c 2L ) 

1 Q α1 L Q α1 H Q α2 L πα
1 (c 1 L , c 2 L ) πα

1 (c 1 H , c 2 L ) πα
2 (c 1 L , c 2 L ) πα

2 (c 1 H , c 2 L ) 

2 Q 
β
1 L 

Q α1 H Q α2 L πβ
1 
(c 1 L , c 2 L ) πα

1 (c 1 H , c 2 L ) πβ
2 
(c 1 L , c 2 L ) πα

2 (c 1 H , c 2 L ) 

3 Q 
β
1 L 

Q α1 H Q 
β
2 L 

πβ
1 
(c 1 L , c 2 L ) πα

1 (c 1 H , c 2 L ) πγ
2 

(c 1 L , c 2 L ) πα
2 (c 1 H , c 2 L ) 

4 Q α1 L Q α1 H Q 
γ
2 L 

πγ
1 

(c 1 L , c 2 L ) πα
1 (c 1 H , c 2 L ) πδ

2 (c 1 L , c 2 L ) πα
2 (c 1 H , c 2 L ) 

5 Q 
γ
1 L 

Q α1 H Q 
γ
2 L 

πδ
1 (c 1 L , c 2 L ) πα

1 (c 1 H , c 2 L ) πδ
2 (c 1 L , c 2 L ) πα

2 (c 1 H , c 2 L ) 

6 Q α1 L Q 
β
1 H 

Q δ2 L πγ
1 

(c 1 L , c 2 L ) πβ
1 
(c 1 H , c 2 L ) πδ

2 (c 1 L , c 2 L ) πβ
2 
(c 1 H , c 2 L ) 

7 Q α1 L Q 
γ
1 H 

Q δ2 L πγ
1 

(c 1 L , c 2 L ) πγ
1 

(c 1 H , c 2 L ) πδ
2 (c 1 L , c 2 L ) πβ

2 
(c 1 H , c 2 L ) 

8 Q δ1 L Q 
γ
1 H 

Q δ2 L πδ
1 (c 1 L , c 2 L ) πγ

1 
(c 1 H , c 2 L ) πδ

2 (c 1 L , c 2 L ) πβ
2 
(c 1 H , c 2 L ) 

Fig. 1. Conditions characterizing the partition of the parameter space. 
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ne of endogenous variable is different from its from in other re-

ions. The conditions that determine the partition of the parameter

pace are as follows: Denoting ˆ p = sp and ˆ q = (1 − s ) q, 

(1 − ˆ q ) c 2 L < c 1 H − ˆ q c 2 H (C A ) 
c 1 L < 

ˆ q c 2 H (C B ) 
( 1 − ˆ q ) c 2 L < 

ˆ p c 1 H − ˆ p ̂  q c 2 H (C C ) 
ˆ q c 2 L < −c 1 H + ̂

 q c 2 H (C D ) 
−(1 − ˆ p ) c 1 L + (1 − ˆ q ) c 2 L < 

ˆ p c 1 H − ˆ q c 2 H (C E ) 
ˆ p c 1 L + (1 − ˆ q ) c 2 L < 

ˆ p c 1 H (C F ) 
(1 − ˆ p ) (1 − ˆ q ) c 1 L + ̂

 q (1 − ˆ q ) c 2 L < ̂

 p ̂  q c 1 H + ̂

 q (1 − ˆ p − ˆ q ) c 2 H (C G ) 
c 1 L + ̂

 q c 2 L < 

ˆ q c 2 H (C H ) 

The 8 different regions that these equilibrium conditions lead

o are given in Figure 1 . 

.2. Equilibrium order quantities 

Q 

∗
1 L 

, Q 

∗
1 H 

and Q 

∗
2 L 

and payoffs π1 ( c 1 L , c 2 L ), π1 ( c 1 H , c 2 L ), π2 ( c 1 L ,

 2 L ) and π2 ( c 1 H , c 2 L ) in these regions can be found using the fol-

owing table: 

The equilibrium order quantity for firm 1 when his type is low

akes four different functional forms ( Table 3 ): 

 

α
1 L = 1 − c 1 L 

q 
− (1 − s )(1 − c 2 H ) , 

 

β
1 L 

= 

(1 − c 1 L − q (1 − s )(1 − c 2 H )) 

(q + (1 − q ) /s ) 
, 

 

γ
1 L 

= 1 − c 1 L − q (1 − s )(1 − c 2 H ) − (1 − q )(1 − c 2 L ) 

(p + (1 − p) / (1 − s )) 

+ 

(1 − q ) p(1 − c 1 H − q (1 − s )(1 − c 2 H )) 

(q + (1 − q ) /s )(p + (1 − p) / (1 − s )) 
, 

 

δ
1 L = 1 − c 1 L − q (1 − s )(1 − c 2 H ) − (1 − q )(1 − s )(1 − c 2 L ) . 
hen firms 1’s type is high, his equilibrium order quantity takes

hree possible forms: 

 

α
1 H = 

(1 − c 1 H − q (1 − s )(1 − c 2 H )) 

(q + (1 − q ) /s ) 
, 

 

β
1 H 

= 1 − c 1 H 
q 

− (1 − s )(1 − c 2 H ) , 

 

γ
1 H 

= 1 − c 1 H − q (1 − s )(1 − c 2 H ) − (1 − q )(1 − s )(1 − c 2 L ) . 

Finally, the low type of firm 2 has four different functional

orms for his equilibrium order quantity: 

 

α
2 L = 1 − c 2 L 

p 
− (1 − c 1 H − q (1 − s )(1 − c 2 H )) 

(q + (1 − q ) /s ) 
, 

 

β
2 L 

= 1 − c 2 L − p (1 − c 1 H − q (1 − s )(1 − c 2 H )) 

(q + (1 − q ) /s ) 

− (1 − p)(1 − c 1 L − q (1 − s )(1 − c 2 H )) 

(q + (1 − q ) /s ) 
, 

 

γ
2 L 

= 

(1 − c 2 L ) 

(p + (1 − p) / (1 − s )) 

− p (1 − c 1 H − q (1 − s )(1 − c 2 H )) 

(q + (1 − q ) /s )(p + (1 − p) / (1 − s )) 
, 

 

δ
2 L = (1 − s )(1 − c 2 L ) . 

.3. Equilibrium payoffs 

When both firms have low costs, Firm 1’s ex post payoff can

ake four different functional forms: 

πα
1 (c 1 L , c 2 L ) = 

1 

2 

s − c 1 L Q 1 L , 

πβ
1 
(c 1 L , c 2 L ) = Q 1 L (1 − c 1 L ) − (Q 1 L ) 

2 

2 s 
, 

γ
1 
(c 1 L , c 2 L ) = 

1 

2 

+ 

(Q 2 L ) 
2 

2(1 − s ) 
− Q 2 L − c 1 L Q 1 L , 

πδ
1 (c 1 L , c 2 L ) = Q 1 L (1 − c 1 L ) + 

(Q 2 L ) 
2 

2(1 − s ) 
− (Q 1 L + Q 2 L ) 

2 

2 

. 

Firm 2’s payoff, similarly, has four possible functional forms

hen both firms have low cost: 

πα
2 (c 1 L , c 2 L ) = 

1 

2 

(1 − s ) − c 2 L Q 2 L , 

πβ
2 
(c 1 L , c 2 L ) = 

1 

2 

+ 

(Q 1 L ) 
2 

2 s 
− Q 1 L − c 2 L Q 2 L , 

γ
2 
(c 1 L , c 2 L ) = Q 2 L (1 − c 2 L ) + 

(Q 1 L ) 
2 

2 s 
− (Q 1 L + Q 2 L ) 

2 

2 

, 

πδ
2 (c 1 L , c 2 L ) = Q 2 L (1 − c 2 L ) − (Q 2 L ) 

2 

2(1 − s ) 
. 

When firms 1 and 2 have low and high costs, respectively, we

ave three possibilities for the payoff for firm 1’s payoff: 

πα
1 (c 1 H , c 2 L ) = Q 1 H (1 − c 1 H ) − (Q 1 H ) 

2 

, 

2 s 
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Table 4 

Comparative statics for uniform demand case. 

Q α1 L Q 
β
1 L 

Q 
γ
1 L 

Q δ1 L Q α2 L Q 
β
2 L 

Q 
γ
2 L 

Q δ2 L Q α1 H Q 
β
1 H 

Q 
γ
1 H 

Q 2 H 

c 1 L − − − − 0 + 0 0 0 0 0 0 

c 1 H 0 0 − 0 + + + 0 − − − 0 

p 0 0 − 0 + + + 0 0 − − 0 

c 2 L 0 0 + + − − − − 0 0 + 0 

c 2 H + + + + − − − 0 + + + −
q + + + + − − − 0 + + + 0 

s + + + + − − − − + + + −
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i

πβ
1 
(c 1 H , c 2 L ) = 

1 

2 

+ 

(Q 2 L ) 
2 

2(1 − s ) 
− Q 2 L − c 1 H Q 1 H , 

πγ
1 
(c 1 H , c 2 L ) = Q 1 H (1 − c 1 H ) + 

(Q 2 L ) 
2 

2(1 − s ) 
− (Q 1 H + Q 2 L ) 

2 

2 

;

and two possible forms for the payoff for firm 2: 

πα
2 (c 1 H , c 2 L ) = Q 2 L (1 − c 2 L ) + 

(Q 1 H ) 
2 

2 s 
− (Q 1 H + Q 2 L ) 

2 

2 

, 

πβ
2 
(c 1 H , c 2 L ) = Q 2 L (1 − c 2 L ) − (Q 2 L ) 

2 

2(1 − s ) 
. 

When firm 2 has a high cost, the payoffs of the two players are

same in all regions: 

π1 (c 1 L , c 2 H ) = Q 1 L (1 − c 1 L ) + 

Q 

2 
2 H 

2(1 − s ) 
− (Q 1 L + Q 2 H ) 

2 

2 

, 

π1 (c 1 H , c 2 H ) = Q 1 H (1 − c 1 H ) + 

Q 

2 
2 H 

2(1 − s ) 
− (Q 1 H + Q 2 H ) 

2 

2 

, 

π2 (c 1 L , c 2 H ) = π2 (c 1 H , c 2 H ) = (1 − s )(1 − c 2 H ) 
2 / 2 . 

5.4. Comparative statics 

We present the explicit expressions for comparative static

derivatives for the equilibrium order quantities for the uniform de-

mand and linear split case in A.9 . Comparative static sign patterns

are summarized in Table 4 . This is a specific version of Table 1 for

the uniform demand and linear split function. Since s characterize

the whole split function in this case, we also provide the compar-

ative statics with respect to s in this table. 

6. Concluding remarks 

We studied a model of inventory competition in a newsven-

dor duopoly under asymmetric cost information. We showed that a

pure strategy Bayesian–Nash equilibrium exists under fairly general

assumptions. We characterized the equilibrium for the case where

the industry demand is allocated between two firms using a deter-

ministic split function and show its uniqueness. We showed that

presence of strategic interactions creates incentives to increase or-

der quantities for all firm types except the type that has the high-

est possible unit cost, who orders the same quantity as he would

as a monopolist newsvendor facing scaled version of the market

demand. Therefore, competition leads to higher total inventory in

the industry. The equilibrium conditions have an interesting recur-

sive structure that enables an easy computation of the equilibrium

order quantities. Comparative statics analysis shows that a stochas-

tic increase in market demand or an increase in one firm’s initial

allocation of the total industry demand lead to higher inventory

for that firm. We finally derived a complete characterization of the

equilibrium and its comparative statics for the case of uniform de-

mand and linear split rule. 

Certain extensions of the current model are relatively straight-

forward and not likely to change the structure of the equilibrium

qualitatively. For instance, allowing more than two levels for the
nit costs, will lead to more complicated but qualitatively similar

quilibrium characterization in that many of the claims, the recur-

ive structure of the equilibrium order quantities, and, particularly,

he behavior of the highest-cost type will remain valid with this

xtension. 

Information asymmetry adds a new dimension to the compet-

tive newsvendor problem. Alternative specifications for the key

tructural elements of the current model – e.g., the nature of infor-

ation asymmetry, and the structure of the market and firm de-

ands – span a number of interesting classes of models we intend

o explore in the future. Among these are models of newsvendor

ligopoly, and models that allow arbitrary statistical dependence

n firm demands, and in cost structures. 

cknowledgment 

Kemal Güler’s work on final revisions of the research reported

n this paper was undertaken during his visit to Bilkent Univer-

ity supported by a fellowship grant from TUBITAK BIDEP 2236

o-Circulation Fellowship Program Project Number 114C020. He ac-

nowledges with gratitude the financial support of TUBITAK and

ospitality of Bilkent University. 

ppendix A. 

1. Proof of Theorem 1 

First, define Y 2 = −Q 2 so that Q 1 × Y 2 is a lattice (This or-

er change is necessary to form a supermodular game). Moreover,

et t 1 = −c 1 , t 2 = c 2 and define effective demand functions as R i :

 j → � . Then for 

π1 (Q 1 , y 2 , t 1 , t 2 ) = E[ min { R 1 (t 2 ) , Q 1 } ] + t 1 Q 1 , 

2 (Q 1 , y 2 , t 1 , t 2 ) = E[ min { R 2 (t 1 ) , −y 2 } ] + t 2 y 2 . 

he supermodularity and continuity of these functions and the in-

reasing differences in ( Q 1 , y 2 ) are proved in Lippman and Mc-

ardle (1997) . The only thing remains is to show that π1 has in-

reasing differences in ( Q 1 , t 1 ) and π2 has increasing differences

n ( y 2 , t 2 ) (Again, π i is not directly dependent on the type of

rm j . Hence, increasing differences for ( Q 1 , t 2 ) and ( y 2 , t 1 ) are

rivially satisfied.). Let ς 1 (t 1 ) = π1 (Q 

′ 
1 
, y 2 , t 1 , t 2 ) − π1 (Q 1 , y 2 , t 1 , t 2 )

here Q 

′ 
1 ≥ Q 1 for given y 2 , t 2 . Then 

 1 (t 1 ) = E[ min { R 1 (t 2 ) , Q 

′ 
1 } ] − E[ min { R 1 (t 2 ) , Q 1 } ] + t 1 [ Q 

′ 
1 − Q 1 ] . 

efine t ′ 
1 

such that t ′ 
1 

≥ t 1 . It follows that ς(t ′ 
1 
) − ς(t 1 ) = [ t ′ 

1 
−

 1 ][ Q 

′ 
1 − Q 1 ] ≥ 0 . Thus π1 has increasing differences in ( Q 1 , t 1 ).

imilarly, ς 2 (t 2 ) = π2 (Q 1 , y 
′ 
2 , t 1 , t 2 ) − π2 (Q 1 , y 2 , t 1 , t 2 ) where y ′ 2 ≥

 2 for given Q 1 , t 1 . Then 

 2 (t 2 ) = E[ min { R 2 (t 1 ) , −y ′ 2 } ] − E[ min { R 2 (t 1 ) , −y 2 } ] + t 2 [ y 
′ 
2 − y 2 ] .

efine t ′ 2 such that t ′ 2 ≥ t 2 . It follows that ς(t ′ 2 ) − ς(t 2 ) = [ t ′ 2 −
 2 ][ y 

′ 
2 

− y 2 ] ≥ 0 . Thus π2 has increasing differences in ( y 2 , t 2 ). Since

ur priors over the types are independent, the condition for priors

o be increasing with respect to types is trivially satisfied. The ex-

stence of pure strategy Nash equilibrium follows. �
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2. Proof of Claims 1–4 and Lemmas 2–5 

roof of Claim 1. Let D 

1 = s −1 (x ) and D 

2 = ˆ s −1 (y ) and assume

 

1 ≤ D 

2 . Then, 

in { D 

1 , D 

2 } = D 

1 = s (D 

1 ) + 

ˆ s (D 

1 ) ≤ s (D 

1 ) + 

ˆ s (D 

2 ) 

≤ s (D 

2 ) + 

ˆ s (D 

2 ) = D 

2 = max { D 

1 , D 

2 } . 
Since s (D 

1 ) = x and ˆ s (D 

2 ) = y, we obtain the desired result. �

roof of Claim 2. P r(D 1 ≥ Q 

o 
1 H 

) = P r(D ≥ s −1 (Q 

o 
1 H 

)) = c 1 H ≤ c 2 H =
 r(D ≥ ˆ s −1 (Q 

o 
2 H 

)) . 

Hence, s −1 (Q 

o 
1 H 

) ≥ ˆ s −1 (Q 

o 
2 H 

) . �

roof of Claim 3. (i) (1) evaluated at Q 1 L = Q 

∗
1 H 

is positive. 

(ii) Similar argument with (i). �

roof of Claim 4. We will only show (i). Other cases are estab-

ished similarly. Evaluating the left hand side of (1) at Q 1 L = Q 

o 
1 L 

ives: 

q P r(D 1 + (D 2 − Q 2 H ) 
+ ≥ Q 

o 
1 L ) + (1 − q ) 

P r(D 1 + (D 2 − Q 2 L ) 
+ ≥ Q 

o 
1 L ) − c 1 L 

≥ q P r(D 1 ≥ Q 

o 
1 L ) + (1 − q ) P r(D 1 ≥ Q 

o 
1 L ) 

−c 1 L = P r(D 1 ≥ Q 

o 
1 L ) − c 1 L = 0 

hus, Q 

∗
1 L 

≥ Q 

o 
1 L 

. �

roof of Lemma 2. Assume that s −1 (Q 

∗
1 H 

) > ˆ s −1 (Q 

∗
2 H 

) . First note

hat, 

P r(D 2 + (D 1 − Q 1 ) 
+ ≥ Q 2 ) = P r(D ≥ s −1 (Q 1 ) , 

D ≥ Q 1 + Q 2 ) + P r(D ≤ s −1 (Q 1 ) , D ≥ ˆ s −1 (Q 2 )) . 

y substituting this in (4) we obtain: 

p P r(D ≥ s −1 (Q 

∗
1 H ) , D ≥ Q 

∗
2 H + Q 

∗
1 H ) + p P r(D ≤ s −1 (Q 

∗
1 H ) , 

D ≥ ˆ s −1 (Q 

∗
2 H )) 

+(1 − p) P r(D ≥ s −1 (Q 

∗
1 L ) , D ≥ Q 

∗
2 H + Q 

∗
1 L ) 

+(1 − p) P r(D ≤ s −1 (Q 

∗
1 L ) , D ≥ ˆ s −1 (Q 

∗
2 H )) − c 2 H = 0 

ince s −1 (Q 

∗
1 H ) > ˆ s −1 (Q 

∗
2 H ) , s −1 (Q 

∗
1 L ) > ˆ s −1 (Q 

∗
2 H ) by Claim 3.

y Claim 1, P r(D ≥ s −1 (Q 

∗
1 H 

) , D ≥ Q 

∗
2 H 

+ Q 

∗
1 H 

) = P r(D ≥ s −1 (Q 

∗
1 H 

) .

n addition, P r(D ≥ s −1 (Q 

∗
1 H 

)) + P r( ̂ s −1 (Q 

∗
2 H 

) ≤ D ≤ s −1 (Q 

∗
1 H 

)) =
 r(D ≥ ˆ s −1 (Q 

∗
2 H )) . Therefore, 

p P r(D ≥ ˆ s −1 (Q 

∗
2 H )) + (1 − p) P r(D ≥ ˆ s −1 (Q 

∗
2 H )) 

−c 2 H = P r(D ≥ ˆ s −1 (Q 

∗
2 H )) − c 2 H = 0 . 

hus, Q 

∗
2 H 

= Q 

o 
2 H 

. Using s −1 (Q 

∗
1 H 

) ≤ ˆ s −1 (Q 

∗
2 H 

) < ˆ s −1 (Q 

∗
2 L 

) in (2) in a

imilar fashion gives the result Q 

∗
1 H 

= Q 

o 
1 H 

. �

roof of Lemma 3. Assume to the contrary that for c 1 H ≤ c 2 H ,

 

−1 (Q 

∗
1 H 

) < ˆ s −1 (Q 

∗
2 H 

) . Then, by Lemma 1 , Q 

∗
1 H 

= Q 

o 
1 H 

. By Claims 2

nd 3, we get s −1 (Q 

∗
1 H 

) ≥ s −1 (Q 

o 
1 H 

) ≥ ˆ s −1 (Q 

o 
2 H 

) and 

P r(D ≥ Q 

∗
2 H + Q 

∗
1 H ) ≤ P r(D ≥ Q 

o 
2 H + Q 

o 
1 H ) < P r(D ≥ Q 

o 
2 H 

+ ̂

 s (s −1 (Q 

o 
2 H ))) = P r( ̂  s (D ) ≥ Q 

o 
2 H ) = c 2 H . (∗) 

Now, we have either s −1 (Q 

∗
1 L 

) > ˆ s −1 (Q 

∗
2 H 

) or s −1 (Q 

∗
1 L 

) ≤
ˆ  −1 (Q 

∗
2 H ) . In the first case equilibrium condition (4) simplifies to: 

c 2 H = p P r(D ≥ Q 

∗
2 H + Q 

∗
1 H ) + (1 − p) P r( ̂  s (D ) ≥ Q 

∗
2 H ) 

≤ p P r(D ≥ Q 

∗
2 H + Q 

∗
1 H ) + (1 − p) c 2 H , 

ince P r( ̂ s (D ) ≥ Q 

∗
2 H 

) ≤ P r( ̂ s (D ) ≥ Q 

o 
2 H 

) by Claim 4 and P r( ̂ s (D ) ≥
 

o 
2 H 

) = c 2 H by definition. This leads to 

 2 H ≤ p P r(D ≥ Q 

∗
2 H + Q 

∗
1 H ) + (1 − p) c 2 H ≤ P r(D ≥ Q 

∗
2 H + Q 

∗
1 H ) , 

hich is a contradiction to ( ∗). 
For the second case, the equilibrium condition (4) simplifies

o: 

c 2 H = p P r(D ≥ Q 

∗
2 H + Q 

∗
1 H ) + (1 − p) P r(D ≥ Q 

∗
2 H + Q 

∗
1 L ) 

< P r(D ≥ Q 

∗
2 H + Q 

∗
1 H ) , 

ince Q 

∗
1 L 

> Q 

∗
1 H 

by Claim 3. Again this contradicts ( ∗). �

roof of Lemma 4. By Lemma 2 , c 1 H ≤ c 2 H implies s −1 (Q 

∗
1 H ) ≥

ˆ  −1 (Q 

∗
2 H 

) . Using this condition in Lemma 1 yields the desired

esult. �

roof of Lemma 5. First note that Q 

o 
iL 

and Q 

o 
iH 

are stand-alone or-

er levels for firms i = 1 , 2 . It is important to notice that each firm

ill at least play his stand-alone order quantity in the equilibrium.

ow, define Q 

1 
2 H 

as the order level of high type of firm 2 when

rm 1 plays his stand-alone quantities for both his types in the

quilibrium i.e., 

p P r( ̂  s (D ) + (s (D ) − Q 

o 
1 H ) 

+ ≥ Q 

1 
2 H ) + (1 − p) P r( ̂  s (D ) 

+(s (D ) − Q 

o 
1 L ) 

+ ≥ Q 

1 
2 H ) − c 2 H = 0 . 

nd Q 

1 
2 H 

≥ Q 

o 
2 H 

since firm 2 will play at least his stand-alone order

evel. Rewriting the equilibrium condition gives, 

p P r(D ≥ s −1 (Q 

o 
1 ) , D ≥ Q 

o 
1 H + Q 

1 
2 H ) 

+ p P r(D ≤ s −1 (Q 

o 
1 H ) , D ≥ ˆ s −1 (Q 

1 
2 H )) 

+(1 − p) P r(D ≥ s −1 (Q 

o 
1 L ) , D ≥ Q 

o 
1 L + Q 

1 
2 H ) 

+(1 − p) P r(D ≤ s −1 (Q 

o 
1 L ) , D ≥ ˆ s −1 (Q 

1 
2 H )) − c 2 H = 0 . 

or this equilibrium condition, we have three possibilities:

ˆ  −1 (Q 

1 
2 H 

) ≤ s −1 (Q 

o 
1 H 

) , s −1 (Q 

o 
1 H 

) < ˆ s −1 (Q 

1 
2 H 

) ≤ s −1 (Q 

o 
1 L 

) and

 

−1 (Q 

o 
1 L 

) < ˆ s −1 (Q 

1 
2 H ) . First assume ˆ s −1 (Q 

1 
2 H ) ≤ s −1 (Q 

o 
1 H 

) , then

he equilibrium condition becomes: 

p P r(D ≥ ˆ s −1 (Q 

1 
2 H )) + (1 − p) P r(D ≥ ˆ s −1 (Q 

1 
2 H )) − c 2 H 

= P r(D ≥ ˆ s −1 (Q 

1 
2 H )) − c 2 H = 0 . 

hus, Q 

1 
2 H = Q 

o 
2 H 

. Now, we assume that s −1 (Q 

o 
1 H 

) < ˆ s −1 (Q 

1 
2 H ) <

 

−1 (Q 

o 
1 L 

) . Moreover, if we use the fact that s −1 (Q 

o 
1 H 

) < Q 

o 
1 H 

+ Q 

1 
2 H 

by Claim 1), the condition becomes 

 = p P r(D ≥ Q 

o 
1 H + Q 

1 
2 H ) + (1 − p) P r(D ≥ ˆ s −1 (Q 

1 
2 H )) − c 2 H 

< p P r(D ≥ s −1 (Q 

o 
1 H )) + (1 − p) P r(D ≥ s −1 (Q 

o 
1 H )) − c 2 H 

= P r(D ≥ s −1 (Q 

o 
1 H )) − c 2 H = c 1 H − c 2 H 

hus, c 1 H > c 2 H which is a contradiction to our assumption that

 1 H ≤ c 2 H . A similar proof can be obtained for s −1 (Q 

o 
1 L 

) ≤ ˆ s −1 (Q 

1 
2 H ) .

ence, Q 

1 
2 H 

= Q 

o 
2 H 

which implies that any order quantity of high

ype of firm 2 satisfies Q 2 H ≤ Q 

o 
2 H 

. Combining this with the fact

hat Q 2 H ≥ Q 

o 
2 H 

, we obtain Q 2 H = Q 

o 
2 H 

. �

3. Proof of Theorem 2 

Under an increasing and deterministic split function, we know

hat there is a unique Bayesian–Nash equilibrium and using

emma 3 , our unique equilibrium conditions take the form: 

q P r(D ≥ Q 

∗
1 L + 

ˆ s ( G 

−1 
(c 2 H ))) 

+(1 − q ) P r(D 1 + (D 2 − Q 

∗
2 L ) 

+ ≥ Q 

∗
1 L ) = c 1 L , 

q P r(D ≥ Q 

∗
1 H + 

ˆ s ( G 

−1 
(c 2 H ))) 

+(1 − q ) P r(D 1 + (D 2 − Q 

∗
2 L ) 

+ ≥ Q 

∗
1 H ) = c 1 H , 

p P r(D 2 + (D 1 − Q 

∗
1 H ) 

+ ≥ Q 

∗
2 L ) 

+(1 − p) P r(D 2 + (D 1 − Q 

∗
1 L ) 

+ ≥ Q 

∗
2 L ) = c 2 L , 

Q 

∗
2 H = 

ˆ s ( G 

−1 
(c 2 H )) . 

ow, if we use D 1 = s (D ) and D 2 = ˆ s (D ) and use the fact that, 

P r(D 1 + (D 2 − Q 2 ) 
+ ≥ Q 1 ) = P r(D ≥ ˆ s −1 (Q 2 ) , D ≥ Q 2 + Q 1 ) 

+ P r(D ≤ ˆ s −1 (Q 2 ) , D ≥ s −1 (Q 1 )) , 
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P r(D 2 + (D 1 − Q 1 ) 
+ ≥ Q 2 ) = P r(D ≥ s −1 (Q 1 ) , D ≥ Q 1 + Q 2 ) 

+ P r(D ≤ s −1 (Q 1 ) , D ≥ ˆ s −1 (Q 2 )) , 

which can be obtained using a simple conditional probability ar-

gument, equilibrium conditions will become: 

q P r(D ≥ Q 

∗
1 L + 

ˆ s ( G 

−1 
(c 2 H ))) 

+ (1 − q ) P r(D ≥ ˆ s −1 (Q 

∗
2 L ) , D ≥ Q 

∗
2 L + Q 

∗
1 L ) 

+ (1 − q ) P r(D ≤ ˆ s −1 (Q 

∗
2 L ) , D ≥ s −1 (Q 

∗
1 L )) = c 1 L , ( A 1 )

q P r(D ≥ Q 

∗
1 H + 

ˆ s ( G 

−1 
(c 2 H ))) 

+ (1 − q ) P r(D ≥ ˆ s −1 (Q 

∗
2 L ) , D ≥ Q 

∗
2 L + Q 

∗
1 H ) 

+ (1 − q ) P r(D ≤ ˆ s −1 (Q 

∗
2 L ) , D ≥ s −1 (Q 

∗
1 H )) = c 1 H , ( A 2 )

pP r(D ≥ s −1 (Q 

∗
1 H ) , D ≥ Q 

∗
2 L + Q 

∗
1 H ) + pP r(D ≤ s −1 (Q 

∗
1 H ) , 

D ≥ ˆ s −1 (Q 

∗
2 L )) 

+ (1 − p) P r(D ≥ s −1 (Q 

∗
1 L ) , D ≥ Q 

∗
2 L + Q 

∗
1 L ) 

+ (1 − p) P r(D ≤ s −1 (Q 

∗
1 L ) , D ≥ ˆ s −1 (Q 

∗
2 L )) = c 2 L , ( A 3 )

Q 

∗
2 H = 

ˆ s ( G 

−1 
(c 2 H )) . ( A 4 )

The proof of part 1 follows since Q 

∗
2 H 

= ˆ s ( G 

−1 
(c 2 H )) is obviously

an equilibrium condition. 

Part 2 has three separate subsets. To prove ( i ), let ˆ s −1 (Q 

∗
2 L ) ≥

s −1 (Q 

∗
1 L 

) . ( A 1 ) becomes ( i 1 ): 

q G (Q 

∗
1 L + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − q ) P r(D ≥ ˆ s −1 (Q 

∗
2 L ) , 

D ≥ Q 

∗
2 L + Q 

∗
1 L ) + (1 − q ) P r(D ≤ ˆ s −1 (Q 

∗
2 L ) , D ≥ s −1 (Q 

∗
1 L )) 

= q G (Q 

∗
1 L + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − q ) P r(D ≥ s −1 (Q 

∗
1 L )) 

= q G (Q 

∗
1 L + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − q ) G 

−1 
(s −1 (Q 

∗
1 L )) = c 1 L . 

Similarly, using the fact that ˆ s −1 (Q 

∗
2 L 

) ≥ s −1 (Q 

∗
1 L 

) implies

ˆ s −1 (Q 

∗
2 L 

) ≥ s −1 (Q 

∗
1 H 

) , ( A 2 ) becomes ( i 2 ): 

q G (Q 

∗
1 H + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − q ) P r(D ≥ ˆ s −1 (Q 

∗
2 L ) , 

D ≥ Q 

∗
2 L + Q 

∗
1 H ) + (1 − q ) P r(D ≤ ˆ s −1 (Q 

∗
2 L ) , D ≥ s −1 (Q 

∗
1 H )) 

= q G (Q 

∗
1 L + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − q ) P r(D ≥ s −1 (Q 

∗
1 H )) 

= q G (Q 

∗
1 H + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − q ) G 

−1 
(s −1 (Q 

∗
1 H )) = c 1 H . 

And combining two inequalities, ( A 3 ) becomes ( i 3 ): 

pP r(D ≥ s −1 (Q 

∗
1 H ) , D ≥ Q 

∗
2 L + Q 

∗
1 H ) 

+ pP r(D ≤ s −1 (Q 

∗
1 H ) , D ≥ ˆ s −1 (Q 

∗
2 L )) 

+(1 − p) P r(D ≥ s −1 (Q 

∗
1 L ) , D ≥ Q 

∗
2 L + Q 

∗
1 L ) 

+(1 − p) P r(D ≤ s −1 (Q 

∗
1 L ) , D ≥ ˆ s −1 (Q 

∗
2 L )) 

= pP r(D ≥ Q 

∗
2 L + Q 

∗
1 H ) + (1 − p) P r(D ≥ Q 

∗
2 L + Q 

∗
1 L ) 

= p G 

−1 
(D ≥ Q 

∗
2 L + Q 

∗
1 H ) + (1 − p) G 

−1 
(D ≥ Q 

∗
2 L + Q 

∗
1 L ) = c 2 L . 

The proof for (ii) and (iii) follows similarly under s −1 (Q 

∗
1 L 

) >

ˆ s −1 (Q 

∗
2 L ) ≥ s −1 (Q 

∗
1 H ) and s −1 (Q 

∗
1 H ) > ˆ s −1 (Q 

∗
2 L ) . 

A4. Proof of Theorem 3 

First, since the demand has a continuous distribution, the in-

verse of distribution function G and G are well-defined. Only one

of the ( i ), ( ii ) or ( iii ) given in Theorem 2 can be satisfied since a

vector of order quantities satisfying one of the inequality condi-

tions ( i ), ( ii ) or ( iii ) cannot satisfy others. 
4 4 4 
Take the region ( i ). There can be only one Q 

∗
1 L satisfying condi-

ion ( i 1 ) which is: 

 G (Q 

∗
1 L + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − q ) G (s −1 (Q 

∗
1 L )) = c 1 L , 

ince s −1 , ˆ s −1 and G 

−1 
gives unique results and it does not depend

n any other variables. Similarly, only one Q 

∗
1 H satisfies ( i 2 ): 

 G (Q 

∗
1 H + 

ˆ s ( G 

−1 
(c 2 H ))) + (1 − q ) G (s −1 (Q 

∗
1 H )) = c 1 H . 

ince both Q 

∗
1 L 

and Q 

∗
1 H 

are unique, ( i 3 ) i.e., 

p G (Q 

∗
2 L + Q 

∗
1 H ) + (1 − p) G (Q 

∗
2 L + Q 

∗
1 L ) = c 2 L , 

lso gives a unique Q 

∗
2 L 

. Thus, the set of order quantities satisfying

egion ( i ) is unique. 

Similar arguments are valid for regions ( ii ) and ( iii ). The argu-

ent so far does not rule out multiple equilibria each of which is

he unique solution of one of three blocks of equalities. Finally, we

eed to show that only one of that three cases can arise. 

Assume to the contrary that case ( i ) and ( ii ) gives different

olutions. Now, let (Q 

∗
1 L , Q 

∗
1 H , Q 

∗
2 L , Q 

∗
2 H ) and ( ̂  Q 1 L , ˆ Q 1 H , ˆ Q 2 L , ˆ Q 2 H ) be

he solutions of cases ( i ) and ( ii ) respectively. First notice that

 

∗
1 H 

= 

ˆ Q 1 H = Q 1 H and Q 

∗
2 H 

= 

ˆ Q 2 H = Q 2 H since they require the same

onditions. However, low type quantities should satisfy: 

q G (Q 

∗
1 L + Q 2 H ) + (1 − q ) G (s −1 (Q 

∗
1 L )) 

= q G ( ̂  Q 1 L + Q 2 H ) + (1 − q ) G ( ̂  Q 2 L + 

ˆ Q 1 L ) 

p G (Q 

∗
2 L + Q 1 H ) + (1 − p) G (Q 

∗
2 L + Q 

∗
1 L ) 

= p G ( ̂  Q 2 L + Q 1 H ) + (1 − p) G ( ̂  s −1 ( ̂  Q 2 L )) 

ˆ s −1 (Q 

∗
2 L ) ≥ Q 

∗
1 L + Q 

∗
2 L ≥ s −1 (Q 

∗
1 L ) 

ˆ s −1 ( ̂  Q 2 L ) < 

ˆ Q 1 L + 

ˆ Q 2 L < s −1 ( ̂  Q 1 L ) 

here inequalities come from Claim 4. Thus, we have 

q G (Q 

∗
1 L + Q 2 H ) + (1 − q ) G (s −1 (Q 

∗
1 L )) 

> q G ( ̂  Q 1 L + Q 2 H ) + (1 − q ) G (s −1 ( ̂  Q 1 L )) 

p G (Q 

∗
2 L + Q 1 H ) + (1 − p) G ( ̂  s −1 (Q 

∗
2 L )) 

< p G ( ̂  Q 2 L + Q 1 H ) + (1 − p) G ( ̂  s −1 ( ̂  Q 2 L )) 

hich implies Q 

∗
1 L 

< 

ˆ Q 1 L and Q 

∗
2 L 

> 

ˆ Q 2 L (Remember that G is a de-

reasing function.). If we use this in equilibrium conditions, 

G (s −1 (Q 

∗
1 L )) < G ( ̂  Q 2 L + 

ˆ Q 1 L ) 

 (Q 

∗
2 L + Q 

∗
1 L ) > G ( ̂  s −1 ( ̂  Q 2 L )) 

eaning that both Q 

∗
1 L 

+ Q 

∗
2 L 

> s −1 (Q 

∗
1 L 

) > 

ˆ Q 2 L + 

ˆ Q 1 L and 

ˆ Q 2 L +
ˆ 
 1 L > ˆ s −1 ( ̂  Q 2 L ) > Q 

∗
2 L + Q 

∗
1 L should be true, which is a contradic-

ion. The proof for other cases are similar. 

Thus, the solution given by Theorem 2 is unique. �

5. Proof of Theorem 4 

Let G A and G B be the distribution functions of D A and D B , re-

pectively. D A stochastically dominates D B . Thus, G A ( x ) ≤ G B ( x ) and

 A (x ) ≥ G B (x ) for all x . Since G A and G B are decreasing func-

ions, G 

−1 

A (y ) ≥ G 

−1 

B (y ) for all y . We define (Q 

A 
1 L 

, Q 

A 
1 H 

, Q 

A 
2 L 

, Q 

A 
2 H 

) and

(Q 

B 
1 L 

, Q 

B 
1 H 

, Q 

B 
2 L 

, Q 

B 
2 H 

) as the equilibrium order quantities for D A and

 B , respectively. 

Returning to the result of Theorem 2 , we have three possi-

le cases. Consider the equilibrium conditions in case ( i ). Now,

ince ˆ s is an increasing function, there exists δ2 H = Q 

A 
2 H 

− Q 

B 
2 H 

=
ˆ  ( G 

−1 

A (c 2 H )) − ˆ s ( G 

−1 

B (c 2 H )) ≥ 0 . Note that, the stock–out probabil-

ty of firm 2 under high type does not change. 

Now, by ( i 2 ), 

q G A (Q 

A 
1 L + Q 

A 
2 H ) + (1 − q ) G A (s −1 (Q 

A 
1 L )) 
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Table 5 

Derivatives w.r.t. c 1 L . 

Q Conditions c 1L Sign 

Q 2 H 0 

(i) Q 1 L G (s −1 (Q 1 L )) > 0 − 1 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H )))+(1 −q )(s −1 ) ′ g(s −1 (Q 1 L )) 
< 0 

G (s −1 (Q 1 L )) = 0 − 1 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H ))) 
< 0 

Q 1 H 0 

Q 2 L G (Q 1 L + Q 2 L ) > 0 − (1 −p) g(Q 1 L + Q 2 L ) 
pg(Q 1 H + Q 2 L )+(1 −p) g(Q 1 L + Q 2 L ) ( 

∂Q 1 L 
∂c 1 L 

) > 0 

G (Q 1 L + Q 2 L ) = 0 0 

(ii) Q 1 L G (Q 1 L + Q 2 L ) > 0 − 1 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H )))+(1 −q ) g(Q 1 L + Q 2 L ) 
< 0 

G (Q 1 L + Q 2 L ) = 0 − 1 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H ))) 
< 0 

Q 1 H 0 

Q 2 L 0 

(iii) Q 1 L G (Q 1 L + Q 2 L ) > 0 − 1 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H )))+(1 −q ) g(Q 1 L + ̂ s ( G 
−1 

(c 2 L ))) 
< 0 

G (Q 1 L + Q 2 L ) = 0 − 1 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H ))) 
< 0 

Q 1 H 0 

Q 2 L 0 

Table 6 

Derivatives w.r.t. c 1 H . 

Q Conditions c 1H Sign 

Q 2 H 0 

(i) Q 1 L 0 

Q 1 H − 1 

qg(Q 1 H + ̂ s ( G 
−1 

(c 2 H )))+(1 −q )(s −1 ) ′ g(s −1 (Q 1 H )) 
< 0 

Q 2 L G (Q 1 L + Q 2 L ) > 0 − pg(Q 1 H + Q 2 L ) 
pg(Q 1 H + Q 2 L )+(1 −p) g(Q 1 L + Q 2 L ) ( 

∂Q 1 H 
∂c 1 H 

) > 0 

G (Q 1 L + Q 2 L ) = 0 − ∂Q 1 H 
∂c 1 H 

> 0 

(ii) Q 1 L G (Q 1 L + Q 2 L ) > 0 − (1 −q ) g(Q 1 L + Q 2 L ) 
qg(Q 1 L + ̂ s ( G 

−1 
(c 2 H )))+(1 −q ) g(Q 1 L + Q 2 L ) 

( ∂Q 2 L 
∂c 1 H 

) < 0 

G (Q 1 L + Q 2 L ) = 0 0 

Q 1 H − 1 

qg(Q 1 H + ̂ s ( G 
−1 

(c 2 H )))+(1 −q )(s −1 ) ′ g(s −1 (Q 1 H )) 
< 0 

Q 2 L G ( ̂ s −1 (Q 2 L )) > 0 − pg(Q 1 H + Q 2 L ) 
pg(Q 1 H + Q 2 L )+(1 −p)( ̂ s −1 ) ′ g( ̂ s −1 (Q 2 L )) 

( ∂Q 1 H 
∂c 1 H 

) > 0 

G ( ̂ s −1 (Q 2 L )) = 0 − ∂Q 1 H 
∂c 1 H 

> 0 

(iii) Q 1 L 0 

Q 1 H G (Q 1 H + Q 2 L ) > 0 − 1 

qg(Q 1 H + ̂ s ( G 
−1 

(c 2 H )))+(1 −q ) g(Q 1 H + ̂ s ( G 
−1 

(c 2 L ))) 
< 0 

G (Q 1 H + Q 2 L ) = 0 − 1 

qg(Q 1 H + ̂ s ( G 
−1 

(c 2 H ))) 
< 0 

Q 2 L 0 
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Table 7 

Derivatives w.r.t. c 2 L . 

Q Conditions c 2L Sign 

Q 2 H 0 

(i) Q 1 L 0 

Q 1 H 0 

Q 2 L G (Q 1 L + Q 2 L ) > 0 − 1 
pg(Q 1 H + Q 2 L )+(1 −p) g(Q 1 L + Q 2 L ) < 0 

G (Q 1 L + Q 2 L ) = 0 − 1 
pg(Q 1 H + Q 2 L ) < 0 

(ii) Q 1 L G (Q 1 L + Q 2 L ) > 0 − (1 −q ) g(Q 1 L + Q 2 L ) 
qg(Q 1 L + ̂ s ( G 

−1 
(c 2 H )))+(1 −q ) g(Q 1 L + Q 2 L ) 

( ∂Q 2 L 
∂c 2 L 

) > 0 

G (Q 1 L + Q 2 L ) = 0 0 

Q 1 H 0 

Q 2 L G ( ̂ s −1 (Q 2 L )) > 0 − 1 

qg(Q 1 H + ̂ s ( G 
−1 

(c 2 H )))+(1 −q )(s −1 ) ′ g(s −1 (Q 1 H )) 
< 0 

G ( ̂ s −1 (Q 2 L )) = 0 − 1 
pg(Q 1 H + Q 2 L ) < 0 

(iii) Q 1 L G (Q 1 L + Q 2 L ) > 0 (1 −q ) ̂ s ′ g(Q 1 L + Q 2 L ) /g( G 
−1 

(c 2 L )) 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H )))+(1 −q ) g(Q 1 L + ̂ s ( G 
−1 

(c 2 L ))) 
> 0 

G (Q 1 L + Q 2 L ) = 0 0 

Q 1 H G (Q 1 H + Q 2 L ) > 0 (1 −q ) ̂ s ′ g(Q 1 H + Q 2 L ) /g( G 
−1 

(c 2 L )) 

qg(Q 1 H + ̂ s ( G 
−1 

(c 2 H )))+(1 −q ) g(Q 1 H + ̂ s ( G 
−1 

(c 2 L ))) 
> 0 

G (Q 1 H + Q 2 L ) = 0 0 

Q 2 L − ˆ s ′ 

g( G 
−1 

(c 2 L )) 
< 0 

A

 

T

q

I  

t  

i

S  

S

A

 

e

 

w  

T  

f

 

q

1

A

 

D

q

q

= q G B (Q 

B 
1 L + Q 

B 
2 H ) + (1 − q ) G B (s −1 (Q 

B 
1 L )) . 

ince the stock–out probability of firm 2 under high type does not

hange and low type of firm 1 gets spillover only from high type

f firm 2, the probability of firm 1’s getting a spillover should not

hange. 

Let δ1 L = Q 

A 
1 L 

− Q 

B 
1 L 

. We can rewrite the equilibrium condition

s, 

q G A (Q 

A 
1 L + Q 

A 
2 H ) + (1 − q ) G A (s −1 (Q 

A 
1 L )) = q G B (Q 

A 
1 L + Q 

A 
2 H 

−δ1 L − δ2 H ) + (1 − q ) G B (s −1 (Q 

A 
1 L − δ1 L )) , 

e know that for any { x 1 , x 2 }, if G A (x 1 ) = G B (x 2 ) then x 1 ≥ x 2 .

oreover, since the spillover probability does not change,

 A (s −1 (Q 

A 
1 L 

)) ≥ G B (s −1 (Q 

A 
1 L 

)) should be satisfied. Thus, the differ-

nce between order quantities is positive, i.e., δ1 L ≥ 0 and Q 

A 
1 L ≥

 

B 
1 L 

. 

By a similar argument for ( i 2 ), δ1 H = Q 

A 
1 H 

− Q 

B 
1 H 

≥ 0 . 

For ( i 3 ), we have 

p G A (Q 

A 
2 L + Q 

A 
1 H ) + (1 − p) G A (Q 

A 
2 L + Q 

∗
1 L ) = p G B (Q 

B 
2 L 

+ Q 

A 
1 H − δ1 H ) + (1 − p) G B (Q 

B 
2 L + Q 

A 
1 L − δ1 L ) . 

rom previous argument, we know that the stock–out probability

f firm 1 does not change with a stochastic increase in demand

istribution. (Equilibrium order quantities increase to compensate

he change in demand distribution.) Using a similar argument for

 i 3 ), δ2 L = Q 

A 
2 L 

− Q 

B 
2 L 

≥ 0 . Thus all the equilibrium order quantities

ncrease. 

Similar proof for cases ( ii ) and ( iii ). �
6. Proof of Theorem 5 

As s increases uniformly, ˆ s −1 increase, ˆ s and s −1 decreases. From

heorem 2 , as s increases, Q 

∗
2 H 

decreases. 

From ( i 1 ), 

 G 

A 
(Q 

∗
1 L + Q 

∗
2 H ) + (1 − q ) G 

A 
(s −1 (Q 

∗
1 L )) = c 1 L . 

f s increases uniformly, s −1 decreases. Hence, Q 1 L should increase

o satisfy the equilibrium condition. Similarly, Q 

∗
1 H 

increases as s

ncreases. 

From ( i 3 ), 

p G 

A 
(Q 

∗
2 L + Q 

∗
1 H ) + (1 − p) G 

A 
(Q 

∗
2 L + Q 

∗
1 L ) = c 2 L . 

ince Q 

∗
1 L and Q 

∗
1 H increase, Q 

∗
2 L should decrease to compensate.

imilar argument applies for cases ( ii ) and ( iii ). �

7. Comparative statics 

This section summarizes the comparative statics results for gen-

ral demand distributions. But we need the following results. 

First note that s ′ = ∂ s (D ) /∂ D > 0 and ˆ s ′ = ∂ ̂  s (D ) /∂ D > 0 since

e assume both s and ˆ s are increasing and deterministic functions.

hen the derivative of the inverses of the split functions can be

ound by 

(s −1 ) ′ = 

∂s −1 (Q ) 

∂Q 

= 

1 

s ′ (s −1 ()) 
> 0 

( ̂  s −1 ) ′ = 

∂ ̂  s −1 (Q ) 

∂Q 

= 

1 

ˆ s ′ ( ̂  s −1 ()) 
> 0 

We use these results to find the signs of derivatives of order

uantities with respect to each parameter in the model ( Table 5–

0 ). 

8. Equilibrium under uniform demand and linear market shares 

The equilibrium conditions under the assumption

 ∼ Uniform(0, 1) are as follows: 

 (1 − min { 1 , Q 1 H + Q 2 H } ) + (1 − q ) 

(1 − min { 1 , max { Q 2 L / (1 − s ) , Q 1 H + Q 2 L }} ) 
+ (1 − q )( max { min { 1 , Q 2 L / (1 − s ) } − min { 1 , Q 1 H /s } , 0 } ) = c 1 H 

 (1 − min { 1 , Q 1 L + Q 2 H } ) + (1 − q ) 

(1 − min { 1 , max { Q 2 L / (1 − s ) , Q 1 L + Q 2 L } ) 
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Table 8 

Derivatives w.r.t. c 2 H . 

Q Conditions c 2H Sign 

Q 2 H − ˆ s ′ 

g( G 
−1 

(c 2 H )) 
< 0 

(i) Q 1 L G (s −1 (Q 1 L )) > 0 ˆ s ′ g(Q 1 L + ̂ s ( G 
−1 

(c 2 H ))) /g( G 
−1 

(c 2 H )) 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H )))+(1 −q )(s −1 ) ′ g(s −1 (Q 1 L )) 
> 0 

G (s −1 (Q 1 L )) = 0 ˆ s ′ 

qg( G 
−1 

(c 2 H )) 
> 0 

Q 1 H 
ˆ s ′ g(Q 1 H + ̂ s ( G 

−1 
(c 2 H ))) /g( G 

−1 
(c 2 H )) 

qg(Q 1 H + ̂ s ( G 
−1 

(c 2 H )))+(1 −q )(s −1 ) ′ g(s −1 (Q 1 H )) 
> 0 

Q 2 L G (Q 1 L + Q 2 L ) > 0 − pg(Q 1 H + Q 2 L ) ∂Q 1 H /∂c 2 H +(1 −p) g(Q 1 L + Q 2 L ) ∂Q 1 L /∂c 2 H 
pg(Q 1 H + Q 2 L )+(1 −p) g(Q 1 L + Q 2 L ) < 0 

G (Q 1 L + Q 2 L ) = 0 − ∂Q 1 H 
∂c 1 H 

< 0 

(ii) Q 1 L G (Q 1 L + Q 2 L ) > 0 q ̂ s ′ g(Q 1 L + ̂ s ( G 
−1 

(c 2 H ))) /g( G 
−1 

(c 2 H ))+(1 −q ) g(Q 1 L + Q 2 L )(∂Q 2 L /∂c 2 H ) 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H )))+(1 −q ) g(Q 1 L + Q 2 L ) 
> 0 

G (Q 1 L + Q 2 L ) = 0 ˆ s ′ 

g( G 
−1 

(c 2 H )) 
> 0 

Q 1 H 
ˆ s ′ g(Q 1 H + ̂ s ( G 

−1 
(c 2 H ))) /g( G 

−1 
(c 2 H )) 

qg(Q 1 H + ̂ s ( G 
−1 

(c 2 H )))+(1 −q )(s −1 ) ′ g(s −1 (Q 1 H )) 
> 0 

Q 2 L G ( ̂ s −1 (Q 2 L )) > 0 − pg(Q 1 H + Q 2 L ) 
pg(Q 1 H + Q 2 L )+(1 −p)( ̂ s −1 ) ′ g( ̂ s −1 (Q 2 L )) 

( ∂Q 1 H 
∂c 2 H 

) < 0 

G ( ̂ s −1 (Q 2 L )) = 0 − ∂Q 1 H 
∂c 2 H 

< 0 

(iii) Q 1 L G (Q 1 L + Q 2 L ) > 0 q ̂ s ′ g(Q 1 L + Q 2 H ) /g( G 
−1 

(c 2 H )) 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H )))+(1 −q ) g(Q 1 L + ̂ s ( G 
−1 

(c 2 L ))) 
> 0 

G (Q 1 L + Q 2 L ) = 0 ˆ s ′ 

g( G 
−1 

(c 2 H )) 
> 0 

Q 1 H G (Q 1 H + Q 2 L ) > 0 q ̂ s ′ g(Q 1 H + Q 2 H ) /g( G 
−1 

(c 2 H )) 

qg(Q 1 H + ̂ s ( G 
−1 

(c 2 H )))+(1 −q ) g(Q 1 H + ̂ s ( G 
−1 

(c 2 L ))) 
> 0 

G (Q 1 H + Q 2 L ) = 0 ˆ s ′ 

g( G 
−1 

(c 2 H )) 
> 0 

Q 2 L 0 

Table 9 

Derivatives w.r.t. p . 

Q Conditions p Sign 

Q 2 H 0 

(i) Q 1 L 0 

Q 1 H 0 

Q 2 L G (Q 1 L + Q 2 L ) > 0 G (Q 1 H + Q 2 L ) −G (Q 1 L + Q 2 L ) 
pg(Q 1 H + Q 2 L )+(1 −p) g(Q 1 L + Q 2 L ) > 0 

G (Q 1 L + Q 2 L ) = 0 G (Q 1 H + Q 2 L ) 
pg(Q 1 H + Q 2 L ) > 0 

(ii) Q 1 L G (Q 1 L + Q 2 L ) > 0 − (1 −q ) g(Q 1 L + Q 2 L ) 
qg(Q 1 L + ̂ s ( G 

−1 
(c 2 H )))+(1 −q ) g(Q 1 L + Q 2 L ) 

( ∂Q 2 L 
∂ p 

) < 0 

G (Q 1 L + Q 2 L ) = 0 0 

Q 1 H 0 

Q 2 L G ( ̂ s −1 (Q 2 L )) > 0 G (Q 1 H + Q 2 L ) −G ( ̂ s −1 (Q 2 L )) 
pg(Q 1 H + Q 2 L )+(1 −p)( ̂ s −1 ) ′ g( ̂ s −1 (Q 2 L )) 

> 0 

G ( ̂ s −1 (Q 2 L )) = 0 G (Q 1 H + Q 2 L ) 
pg(Q 1 H + Q 2 L ) > 0 

(iii) Q 1 L 0 

Q 1 H 0 

Q 2 L 0 

Table 10 

Derivatives w.r.t. q . 

Q Conditions q Sign 

Q 2 H 0 

(i) Q 1 L G (s −1 (Q 1 L )) > 0 G (Q 1 L + ̂ s ( G 
−1 

(c 2 H ))) −G (s −1 (Q 1 L )) 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H )))+(1 −q )(s −1 ) ′ g(s −1 (Q 1 L )) 
> 0 

G (s −1 (Q 1 L )) = 0 G (Q 1 L + ̂ s ( G 
−1 

(c 2 H ))) 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H ))) 
> 0 

Q 1 H 
G (Q 1 H + ̂ s ( G 

−1 
(c 2 H ))) −G (s −1 (Q 1 H )) 

qg(Q 1 H + ̂ s ( G 
−1 

(c 2 H )))+(1 −q )(s −1 ) ′ g(s −1 (Q 1 H )) 
> 0 

Q 2 L G (Q 1 L + Q 2 L ) > 0 − pg(Q 1 H + Q 2 L ) ∂Q 1 H /∂q +(1 −p) g(Q 1 L + Q 2 L ) ∂Q 1 L /∂q 
pg(Q 1 H + Q 2 L )+(1 −p) g(Q 1 L + Q 2 L ) < 0 

G (Q 1 L + Q 2 L ) = 0 − ∂Q 1 H 
∂q 

< 0 

(ii) Q 1 L G (Q 1 L + Q 2 L ) > 0 G (Q 1 L + ̂ s ( G (c 2 H ))) −G (Q 1 L + Q 2 L ) −(1 −q ) g(Q 1 L + Q 2 L )(∂ Q 2 L /∂ q ) 
qg(Q 1 L + ̂ s ( G 

−1 
(c 2 H )))+(1 −q ) g(Q 1 L + Q 2 L ) 

> 0 

G (Q 1 L + Q 2 L ) = 0 G (Q 1 L + ̂ s ( G (c 2 H ))) 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H ))) 
> 0 

Q 1 H 
G (Q 1 H + ̂ s ( G 

−1 
(c 2 H ))) −G (s −1 (Q 1 H )) 

qg(Q 1 H + ̂ s ( G 
−1 

(c 2 H )))+(1 −q )(s −1 ) ′ g(s −1 (Q 1 H )) 
> 0 

Q 2 L G ( ̂ s −1 (Q 2 L )) > 0 − pg(Q 1 H + Q 2 L ) 
pg(Q 1 H + Q 2 L )+(1 −p)( ̂ s −1 ) ′ g( ̂ s −1 (Q 2 L )) 

( ∂Q 1 H 
∂q 

) < 0 

G ( ̂ s −1 (Q 2 L )) = 0 − ∂Q 1 H 
∂q 

< 0 

(iii) Q 1 L G (Q 1 L + Q 2 L ) > 0 G (Q 1 L + ̂ s ( G (c 2 H ))) −G (Q 1 L + ̂ s ( G (c 2 L ))) 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H )))+(1 −q ) g(Q 1 L + ̂ s ( G 
−1 

(c 2 L ))) 
> 0 

G (Q 1 L + Q 2 L ) = 0 G (Q 1 L + ̂ s ( G (c 2 H ))) 

qg(Q 1 L + ̂ s ( G 
−1 

(c 2 H ))) 
> 0 

Q 1 H G (Q 1 H + Q 2 L ) > 0 G (Q 1 H + ̂ s ( G (c 2 H ))) −G (Q 1 H + ̂ s ( G (c 2 L ))) 

qg(Q 1 H + ̂ s ( G 
−1 

(c 2 H )))+(1 −q ) g(Q 1 H + ̂ s ( G 
−1 

(c 2 L ))) 
> 0 

G (Q 1 H + Q 2 L ) = 0 G (Q 1 H + ̂ s ( G (c 2 H ))) 

qg(Q 1 H + ̂ s ( G 
−1 

(c 2 H ))) 
> 0 

Q 2 L 0 

Q
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l
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o

+ (1 − q )( max { min { 1 , Q 2 L / (1 − s ) } 
− min { 1 , Q 1 L /s } , 0 } ) = c 1 L 

 2 H / (1 − s ) = 1 − c 2 H 

p(1 − min { 1 , max { Q 1 H /s, Q 1 H + Q 2 L }} 
+ max { min { 1 , Q 1 H /s } − min { 1 , Q 2 L / (1 − s ) } , 0 } ) 
+ (1 − p)(1 − min { 1 , max { Q 1 L /s, Q 1 L + Q 2 L }} ) 
+ (1 − p)( max { min { 1 , Q 1 L /s } − min { 1 , Q 2 L / (1 − s ) } , 0 } ) = c 2 L 

Solution for Q 2 H = (1 − s )(1 − c 2 H ) is straight forward. However

n order to obtain the solutions for Q 1 L , Q 1 H and Q 2 L we have to

now the ordering for Q 1 L / s , Q 1 H / s , Q 2 L / (1 − s ) , 1 and whether

 1 L + Q 2 L , Q 1 H + Q 2 L , Q 1 L + Q 2 H and Q 1 H + Q 2 H are greater than 1

r not. We can summarize all the possibilities as: 

 

Q 1 L 
s 

> 1 , 
Q 1 L 

s 
≤ 1 } { Q 1 H 

s 
> 1 , 

Q 1 H 
s 

≤ 1 } 
{ Q 2 L 

(1 −s ) 
> 1 , 

Q 2 L 
(1 −s ) 

≤ 1 } 
 

Q 1 L 
s 

> 

Q 2 L 
(1 −s ) 

, 
Q 1 L 

s 
≤ Q 2 L 

(1 −s ) 
} { Q 1 H 

s 
> 

Q 2 L 
(1 −s ) 

, 
Q 1 H 

s 
≤ Q 2 L 

(1 −s ) 
} 

 Q 1 L + Q 2 L > 1 , Q 1 L + Q 2 L ≤ 1 } { Q 1 H + Q 2 L > 1 , Q 1 H + Q 2 L ≤ 1 } 
 Q 1 L + Q 2 H > 1 , Q 1 L + Q 2 H ≤ 1 } { Q 1 H + Q 2 H > 1 , Q 1 H + Q 2 H ≤ 1 . } 

e have 512 different possibilities for Q 1 L , Q 1 H and Q 2 L each lead-

ng to a different region in the 7 dimensional space. However, the

umber of regions can be reduced to 8 regions as shown below. 

First, if both of the players have a high type, then the total in-

entory cannot exceed 1 and if second firm has high type since

e does not expect any spillover. This is simply due to the sub-

ptimality of all values greater than 1. Second, some of the condi-

ions imply the others. For example, if Q 1 L / s > 1 and Q 2 L / (1 − s ) > 1

hen Q 1 L + Q 2 L > 1 . Third, Q 2 L / (1 − s ) > Q 1 L /s implies Q 2 L / (1 − s ) >

 1 H /s since low type of a firm orders as much as high type of the

rm due to submodularity. Similarly, Q 2 L / (1 − s ) ≤ Q 1 H /s implies

 2 L / (1 − s ) ≤ Q 1 L /s . 

Using these kind of arguments we reduce the conditions to

orm 8 different regions. It can be shown that it is not possible to

educe the conditions further without making additional assump-

ions on the parameters. 

Region Conditions 

1 Q 1 L 
s 

> 1 , Q 2 L 
(1 −s ) 

> 1 

2 Q 1 L + Q 2 L > 1 , Q 1 L 
s 

≤ 1 

3 Q 1 L + Q 2 L ≤ 1 , Q 1 L 
s 

≤ Q 2 L 
(1 −s ) 

4 Q 1 L + Q 2 L > 1 , Q 2 L 
(1 −s ) 

≤ 1 , Q 1 H 
s 

≤ Q 2 L 
(1 −s ) 

5 Q 1 L + Q 2 L ≤ 1 , Q 1 L 
s 

> 

Q 2 L 
(1 −s ) 

, Q 1 H 
s 

≤ Q 2 L 
(1 −s ) 

6 Q 1 H + Q 2 L > 1 , Q 1 H 
s 

> 

Q 2 L 
(1 −s ) 

7 Q 1 L + Q 2 L > 1 , Q 1 H + Q 2 L ≤ 1 , Q 1 H 
s 

> 

Q 2 L 
(1 −s ) 

8 Q 1 L + Q 2 L ≤ 1 , Q 1 H 
s 

> 

Q 2 L 
(1 −s ) 

In each of the regions, the given inequalities simplify the equi-

ibrium conditions leading to an easy computation of the equilib-

ium order quantities. 

For Region 1, we reduce the equilibrium conditions to the fol-

owing form: 

q (1 − Q 1 H − Q 2 H ) + (1 − q )(1 − Q 1 H /s ) = c 1 H , 
q (1 − Q 1 L − Q 2 H ) = c 1 L , 
Q 2 H / (1 − s ) = 1 − c 2 H , 
p(1 − Q 1 H − Q 2 L ) = c 2 L . 

t is straightforward to find the order quantities for this region: 

Q 1 H = 

(1 −c 1 H −q (1 −s )(1 −c 2 H )) 
(q +(1 −q ) /s ) 

Q 1 L = 1 − c 1 L 
q 

− (1 − s )(1 − c 2 H ) , 

Q 2 H = (1 − s )(1 − c 2 H ) Q 2 L = 1 − c 2 L 
p 

− (1 −c 1 H −q (1 −s )(1 −c 2 H )) 
(q +(1 −q ) /s ) 

. 

ow, by plugging these quantities into necessary inequalities, we

btain: 

Q 1 L 

s 
> 1 ⇒ 1 − c 1 L 

q 
− (1 − s )(1 − c 2 H ) > s 
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T  

t  

i

 

g

A

s

 (1 −s )(c 2
 −sp) 2 

−c 2 L ) −p
 

2 (1 −ps )

q )( (1 −

 )(1 −c 1 H
s ) q ) 2 (1 −

c 1 L )) 

) 

2 s )(1 −c
 

2 

 

 

 

s) 
 

− c 2 H )
⇒ 

c 1 L 
q 

− (1 − s )(1 − c 2 H ) < 1 − s 

⇒ 

c 1 L 
q 

− (1 − s ) c 2 H < 0 

⇒ c 1 L < q (1 − s ) c 2 H 

Q 2 L 

(1 − s ) 
> 1 ⇒ 1 − c 2 L 

p 

− (1 − c 1 H − q (1 − s )(1 − c 2 H )) 

(q + (1 − q ) /s ) 
> 1 − s 

⇒ 

c 2 L 
p 

+ 

s (1 − c 1 H − q (1 − s )(1 − c 2 H )) 

(1 − (1 − s ) q ) 
< s 

⇒ 

c 2 L 
p 

− s (c 1 H − q (1 − s )(c 2 H )) 

(1 − (1 − s ) q ) 
< 0 

⇒ c 2 L < 

sp(c 1 H − q (1 − s ) c 2 H ) 

1 − (1 − s ) q 

Thus, Region 1 can be characterized by two inequalities: 

Q α1 L Q 
β
1 L 

Q 
γ
1 L 

c 1L − 1 
q 

− 1 
(q +(1 −q ) /s ) 

−1 

c 1H 0 0 − s (1 −s )(1 −q ) p 
(1 −(1 −s ) q )(1 −sp) 

p 0 0 s (1 −s )(1 −q )(c 2 L −c 1 H + q
(1 −(1 −s ) q )(1

c 2L 0 0 (1 −s )(1 −q ) 
1 −sp 

c 2H (1-s) s (1 −s ) q 
(1 −sp) 

q (1 −s )(1 −q (1 −s ) −ps 2 ) 
(1 −(1 −s ) q )(1 −sp) 

q c 1 L 
q 2 

s (1 −s )(c 2 H −c 1 L ) 
(1 −(1 −s ) q ) 2 

(1 −s )((1 −(1 −s ) q ) 2 (c 2 H 
(1 −(1 −s ) q )

s (1 − c 2 H ) 1 − c 2 H + 
(1 −q )(c 2 H −c 1 L ) 
(1 −(1 −s ) q ) 2 

q (1 − c 2 H ) + (1 −
+ p(1 −2 s + s 2 p−(1 −s ) 2 q

(1 −(1 −

Q α2 L Q 
β
2 L 

c 1L 0 s (1 −p) 
(1 −(1 −s ) q ) 

c 1H 
s 

(1 −(1 −s ) q ) 
sp 

(1 −(1 −s ) q ) 

p c 2 L 
p 2 

s (c 1 H −c 1 L ) 
(1 −(1 −s ) q ) 

c 2L − 1 
p 

−1 

c 2H − qs (1 −s ) 
(1 −(1 −s ) q ) 

− qs (1 −s ) 
(1 −(1 −s ) q ) 

q − s (1 −s )(c 2 H −c 1 H ) 
(1 −(1 −s ) q ) 2 

− s (1 −s )(c 2 H −c 1 L −p(c 1 H −
(1 −(1 −s ) q ) 2 

s - (1 −q )(1 −c 1 H ) 
(1 −(1 −s ) q ) 2 

- (1 −q )(1 −pc 1 H −(1 −p) c 1 L 
(1 −(1 −s ) q ) 2 

− q 2 (1 −s ) 2 (1 −c 2 H ) −q (1 −2 s )(1 −c 2 H ) 
(1 −(1 −s ) q ) 2 

+ 

q 2 (1 −s ) 2 (1 −c 2 H ) −q (1 −
(1 −(1 −s ) q )

Q α1 L Q 
β
1 L

c 1L 0 0 

c 1H − s 
(1 −(1 −s ) q ) 

− 1
q

p 0 0 

c 2L 0 0 

c 2H 
qs (1 −s ) 

(1 −(1 −s ) q ) 
(1–

q s (1 −s )(c 2 H −c 1 H ) 
(1 −(1 −s ) q ) 2 

c 1 H
q 2 

s sq (1 −c 2 H ) 
(1 −(1 −s ) q ) 

+ 

(1 −q )(1 −c 1 H −q (1 −s )(1 −c 2 H )) 
(1 −(1 −s ) q ) 2 

(1 
c 1 L < q (1 − s ) c 2 H , 

c 2 L < 

sp(c 1 H − q (1 − s ) c 2 H ) 

1 − (1 − s ) q 
. 

hese conditions are necessary and sufficient, i.e., if these inequali-

ies are satisfied, then equilibrium order quantities take the values

n Region 1. 

In a similar fashion, we can obtain the conditions for all 8 re-

ions. This is summarized in Fig. 1 . 

9. Comparative statics under uniform demand and linear market 

hares 

Q 1 L → 

Q δ1 L 

−1 

0 
 H −c 2 L )) 0 

(1 − q )(1 − s ) 

q (1 − s ) 
s 2 (c 2 H −c 1 H )) 
 

(1 − s )(c 2 H − c 2 L ) 
s )(1 −q )(1 −c 2 L ) 

(1 −sp) 2 
+ s (1 −s ) pq (1 −c 2 H ) 

(1 −(1 −s ) q )(1 −sp) 
q (1 − c 2 H ) + (1 − q )(1 − c 2 L ) 

 

−q (1 −s )(1 −c 2 H )) 
sp) 2 

) 

Q 2 L → 

Q 
γ
2 L 

Q δ2 L 

0 0 
s (1 −s ) p 

(1 −(1 −s ) q )(1 −sp) 
0 

s (1 −s )(c 1 H −c 2 L −q (1 −s )(c 2 H −c 2 L )) 
(1 −(1 −s ) q )(1 −sp) 2 

0 

− (1 −s ) 
(1 −sp) 

−(1 −s) 

− pqs (1 −s ) 2 

(1 −(1 −s ) q )(1 −sp) 
0 

− ps (1 −s ) 2 (c 2 H −c 1 H ) 
(1 −(1 −s ) q ) 2 (1 −sp) 

0 

− (1 −s )(1 −q )(1 −c 2 L ) 
(1 −sp) 2 

- s (1 −s ) pq (1 −c 2 H ) 
(1 −(1 −s ) q )(1 −sp) 

−(1 − c 2 L ) 
 2 H ) − p(1 −2 s + s 2 p−(1 −s ) 2 q )(1 −c 1 H −q (1 −s )(1 −c 2 H )) 

(1 −(1 −s ) q ) 2 (1 −sp) 2 

Q 1 H and Q 2 H → 

Q 
γ
1 L 

Q 2 H 

0 0 

−1 0 

0 0 

(1–q)(1–s) 0 

q(1–s) −(1–s) 

(1 − s )(c 2 H − c 2 L ) 0 

 q (1 − c 2 H ) + (1 − q )(1 − c 2 L ) −(1 − c 2 H ) 
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