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1. Introduction

The newsboy problem has played a central role at the con-
ceptual foundations of stochastic inventory theory, and variants of
it have been used in analysis of decision problems - such as ca-
pacity, allocation and overbooking - under demand uncertainty. In
the classical newsboy problem, a firm facing uncertain demand or-
ders a quantity of a perishable item prior to observing demand.
If the demand realization is less than the ordered quantity, then
the firm will have excess inventory in hand that will perish. If de-
mand turns out to be more than the ordered quantity, then the
firm will miss the opportunity of additional profit. In the well-
known characterization, the optimal order quantity, which bal-
ances the marginal expected cost of ordering one more unit against
the marginal expected revenue from satisfying an additional de-
mand, is a critical quantile of the demand distribution.

In the standard newsboy model, strategic interactions are as-
sumed away by taking the demand faced by a firm as a model
primitive. In many practical situations, however, the details of the
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market interaction does matter for the order quantity decisions.
Some or all of a firm’s unsatisfied demand can be served by other
firms offering substitutes; and, vice versa, a firm may be able to
sell more than its initial market share in case the rival firm is un-
derstocked. Under such conditions, a firm’s payoff depends on rival
firms’, as well as its own, order quantities and appropriate analysis
of optimal inventory decisions requires a game theoretic approach.
The resulting model, dubbed the competitive newsboy model, has
been studied in the literature starting with the seminal works of
Parlar (1988), studying the case where the firms’ initial demands
are statistically independent, and Lippman and McCardle (1997),
studying the cases where the demands faced by competing firms
are derived from a general class of rationing rules applied to the
total industry demand.

A natural extension of the competitive newsboy analysis
involves incorporating information asymmetry. Asymmetric in-
formation adds a new dimension to the competitive newsboy
problem. Firms may be asymmetrically informed in a competitive
newsboy setting due to two broad reasons. The firms may be
privately informed about their cost and/or revenue structures.
Alternatively, there may be asymmetric information regarding the
market demand. Alternative specifications for the key structural el-
ements - e.g., the nature of information asymmetry, the structure


https://doi.org/10.1016/j.ejor.2018.05.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.05.035&domain=pdf
mailto:kemalgoler@anadolu.edu.tr
mailto:ekorpeoglu@walmartlabs.com
mailto:alpersen@bilkent.edu.tr
https://doi.org/10.1016/j.ejor.2018.05.035

562 K. Giiler et al./European Journal of Operational Research 271 (2018) 561-576

of the market and firm demands - span a number of interesting
classes of models. Among these are models of newsboy oligopoly,
and models that allow arbitrary statistical dependence in firm
demands, and in cost structures.

In this paper, we study the competitive newsboy problem with
asymmetric cost information. The competitive newsboy model we
study is built on Parlar (1988) and Lippman and McCardle (1997).
The industry demand is random. There are two firms among whom
the industry demand is split. Each firm has private information
about their costs. If the demand that is allocated to one firm ex-
ceeds the order quantity of that firm, a portion of the excess
demand spills over to the rival firm. As standard in analysis of
games of incomplete information, we use the Bayesian-Nash equi-
librium as the solution concept. In a Bayesian-Nash equilibrium
each player’s strategy is a best response against the strategies of
the competing players.

We show that a pure strategy Bayesian-Nash equilibrium ex-
ists for the newsboy duopoly with asymmetric information under
a fairly general set of assumptions. When there are two firms and
two possible types for each firm, we show that the presence of
strategic interactions creates incentives to order more for all firm
types except the type that has the highest possible unit cost, who
orders as a monopolist for his portion of the demand. Therefore,
competition leads to higher total inventory in the industry. How-
ever, this is not true, if the firms are identical. The equilibrium con-
ditions have an interesting recursive structure that enables an easy
computation of the equilibrium order quantities. Comparative stat-
ics analysis shows that a stochastic increase in market demand or
an increase in one firm’s initial allocation of the total industry de-
mand lead to higher inventory for that firm. We finally derive a
complete characterization of the equilibrium and its comparative
statics for the case of uniform demand and linear split rule.

The particular version of the newsvendor competition we study
here has applications in a variety of settings. For example, in many
procurement environments, buyers use multiple suppliers, each of
which gets a pre-determined portion of the buyer’s total procure-
ment. This is usually done to protect the buyer from supply in-
terruptions and hold-up risk. The buyer may be a manufacturer
that uses the procured item to manufacture its own good which
has an uncertain demand. In some of these cases, the buyer is un-
willing to commit to a quantity and only specifies the percentage
of its total procurement that it will allocate to each supplier. If a
particular supplier cannot make his portion of the supply entirely
available, the manufacturer will turn to other suppliers which may
have supply beyond their share. Since suppliers have to produce or
build capacity in advance of the materialization of final demand,
this leads to a newsvendor type competition among suppliers. Ob-
viously, unit costs are private information for the suppliers in this
case. In Section 4.7, we provide an application in this context us-
ing data that we collected from procurement bidding events of a
large manufacturing company. The analysis shows that there can
be pronounced differences in suppliers’ order quantities as they
consider spillover demand and private information in their deci-
sions. In some cases, the spillover effect may be so significant that
the buyer may increase its fill rate by allocating more of its de-
mand to a higher cost supplier.

The rest of this paper is organized as follows. In Section 2,
we review the related literature. In Section 3, we introduce a
model of inventory competition under asymmetric information.
Section 4 presents our main results on the characterization of equi-
librium and comparative statics analysis. We present the full char-
acterization of equilibrium in a parametric version of the model
under uniform demand distribution and a linear split rule in
Section 5. We conclude and suggest some avenues for future re-
search in Section 6. All proofs as well as detailed derivations are
contained in the Appendix.

2. Literature review

The literature on multiple item inventory problem with substi-
tution dates back to the paper by McGillivray and Silver (1978).
However, the role of competition has not been studied until the pi-
oneering work of Parlar (1988). Parlar studies a competitive news-
boy problem with two firms managing two substitutable items fac-
ing independent demands. A deterministic fraction of unsatisfied
demand for each item can be substituted to the other item, if that
item has excess stock. It is shown that a unique Nash equilibrium
exists. It is also shown that total profits of two competing firms are
less than that would have been obtained if they were to cooperate.
Wang and Parlar (1994) and Netessine and Rudi (2003) extend the
analysis of Parlar for three and n firms cases, respectively.

This paper is closely related to the work of Lippman and Mc-
Cardle (1997) who consider the competitive newsboy problem un-
der a general setting with respect to how initial demands are gen-
erated and how excess demand is reallocated. It is assumed that
each firm’s initial demand is a result of an allocation of the indus-
try demand which is a random variable. In deterministic rules, a
specific deterministic function of the industry demand is allocated
to each firm in competition. In stochastic rules, a firm’s initial al-
location depends on the outcome of a random variable (indepen-
dent demands as in Parlar (1988) can be shown to be a special
case of stochastic splitting). If a firm’s initial demand exceeds its
order quantity, a non-decreasing function of the excess demand is
reallocated to each other firm. Lippman and McCardle (1997) show
the existence of an equilibrium in the general setting. For the case
of symmetric firms and continuous distributions of effective de-
mand for each firm, they also show the uniqueness of the equilib-
rium. For the case of two firms, they show that competition leads
to higher inventory in the system.

Since these pioneering work, inventory competition gained in-
terest in operations research literature. Other lines of research in
this area include papers that consider the effect of competition
on a supplier in the upper echelon (Anupindi & Bassok, 1999), dy-
namic consumer choice (Mahajan & van Ryzin, 2003), the effect of
sequential moves (Serin, 2007), reactive capacity (Li & Ha, 2008),
loss aversion (Liu, Song, & Wu, 2013), predictably irrational behav-
ior (Ovchinnikov, Moritz, & Quiroga, 2015) and simultaneous price
and inventory competition in revenue management (Zhao, Atkins,
Hu, & Zhang, 2017).

There are other papers in operations literature where competi-
tion carries on for multiple periods and backordering is possible. In
Hall and Porteus (2000) and Liu, Shang, and Wu (2007), two firms
compete on product availability which impacts the market share in
future periods. However, within each period that is modeled as a
newsvendor problem, no substitution occurs. Netessine, Rudi, and
Wang (2006) model substitution to a competing firm in the cur-
rent period as well as backordering in future periods.

To our knowledge, the only study in the operations literature
that incorporates the effect of private information on horizon-
tal competition, in particular its effect on equilibrium behavior of
firms competing on inventory or product availability is by Jiang,
Netessine, and Savin (2011). In their study, the players have asym-
metric information about future demand. Since they assume that
the demand information is limited to the support of the distri-
bution, they follow an approach taken in the robust optimiza-
tion literature and assume that the players minimize absolute re-
gret. They show that there exists a Nash equilibrium for the game
and provide a characterization. Among other results, their anal-
ysis shows that the total inventory carried by the newsvendors
increases with information asymmetry and may even be larger
than the maximum total demand. In addition, they show that a
newsvendor may not be better off by having better information
about its own demand distribution than its competitors.
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We restricted our literature review on the horizontal inventory
competition. There is a vast body of operations literature where in-
ventory competition takes place between different echelons with
early work that include Cachon (2001) and Cachon and Zipkin
(1999) and recent work that include Cao, Wan, and Lai (2013), Lee
and Yang (2013), and Spiliotopoulou, Donohue, Gurbuz, and Heese
(2018).

The asymmetric information newsvendor duopoly game we
study can be transformed to a supermodular game. Supermodular
games were first introduced by Topkis (1979) who show that there
exists at least one pure strategy Nash equilibrium in a full informa-
tion supermodular game. Milgrom and Roberts (1990) show that
a large class of games in economics literature are supermodular
and thus have equilibrium. Supermodularity is also used recently
to study games in operations literature. Examples include Lippman
and McCardle (1997), Bernstein and Federgruen (2003) and Cachon
(2001). Vives (1990) uses supermodularity to show the existence
of pure strategy Nash equilibrium for compact action spaces and
complete separable metric type spaces. This work is extended by
Athey (2001) to include a larger class of type and strategy spaces
which satisfy the single crossing condition. van Zandt and Vives
(2007) shows the existence of Bayesian-Nash equilibrium for su-
permodular asymmetric information games when type sets are dis-
crete and action sets are continua. Our model of asymmetric in-
formation newsvendor duopoly is an instance of the general class
of incomplete information games studied in van Zandt and Vives
(2007).

3. A model of newsvendor duopoly

We consider an industry served by two firms i = 1, 2 that offer
two substitutable items. Throughout, we assume that the two firms
are risk-neutral.

3.1. Industry and firm demands

The total industry demand D is a continuous positive random
variable with an everywhere positive density function g(). Thus,
the distribution function G(), and the survival function G(), where
G(x) =1—G(x) = Pr(D > x), are strictly monotonic.

As in Lippman and McCardle (1997), demand faced by each firm
is determined in a two-step rationing process. First, for any realiza-
tion, d, of random market demand, initial market shares of the two
firms are determined by a deterministic function s such that firm
1’s initial market share is s(d) and that of firm 2 is §(d) =d — s(d).
The share function s satisfies 0 <s(d) <d for all d. To guarantee that
both market shares are increasing in market demand realization,
we assume 0 <s'(d) < 1.

A given initial market share function s induces random de-
mands faced by firm 1, D; =s(D), and firm 2, D, =§(D) =D —
s(D). By construction, the initial demands faced by the two firms,
(D4, Dy), are comonotonic since both are deterministic monotone
functions of the industry demand.

In the second step, given realized market demand and the or-
der quantities of the two firms, if firm j is stocked out, then some
portion, a;, of firm j's underage goes to firm i. Thus, the effective
demand R; for firm i is the sum of initial allocation and the reallo-
cation:

Ri(Q)) =D;+a;(Dj — Q)*.

where (x)™ denotes max{x, 0} and ag;€[0, 1] for i = 1,2 is the de-
mand substitution rate from firm j to i and is assumed to be de-
terministic. For notational simplicity, we suppress the dependence
of the effective demand on other arguments. The effective demand
of firm i, R;, is a continuous random variable and its distribution is
induced by the distributions of initial demands. Effective demands

(R1(Q3), Ry(Qq)) are also comonotonic random variables for all val-
ues of Q; and Q.

As one of the first attempts to incorporate private information
into the competitive newsvendor problem, we take the two items
produced by the two firms as perfect substitutes: a; = a, = 1. This
assumption is primarily for reduction in model dimensions and no-
tational economy. While this is not without loss of generality, per-
fect substitutes assumption is well-justified in many industrial set-
tings. For example, in a procurement environment briefly discussed
in Section 4.7, potential suppliers go through a qualification pro-
cess or the buyer has very detailed specifications of all terms, so
that the buyer is indifferent between the products of the two firms
that are selected, and the entire demand not satisfied in one firm
spills over to the other firm. We leave many interesting and impor-
tant issues related to finer details of the substitution possibilities
to future work. However, our main findings (equilibrium existence
and qualitative features of the equilibrium) are not affected by this
assumption’.

3.2. Cost and information structures

Firm i pays a unit cost for the items that he purchases. We take
the type set of firm i, denoted C;, as the set of values his unit cost
can take. Firm i’s type is governed by a probability measure p; over
C;. Type distributions of the two firms are independent. Each firm
observes his own cost prior to deciding his order quantity, but he
does not observe the other firm’s cost. From firm j’s perspective,
firm i’s unit cost is a random variable C; with support C; and dis-
tribution p;.

In this paper, we focus on the case with discrete type sets.
Specifically, the unit cost of each firm can take one of two val-
ues, i.e., C; = {ci;, ¢y} with ¢ <cjy. We assume that firm 1's unit
cost is cqy with probability p;(ciy) = p and cq; with probabil-
ity p1(c11) =1—-p1(cig) = (1 —p) and firm 2’s unit cost is ¢y
with probability p,(coy) =q and cy; with probability p,(cy) =
1 - po(cay) = (1 —q). With appropriate relabeling of the players,
we take ciy < Cop.

We assume that salvage prices and back-order costs are 0. (The
analysis can easily be extended to relax this assumption.) We also
assume, without loss of generality, that each firm earns a normal-
ized revenue of 1 per unit of good he sells. This normalization can
be achieved by changing the unit of measurement for costs. Under
this normalization, we have c,4 < 1. In fact, all our results remain
unchanged if one were to take per unit revenues, instead of unit
costs, as the source of private information.

Finally, all elements of the model except the cost realizations
are common knowledge at the time the order quantity decisions
are made.

3.3. Actions, strategies and payoffs

For each player i the order quantities are the action sets, Q; =
[0, Q;]. where Q; is the optimal order quantity of firm i assuming
that he gets all of the industry demand D with the smallest pos-
sible value of c;. Finally, firm i’s expected payoff is I1;: 9 x C — %
where C =C; xC; and Q = Q7 x Q.

A pure strategy for player i is a function which maps his type
into his action set, Q; : C; — Q; where Q;(¢;) is the strategy choice
for type ¢; of player i. Player i's interim® expected payoff I; is his

1 For example, by taking share functions parameterized by the substitution pa-
rameters, z;(D, a;) = s(D) +a;5(D) and z,(D, a;) = $§(D) + a,s(D), the analysis be-
low can be extended to the more general case.

2 The terms ex ante, interim and ex post refer to conditioning with respect to the
realizations of firm types. Throughout, demand remains uncertain. That is, no new
information becomes available about market demand, and, thus, all expressions are
ex ante with respect to demand.
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expected profit conditional on his realized type ¢; and order quan-
tity Q, when his rival follows the strategy Q;():

(¢, Q) = E;[7:(Q., Q;(C)), ci)] = Z pj(cp)mi(Q, Qj(cj), ¢),

cjeC;

where, conditional on C; = ¢,

mi(Q,Q(c)), ¢) = ER,-(Qj(cj))[min{Ri(Qj (), Q}] -aQ

is the player’s ex post profit when his unit cost is ¢; and his order
quantity is Q.

4. Equilibrium order quantities

A strategy profile Q* = (Q; (), Q;()) is a Bayesian-Nash equilib-
rium if, for each player i, and each type ¢; € C; of player i,

Qi (c) € arggleagx Z pi(c)mi(Q, Q(c)), ¢).

i cjeC;

Let Qi = Q;(cj) be the order quantity of player i if his cost is
¢;; and let Qg = Q;(cjy) be the order quantity of player i if his cost
is ¢iy. Let (Qf. Qfy. Q5;, Q;y) denote a Bayesian-Nash equilibrium.
Interim expected payoffs conditional on own cost realizations are:

Iy (¢, Qi) = qE[min{R; (Qan), Qur}]

+(1 —q) E[min{R; (Q21), Qi.}] — c11Qur,
Iy (c1n, Qin) = qE[min{R; (Qan), Qun}]

+(1 — q) E[min{R; (Qz1), Qin}] — c11Qin,
Mz (car, Q) = pE[min{Ry(Q1). Qa1 }]

+(1 = p) E[min{Ry(Q11), Qar}] — c21Qar,
2 (can, Qon) = pE[min{R; (Q1n), Qan}l

+(1 = p) E[min{Ry(Q11), Qan}] — conQan-

A standard property of newsvendor models is that
J0Eg[min{R, Q}]/0Q = Pr(R > Q). Thus, taking the derivative of
each type’s payoff with respect to his action, the Bayesian-
Nash equilibrium order quantities (Qj;, Qfy. Q5. Q;y) satisfy the
following conditions:

qPr(Ry(Q2n) = Qi) + (1 —@)Pr(R1(Qa) = Qy) —cp =0, (1)
qPr(Ri(Qen) = Qin) + (1 —@)Pr(R1(Qa) = Qiu) —cin =0, (2)
pPr(Ry(Qiy) = Qo) + (1 = p)Pr(Ry(Qir) = Qo) — 1 =0, (3)

pPr(Ry(Qin) = Qan) + (1 = p)Pr(R2(Q1r) = Qon) — oy = 0. (4)

Note that when the price (w;), salvage value (v;) and backo-
rder cost (g;) are non-zero, Eqs. (1,4) can be easily extended us-
ing a general newsvendor approach. In this case, the last term on
the left-hand-side of Eqs. (1,4) needs to be equal to c,/(cy + Co)
where ¢, is cost of overage per unit and ¢, is cost of underage
per unit. For example, for Eq. (1), the last term will be equal to
(ciL —v1)/(wy +g1 —vp).

Note also that the type space ; for each firm can be extended
to incorporate more general discrete probability distributions. For
example, for each firm’s cost may take one of three values: low
(ci ), medium (c;) and high (c;y) with different probabilities lead-
ing to now nine equations rather than the four in (1,4). While this
extension complicates the notation and further analysis and lead
to different mathematical expressions for equilibrium characteriza-
tion, structural results and insights are not expected to be substan-
tially different as is the case in most game theory applications (for
a rare exception, see Kerschbamer & Maderner, 1998. Therefore, we
leave this extension for future work in this area.

4.1. Equilibrium existence

Equilibrium exists under more general assumptions than we
make. For instance, the theorem below is valid for arbitrary type
sets, not only discrete types. Furthermore, as noted by Lippman
and McCardle (1997) in their model of complete information, the
existence of equilibrium does not require any assumption on the
split functions, or on the joint distribution of the initial demands.

van Zandt and Vives (2007) show the existence of Bayesian-
Nash equilibrium for supermodular asymmetric information games
when type sets are discrete and action sets are continua. Our
model of asymmetric information newsvendor duopoly is an in-
stance of the general class of incomplete information games stud-
ied in van Zandt and Vives (2007). To establish the existence of
pure strategy equilibrium we verify that the equilibrium existence
conditions in van Zandt and Vives (2007) are satisfied in our set-
ting. These conditions are: (i) the payoff function m; is supermod-
ular in Q;, (ii) it has increasing differences in (Q;, Q;), and (iii) it
has increasing differences in (Q;, t;), where t; = —c;.

Theorem 1. A pure strategy Nash equilibrium exists for the newsven-
dor duopoly game with asymmetric information.

4.2. Preliminary observations on the equilibrium

In characterizing the structure of equilibrium, some preliminary
remarks will be useful. We start with some observations on the
best response functions. We then examine optimal order quantities
in the absence of strategic interactions to establish a baseline.

Our first claim exploits the assumption that the split functions
s(-) and §(-) are deterministic and increasing, thus invertible.

Claim 1. min{s~1(x),5 1)} <x+y <max{s~ ' (x),§1(y)}.

The best response functions of the two types of firm
1, (Qf(Qar, Qo). Qfy(Qar, Qoy)), and  those of firm 2,
(Q3;(Q1r, Q1n), Q34 (Q1r. Q1n)), solve:

qPr(Ri(Qan) = Q) + (1 —q) Pr(R1(Qar) > Q) —c11 =0,
qPr(R1(Qan) = Qi) + (1 = @) Pr(Ri(Qar) = Qjy) —cin =0,
pPr(Ra(Qin) = Qzp) + (1 = p) Pr(Ry(Qr) > Q3;) — €1 =0,
pPr(Ra(Qin) = Q) + (1= p) Pr(Ra(Qur) = Q) — o = 0.

Since R;(Q) and, hence, Pr(R;(Q)> Q;) are non-increasing in Q,
best response functions for both types of both players are non-
increasing in both arguments.

Stand-alone order quantities in the absence of competitive in-
teractions will play a useful role as a baseline. We denote by
Q). Qfy- Q3;. Q3y) the vector of optimal order quantities for the
case with no spillovers (i.e., no competitive interaction).

Lemma 1. The vector of stand-alone order quantities
Q7. Q9. Q3,.Q3y) is the unique solution to the system of equa-
tions:

Pr(Di = Q1) = ¢, Pr(D; = Qi) = Cin,
Pr(D; = Q1) = a1 Pr(D; = Qay) = Con.

The ranking of optimal order quantities of the two types of a
player is straightforward - the higher a firms’ unit cost the lower
his stand-alone order quantity: Q, > Q7 and QJ, > Q3,,.

In contrast, comparison of the order quantities across firms is
complicated by the fact that relative rankings of the firms’ market
shares and unit costs are not a priori restricted. In general, depend-
ing on the relative orderings of market shares and unit costs, all
rankings of the four order quantities (QF;, Q7. Q3. Q3,) that are
compatible with the orderings Q;’L > Q{’H and QgL > QgH are possi-
ble.
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One needs further assumptions on market shares and unit costs
to be able to rank the stand-alone order quantities of the two
firms. For example, if unit costs and initial market shares are per-
fectly negatively correlated (so that the initial market share of the
firm with the lower unit cost exceeds that of the firm with higher
unit cost for all demand realizations) then stand-alone order quan-
tities are ordered in the same way as initial market shares.

Note, on the other hand, that stock-out levels, (Pr(D; > Q) : i€
{1,2},x € {L,H}), are ordered the same way as the unit costs. This
simple observation, combined with our assumption that initial de-
mands of the two firms are monotone functions of a common mar-
ket demand, allows a complete ordering of the transformed order
quantities:

Claim 2. For x, y e {L, H}, s71( o) = §1 (ng) if and only if c1x < cyy.

Returning to the analysis of the equilibrium conditions, we first
note an observation on the stock-out probability of firm i with or-
der level Q;. For firm 1:

Pr(Ri(Q2) = Q1) = Pr(D1 + (D2 — Q)" = Q1)
= Pr(s(D) + §(D) - Q)" = Q1)
=Pr(D>35"(Q), D> Q1 +Q)
+Pr(D <$7'(Q2),D = s71(Q1)).

Similarly, for firm 2:

Pr(Rz(Q1) = Q2) =Pr(Dy + (D1 — Q)" = Q2)
=Pr(§(D) + (s(D) = Q)" = Q)
=Pr(D>5s"(Q:),D>Q+Q)

+Pr(D <571 (Qi),D = 571(Q).
Second, we observe that low-cost type of each player orders a
larger quantity than his high-cost type in equilibrium.

Claim 3. (i) Qi > Q. (i) Q5 > Q3.

Using stand-alone order quantities as a baseline, the next claim
shows that order quantities strictly less than the stand-alone or-
der quantities are dominated. Thus, presence of spillovers leads to
order quantities that are no less than the order quantities with-
out spillovers. This means that total industry inventory does not
decrease due to strategic behavior considering spillover demand.

Claim 4. (i) Qf; = Qf;, (i) Qfy = Q. (iii) Q5 = Q3. (iv) Q5 =
oH-
The following lemma identifies a useful boundary condition

that ties the equilibrium order quantity of one of the players to the
stand-alone order quantity for the high-cost type of that player.

Lemma 2. In a Bayesian-Nash equilibrium either (i) Q,; = Q3 or
Next, equilibrium order quantities of high-cost types of the two
firms are ordered up to transformation by initial market shares:
Lemma 3. s71(Qf) = §71(Q3p).
Finally, in equilibrium, the firm with highest possible unit cost
orders his optimal quantity under no competition.
Lemma 4. Qj,; = Q.
When c1y = cpy, high-cost types of both firms order their op-
timal quantities under no competition, i.e., Q3 = QSH and Qfy, =
o]
1H*
As a final observation, we note that the best response function
of the second firm’s high-cost type is flat at its stand-alone level

when the order quantities of the first firm’s two types exceed their
respective stand-alone levels:

Lemma 5. Q;,(x,y) = Qg for all (x,y) = (QF;. Q7).

4.3. Structure of the equilibrium

Summarizing the observations in the previous sub-section, un-
der the player labeling with c;y <cypy, the conditions for equilib-
rium can be stated as follows:

qPr(Ri5@G ' (can))) = Q) + (1 — @Pr(Ry(Q3) = Q) = cuu
qPr(Ri GG ' (can))) = Qi) + (1 — OPr(Ry () > Qi) = Cis
pPr(R2 (QTH) > Q;L) +(1- P)PT(RZ (QTL) > Q;L) = Ca,
Qi =5C " ().

We can now state the main theorem of this paper that charac-
terizes the structure of equilibrium order quantities.

Theorem 2. (Qj;.Q;y. Q5. Q5y) is a Bayesian-Nash equilibrium if
and only if

=1
(1) Qu=35(G (cm))
(2) Q;,. Qjy and Qj; satisfy one of the following sets of conditions:

() qG(Qi +5C () + (1) G Qi) =cu (i1)

qG(Q;y +3(G )+ (1—q) Gis™ Qi) =cn (i2)
p E(QEL"FQTH) +(1-p C(QSL‘FQTL) =0 (i3)
$THQ = Q) (ia)

(i) qGQ:+5C () +(1—q) GQu+ Q) =cu (i)

4G(Qy +5G " (cam))) + (1 —q) G (Qfyy)) = Cun (ii)
P G(Q3 + Q)+ (1-p) CE(Q3) = (ii3)
sTHQ) > $THQ) = sTQ) (iig)

(i) qG(Q +5G (m) +(1-q) GQ +5C ' (ca))) =cut
(i)

4G(Qy +5G () + (1 —q) GQy +5C ' (cw))) =i (iiy)
Qs =5C () (iii3)

sT@Qi) > Q) (iiiy)
Before we proceed with discussion of properties of the equilib-
rium, we first show that it is unique.

Theorem 3. The vector of order quantities (Qj;, Qfy. Q5. Q5y) in
Theorem 2 is unique.

Uniqueness of solutions for each block of equations is a
straightforward consequence of the continuity of the demand dis-
tribution. To establish uniqueness of the equilibrium, we rule out
the possibility that the two or more blocks of equations may have
solutions that also satisfy the corresponding inequality. This is
done in the Appendix A.4.

A notable pattern in the equilibria across the model space is
the recursive structure of the order quantities. This pattern greatly
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simplifies the computation of equilibrium order quantities. The or-
der quantity of the player type with highest unit cost is deter-
mined based on the demand distribution, the split function and
his unit cost, independently of other parameters of the game. The
remaining equilibrium quantities are obtained recursively. At each
step, substituting for the previously computed equilibrium values,
a single equation is solved for a single unknown equilibrium quan-
tity.

The recursive pattern of the equilibrium quantities reflect the
fact that the equilibrium is partially dominance-solvable, which in
turn is a consequence of the supermodular structure of the game.
By Claim 4 above, any quantity strictly less than the stand-alone
order quantity is strictly dominated by the stand-alone order quan-
tity for every type. Given this fact and Lemma 5, order quantities
strictly greater than the stand-alone order quantity are also dom-
inated by the stand-alone order quantity for the highest cost type
(cay)- Thus, a two-step reasoning pins the equilibrium behavior of
the highest cost type.

The equilibrium described in Theorem 2 can also be understood
by following a recursive argument in effective demands. We first
explain this for case (i). First, the order quantity for firm 2 when
he has the high cost (Q;) is determined using its stand-alone op-
timal order quantity. This updates the effective demand for firm 1.
Under condition (i4) this leads to determining the order quantity
for firm 1 when he has the low cost (Qj;) using (i) and the or-
der quantity for firm 1 when he has the high cost (Qj,) using (i,).
Determining Qj; and Qj updates the effective demand for firm 2
and the order quantity for that firm when he has the low cost can
be found using (i3). In case (ii), the order quantity for firm 1 when
he has the high cost (Qjy) is found using (iiy). The order quantity
for firm 2 when he has the low cost (Q;;) can then be found using
(ii3). Finally, the order quantity for firm 1 when has the low cost
(Qj;) can be determined using (ii;). In case (iii), the order quan-
tity for firm 2 when he has low cost (Qj;) is also found using his
stand-alone optimal order quantity. Determining Q;; and Q;; up-
dates the effective demand for firm 1. The order quantities for firm
1 for both types are then determined using (iii;) and (iii;).

4.4. Corollaries

In this sub-section we consider several corollaries of
Theorem 2 for special cases of the general model. The first
corollary considers a model with ex ante symmetric cost struc-
tures without restricting the initial market shares. In the second
corollary, we impose a restriction on the initial market share
function so that one of the firms has larger initial market share
for all demand realizations. Corollary 3 presents the equilibrium
for the case with fully symmetric firms where both initial market
shares and ex ante cost structures are identical. In Corollary 4, we
remove the restrictions on the initial market shares and consider
an extreme form of ex ante cost asymmetry: one firm’s unit costs
are uniformly higher than the other firm’s unit costs for all type
realizations. Finally, in Corollary 5, we consider a model with sym-
metric initial market shares and unrestricted ex ante asymmetries
in the cost structures. As these corollaries are obtained through
straightforward substitutions, we omit the proofs.

Corollary 1. If the two firms are ex ante symmetric with respect
to costs, that is, cijy=Cyy=Cy, C1L =Cy . =C;, and p=gq, then
(Q7;. Qiy- Q3. Q3p) is a Bayesian-Nash equilibrium if and only if

—-1 =1
(1) Qu=s(G (cn), Gy =3(C (cu))
(2) and Qf, and Q;; satisfy one of the following sets of conditions:

@) pGQIL+5C () +(1-p G @) =c (i1)

p G(Qy+5@ () +(1-p)GQ3 +Q) =c (i2)

égl(Q;L) = 5_1(QTL) (i3)

(i) pGQ+5C ()N +(1-pGQ+Q)=c (i)
pGQ+sG () +(1-p)CE Q) =a (ii)

5_](QTL) > §_1(Q§L) (ii3)

Further simplification is possible under the assumption that ini-
tial market shares of the two firms are uniformly ranked, i.e., one
firm’s initial market share is higher than the other’s for all demand
realizations. By relabeling firms if necessary, we can take initial
market shares to favor firm 1: s(d)>d/2.

Corollary 2. If cijy=Cpy=cy, cip=Cy=¢, p=q and s(d) =
$(d) = d/2 for all demand levels d, then (Qj;.Qfy. Q5. Q) is a
Bayesian-Nash equilibrium if and only if

Qi =5@G ' (cw), Qu =5@C ' (cu)) and
Q;; and Q;; solve :

PG(Q +5G () +(1—p) GG Q) =
pG(Qy+5C () +(1—p) GQ+Q) =

When the two firms are fully symmetric in terms of cost struc-
tures and initial market shares, we get a fully symmetric equilib-
rium.

Corollary 3. Assume that the two firms are ex ante symmetric with
respect to costs. That is, ciy = Cyy =CH, C1L=Cy =C, and p=q.
Furthermore, let s(d) =$(d) =d/2 for all demand levels d. Then
Q4. Qfy- Q. Qp) is a Bayesian-Nash equilibrium if and only if

Q= Qi =Q; = (1/2@C ' (cw)) and
Qi = Q3. = Qf where Q; solves

pG(Q +(1/2)G ' (ew)) + (1 - p) GRQ) =cy.

The next corollary looks at the case where one firm has a cost
advantage for all cost realizations.

Corollary 4. Assume that cip<cip<cy<cy. Then (Qf, Qfy
Q;;. Q3y) is a Bayesian-Nash equilibrium if and only if

@y =5C ()

Qﬁl =3(G SCEP) B .

PE(Q{‘L +§(G,,1(C2H))) +(1-p Q(QTL +§(677552L))) =y
pGQfy +5(G () + (1 —p) G(Q5y +5(G (car))) =cCin-

Corollary 4 uses the fact that s71(Qf) > s71(Q%;) > §71(Qg) =
§-1 (Q;,) which satisfies condition (iii4) for case (iii) of Theorem 2.

As a final corollary, we present the equilibrium order quantities
for symmetric initial market shares. In this special case, the equi-
librium conditions can be stated explicitly in terms of the exoge-
nous cost parameters, in contrast to the implicit characterization
in Theorem 2. For each of the three possible orderings of the unit
cost parameters, we have a different set of equilibrium conditions.
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Corollary 5. Assume that s(d)=3$(d)=d/2. Then (Qf.Q;y.
Q;;. Q3y) is a Bayesian-Nash equilibrium if and only if

1) Q= (172G (can)

(2) Qf;. Qfy and Q;; satisfy one of the following sets of conditions:

(illf] G < CEE] CiH < Con B
qG(Q; + (1/2)G  (cam)) + (1 —q) G(2Q5)) = c1.

4G (Qiy + (1/2)G " (cam) + (1 - q) Q) = cun (i2)
p G(Q3 + Qi) + (1 - p) G(Q3, +Qfyp) = e (i3)

(ii) If €L =< C2L]§ CiH =< G (iiy)
q6(Q + (1/2)C () +(1—q) G(Qy +Q) =cn
qG(Qy + (1/2)C () + (1 — @) G(2Q%) = cun (ii)

p G(Q3, + Qi) + (1 —p) GRQ5) =cx (ii3)

(iii) Ifcy < ClH]f CoL < CoH :
qGQ; + (1/2)G  (cn))+(1-q) G(Q, + (1/2)G  (ca))=cyy
(iiiq)

qG(Qy + (1/2)G ' (en) + (1= @) GQy + (1/2)C ' (ca)) = cn
(iiy)

Q= (1/2)C (ca) (iii3)

4.5. Intra-equilibrium comparisons

As noted in Claim 3 above, equilibrium is monotone: low-cost
type of a firm orders a larger quantity than his high-cost type.
Without further restrictions on the initial market shares and the
level of unit costs, this is about the extent of what can be said
regarding intra-equilibrium comparisons. That is, no general rank-
ing of order quantities across firms is possible without imposing
further structure on the model. Furthermore, even under normal-
ization an analog of Claim 2 does not hold for equilibrium or-
der quantities. The only possible ranking is the one provided in
Lemma 3 that ranks the normalized equilibrium order quantities
of the high-cost types of the two firms.

An interesting observation can be made using the characteri-
zation in Corollary 4 in the previous section to illustrate a general
phenomenon of inter-type externality. Note that the condition
in Corollary 4 is only a sufficient condition and the equilibrium
characterization there remains valid for a range of unit costs
with ¢y <cjp<cyy as long as condition (iiiy) for case (iii) of
Theorem 2 is satisfied. In this equilibrium, both types of firm 2
choose an order quantity equal to his stand-alone quantity while it
is common knowledge that firm 1 may have larger unit cost. That
is, low-cost type firm 2 ignores spillover from the less efficient
type of the rival firm. This is due to the fact that high-cost type
of firm 1, while less efficient than the low-cost type firm 2, selects
a large order quantity expecting spillover demand from the less
efficient type of firm 2. The increased order quantity of the firm
1H forces firm 2L to stick to Q.

Table 1
Comparative statics.
Cases  Quantities Conditions c1L Ciy p Con q
Gy 0 0 0 0 - 0
(i) Q;, - 0 0 0 + +
Qy 0 - 0 0 + +
QG QL +g)>0 + 4+ + - - -
o CQ+QG=0 0 + o+ - - -
(i) Q;, GQ+Q) >0 - - - + + +
Q;, GQ+Q;) =0 - 0 0 0 + +
Qy 0 - 0 0 + +
Q; 0 + + - - -
(iii) Qi GQ+Qy>0 - 0 0o+ + 4+
QL GQ+Q)=0 - 0 0 0 + +
Qy GQy+YY>0 0 - 0 + + +
Qy Qi +Q)=0 0 - 0 0 + +
Q 0 0 0 - 0 0

4.6. Comparative statics

Comparative static analysis of the equilibrium and payoffs with
respect to the exogenous parameters of the model is done in two
parts. We first establish general comparative statics results with
respect to two exogenous functions in the model, namely, the de-
mand and the market share function. Then we derive explicit com-
parative static expressions for the scalar parameters.

Theorem 4. Let Dy and Dg be two positive random variables such
that D4 dominates Dg under first order stochastic dominance. Then,
the equilibrium order quantities with industry demand D, are larger
than the equilibrium order quantities with industry demand Dg.

Theorem 5. If s4(d) > sg(d) for all positive real numbers d, then the
equilibrium order quantities of both types of firm 1 (firm 2) are larger
(respectively, smaller) when the split function is s than the order
quantities under sg.)

In Table 1, we provide the signs of all first order derivatives of
equilibrium order quantities with respect to the exogenous scalar
parameters, Ci;, Ciy, P» Cor, Coy and q. The explicit expressions
for the comparative statics derivatives themselves are provided in
Appendix A.7. Cases (i), (ii) and (iii) correspond to the cases in
Theorem 2.

As expected, the equilibrium order quantities for both play-
ers are non-increasing with respect to their own costs and non-
decreasing with respect to their rival’s costs. In equilibrium, each
player orders more as his rival’s probability of being high type in-
creases. Conversely, each player orders less as his own probabil-
ity of being high type increases. This is due to information asym-
metry between players and can be explained as follows. Suppose
the probability of being high type for firm 1 is increasing. In this
case, firm 2 will be ordering more since he will anticipate a higher
chance of low order quantity from firm 1. This will lead firm 1
to expect less spillover from firm 2 and hence order less himself.
Whether these monotonicities are strict or not depend on specific
cases and conditions as given in Table 1. The only exception to
these results is that firm 2's (the firm with larger high cost) equi-
librium order quantity when his type is high only depends on its
own cost as shown in Theorem 2.

4.7. An application

In order to demonstrate the use of the model we developed in
this paper, we provide an example in a dual sourcing procurement
setting. Dual sourcing or multiple sourcing in general is used ex-
tensively in many industries to protect the buyer from supply in-
terruptions and hold-up risk (Burke, Carrillo, & Vakharia, 2007).
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Table 2
Example.
Q) Q% 0 I3 Explnv®  FillRate®
o s ¢, Gy Go1, Con Q; Qy Q; Gy Explnv* FillRate*
A 12,000 0.75 90,100 100,110 60,854 58,288 19,921 19,017 79,040 87.25%
61,537 58,463 20,167 19,017 79,592 87.73%
B 12,000 0.75 93,97 103,107 60,142 59,122 19,675 19,316 79,127 87.35%
60,693 59,333 19,675 19,316 79,508 87.68%
C 12,000 075 9595 105,105 59,643 59,643 19,500 19,500 79,144 87.36%
60,024 60,024 19,500 19,500 79,525 87.70%
D 12,000 0.50 90,100 100,110 40,569 38,859 39,841 38,035 78,652 86.90%
42,055 39,126 40,075 38,035 79,645 87.77%
E 12,000 0.25 90,100 100,110 20,285 19,429 59,762 57,052 78,264 86.54%
22,622 19,662 59,873 57,052 79,604 87.72%
F 15,000 0.75 90,100 100,110 59,380 56,173 19,338 18,209 76,550 84.06%
60,234 56,391 19,646 18,209 77,240 84.66%
G 18,000 0.75 90,100 100,110 57,906 54,057 18,756 17,401 74,060 80.87%
58,931 54,319 19,126 17,401 74,889 81.59%

The buyer allocates each supplier it selects a portion of its to-
tal procurement of a particular item or a group of items. The
selection and allocation decisions can be carried out using a re-
verse auction (Bichler, Guler, & Mayer, 2015; Tunca & Wu, 2009).
In some of these procurement settings, the buyer is a manufac-
turer and uses the procured item as a raw material to manufac-
ture its own good which has an uncertain final demand. In some
cases, the buyer may seek to shift the risk of uncertainty in de-
mand to its suppliers and commit each supplier a percentage of
its total requirement, rather than in number of units. For exam-
ple, Hewlett-Packard’s procurement commitment from a particular
supplier may be a pre-specified percent of the total requirement
(a.k.a. total available market) in a given fiscal period (Nagali et al.,
2008). In general, it may take time to produce or build up capacity
for the item. Therefore, the suppliers may need to make quantity
decisions prior to observing demand. This requires each supplier
to solve a newsvendor problem to determine its supply quantity.
Obviously, if the demand allocated to a supplier exceeds its supply,
the buyer can use the other supplier’s excess supply, if any, leading
to a newsvendor competition among suppliers. Clearly, in this case,
the cost information is private to each supplier, making the game
an asymmetric information game such as the one we consider in
this paper.

For this example, we use data that we have previously col-
lected in Sen, Yaman, Giiler, and Kérpeoglu (2014) from procure-
ment bidding events of a large manufacturing company. For one
of its components, the company forecasts that the total available
market will be 89,000 units. The company allocates 75% of the
total available market to a low cost supplier (supplier 1) which
will supply the parts at wy = $121 per unit, while the remaining
25% is allocated to another supplier (supplier 2) which will sup-
ply them at w, = $128 per unit. It is assumed that the demand is
distributed Normally with mean (@) equal to the point forecast of
89,000 units. We denote &;; = ¢;jw;, i€{1, 2}, and je{L, H}. We an-
alyze various scenarios for &;; to understand the effect of informa-
tion asymmetry. We also study the effect of the standard deviation
of the Normal distribution o to understand the effect of demand
uncertainty for this problem. Note that we have u >40 ensuring
that the probability of negative demand is negligibly small. Finally,
we consider the effect of the split function, which is described by
s(d) = sd in this case, where 100s is the percent of total available
market to be procured from supplier 1.

The results of our analysis for seven instances is given in
Table 2. For each instance, the first row of Columns 6-9 report the
individual newsvendor order quantities without considering the ef-
fect of spillover demand. The second row of Columns 6-9 report
the equilibrium order quantities. Columns 10 and 11 report the
corresponding expected total inventory from two suppliers and ex-

pected fill rates (percent of total demand that can be satisfied by
the total inventory created by two suppliers).

In the base instance A, o =12,000, s=0.75 and
(€11, €11, Co1, 6op) = (90, 100, 100, 110). The spillover competition
leads to 552 more units of total inventory in expectation, resulting
in approximately 0.5% increase in the expected fill rate. When
(11, €11, Cop, Gop) = (93,97, 103, 107) in instance B, the asymmetry
in cost information decreases. This decreases the total inventory in
the Newsvendor competition, whereas the total inventory in the
no-competition benchmark is higher than the total inventory in
instance A. When (&q;, ¢1y. Co1, Cop) = (95, 95, 105, 105) in instance
C, there is no longer information asymmetry in the game. There
is a slight increase in total inventory in this case, as the positive
effect of cost parameters on order quantities dominates the nega-
tive effect of lower strategic interactions due to the elimination of
information asymmetry.

In instance D, percentage split of supplier 1 (lower cost sup-
plier since cq; <c¢y; and ¢y <) is reduced to 50% from 75% in
instance A. As expected, this leads to reduced total inventory for
the no-interaction model. Interestingly, when the suppliers com-
pete for the spillover demand, this leads to higher total inventory
for the buyer. As the percentage allocation of supplier 1 is further
reduced to 25% in instance E, the effect of increased cost domi-
nates and the total inventory goes down.

The standard deviation of the demand is first increased to
15,000 in instance F and then to 18,000 in instance G. The effect of
this on both no competition and competition models is less inven-
tory. However, the effect of spillover competition becomes more
pronounced as the uncertainty goes up.

5. A Special Case: Uniform demand and linear market shares

In this section, we present the full explicit characterization of
the equilibrium and the corresponding payoff functions for uni-
formly distributed demand and linear market share functions:
D ~ Uniform(0, 1), and s(D) =sD and $§(D) = (1 —s)D. Under uni-
form demand and linear market shares, an instance of the model
is represented by 7 parameters: (cq;, €1y, C21, C2H» s G, S)-

As shown in Section 4, while Q;; = (1 —5)(1 —cpy), solution
to Qf;, Qjy and Q;; (and the corresponding payoffs) requires a de-
tailed analysis.

5.1. A partition of the parameter space

Detailed analysis, provided in Appendix A.8, lead to 8 regions in
the parameter space. In each of the 8 regions, different equilibrium
quantities and payoff functions are valid. In other words, in each of
these regions the equilibrium structure (functional form) of at least
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Table 3
Functional forms of endogenous variables by parameter region.

Region Qu Qi Qu milan cu)  mwilamw, ) wacw, c)  w(Cm, C21)

1 I h 5 i (cr, Car) 7 (Cin, Car) 75 (€1t Car) 75 (i Car)
2 Qﬂ & S ”]ﬂ(CILsCZL) ¥ (C1h, Car) ﬂzﬁ (cie, ) 75 (Cis Car)
3 Q{SL & Qﬁ,_ ”fq(CIL’CZL) TE (. Car) 7Y (G ca) Y (Cips Car)
4 0 e szL ﬂ]y (c1L, €ar) i (Cin, Car) 7T§ (€11, €a1) 75 (Cin Car)
5 Ql ¢ Q) miCcw.cw)  wE(om.cw)  mS(cw.cu)  wE(Ciw. Car)
6 0 Q{SH Q) (cw.ca) nf(CIHvCZL) 78 (C1p. Car) 7T2ﬁ(C1HqC2L)
7 0 QIVH Qg,_ 7T1V(C1L»C2L) 7le (€1u, €a1) ﬂg(Cu-CZL) ﬂzﬁ (€1u, €a1)
8 Qfl ly,., Qﬁs,_ H{S(Clb 1) 7T1V (c1u, €ar) ﬂzg(fus Car) ﬂzﬂ (€1u, €a1)

When firms 1's type is high, his equilibrium order quantity takes
three possible forms:

(1—cip—q(1 —8)(1—cm))
@@+ 0 -q)/s)
Qf,=1- %” —(1-5)(1 - ),

Qy=1-can—-q0 =51 -cm) - (1 -q)(1 =5)(1 - ca1).
Finally, the low type of firm 2 has four different functional
forms for his equilibrium order quantity:
Q= 1- 2 (1 —cip—q(1—5)(1—cop))
p (@+ (1 —q)/s)
p(A—cip—q(—s5)(1—con))

Q?H =

i

)

Qf =1-cy -
2 * @+ d=-a)/s)
Region 1 Region2  Region3 Region4 Region5  Region6  Region7  Region 8 _ (1 - p)(l —Cu— q(l — S)(] — CZH)) ,
@+ (1 -q)/s)
Fig. 1. Conditions characterizing the partition of the parameter space.
o — (1—ca)
2 (p+(A-p/QA-59)
one of endogenous variable is different from its from in other re- b (1-cip—q(1 -5)(1-cp))
gions. The co?(ﬁtions that dgterrpine the paftition of the parameter G+rd-q)/s)p+dA—-p)/(A-3))
space are as follows: Denoting p = sp and § = (1 —s)q, QSL =(1-5)(1-cy).
(I-@ca < —{coy (Ga) o
ciL < dcon (Cp) 5.3. Equilibrium payoffs
(I-q)cu < pem —Pgcon (C) o
oo < —C1y +§con (Cp) When both firms have low costs, Firm 1's ex post payoff can
—(1=pPcy +Q=§) cy< pery —G oy (Cp) take four different functional forms:
peu +(-q)cau< pan (Cr) o 1
(=P (- ey +d(1-d) cu<pde +d(1-p-D e ) 7w = 55—l
i +qcu < qcon ) (Q11)?

) ) e - JT{S(Cu,CzL) =Qu(1—cn) - 55
The 8 different regions that these equilibrium conditions lead S

to are given in Figure 1. 1 (Qa1)?
£ J Tﬁy (cir. 1) = ) + m — Qa1 — 11 Qup,
(Qa1)? ~(Qut Q21)?
2(1-5) 2 ’
Firm 2’s payoff, similarly, has four possible functional forms
when both firms have low cost:

5.2. Equilibrium order quantities
d d 7P (i, €ar) = Qu(1 —cyp) +

Qj;. Qy and Q3 and payoffs 7wq(c1p, 1), wi(Cips Car) walcps
cyr) and mo(cyy, Cpr) in these regions can be found using the fol-
lowing table:

The equilibrium order quantity for firm 1 when his type is low (1L, CoL) = 1 (1-15) — 2,041,
takes four different functional forms (Table 3): 2

1 2
Qe =1- (ST (1=5)(1 = o) e c) = 5+ (Q;) — Qur — c21Qar,
q ’ 2 2
0f — (1-c¢1—q(1 =s)(1 —cn)) ) (ciz. car) = Qu (1 —cap) + (Q21§) - Qu —;QJL) .
it (q + (1 - Q)/S) ' 5 (QZL)Z
(11— —cy) my (i, ) = Q1 —cop) — 50—
Y _ 11— — _ _ _ 2(1 -
Q=1-cr—-q(1 =951 -cn) P d-p/d_s) (1-5) . .
1 1 1 1 When firms 1 and 2 have low and high costs, respectively, we
( i —+q()1p ( ;/61);-2 _f((l — S))(/(l_ CZH)))), have three possibilities for the payoff for firm 1's payoff:
q —q)/S)p -D - ,
Q=1-c—q(1=5)(1—com) — (1= @) (1 =5)(1 - ca). T (i Car) = Qu(1 = cyp) — @)

2s
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Table 4
Comparative statics for uniform demand case.
Qo QL @ o @ 9 ¢ o Qy o Qu
[T - - - 0 + 0 0 0 0 0 0
an O 0 - 0 + + + 0 - - - 0
P 0 0 - 0 + + + 0 0 - - 0
¢ 0 0 + + - - - - 0 0 + 0
o+ + + + - - - 0 + + + -
q + + + + - - - 0 + + + 0
s + + + + - - - - + + + -
JTﬁ(C ) = 1 N (Qa1)? Oy — 110 unit costs, will lead to more complicated but qualitatively similar
1V RL) =5 Ty —s) LT HIHAs: equilibrium characterization in that many of the claims, the recur-
(Qy)? (Quy + Qz1)? sive structpre of the equilibrium order qqantities,. and, _parti_cularly,
nl’/ (1, Co1) = Qu(1 — 1) + 205 - 3 ; the behavior of the highest-cost type will remain valid with this
extension.
and two possible forms for the payoff for firm 2: Information asymmetry adds a new dimension to the compet-
(Q)?  (Quy + Qy)? itive newsvendor problem. Alternative specifications for the key
S (C1p, Ca1) = Qu(1 —ca1) + ;H _ < 3 L structural elements of the current model - e.g., the nature of infor-
s ) mation asymmetry, and the structure of the market and firm de-
7Py, ) = Qu(1 —cyp) — (Q1) mands - span a number of interesting classes of models we intend
2 (C1H, CoL L ) =57 . )
(1-s) to explore in the future. Among these are models of newsvendor

When firm 2 has a high cost, the payoffs of the two players are
same in all regions:

2 2

mi(cir, Con) = Qur(1 —cqp) + 2((1225 9 (Qu +ZQZH) ,
2 2

1 (C1h, Con) = Qu(1 — 1) + 2((12211 9 Qi ZQZH) ,

72 (Ci1, Con) = M2 (Crp. Con) = (1 —5)(1 — c2)?/2.
5.4. Comparative statics

We present the explicit expressions for comparative static
derivatives for the equilibrium order quantities for the uniform de-
mand and linear split case in A.9. Comparative static sign patterns
are summarized in Table 4. This is a specific version of Table 1 for
the uniform demand and linear split function. Since s characterize
the whole split function in this case, we also provide the compar-
ative statics with respect to s in this table.

6. Concluding remarks

We studied a model of inventory competition in a newsven-
dor duopoly under asymmetric cost information. We showed that a
pure strategy Bayesian-Nash equilibrium exists under fairly general
assumptions. We characterized the equilibrium for the case where
the industry demand is allocated between two firms using a deter-
ministic split function and show its uniqueness. We showed that
presence of strategic interactions creates incentives to increase or-
der quantities for all firm types except the type that has the high-
est possible unit cost, who orders the same quantity as he would
as a monopolist newsvendor facing scaled version of the market
demand. Therefore, competition leads to higher total inventory in
the industry. The equilibrium conditions have an interesting recur-
sive structure that enables an easy computation of the equilibrium
order quantities. Comparative statics analysis shows that a stochas-
tic increase in market demand or an increase in one firm’s initial
allocation of the total industry demand lead to higher inventory
for that firm. We finally derived a complete characterization of the
equilibrium and its comparative statics for the case of uniform de-
mand and linear split rule.

Certain extensions of the current model are relatively straight-
forward and not likely to change the structure of the equilibrium
qualitatively. For instance, allowing more than two levels for the

oligopoly, and models that allow arbitrary statistical dependence
in firm demands, and in cost structures.
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Appendix A.
Al. Proof of Theorem 1

First, define )V, = —Q, so that Q; x Y, is a lattice (This or-
der change is necessary to form a supermodular game). Moreover,
let t; = —cq, t; = ¢, and define effective demand functions as R;:
t;— 9. Then for

m1(Q1. Y2, tr, t2) = E[min{R; (t2), Q1 }] + t:1 Q1.
72(Q1. Y2, t1, t2) = E[min{Ry(t1), —y2}] + tay2.

The supermodularity and continuity of these functions and the in-
creasing differences in (Qq, y,) are proved in Lippman and Mc-
Cardle (1997). The only thing remains is to show that 74 has in-
creasing differences in (Qq, t;) and m, has increasing differences
in (y,, t;) (Again, m; is not directly dependent on the type of
firm j. Hence, increasing differences for (Qq, t;) and (y,, t;) are
trivially satisﬁed.). Let ¢; (tl) =771 (Q{ Vo, tq, tz) — T (Q] , Y2, t1, tz)
where Qf > Q; for given y,, t,. Then

G1(t1) = E[min{R; (t2), Q1 }] — E[min{R; (t2), Q1 }] + t1[Q; — Q1].

Define t] such that tj >t;. It follows that ¢(t7) — ¢ (ty) = [t] —
t111Q] — Q1] > 0. Thus m; has increasing differences in (Qy, t;).
Similarly, ¢,(t;) = m2(Qq.¥5, t1.62) — 72(Q1, y2, t1, ) where y), >
y, for given Qq, t;. Then

S2(t2) = E[min{Ry (t1), —y3}] — E[min{R; (t1), —y2}] + t2[y5 — ¥2].
Define ) such that t) >t,. It follows that ¢(t}) — ¢(tp) = [t} —
11y — y21 = 0. Thus 7, has increasing differences in (y,, ). Since
our priors over the types are independent, the condition for priors
to be increasing with respect to types is trivially satisfied. The ex-
istence of pure strategy Nash equilibrium follows. O
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A2. Proof of Claims 1-4 and Lemmas 2-5

Proof of Claim 1. Let D! =s~1(x) and D? =§-1(y) and assume
D! <D2. Then,
min{D!, D?} = D' = s(D') + §(D!) < s(D) + §(D?)

< s(D?) 4+ §(D?) = D?> = max{D', D?}.

Since s(D!) = x and §(D?) =y, we obtain the desired result. [
Proof of Claim 2. Pr(D; > Q%) =Pr(D >s71(Q%)) = C1y < Coy =
Pr(D = 3571(Q%y))-

Hence, s71(Q¢,) > $71(Qg,). O
Proof of Claim 3. (i) (1) evaluated at Q;; = Qjy is positive.

(ii) Similar argument with (i). O

Proof of Claim 4. We will only show (i). Other cases are estab-
lished similarly. Evaluating the left hand side of (1) at Qi =Qf;
gives:
qPr(Dy+ (D — Q)™ = Q) + (1—q)
Pr(Dy + (D2 — Q)" = Q7)) —cut
>qPr(Dy = Q7)) + (1 —q)Pr(D; = Qf))
—C1L = PT(D1 > Q;)L) —CL = 0
Thus, Q =Qf. O
Proof of Lemma 2. Assume that s~1(Qf,) > §71(Qjy). First note
that,
Pr(Dy + (D1 — Q)" > Q) =Pr(D > s 1(Qy),
D>Q;+Q)+Pr(D<s"(Q).D>5"(Q)).

By substituting this in (4) we obtain:

pPr(D =s7(Qfy). D = Q3 + Qi) + pPr(D < s71(Q}y).
D=35"1(Qy)
+(1 = p)Pr(D=s"(Qj). D> Q3 + Qi)
+(1=p)Pr(D <s71(Q;).D=5"1(Q3)) —cm =0
Since s71(Qy) >571(Q). sT1(QF) >$§1(Q;,) by Claim 3.
By Claim 1, Pr(D>s"1(Qjy).D = Q}y + Q) =Pr(D = s71(Qy).
In addition, Pr(D>s"1(Q}y)) +Pr(s1(Q3,) <D <s71(Qfy) =
Pr(D > §71(Q3,)). Therefore,
pPr(D>$1(Q3)) + (1 — p)Pr(D = 51(Qp))
—Con =Pr(D>51(Q3y)) —con =0.
Thus, Q3 = Q% Using s71(Q;,) <357 1(Qy) <5 1(Q) in(2)ina
similar fashion gives the result Qy=0Qjy. O

Proof of Lemma 3. Assume to the contrary that for ciy<cyp,
s71(Qsy) <$71(Q3y). Then, by Lemma 1, Qf, = Q9. By Claims 2
and 3, we get s71(Q#,) = s71(Q9,) = 571(Q3,) and
Pr(D > Q3 +Qjy) < Pr(D > Q3 + Q7y) < Pr(D = Q3y
+3(s71(Q9))) =Pr(3(D) = Q) = can. (%)

Now, we have either s~1(Q})>3"1(Qy) or s71(Q) <
§1 (Q3)- In the first case equilibrium condition (4) simplifies to:

G = pPr(D = Q3 + Qi) + (1 — p)Pr(8(D) > Q3y)
< pPr(D = Q55 + Qfy) + (1 — p)cap,

since Pr($(D) > Q) < Pr(5(D) = Q3,) by Claim 4 and Pr(5(D) >
Q3y) = coy by definition. This leads to

Gy < pPr(D= Q3 +Qfy) + (1 —p)eay < Pr(D = Q3 + Q).

which is a contradiction to (*).

For the second case, the equilibrium condition (4) simplifies
to:
Cn =pPr(D = Qy +Qjy) + (1 — p)Pr(D = Q3 + Qjy)
<Pr(D = Q;y + Qi)
since Qj; > Qfy by Claim 3. Again this contradicts (*). O
Proof of Lemma 4. By Lemma 2, ¢y <cyy implies s~! Qiy) =

sA*l(Q;H). Using this condition in Lemma 1 yields the desired
result. O

Proof of Lemma 5. First note that Qj and Qj, are stand-alone or-
der levels for firms i = 1, 2. It is important to notice that each firm
will at least play his stand-alone order quantity in the equilibrium.
Now, define Qle as the order level of high type of firm 2 when
firm 1 plays his stand-alone quantities for both his types in the
equilibrium i.e.,
pPr($(D) + (s(D) — QY™ = Q) + (1 — p)Pr(5(D)
+(s(D) — Q{’]_)Jr > Qle) —cp=0.
and Qle > Q) since firm 2 will play at least his stand-alone order
level. Rewriting the equilibrium condition gives,
pPr(D =s7(Q)), D = Q7 + Qz)
+pPr(D < 57! (Q;)H)’ D=3 (Qzlﬂ))
+(1 —p)Pr(D=s"(Qf). D> Q7 + Q)
+(1 = p)Pr(D <s71(Qf).D = $1(Q3)) — c2n = 0.
For this equilibrium condition, we have three possibilities:
$71(Q)y) <571 (Qﬁ’H), sTHQYy) <3571(Q)y) =s71(QP) and
s71(Q9) <371(Q)). First assume §71(Q),) <s71(Q%,), then
the equilibrium condition becomes:
PPr(D =57 (QJ)) + (1= p)Pr(D = 7 (Qfy) - Can
=Pr(D>5"1(Qy)) — oy = 0.

Thus, QJ, = Q3. Now, we assume that s~1(Q¢,) <3571(Q},) <

s~1(Q¢,). Moreover, if we use the fact that s71(QY,) < Q% + QJy

(by Claim 1), the condition becomes

0=pPr(D > QP+ Q)+ (1-p)Pr(D=35"(Qy)) - Con
<pPr(D=s"'(Q}) + (1 —p)Pr(D=s"(Q})) — Can
=Pr(D>s""(Qfy)) — Cou = C1n — Can

Thus, cqy > ¢y which is a contradiction to our assumption that

€1y < Cop. A similar proof can be obtained for s=1(Q9)) < 571(QJ,).

Hence, Qle = Q9 which implies that any order quantity of high

type of firm 2 satisfies Quy < Q9. Combining this with the fact

that Quy > Qgy, we obtain Qy = Qg O

A3. Proof of Theorem 2

Under an increasing and deterministic split function, we know
that there is a unique Bayesian-Nash equilibrium and using
Lemma 3, our unique equilibrium conditions take the form:

qPr(D = Q;, +35C ' (cn)))

+(1 —q)Pr(D; + (]Dz -t = Q) =cu,
qPr(D = Qi +35(G (c21)))

+(1 = q@)Pr(Dy + (D2 — Q3)" = Qjy) = Cin»
pPr(D; 4+ (D1 - Q)" = Q5)

+(1 = p)Pr(Dy + (D1 — Q)" = Q3;) = Car,

Q3 =5G ' (can)).
Now, if we use D; = s(D) and D, = §(D) and use the fact that,
Pr(D;+ (Da — Q)" > Q) =Pr(D =357'(Q2).D > Q2 + Q1)
+Pr(D <$7'(Q),D =571(Q)),
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Pr(D;+ (D1 = Q)" =2 Q) =Pr(D=s'(Q1).D > Q1 +Q2)
+Pr(D <s71(Q1).D > §71(Q)).

which can be obtained using a simple conditional probability ar-
gument, equilibrium conditions will become:

qPr(D > Qi +35G ' (can)))
+(1-q)Pr(D>35"(Q3),D > Q3 +0Q;5)
+(1-q)Pr(D <57(Q3).D>s71(Q5)) = cuL, (A1)

qPr(D = Qiy +5@G ' (can)))
+(1—-q)Pr(D = §1 (Q;L)7 D> Q;L + QTH)
+(1-q)Pr(D <57'(Q3).D = s71(Qfy)) = cim, (Az)

pPr(D > s (Qiy). D = Q3 + Qi) + pPr(D < s71(Qfp),
D=51Q))
+(1=pPr(D=s"(Qj).D = Q3 +Qf)
+(1=p)Pr(D<s7(Qj).D=5"1(Q))) =, (A3)

Qy =5C (o). (Aq)

The proof of part 1 follows since Q3 = §(6_1 (cay)) is obviously
an equilibrium condition.
Part 2 has three separate subsets. To prove (i), let s‘*l(Q;‘L) >
s71(Q,). (A1) becomes (iy):
4G(Q7, +5(C " (cn))) + (1 - @)Pr(D = §7(Q3)).
D>Q;+Q)+(1-qPr(D<5"Q;).D>s1(Qf))
= qG(Q}, +5@ ' (ca))) + (1 - @)Pr(D = s (Q}1))
= qG(Q}; +5C () + (1 -G ' (7' (@Qfy) = i
Similarly, using the fact that §1(Q}) >s"1(Q})
$71(Q5) = 571(Q%y), (Az) becomes (i):
4G(Qiy +5GC " (ca))) + (1 - @)Pr(D = §(Q3)).
D>Q;+Qiy) + (1 —q@Pr(D<5"(Q3).D>s"(Qy)
= qG(Q}, +5@ () + (1~ @Pr(D = 57 (Qiy))
= qCQy +5C () + (1 - DC (7 (Q)) = Cn.
And combining two inequalities, (A3) becomes (i3):
PPr(D =s'(Qjy). D = Q3 + Qi)
+pPr(D <s7'(Qfy).D = 571(Q3))
+(1=p)Pr(D=s""(Q). D = Q3 + Q1)
+(1=p)Pr(D <s7'(Q}). D =5"(Q3))
= pPr(D > Q3 + Qi) + (1 — p)Pr(D = Q3; + Qjy)
=pG (D= Q3+ Qi) +(1-p)G (D= Q3 +0Qfy) = Car.

The proof for (ii) and (iii) follows similarly under s—l(Q;‘L) >
$71(Q3) = s71(Qfy) and s71(Qy) > 571(Q3)).

implies

A4. Proof of Theorem 3

First, since the demand has a continuous distribution, the in-
verse of distribution function G and G are well-defined. Only one
of the (i), (ii) or (iii) given in Theorem 2 can be satisfied since a
vector of order quantities satisfying one of the inequality condi-
tions (i4), (iig) or (iii4) cannot satisfy others.

Take the region (i). There can be only one Qj; satisfying condi-
tion (iy) which is:

qG(Qs +5@ " (cm))) + (1 — )G (@) = cur,

. X -1 . . .
since s=', §$~1 and G~ gives unique results and it does not depend
on any other variables. Similarly, only one Qj, satisfies (i,):

qG(Qly +5G ' (cn))) + (1 — G~ Q) = Cun.

Since both Qj; and Qj, are unique, (i3) i.e.,

pG(Q3 + Qi) + (1 — P)G(Q3; + Qfy) = Car,
also gives a unique Qj3;. Thus, the set of order quantities satisfying
region (i) is unique.

Similar arguments are valid for regions (ii) and (iii). The argu-
ment so far does not rule out multiple equilibria each of which is
the unique solution of one of three blocks of equalities. Finally, we
need to show that only one of that three cases can arise.

Assume to the contrary that case (i) anq (iiz givgs djfferent
solutions. Now, let (Qj;, Qi Q5. Q35) and (Qqr, Q1. Qar, Qon) be
the solytions of cases (i) al}d (ii) respectively. First notice that
Qiy = Qiy = Qi and Q3 = Qo = Qo since they require the same
conditions. However, low type quantities should satisfy:

qGQf + Q) + (1 - @) G (Q7)

=qG(Qu + Q) + (1 -q) G(Qa + Q1)

p G(Q3 +Qin) + (1 = p) G(Qz, +Qfp)

=p G(Qu + Qi) + (1 - p) GE'(Qa))

STHQ = Qi+ Q= s71(Q))

$71(Qa) < Qi+ Qo <57 (Qup)
where inequalities come from Claim 4. Thus, we have

qGQj + Q) + (1 —q) G(s7' Q7))
>qG(Qir + Qan) + (1 - ) G(s7(Qur))

p G(Q3 +Quw) + (1 —p) GG ()

<p G(Qau + Qi) + (1= p) GG (Qa))

which implies Q] < 0y, and Q> 0>, (Remember that G is a de-
creasing function.). If we use this in equilibrium conditions,

C(S_1 Q) < C(QZL + Qu)
G(Q3 +Q5) > G (Q))

meaning that both Qj +Q;; > 51 Q) > 0y +Qy, and Qy +
01, > 5 1(Qy) > Q;; + Q;; should be true, which is a contradic-
tion. The proof for other cases are similar.

Thus, the solution given by Theorem 2 is unique. O

A5. Proof of Theorem 4

Let G4 and Gg be the distribution functions of D4 and Dj, re-
spectively. D4 stochastically dominates Dg. Thus, Ga(x) < Gg(x) and
Ga(x) = Gg(x) for all x. Since G, and Gg are decreasing func-
tions, EAA ) > 3371 (y) for all y. We define (Q4. Q4. Q4. Q4 and
(Q8,.Q5,.Q5, Q%)) as the equilibrium order quantities for D4 and
Dg, respectively.

Returning to the result of Theorem 2, we have three possi-
ble cases. Consider the equilibrium conditions in case (i). Now,
since § is an increasing function, there exists §yy = QQH —QgH =

§(EA_1(CZH)) —§(CB_1(CZH)) > 0. Note that, the stock-out probabil-
ity of firm 2 under high type does not change.
Now, by (i),

qEA (Q{‘L + QﬁqH) +(1-q) CA(57l (Qﬁ))
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Table 5 Table 7
Derivatives w.r.t. cy;. Derivatives w.r.t. cy;.
Q Conditions ciL Sign Q Conditions CaL Sign
Qan 0 Qon 0
i G(s! >0 — — 1 0 i 0
@ Qu CE 1?3”;; o QG )10 66 (@) <0 M 3:; 0
s Q) = = < —= |
0 o 48(QuASEC () Qu gggu + 82;; > g ~ RO RGE <g
e (1-p)g(Qu+Qs) 90y 1+ Q) = BT <
Qi GQu+Qu) >0 —pgaghiapeanren () >0 () Oy CQu+Qy)=0 —— 0-0sQu+eu) 2y 50
G(Qir+Qu)=0 0 EQu 4+ =0 O 48(QuASE (€1 +(1-0)g(Qu+Qar) - 02
ii G + 0 — — 1 0 1+ Qo) =
(i) Qu E(Qu Q1) > o qg(Quﬁ‘(lG " (c2)))+(1-0)2(Qu+Qar) <0 Qin 0
+ = -1 =
(@t Q) PRTET < Q@ CENQ@) 0 L <0
Qi 0 E(§’1 (Qu)) =0 qg(Qm]+S< (C20)))+(1=q)(s71)'g(s~ 1 (Qun)) 0
- — S <
Q1 0 L PeQun Q1) o
(iii) Q GQu+Qyx)>0 - 1 <0 (iii)) Qu G(Qu+Qu)>0 (=050 +0)5C " (ca) >0
o TR QAT e+ (1-02QuHSE  (€1)) . 9EQuS(E ()N A-8QuSE (e
G(Qi+Qu) =0 —m <0 G(Qi+Qu)=0 0 ‘
q8(Q1L+S CoH = —a)§ G
G + 0 (a-9)¢ 8(Qun+Qa1)/8(G (sz)i)i 0
Qi Qun ,(QIH Q1) > 8(Qur+SC " (cn))+(1-0ZQ+5C ' (ca1))) -
Qa1 0 G(Qn+Qu)=0 0
_ s 0
G 2G () =
Table 6
Derivatives W.L.t. c1.
Q Conditions o Sign A6. Proof of Theorem 5
. QLn 0 As s increases uniformly, §~! increase, § and s—! decreases. From
O 0 1 Theorem 2, as s increases, QZ,, decreases
—_ — 0 ’ i ZH .
Qu QS )10 g @) h From (i),
Q. CQu+Q)>0 - gzgQmIanr'("l—pfg(QuIan Caenr >0 | A
G(Qu+Qu1)=0 o >0 C * * -1 —
(i) Qi CGQu+Qu)>0 Oy () <o qG Q+ Q) +(1—q) G (s1(Q7)) =
48(QuASG  (c2m)))+(1-0g(Qu+Qay) ~ 21

G(Qi+Qu)=0

Qin - — 1 <0
8(Qun+SC (e +(1-0) ()8l (Qun))
pg(Qin+Qa1) )

o ‘
Q. CEHQ)) >0 - gg(Q1H+Q2L)+(1*P)(§’L‘)’g(§’1(Q1L)) Gien >0
CE Q) =0 -2 -0
(iii)  Qu 0
G 0 — 1 — 0
Gn - C(Qy+ Q) > @ HC ) 1R SC  €)) =
GQg+Qu)=0 — <0

a8(Qu+5C (1))

Qa1

=qGp(QF + Q8 + (1 —q) Ga(s'(Q%)).

Since the stock-out probability of firm 2 under high type does not
change and low type of firm 1 gets spillover only from high type
of firm 2, the probability of firm 1's getting a spillover should not
change.

Let 81 = Q{*L - QfL. We can rewrite the equilibrium condition
as,

qGa(Qf, + Q) + (1 —q) Ga(s7'(Qf)) = q Gp(Qf, + Q%
=811 — %) +(1—q) Gp(s™! (Qﬁ —d11)),

We know that for any {x;, x;}, if G4(x1) = Gg(x) then x; >x,.
Moreover, since the spillover probability does not change,
Ga(s1(Q4)) = Gg(s71(Q4})) should be satisfied. Thus, the differ-
ence between order quantities is positive, i.e.,, 6;; >0 and Q{‘L >
Q%

By a similar argument for (i), 815 = Q4, — @5, > 0.

For (i3), we have

p Ga(Q4 + Q%) + (1 - p) Ga(Q4, +Qf;) = p Gp(Q;
+Qfy = 81) + (1 — p) Ga(Q5, + Q) — 811).

From previous argument, we know that the stock-out probability
of firm 1 does not change with a stochastic increase in demand
distribution. (Equilibrium order quantities increase to compensate
the change in demand distribution.) Using a similar argument for
(i3), 821 = Q4 — QB > 0. Thus all the equilibrium order quantities
increase.

Similar proof for cases (ii) and (iii). O

If s increases uniformly, s! decreases. Hence, Q;; should increase
to satisfy the equilibrium condition. Similarly, Qj, increases as s
increases.

From (i3),

pGNQL+ Q) +(1-p) TN+ Q) = car.

Since Qj; and Qjy, increase, Q;; should decrease to compensate.
Similar argument applies for cases (ii) and (iii). O

A7. Comparative statics

This section summarizes the comparative statics results for gen-
eral demand distributions. But we need the following results.

First note that s’ = ds(D)/0D > 0 and § = d5(D)/dD > 0 since
we assume both s and § are increasing and deterministic functions.
Then the derivative of the inverses of the split functions can be
found by

Ly 9@ 1
¢ =" Tveo) 7°
(§—1)/ — 85—1(Q) _ 1 0

Q. TIE0)

We use these results to find the signs of derivatives of order
quantities with respect to each parameter in the model (Table 5-
10).

A8. Equilibrium under uniform demand and linear market shares

The equilibrium conditions under the assumption

D ~ Uniform(0, 1) are as follows:

q(1 —min{1, Qi + Qu}) + (1 -q)

(1 —min{1, max{Qy/(1 =), Qin + Qu}})

+ (1 —q)(max{min{1, Q/(1 —s)} — min{1, Qu/s}, 0}) = c1n

q(1 —min{1, Qi + Qu}) + (1 —q)
(1 —min{1, max{Qu;/(1 —5), Qir + Q1 })
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Table 8
Derivatives w.r.t. C4.
Q Conditions CoH Sign
N <0
Qs @ e »
i G(s1 -0 ?g<gl£+§(6 (c21)))/8(G_(con)) -0
() Qu ,( I(Q“')) 98(Qu5(G 1(CzH)>)+(1—q)(S’1)'ng"(Qu))
G(s71(Q; =0 —— >0
7 @Qu) @G @) _,
Qun sg(Q1H+S(G (€21)))/8(G_(c2n)) -0
z %%%WWW%&WM
AH L, 1H 2H AL L 1L, 2H
Qi 6(Qu+Qu) >0 PEQi @) +1-PEQ Q) <0
GQu+Qu)=0 -5t <0
. —=-1 =1 f B
ii) Qi G(Qu + > 0 ¥eQutsG <Cza)))/i(G (€21))+(-)8(Quu+Qu) 0Qu/dc)
(i) Qu ,( 1+ Qat) . 8(Qu 4@ (can))+(1-0(Qu+Qar)
G + =0 —|— >0
(Quz + Q1) e
Qi Sg(Q1H+5(C " (c)))/8@ " () -0
— 98(Quu+5(G- (Qgpz)))ﬂéz @ (s1)g(s™ ‘(Qm))
o OKIH
Qi 6(7(Q)) >0 gng|H+Q21)+(1 T e <0
GE Q) =0 - <0
iii G + ) g{g(QlﬁQm)/g(G (qy))ﬂ -0
(i) Qu ,(Qu Q1) 2(Qu G () +(1-0(Qu+E  (cx)))
GQuL+Qu)=0 —— >0
2@ ' (cm)) .
0, G Qg +Qy) >0 isjg(Qu-ﬁerH)/g(C (CZH))ﬁ -0
1” ,( 1+ Qat) 8Quy+5G () +(1-0gQun+5C (o))
GQiH+Qu) =0 ——— >0
@ =0 e
QL 0
Table 9
Derivatives w.r.t. p.
Q Conditions p Sign
Qon 0
(i) Qi 0
Qi (U B
C G(Quy+Q2)-G(Q11+Qa1)
Q. G(Qu+Qu)>0 B Q0+ (1P ) >0
C — 11 +Qa1
E(Q“ T =0  Gaiie) . >0
ii Qr GQu+Q)>0 - — e L <0
(i) 7( ) 02(QuASG (cn))H+(1-0)2(Qui +Qa)
G(Qi+Qau) =0
Qin 0
C(e1 G(Qui+Q) -G (@)
Qi GEHQu) >0 EQur Q) +(1-D6 Ve @) >0
C(&1 — 1H+Qor
CE Q=0 yGian >0
(iii)  Qu 0
Qin 0
QL 0
Table 10
Derivatives w.r.t. q.
Q  Conditions q Sign
Qan 0
= 1
i Q G(s! Q1)) >0 G(Q|L+5<G () =G Q) -0
@ Qu CGTQu) EQHSE | ) +1-0) 6 g (@)
C(s—l Q) =0 G(Qu+3G (CzH))) -0
) 9g(Qu+5(C (CZH)))
Qun GQui+5E () =G~ (@) )
z R D Sl SO, o
1H L 1H. 1L L 1L,
Qi GQu+Qu)>0 so, PR PE QD) <0
G(QiL+Q) =0 i%, B <0
i) Q, G(Qu+ 20 CQutSEem)-CQu+Q)-(1-98Qu+Q) (/) g
@0 Qu 7( 1+ Q) o (ng((Qu;s;c (o) +(1-08Qu Q)
G + —0 _GQutsGley >0
Qu+ Q) 9g(Qu+5(C (CzH))>
Qun CQui 5@ ()G~ @) )
— 92Qun+5G (Czlzé))*-(l 0 18 Q)
& 1H
Q. GE7(Q)) >0 gg(Q.H+@L)+(1 DIGHEE '(Qm( g <0
G (Qu) =0 <0
iii) Q C(Qu+Qy)>0 G(Q1L+S(G(Czu))) ~GQu+5Glew)) )
i) Qu 7( 1+ Qo) q%%m((cc( (o) +(1-08(QHC T
C(Qu+Qy) =0 —ClusClam) >0
*(Q]L b qg(quﬂﬁz(c ((%7))>))> C(Quu+5Glea))
Q G Q + >0 1n+S Con 11 +3(G(Cor -0
1 7( i + Q) q%(%ws((cc( <c:7)))>)+(1 —gQu+5C ()
G + =0 —SQutSGley >0
Q@+ Q) ag(Quu+SC " (can)))
QL 0

+ (1 — g)(max{min{1, Qa1/(1 —s)}
—min{1, Qy/s},0}) =cy;

Qu/(1—=s)=1-cp

p(1 — min{1, max{Qiu/s, Qin + Qar}}

+ max{min{1, Qiy/s} — min{1, Qy; /(1 — )}, 0})

+ (1= p)(1 — min{1, max{Q./s, Qi + Qa}})

+ (1 - p)(max{min{1, Qi;/s} — min{1, Qa1/(1 ~5)},0}) = c21
Solution for Quy = (1 —5)(1 — cop) is straight forward. However

in order to obtain the solutions for Qq;, Q;y and Q,; we have to

know the ordering for Qq;/s, Qin/s, Qzr/(1—5s), 1 and whether

Qi+ Qar. Qg + Q21 Qi + Qe and Qqy + Qop are greater than 1
or not. We can summarize all the possibilities as:

(W1, % <) {%>1Q1H<1}

Q
0 o Q{afs) >1’((l1 “5 =1
(B> %5, % = ) (B > . 4 < )

{Qr+Qr>1,Qr+Qr <1} {Qu+Qu>1Qu+Qy =<1}
{Qur+Qu>1,01+Qu =<1} {Qu+Qu>1Qn+Qu<=<1}

We have 512 different possibilities for Q;, Q5 and Qy; each lead-
ing to a different region in the 7 dimensional space. However, the
number of regions can be reduced to 8 regions as shown below.

First, if both of the players have a high type, then the total in-
ventory cannot exceed 1 and if second firm has high type since
he does not expect any spillover. This is simply due to the sub-
optimality of all values greater than 1. Second, some of the condi-
tions imply the others. For example, if Q;;/s>1 and Qy; /(1 —5) > 1
then Qq; + Qo > 1. Third, Qy; /(1 —s) > Qq./s implies Q; /(1 —5s) >
Qqy/s since low type of a firm orders as much as high type of the
firm due to submodularity. Similarly, Qy;/(1 —5) < Qip/s implies
Qa1 /(1 —5) <Qqu/s.

Using these kind of arguments we reduce the conditions to
form 8 different regions. It can be shown that it is not possible to
reduce the conditions further without making additional assump-
tions on the parameters.

Region  Conditions
Q
1 L>1, (1 S) >1
2 Qu+Qr>1, O'S‘L <1
3 Qu+Qr=<1, 3 < (?f's,
4 Qu+Qu>1, 1S)<17%§<$ﬂ§)
5 Qu+Qr=<1, %> (?ELS) , Qs < (?ELS)
6 Qu+Qu>1, %
7 Qu+Qyp>1, QlH+QZL<l UL (%LS)
8 Q1L+Q2L§1.Q%>(1Qf‘s)

In each of the regions, the given inequalities simplify the equi-
librium conditions leading to an easy computation of the equilib-
rium order quantities.

For Region 1, we reduce the equilibrium conditions to the fol-
lowing form:

q(1 —Qip — Qu) + (1 —q@)(1 — Qin/s) = 1.
q(1 — Qi — Qo) =y,
Qp/(1—5) =1—cpy,
p(1—Qiy — Q) =0y

It is straightforward to find the order quantities for this region:

Q= FUEE Y Qu=1-% — (1= —cn),
— — ¢ (A=ciy=q(1=5)(A=Con))
Qpy=1-5)1—-0cn) Q2L—1*% W

Now, by plugging these quantities into necessary inequalities, we
obtain:

Qi
_— >
s

1—%—(1—5)(]—CZH)>S
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:%—(1—5)(1—CZH)<1—5

fu —(1=5)c <0

=i < q(1—9s)cy

Qo CaL
(A -cau—q( -5 —cp))
@+ -q)/s)

=

>1-5

These conditions are necessary and sufficient, i.e., if these inequali-
ties are satisfied, then equilibrium order quantities take the values
in Region 1.
In a similar fashion, we can obtain the conditions for all 8 re-

CyL <

¢ < q(1 =s)con,

sp(cin —q(1 —s)con)

1-(1-s9)q

gions. This is summarized in Fig. 1.

A9. Comparative statics under uniform demand and linear market

shares
G S(1—cip—q(1 =5)(A - o))
= — + <S
p 1->1-s)q)
s —qd=-9)cn) _,
p 1->1-95q)
sp(ciy — q(1 —$)Cam)
= (g <
1-(1-s)q
Thus, Region 1 can be characterized by two inequalities:
Qi —
B 4 )
1aL QIL QIL QlL
1 1
g D) -1 . -1
Cm 0 0 5(1(15)((1 q))()c c)+q(1 S)(Con—Ca1)) 0
2L 1H 2H —C21
] 0 0 o - 0
cx O 0 4=p0-a) 1-q(1-5)
s(1-s)q q(1- S)(l q(1-5)—ps?)
CoH (1-s) T=sp) W , q(1-s)
a @ =T e R B o .. (1= 5)(Can — 1)
s (I —cm) 11—+ G0Gea) (ﬂ)((lcf';);ﬁ'z‘) a1 —cn) + (1 — (U200 + SADMC-an q(1 —co) + (1 - @) (1 — 1)
+ O=2582p-(1-57q) (1 —q(1-5)(1—c)) )
(1-(1-5)q)? (1-sp)?
Q —
B 4 s
3 QG Q G
s(1-p)
a0 -5 L . 0
R _
CiH T=(T-5)9) T=(1-9q) (T—(1-5)q)(1-sp) 0
P (o8 s(cip—cir) (A=) (c1n—C2—q(1-5) (2 —Ca1)) 0
S a=(1-5)9) g9 i=p?
CoL 7 - ~{=sp) (1-9)
gs(1-s) gs(1-s) pgs(1-s)?
CH ~ T T a--90 T a-(1-9)9-sp) 0
q S(:ls)(lqy) r)m) _sa 5)(C(ZH Clu p(ci—cy)) _(I;S(I(IS)Z)(C;ZH;C‘H)) 0
—(1-s)q ~(1-5)q —(1-5)q)2(1-sp
s ((11 q()l(l Cin) _ (= q)((ll I;E‘“ a-p)cw) _ = S>((]1 q))(zl 1) (sl(l(ls)p;?()l(]czu)) —(1-cy)
@)% =] $)q Sp.
_¢a 5)3“ Con)—q(1-25) (1-Con) +q (1-5)2 (1—o)—q(1-25) (1—Con) p(1—2s+5?p—(1-5)2q) (1 —c1y—q(1=5) (1—Co4))
(1-(1-5)q)? (1-(1-5)q)? (1-(1-5)9)2(1-sp)?
Qi and Qo —
¢ Q) Q Q
1L 1L 1L H
Ci1L 0 0 0 0
s 1
G g ~3 1 0
p 0 0 0
CoL 0 0 (1-g)(1-s) 0
n S)) (1-s) q(1-s) —(1-s)
q 57(:1 Soicey) I (1 =s)(c2n — Ccar) 0
s ey stelualogtion)  (1-cy) -+ (0-0-cu)  —(1-cm)
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