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Abstract There are different solution concepts for convex vector optimization problems
(CVOPs) and a recent one, which is motivated from a set optimization point of view, consists
of finitely many efficient solutions that generate polyhedral inner and outer approximations
to the Pareto frontier. A CVOP with compact feasible region is known to be bounded and
there exists a solution of this sense to it. However, it is not known if it is possible to generate
polyhedral inner and outer approximations to the Pareto frontier of a CVOP if the feasible
region is not compact. This study shows that not all CVOPs are tractable in that sense and
gives a characterization of tractable problems in terms of the well known weighted sum
scalarization problems.

Keywords Vector optimization · Multiobjective optimization · Convex programming ·
Polyhedral approximation

Mathematics Subject Classification 90C29 · 90C25

1 Introduction

Vector optimization problem with a finite dimensional image space is to minimize an R
q -

valued objective function with respect to the partial order induced by an ordering cone
K ⊆ R

q over a feasible region. Whenever the ordering cone is the positive orthant, the
problem is called a multi-objective optimization problem, namely q objective functions are
to be minimized with respect to the component-wise ordering.

There are different solution concepts regarding vector optimization problems.Aminimizer
(efficient solution or Pareto optimal solution) for instance, is a singleton in the feasible set
which is not dominated by the other feasible points. Similarly, a weak minimizer (weakly
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efficient solution or weak Pareto optimal solution) is a feasible solution which is not strictly
dominated. Note that a solution x is said to (strictly) dominate another solution x̄ if the image
of x is (strictly) less than the image of x̄ with respect to ordering cone K .

More recently, a solution concept, which is motivated from a set optimization point of
view, has been introduced for vector optimization problems by Heyde and Löhne in [13].
Accordingly, a solution consists of minimizers which, together with the extreme directions
of the ordering cone, generate the Pareto frontier. Clearly, for linear vector optimization
problems (LVOPs) a solution in this sense contains finitely many minimizers and there are
algorithms to generate one, see, for instance [2–4,7,10,12,19].

In [16], an ε-solution concept is given as a finite set of weak minimizers which generates
an inner and an outer approximation to the Pareto frontier. There are Benson-type algorithms
that find ε-solutions to convex vector optimization problems (CVOPs) assuming that the
feasible region is compact, see [6,16]. Note that if the feasible region is compact, then the
problem is bounded, that is, the image of the feasible region in the objective space is included
in a shifted cone, namely a + K for some a ∈ R

q and K being the ordering cone of the
problem. In some applications, the feasible region of a convex vector optimization problem is
not compact. Computation of some set-valued risk measures [16] can be given as an example
of such cases. In general, the problem of interest may be unbounded or it may be difficult to
check if it is a bounded problem.

The aim of this study is to understand the structure of possibly unbounded CVOPs and
to see if these problems are tractable in the sense that there exist polyhedral outer and inner
approximations to the Pareto frontier. We provide a simple example for which the problem
is not bounded and it is not possible to find polyhedral outer and inner approximations
such that the Hausdorff distance between the two is finite. On the other hand, the existence
of unbounded, but tractable problems is known. For instance, it is possible to generate a
solution to a linear vector optimization problem as long as the Pareto frontier exists.

Here, we provide a characterization of tractable CVOPs depending on the recession cone
of the upper image (image of the feasible region added to the original ordering cone) of
the problem. Accordingly, there exists a polyhedral inner and outer approximations to the
Pareto frontier of a CVOP if and only if the problem is bounded with respect to the ordering
cone taken as the recession cone of the upper image of the problem. We call such problems
self-bounded.

We give a characterization of the recession cone of the upper image of a self-bounded
problem in terms of the well-known weighted sum scalarization problems. Accordingly, for
a self-bounded problem, the set of weights which makes the weighted sum scalarization
problem bounded is equal to the (positive) dual cone of the recession cone. Moreover, we
also show the reverse implication, that is, if these two sets are equal, then the problem is
self-bounded.

This paper is structured as follows. Section 2 is dedicated to basic concepts and notation. In
Sect. 3, some results on convexupper closed sets are provided.The convexvector optimization
problem, its solution concepts and the main results of the paper are provided in Sect. 4.
Section 5 provides some concluding remarks.

2 Preliminaries

A subset K of R
q is a cone if λk ∈ K when k ∈ K and λ > 0. For a set A ⊆ R

q , the
interior, closure, boundary, convex hull and the conic hull of A are denoted respectively by
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int A, cl A, bd A, conv A, and cone A. Moreover, k ∈ R
q\{0} is called a direction of A if

{a+αk ∈ R
q | a ∈ A, α > 0} ⊆ A. The recession cone recc A of A consists of the directions

of A, that is,

recc A = {k ∈ R
q | ∀a ∈ A,∀α ≥ 0 : a + αk ∈ A}. (1)

A polyhedral convex set A ⊆ R
q can be written as

A = conv {x1, . . . , xs} + conv cone {k1, . . . , kt }, (2)

where s ∈ N\{0}, t ∈ N, each xi ∈ R
q is a point, and each k j ∈ R

q\{0} is a direction of
A. The set of points {x1, . . . , xs} together with the set of directions {k1, . . . , kt } are said
to generate the polyhedral convex set A. Throughout, we also consider (not necessarily
polyhedral) convex subsets of R

q in the form A = conv {x1, . . . , xs} + K where K ⊆ R
q is

a convex cone. In this case, the set of points {x1, . . . , xs} together with cone K are said to
generate A.

The distance from a point y ∈ R
q to a set A ⊆ R

q is given by d(y, A) := infa∈A ‖y − a‖.
The Hausdorff distance between two closed sets A1 and A2 is given by

h(A1, A2) = max

{
sup
a1∈A1

d(a1, A2), sup
a2∈A2

d(a2, A1)

}
. (3)

A convex cone C is said to be solid, if it has a non-empty interior; pointed if it does not
contain any line through 0; and non-trivial if ∅ �= C �= R

q . A non-trivial convex pointed
cone C defines a partial ordering ≤C on R

q : v ≤C w if and only if w − v ∈ C . Let C ⊆ R
q

be a non-trivial convex pointed cone and X ⊆ R
n a convex set. A function f : X → R

q is
said to be C-convex if f (αx + (1 − α)y) ≤C α f (x) + (1 − α) f (y) holds for all x, y ∈ X ,
α ∈ [0, 1], see e.g., [17, Definition 6.1].

For a pointed cone C , a point y ∈ A is called C-minimal element of A if ({y} − C\{0}) ∩
A = ∅. If cone C is also solid, then a point y ∈ A is called weakly C-minimal element
if ({y} − intC) ∩ A = ∅. The set of all C-minimal elements of A and weakly C-minimal
elements of A are denoted by MinC (A) and wMinC (A), respectively. The (positive) dual
cone of C is the set C+ := {

z ∈ R
q | ∀y ∈ C : zT y ≥ 0

}
.

Let cone C ⊆ Rq be nontrivial and convex. A set A ⊆ R
q is said to be upper closed

with respect to C if A = cl (A + C), and convex upper closed with respect to C if A =
cl conv (A + C). The collection of such sets are denoted by G(Rq ,C), that is,

G(Rq ,C) := {A ⊆ R
q | A = cl conv (A + C)}. (4)

Remark 2.1 It is known that (G(Rq ,C),⊕,) is a partially ordered conlinear space with
neutral element clC , where B1 ⊕ B2 := cl (B1 + B2) and α  B := cl (α · B + C).
Here, + and · are the usual Minkowski summation and multiplication with the conventions
∅+ A = A+∅ = ∅ for all A ⊆ R

q . Moreover, G(Rq ,C) is a complete lattice under ⊇ with

inf A = cl conv
⋃
A∈A

A, supA =
⋂
A∈A

A,

for a nonempty collection A ⊆ G(Rq ,C), see, for instance [9].

A ∈ G(Rq ,C) is said to be bounded if there exists some y ∈ R
q with y +C ⊇ A. Similarly,

for any cone K ⊆ R
q , we say that A is bounded with respect to K if there exists some y ∈ R

q

with y + K ⊇ A.
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Throughout, B(a, r) denotes the closed ball around a ∈ R
q with radius r > 0, that is

B(a, r) = {y ∈ R
q | ‖y − a‖ ≤ r}, where ‖·‖ is the Euclidean norm. The positive orthant

in R
q is R

q
+ := {y ∈ R

q | yi ≥ 0, i = 1, . . . , q}.

3 On convex upper closed sets

For solving convex vector optimization problems, convex upper closed sets with respect to
the ordering cone of the problem play an important role as the image of the set of all weak
minimizers can be seen as (a subset of) the boundary of a convex upper closed set known as
the upper image. Indeed, there are solution concepts for convex vector optimization problems
that involve generating (approximations to) the upper image, see, for instance, [15,16]. For
linear vector optimization problems, it is possible to generate this set by a finite set of points
and a finite set of directions [15], whereas for nonlinear convex vector optimization problems,
a solution usually generates an inner and an outer approximation to the upper image [16].

If an upper closed set A is known to be bounded with respect to K , then it is possible to
find an outer approximation to A which is generated by a finite set Ȳ ⊂ R

q and cone K in
the sense that conv Ȳ + K ⊇ A. If one also wants to generate an inner approximation using
the same cone K , then A + K ⊆ A needs to be satisfied. The following proposition shows
that such cone K needs to be equal to the recession cone recc A of A.

Proposition 3.1 Let A ∈ G(Rq ,C) be bounded with respect to K for some closed convex
cone K which also satisfies A + K ⊆ A. Then, K = recc A.

Proof As A is bounded with respect to K , there exists y ∈ R
q such that y + K ⊇ A. Then,

K ⊇ recc A. On the other hand, A + K ⊆ A implies that K ⊆ recc A. ��
Definition 3.2 A nonempty set A ∈ G(Rq ,C) is said to be self-bounded if A �= R

q and it is
bounded with respect to its own recession cone recc A.

Remark 3.3 Note that the definition of self-boundedness can be extended to sets with reces-
sion cones that are not solid. An example of a not self-bounded set would be A = epi f (x) ⊆
R
2 for f (x) = x2, where epi f is the epigraph of f . Clearly, recc A = {[0, k]T | k ≥ 0} and

there exists no y ∈ R
2 such that A ⊆ y + recc A.

Let B(Rq ,C) be the set of all self-bounded sets together with the whole space, that is,

B(Rq ,C) := {B ∈ G(Rq ,C)| B is self-bounded or B = R
q}.

Next, we show that B(Rq ,C) is a conlinear space, however it is not necessarily a complete
lattice.

Proposition 3.4 (B(Rq ,C),⊕,) is a conlinear space with the neutral element clC.

Proof By Remark 2.1, it is enough to show that B1 ⊕ B2 and α  B are in B(Rq ,C) for
B1, B2 ∈ B(Rq ,C), α ≥ 0,

Let b ∈ B1 ⊕ B2 for Bi ∈ B(Rq ,C), let yi ∈ R
q be such that Bi ⊆ yi + recc Bi ,

for i = 1, 2. Clearly, b ∈ y1 + y2 + cl (recc B1 + recc B2). Note that B1 ⊕ B2 is self-
bounded as recc B1 ⊕ recc B2 ⊆ recc (B1 ⊕ B2) holds. To see the last inclusion, let r ∈
cl (recc B1 + recc B2), that is, r = limn→∞(r (n)

1 + r (n)
2 ) for some (r (n)

i )n ∈ recc Bi ; let

b ∈ cl (B1 + B2), that is, b = limn→∞(b(n)
1 + b(n)

2 ) for some (b(n)
i )n ∈ Bi . For any γ ≥ 0,

we have b + γ r = limn→∞(b(n)
1 + γ r (n)

1 + b(n)
2 + γ r (n)

2 ) ∈ cl (B1 + B2).
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Let b ∈ α  B for α ≥ 0, B ∈ B(Rq ,C). Let y ∈ R
q be such that B ⊆ y + recc B. Note

that b = limn→∞(αy + rn + cn) for some rn ∈ recc B, cn ∈ C . Then, b ∈ αy + α  recc B.
Note that αB is self-bounded as α recc B ⊆ recc (αB) holds. To see the last inclusion,
let r ∈ cl (α · recc B + C), that is, r = limn→∞(αr (n) + c(n)) for some (r (n))n ∈ recc B,
(c(n))n ∈ C ; let b ∈ cl (α · B +C), that is, b = limn→∞(αb(n) + c̃(n)) for some (b(n))n ∈ B,
(c̃(n))n ∈ C . For any γ ≥ 0, we have b + αr = limn→∞(α(b(n) + γ r (n)) + c̃(n) + γ c(n)) ∈
cl (α · B + C). ��
Remark 3.5 Note that B(Rq ,C) is closed under intersections. Consider a collection
(Bα)α∈A ∈ B(Rq ,C) and let bα ∈ R

q be such that Bα ⊆ bα + recc Bα , for α ∈ A.
The assertion holds trivially if the intersection is empty. Assume

⋂
α∈A Bα �= ∅. Then,

recc (
⋂

α∈A Bα) ⊇ ⋂
α∈A recc Bα ⊇ C . Let b ∈ ⋂

β∈A(bβ − recc (
⋂

α∈A Bα)). Note that the
existence of such b is guaranteed as recc (

⋂
α∈A Bα) is solid and

⋂
α∈A Bα �= ∅. Then, it can

be shown that
⋂

α∈A Bα ⊆ b + recc (
⋂

α∈A Bα).
Note that (B(Rq ,C),⊕,,⊇) would be a complete lattice with

sup(Bα)α∈A :=
⋂
α∈A

Bα, inf(Bα)α∈A := cl conv
⋃
α∈A

Bα

if both sets are inB(Rq ,C). Clearly, sup(Bα)α∈A ∈ B(Rq ,C). However, cl conv
⋃

α∈A Bα is
not necessarily self-bounded. Consider for instance, Bx = (x, x2)T + R

2+ ∈ B(R2, R
2+) for

x ∈ R. Note that cl conv
⋃

x∈R Bx = epi x2+R
2+ /∈ B(Rq , R

q
+) as recc (epi x2+R

2+) = R
2+,

see also Remark 3.3.

The following lemma together with Propositions 3.7 and 3.9 shows the importance of
the concept of self-boundedness in terms of approximations of convex upper closed sets via
convex sets of the form conv {a1, . . . , as} + K .

Lemma 3.6 Let A ⊆ R
q be a compact and convex set, K ⊆ R

q be a non-trivial solid
convex cone and c ∈ int K be fixed. For any ε > 0, there exists a finite set Ā ⊆ A such that
conv Ā + K − ε{c} ⊇ A + K.

Proof Let B := B(0, 2ε ‖c‖) ∩ K , where ‖·‖ is the Euclidean norm. Define

Aε := conv [(A − ε{c}) ∪ A] + B.

Note that A ⊆ int Aε . Indeed, for any a ∈ A, a−εc ∈ conv [(A − ε{c}) ∪ A], and εc ∈ int B
as c ∈ int K . Furthermore, we have Aε ⊆ A − ε{c} + K . To see, let a ∈ Aε . Note that
a = ∑

i∈I αi (ai − εc) + ∑
i∈J αi ai + b, for some N ∈ N, partition I, J of {1, . . . , N },

ai ∈ A for i ∈ {1, . . . , N }, b ∈ B, andαi ∈ [0, 1]with∑N
i=1 αi = 1. Now, a = ∑N

i=1 αi ai −
εc+(1−∑

i∈I αi )εc+b ∈ A−ε{c}+K , since
∑N

i=1 αi ai ∈ A, and (1−∑
i∈I αi )εc+b ∈ K .

Let (Sα)α∈I be the collection of all finite subsets of Aε with at least q+1 elements. Define
S̃α := int conv Sα . (S̃α)α∈I is an open cover for A, and there exists a finite subcover as A
is compact, that is, there exists s̃ ∈ N\{0} such that A ⊆ ⋃s̃

n=1 S̃αn ⊆ ⋃s̃
n=1 conv Sαn . Let⋃s̃

n=1 Sαn = {v1, . . . , vs}. Clearly, A ⊆ conv {v1, . . . , vs}. As vn ∈ Aε ⊆ A − ε{c} + K ,
there exists an ∈ A, kn ∈ K such that vn = an − εc + kn for all n = 1, . . . , s. Then,
conv {v1, . . . , vs} + K ⊇ A + K implies that Ā = {a1, . . . , as} satisfies the assertion. ��
Proposition 3.7 Let A ∈ G(Rq ,C) be bounded with respect to a non-trivial convex pointed
cone K ⊇ C and c ∈ intC be fixed. Then, for any ε > 0, there exists a finite set of points
Ā ⊆ A such that

conv Ā + K − ε{c} ⊇ A. (5)
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Proof First, we show that there exists a compact set B ⊆ A such that B + K − ε
2 {c} ⊇ A.

Consider the sequence of sets given by Bn := a + nc − C for n ≥ 1, where a ∈ A
is fixed. Note that Bn ⊆ Bn+1 holds for all n ≥ 1, and

⋃
n≥1 Bn = R

q as C is solid.
Hence,

⋃
n≥1(Bn ∩ A) + K ⊇ A. Note that since A is bounded with respect to K , there

exists p ∈ R
q with p ≤K ã for all ã ∈ Bn ∩ A. Moreover, ã ≤K a + (n + 1)c for all

ã ∈ Bn ∩ A. Since both Bn and A are closed and K is pointed, Bn ∩ A is compact for
all n ≥ 1. Let εn := inf{δ > 0 | (Bn ∩ A) + K − δ{c} ⊇ A}. As A is bounded with
respect to K , εn ∈ R for all n ≥ 1. Moreover, (εn)n≥1 is decreasing and limn→∞ εn = 0
since (Bn ∩ A) + K ⊆ (Bn+1 ∩ A) + K , and ∪n≥1(Bn ∩ A) + K ⊇ A. Then, there exists
N > 0 such that εn < ε

2 for n > N and B = (BN+1 ∩ A) satisfies the required property. By
Lemma 3.6, there exists a finite set Ā ∈ B such that conv Ā + K − ε

2 {c} ⊇ B + K . Then,
we have conv Ā + K − ε{c} ⊇ B + K − ε

2 {c} ⊇ A. ��
Remark 3.8 Note that for A ∈ G(Rq ,C), recc A is a non-trivial convex cone and recc A ⊇ C .
Moreover, if A is self-bounded, then by Proposition 3.7, it is possible to generate finite outer
approximation to A using recc A. Indeed, for any ε > 0 there exists a finite subset Ā of A such
that Aout := conv Ā+recc A−ε{c} ⊇ A. Moreover, Ā also generates an inner approximation
as Ain := conv Ā + recc A ⊆ A. It is clear that the Hausdorf distance between the inner and
the outer approximations is bounded, namely, h(Aout, Ain) ≤ ε ‖c‖.

The following proposition shows that if A is not self-bounded as in Definition 3.2, then
it is not possible to find a polyhedral outer approximation Aout ⊇ A such that the Hausdorff
distance between Aout and A is finite.

Proposition 3.9 Let A ∈ G(Rq ,C) be not self-bounded but bounded with respect to K for
some non-trivial closed convex cone K . Let a finite set Ȳ ⊆ R

q satisfy conv Ȳ + K ⊇ A.
Then, h(conv Ȳ + K , A) = ∞.

Proof Since A is not self-bounded but bounded with respect to K , K � recc A. Then, there
exists k̄ ∈ K\recc A. For any ȳ ∈ Ȳ , there exists M ≥ 0 such that {ȳ+λk̄| λ ≥ M}∩ A = ∅
as A is convex and k̄ is not a recession direction. Let ā ∈ A be such that

∥∥ā − ȳ − Mk̄
∥∥ =

d(ȳ + Mk̄, A). As k̄ /∈ recc A, there exists α > 0 such that ā + αk̄ /∈ A. Then, there exists
γ ∈ R

q\{0} such that γ T ā + αγ T k̄ > supa∈A γ T a. Clearly, γ T k̄ > 0. Let H = {y ∈
R
q | γ T y = γ T ā + αγ T k̄} and H̄ = {y ∈ R

q | γ T y ≤ γ T ā + αγ T k̄} ⊇ A. Consider
yn := ȳ + (M + n)k̄. On the one hand, as γ T k̄ > 0, there exists N ≥ 1 such that yn /∈ H̄
for n ≥ N . Let dn := d(yn, H̄). Then, for n ≥ N , dn ≤ d(yn, A) ≤ h(conv Ȳ + K , A) as
yn ∈ conv Ȳ + K . On the other hand, yn can be written as yn = y + dn

γ
‖γ ‖ for some y ∈ H

as γ
‖γ ‖ is the unit normal vector to H . Then, for n > N , we have

dn = 1

‖γ ‖ (γ T yn − γ T y)

= 1

‖γ ‖ (γ T yN + (n − N )γ T k̄ − γ T ā − αγ T k̄)

>
1

‖γ ‖ (γ T ā + αγ T k̄ + (n − N )γ T k̄ − γ T ā + αγ T k̄)

= (n − N )γ T k̄

‖γ ‖
Then, h(conv Ȳ + K , A) ≥ limn→∞ dn = ∞. ��
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4 Convex vector optimization

4.1 Problem setting and solution concepts

A convex vector optimization problem (CVOP) with ordering cone C is to

minimize f (x) with respect to ≤C subject to g(x) ≤D 0, (P)

where C ⊆ R
q , and D ⊆ R

m are non-trivial pointed convex ordering cones with nonempty
interior, X ⊆ R

n is a convex set, the vector-valued objective function f : X → R
q is

C-convex, and the constraint function g : X → R
m is D-convex (see e.g., [17]). Note that

the feasible set X := {x ∈ X : g(x) ≤D 0} ⊆ X ⊆ R
n of (P) is convex. Throughout

we assume that (P) is feasible, i.e., X �= ∅. The image of the feasible set is defined as
f (X ) = { f (x) ∈ R

q : x ∈ X }. The set
P := cl ( f (X ) + C) (6)

is called the upper image of (P) (or upper closed extended image of (P), see [11]). Clearly,
P is convex and closed. Hence P ∈ G(Rq ,C). Moreover, bdP ∩ f (X ) = wMinC f (X ),
see, for instance, Proposition 4.1 in [6].

Remark 4.1 Proposition 4.1 in [6] also states that P is bounded with respect to R
q
+ but this

is true only under the assumption that the feasible region X is bounded, see Example 4.6 for
a simple counterexample.

Definition 4.2 Let K be a closed convex cone such that K ⊇ C . Problem (P) is said to be
bounded with respect to K if P ∈ G(Rq ,C) is bounded with respect to K . (P) is said to be
bounded if it is bounded with respect to C and unbounded if it is not bounded.

There are different solution concepts regarding CVOPs. The following is a well-known
solution concept which is also known as a (weakly) efficient solution or (weakly) Pareto
optimal solution of (P).

Definition 4.3 An element x̄ of X is said to be a minimizer if f (x̄) ∈ MinC f (X ) and a
weak minimizer if f (x̄) ∈ wMinC f (X ).

Note that the image of a (weak) minimizer is a single point on the boundary of the
upper image. For bounded convex vector optimization problems, an ε-solution concept which
generates inner and outer approximations to thewhole upper image is given in [16] as follows.

Definition 4.4 [16, Definition 3.3] For a bounded problem (P), a nonempty finite set X̄ of
(weak) minimizers is called a finite (weak) ε-solution of (P) if

conv f (X̄ ) + C − ε{c} ⊇ P. (7)

Clearly, this definition suggests polyhedral inner and outer approximations to the upper
image as follows

conv f (X̄ ) + C − ε{c} ⊇ P ⊇ conv f (X̄ ) + C.

Note that if problem (P) is bounded with respect to K for some non-trivial closed convex
cone K ⊇ C and moreover, if K satisfies P + K ⊆ P , then the problem, where cone K is
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taken as the ordering cone, is equivalent to the original problem. In other words, cl ( f (X ) +
C) = cl ( f (X ) + K ) and hence wMinC f (X ) = wMinK f (X ). If such K exists, then it
has to be the recession cone reccP of the upper image by Proposition 3.1. In the following
definition, we suggest that we call a problem self-bounded if such cone K exists.

Definition 4.5 (P) is said to be self-bounded if P �= R
q and if (P) is bounded with respect

to reccP .

By Proposition 3.9, it is known that if a problem is not self-bounded then for any poly-
hedral outer approximation to the upper image, the Hausdorff distance between the outer
approximation and the upper image is not finite. In particular, there exists no finite weak ε-
solution of (P). The following is a trivial example of a not self-bounded CVOP.

Example 4.6 Consider the biobjective optimization problem where the ordering cone is the
positive orthantR2+, the two objective functions to beminimized are f1(x) = x , f2(x) = e−x

and the feasible region is the real line,X = R. Clearly, the image of the feasible region is the
graph of f2, namely f (X ) = {(x, y) ∈ R

2| y = e−x } and the upper image is the epigraph
of f2, P = {(x, y) ∈ R

2| y ≥ e−x }. Note that the problem is not bounded since for any
(x, y) ∈ R

2, we have (x, y) + R
2+ � P . Moreover, one can easily check that the recession

cone of P is R
2+. Hence, this problem is not self-bounded and it is not possible to find a

polyhedral outer approximation to the upper image for a given error bound.

As seen in the above example, there are convex vector optimization problems that are not
tractable in terms of having polyhedral outer approximations and clearly problems that are
not self-bounded are not tractable in that sense. The following example provides a non-linear
convex tractable problem with a non-compact feasible region.

Example 4.7 Consider the biobjective optimization problem with a solid ordering cone C �

R
2+, where the two objective functions to be minimized are f1(x) = x , f2(x) = x−1 and

the feasible region is the positive real line. Clearly, P = epi f2 ∩ intR2+ and reccP = R
2+.

The problem is not bounded as the ordering cone is strictly smaller than the positive orthant.
However, it is self-bounded, hence tractable in the sense of polyhedral approximations.

Assume for now that problem (P) is self-bounded.Clearly, if one can compute the recession
cone reccP of the upper image P and if the recession cone is polyhedral and pointed, then
it is possible to apply the approximation algorithms for bounded CVOPs in the literature,
where the ordering cone is taken as reccP , see [6,16]. Note that it is in general difficult
to check if the recession cone of the upper image is polyhedral and pointed. However, it is
trivially polyhedral if the objective function is R

2-valued for instance. In this case, it would
be either pointed or a halfspace. Note that if the recession cone of the upper image of a two-
dimensional CVOP is a halfspace, then the upper image itself is a halfspace by convexity.
Then one could simplify the problem to a linear vector optimization problem and apply for
instance, the parametric simplex algorithm from [19], which works even if the upper image
is a halfspace.

In each iteration of algorithms provided in [6,16], a scalarized problem is solved. In
particular, the weighted sum scalarization of (P), which is given by

min
{
wT f (x)| x ∈ X

}
, (Pw)

for w ∈ R
q , is solved in each iteration of the geometric dual algorithm. It is also solved

at the initialization step of the ‘primal’ Benson’s algorithm. The followings are well-known
results, see e.g., [14,17].
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Proposition 4.8 Let w ∈ C+\{0}. An optimal solution xw of (Pw) is a weak minimizer
of (P).

Theorem 4.9 ([14, Corollory 5.3]). If X ⊂ R
n is a non-empty closed set and (P) is a convex

problem, then for each weak minimizer x̄ of (P), there exists w ∈ C+\{0} such that x̄ is an
optimal solution to (Pw).

4.2 Self-bounded problems

In this section, we consider self-bounded problems and provide a characterization result in
terms of weighted sum scalarization problems.

Recall that a vector optimization problem is said to be linear if the objective function is
f (x) = Px where P ∈ R

q×n , the feasible region X and the ordering cone are polyhedral.
Note that LVOPs are self-bounded as long as the upper imageP is not thewhole space. Indeed,
for a LVOP with ∅ �= P �= R

q , the recession cone of the upper image reccP is polyhedral, it
can be computed by solving the so called homogeneous problem, and problem (P) is bounded
with respect to reccP , see, for instance, [15] for the details. Moreover, it is also known that
for linear problems we have (reccP)+ = {w ∈ C+| (Pw) is bounded}, see [19].

In order to give a characterization of the self-bounded convexvector optimization problems
we define

W := {w ∈ C+| (Pw) is bounded}. (8)

Remark 4.10 It is easy to show thatW is a convex cone. Note also thatW is not necessarily a
closed cone. Consider Example 4.6. Note thatw = (r, 0)T ∈ R

2+ makes the sum scalarization
problem (Pw) unbounded for any r > 0. On the other hand, for any other w ∈ R

2+, (Pw) is
bounded. Hence, W = intR2+ ∪ {(0, r)T | r ≥ 0}, and this is not a closed set.

Remark 4.11 Note that (Pw) can be reformulated as min
{
wT y| y ∈ f (X ) + C

}
. Then, W

is the negative of the barrier cone of the upper image, namely W = −b(P), where

b(P) := {w ∈ R
q | sup

y∈P
wT y < +∞}.

It is known that for any nonempty closed convex set A ∈ R
q ,

cl b(A) = (recc A)− = {w ∈ R
q | wT y ≤ 0 for all y ∈ recc A},

see, for instance, [1,21]. Moreover, if A is hyperbolic, that is, if A ⊆ D + recc A for some
bounded D ⊆ R

q , then b(A) is closed, see [8, Proposition 1.1].

The following results relate the recession cone of the upper image and W for convex
vector optimization problems. Indeed, it is seen that the above-mentioned result for LVOPs
holds also for the self-bounded CVOPs.

Proposition 4.12 It is true that (reccP)+ = clW.Moreover, if problem (P) is self-bounded,
then (reccP)+ = W.

Proof The statements follow by Remark 4.11. ��
It is clear that self-boundedness of problem (P) also guarantees that W is a closed set.

Next, we show that W = (reccP)+ implies that problem (P) is self-bounded as long as
P �= R

q .
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For the following lemma and the theorem, consider a basis of (reccP)+ given by

� := {w ∈ (reccP)+| wT c = 1}, (9)

where c ∈ intC is fixed. Note that � is a compact set. Moreover, as reccP ⊇ C , we have
(reccP)+ ⊆ C+. Then, � = ∅ holds if only if (reccP)+ = {0}, hence reccP = R

q and
P = R

q .

Lemma 4.13 Assume {0} �= (reccP)+ ⊆ W. Then

P0 :=
⋂
w∈�

{y ∈ R
q | wT y ≤ inf

x∈X wT f (x)} �= ∅.

Proof {0} �= (reccP)+ implies that � �= ∅. As � ⊆ (reccP)+ ⊆ W , it is true that
γ w := infx∈X wT f (x) > −∞ for w ∈ �. Moreover, as reccP ⊇ C , it is true that
� ⊆ (reccP)+ ⊆ C+. Hence, wT c > 0 for any w ∈ �.
For contradiction, assume P0 = ∅. Then, for all y ∈ R

q , there exists w ∈ � such that
wT y > γ w . In particular, consider y = −nc ∈ R

q for n ≥ 1. Then, there exists wn ∈ �

with −nwT
n c > inf x∈X wT

n f (x) = γ wn for n ≥ 1. Note that � ⊆ R
q is compact and by

Bolzano Weierstrass Theorem, it is sequentially compact. That is, there exists a convergent
subsequence (wnk )k≥1 of (wn) with limk→∞ wnk = w ∈ �. Then,

lim
k→∞ inf

x∈X wT
nk f (x) ≤ lim

k→∞(−nkw
T
nk c) = −∞

as wT
nk c > 0 and limk→∞ nk = ∞.

Since f is C-convex and wnk ∈ W , (wT
nk f )k≥1 are finite convex functions on R

n . More-
over, wT

nk f converges point-wise to wT f . By Theorem 10.8 of [18], (wT
nk f )k≥1 converges

uniformly to wT f on each compact subset of R
n . Let Xm := X ∩ B(0,m). Clearly, Xm is

compact for all m ≥ 1 and
⋃

m≥1 Xm = X . Since wT
nk f uniformly converges to wT f on

Xm , we have

inf
x∈Xm

wT f (x) = inf
x∈Xm

lim
k→∞ wT

nk f (x) = lim
k→∞ inf

x∈Xm
wT
nk f (x) =: bm .

Moreover, as bm is a decreasing sequence in R, limm→∞ bm exists and

lim
m→∞ bm = inf

x∈X wT f (x) = lim
k→∞ inf

x∈X wT
nk f (x) = −∞,

which contradicts to the fact that w ∈ � ⊆ W . ��
Theorem 4.14 If {0} �= (reccP)+ = W, then problem (P) is self-bounded.

Proof If (reccP)+ �= {0}, then reccP �= R
q and P �= R

q . Moreover, as {0} �= (reccP)+
= W , we have P0 �= ∅ by Lemma 4.13. Let ȳ ∈ P0. Below, we show that {ȳ}+ reccP ⊇ P ,
hence, (P) is self-bounded. Assume the contrary, that is, there exists x̄ ∈ X with f (x̄) /∈
{ȳ} + reccP . Using the separation argument, there exists w̄ ∈ R

q\{0} such that w̄T f (x̄) <

w̄T ȳ + inf p∈reccP w̄T p. Then, w̄ ∈ (reccP)+ and inf p∈reccP w̄T p ≥ 0. Let w̃ := w̄
w̄T c

.

Clearly, w̃ ∈ � and w̃T ȳ > w̃T f (x̄) ≥ infx∈X w̃T f (x), which contradicts to the fact that
ȳ ∈ P0. ��
Remark 4.15 The relation between hyperbolic sets and their barrier cones is studied by
Zaffaroni in [20]. Indeed an easier proof of Theorem 4.14 can be done using Theorem 6.5
in [20]. The direct proof provided above uses the setP0, which in general is taken as the initial
outer approximation to the upper image in Beson-type approximation algorithms, see [5,16].
Hence, Lemma 4.13 is also important for practical reasons.
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5 Concluding remarks

The aim of this study is to understand the structure of possibly unbounded convex vector
optimization problems and to see if those are tractable in the sense that there are polyhedral
inner and outer approximations of the upper image. It has been shown that not all CVOPs
are tractable and indeed, only the ones that are self-bounded are tractable.

For the problemswhich are not known to be bounded, no solution concept which generates
inner and outer approximations to the upper image is known in the literature. Clearly, for
problems that are not self-bounded, it is not possible to come up with such a concept as it is
not possible to find a polyhedral outer approximation, see Proposition 3.9 and Definition 4.5.
However, one could generalize the concept of (weak) ε-solution given for bounded problems
to the self-bounded problems, using the recession cone of the upper image as follows.

Definition 5.1 For a self-bounded problem (P), a nonempty finite set X̄ of (weak)minimizers
is called a finite (weak)ε-solution of (P) if

conv f (X̄ ) + reccP − ε{c} ⊇ P.

This definition is valid in the sense that the existence is known, see Proposition 3.7 and
Definition 4.5. However, since it is difficult to compute reccP in general, it is not really
practical. Note on the other hand that for two dimensional self-bounded CVOPs, reccP
is polyhedral and there are two extreme directions generating it as long as reccP is not a
halfspace.

As discussed in Sect. 1, Benson-type algorithms proposed in [6,16] are designed to solve
boundedCVOPs.Note that a problem is bounded if and only if it is self-bounded and reccP =
C . Then, by Proposition 4.12 andTheorem4.14, a problem is bounded if and only ifW = C+.
As W is known to be a convex cone, see Remark 4.10, in order to check if a problem is
bounded, it is enough to check if (Pw) is bounded for all extreme directions w of C+.

Note that the algorithms in [6,16] can be extended to solve self-bounded problems as
long as the recession cone of the upper image is polyhedral and its extreme directions can be
computed, which remains as an open problem.
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