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a b s t r a c t

Given an initial stock and a capacitated warehouse, the warehouse problem aims to
decide when to sell and purchase to maximize profit. This problem is common in
revenue management and energy storage. We extend this problem by incorporating
fixed costs and provide convex hull descriptions as well as tight compact extended
formulations for several variants. For this purpose, we first derive unit flow
formulations based on characterizations of extreme points and then project out
the additional variables using Fourier–Motzkin elimination. It turns out that the
nontrivial inequalities are flow cover inequalities for some single node flow set
relaxations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The warehouse problem, introduced by Cahn [1], is to optimally decide on purchasing (or production),
storage and sales quantities for a product with a fixed warehouse capacity and a given initial stock. This
is a common problem in storage and revenue management in a commodity market. A commodity is a raw
material or an agricultural product such as grains, vegetables, coal and natural gas.

The formal definition of the basic problem is as follows. Suppose that the initial stock is S units and the
warehouse has a capacity of B units where 0 < S < B. We are given a planning horizon of n periods. The
buying price is ct and the selling price is pt in period t. In each period, we can sell at most as much as
the inventory from the previous period, i.e., the amount purchased in a period cannot be sold in the same
period. The aim of the warehouse problem is to decide on how much to purchase and sell in each period to
maximize the total profit.

We define xt to be the amount purchased and yt to be the amount sold in period t. For two integers
n1 ≤ n2, we let [n1, n2] = {n1, . . . , n2}. For a vector a ∈ Rn, we use aut =

∑t
i=uai and aT =

∑
i∈T ai for
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T ⊆ [1, n]. The basic warehouse problem can be modeled as

max
n∑

t=1
(ptyt − ctxt) (1)

s.t. s0 = S, (2)
st−1 + xt = yt + st t ∈ [1, n], (3)
0 ≤ yt ≤ st−1 t ∈ [1, n], (4)
0 ≤ st ≤ B t ∈ [1, n], (5)
xt ≥ 0 t ∈ [1, n].

Constraint (2) sets the value of the initial stock to zero. Constraints (3) are inventory balance equations.
Constraints (4) and (5) ensure that we cannot sell more than what is available in stock from the previous
period and that the stock does not exceed the warehouse capacity, respectively. The objective function is
equal to the revenue minus purchasing cost.

Charles and Cooper [2] generalize this problem to the case of multiple products and varying prices.
Bellman [3] presents a dynamic programming algorithm. Dreyfus [4] shows that the solution can be
determined analytically. He shows that there are four policies: sell all the stock, buy up to capacity, sell
and buy and do nothing. Consequently, an optimal policy is to do nothing for a number of stages and then
alternate between a full and empty warehouse. Eastman [5] models the problem as a shortest path problem.
Charles and Cooper [6] use the warehouse model to illustrate how linear programming can be used for
allocation of funds in an enterprise. The multistage stochastic warehouse problem is studied by Charnes
et al. [7].

Many more complex and mostly stochastic variants of the warehouse problem have been studied in
the context of optimal commodity trading and energy storage (see, e.g., Devalkar et al. [8], Harsha and
Dahleh [9], Secondi [10,11], Wu et al. [12], Zhou et al. [13]). However, to the best of our knowledge, there
is no study on strong formulations of this problem in the presence of fixed costs. In this study, we extend
the warehouse problem by including a fixed cost for buying and/or selling and inventory holding costs. We
provide convex hull descriptions and tight compact extended formulations.

We study this version of the warehouse problem for several reasons. First it can be viewed as a simple
machine on-off model in which there is now an initial intermediate start-up state. Secondly it can be seen as
an uncapacitated lot-sizing problem that is not driven by the demands, but in which the costs of production
and the bounds on stocks determine the quantities available for sale in each period. In addition one hopes
that knowledge of the polyhedral structure of this and related sets can be useful in tackling more complicated
versions of the problem.

The approach we take is perhaps of interest for other problems. Specifically it consists of
(1) describing the extreme points of the problem,
(2) using this to construct an automatically integral network flow (or other) formulation involving new

auxiliary variables
(3) simplifying this integral formulation by eliminating variables by substitution, adding constraints

linking the auxiliary variables to the original variables and showing that the resulting formulation is still
integral

(4) eliminating the remaining auxiliary variables using Fourier–Motzkin elimination while using new
auxiliary variables to model the choice of two possible terms introduced by this procedure, and finally

(5) eliminating these last auxiliary variables by compactly describing the exponential number of
inequalities they induce.

As far as we are aware, most applications of Fourier–Motzkin elimination are very simple. Here it is
necessary to use induction and prove explicitly which inequalities are necessary and which are redundant.
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1.1. Three variants

We study three variants of the warehouse problem. Let ht denote the inventory holding cost, ft and gt

denote the fixed costs for buying and selling, respectively, in period t. In addition to the variables defined
above, we define st to be the amount of stock at the end of period t and the binary variables zt and wt to
be 1 if we buy and sell in period t and 0 otherwise, respectively.

• WP1: In the first variant, we include fixed costs only for buying. This variant can be modeled as:

max
n∑

t=1
(ptyt − ctxt − ftzt − htst)

s.t. (2)-(5)
0 ≤ xt ≤ Bzt t ∈ [1, n], (6)
zt ∈ {0, 1} t ∈ [1, n]. (7)

• WP2: In the second variant, we have fixed costs both for buying and selling.

max
n∑

t=1
(ptyt − gtwt − ctxt − ftzt − htst)

s.t. (2)-(7),
yt ≤ Bwt t ∈ [1, n], (8)
wt ∈ {0, 1} t ∈ [1, n]. (9)

• WP3: In the third variant, we have fixed costs both for buying and selling and we do not allow to buy
and sell in the same period.

max
n∑

t=1
(ptyt − gtwt − ctxt − ftzt − htst)

s.t. (2)-(9),
wt + zt ≤ 1 t ∈ [1, n]. (10)

Let X ′
1, X ′

2 and X ′
3 be the feasible sets of problems WP1, WP2 and WP3, respectively. It is possible to

model all three problems without the stock variables. For the first variant, the resulting feasible set, denoted
X1, is:

y1t ≤ S + x1,t−1 t ∈ [1, n], (11)
x1t ≤ B − S + y1t t ∈ [1, n], (12)
xt ≤ Bzt t ∈ [1, n], (13)
xt, yt ≥ 0 t ∈ [1, n], (14)
zt ∈ {0, 1} t ∈ [1, n]. (15)

For the second problem WP2, the feasible set X2 is given by (11)–(15) plus (8) and (9). Finally, for
WP3, the feasible set X3 is given by (11)–(15) plus (8)–(10). Note that Projx,y,z,sX3 ⊆ Projx,y,z,sX2 ⊆
Projx,y,z,sX1.

Our aim is to describe the convex hull of each of the sets X1, X2 and X3 and present tight extended
formulations. The main results of the paper are the following theorems.
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Theorem 1. The convex hull of X1 is given by

y1t ≤ S + x1,t−1 t ∈ [1, n], (16)

x1t ≤ B − S + y1t t ∈ [2, n], (17)

xt ≤ Bzt t ∈ [1, n], (18)
x1t ≤ y1t +

∑
u∈[1,t]

min{xu, (B − S)zu} t ∈ [1, n], (19)

xt, yt ≥ 0, zt ≤ 1 t ∈ [1, n]. (20)

Theorem 2. The convex hull of X2 is given by

y1t ≤ S + x1,t−1 t ∈ [2, n], (21)

x1t ≤ (B − S) + y1t t ∈ [2, n], (22)

xt ≤ Bzt t ∈ [1, n], (23)

yt ≤ Bwt t ∈ [2, n], (24)

y1 ≤ Sw1, (25)
x1t ≤

∑
u∈[1,t]

min{xu, (B − S)zu} +
∑

u∈[1,t]

min{yu, Swu} t ∈ [1, n], (26)

y1t ≤
∑

u∈[1,t−1]

min{xu, (B − S)zu} +
∑

u∈[1,t]

min{yu, Swu} t ∈ [2, n], (27)

xt, yt ≥ 0, zt, wt ≤ 1 t ∈ [1, n]. (28)

Theorem 3. The convex hull of X3 is given by

y1t ≤ S + x1,t−1 t ∈ [2, n], (29)

x1t ≤ B − S + y1,t−1 t ∈ [2, n], (30)

x1 ≤ (B − S)z1, (31)

xt ≤ Bzt t ∈ [2, n], (32)

y1 ≤ Sw1, (33)

yt ≤ Bwt t ∈ [2, n], (34)
x1t ≤

∑
u∈[1,t]

min{xu, (B − S)zu} +
∑

u∈[1,t−1]

min{yu, Swu} t ∈ [2, n], (35)

y1t ≤
∑

u∈[1,t−1]

min{xu, (B − S)zu} +
∑

u∈[1,t]

min{yu, Swu} t ∈ [2, n], (36)

zt + wt ≤ 1 t ∈ [1, n], (37)

xt, yt ≥ 0 t ∈ [1, n]. (38)

Constraints (35) and (36) can be linearized in the space of x, y, z and w as

x1t ≤ x[1,t]\T + (B − S)zT + y[1,t−1]\V + SwV t ∈ [2, n], T ⊆ [1, t], V ⊆ [1, t − 1], (39)

y1t ≤ x[1,t−1]\T + (B − S)zT + y[1,t]\V + SwV t ∈ [2, n], T ⊆ [1, t − 1], V ⊆ [1, t]. (40)
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Introducing the variables πt and ρt for t ∈ [1, n] with

πt ≤ xt t ∈ [1, n],
πt ≤ (B − S)zt t ∈ [1, n],
ρt ≤ yt t ∈ [1, n],
ρt ≤ Swt t ∈ [1, n],

we obtain a polynomial size tight extended formulation for X3 in which constraints (39) and (40), which are
exponential in number, are replaced by

x1t ≤ π1t + ρ1,t−1 t ∈ [2, n],
y1t ≤ π1,t−1 + ρ1t t ∈ [2, n].

The same can be done for X1 and X2.
In the remaining part of the paper, we prove these results. In Section 2 we provide properties of extreme

points and unit flow formulations based on these properties. In Section 3 we present the proof of the convex
hull result for X3 and discuss briefly how to prove the results for X1 and X2. We conclude in Section 4 by
showing that the nontrivial inequalities are flow cover inequalities for some single node flow set relaxations.

2. Extreme points and unit flow formulations

Though he considered a model without fixed costs, we can interpret the results of Dreyfus [4], as a
characterization of the structure of the extreme points in our models. Using our notation

Theorem 4. At an extreme point of conv(X ′
1), conv(X ′

2) and conv(X ′
3),

(i) For t ∈ [1, n], st ∈ {0, st−1, B}, yt ∈ {0, st−1} and xt ∈ {0, B−S, B}, and if xt = B−S then st−1 = S,
yt = 0 and st = B.

(ii) there exists t′ ∈ [0, n] such that st = S for t ∈ [1, t′] and st ∈ {0, B} for t ∈ [t′ + 1, n].

Based on the characterization of the extreme points, we provide unit flow formulations for the three
warehouse problems. The networks for two periods are depicted in Fig. 1. In these networks, we have a layer
for each period. As the stock can take three values (0, S and B) at an extreme point, we have three nodes
for each period other than period 0. The arcs correspond to possible transitions. One unit of flow enters the
network at node 0S, which corresponds to having S units of stock at the end of period 0. The flow variables
on different types of arcs are as follows:

• at : 1 if st−1 = st = S and xt = yt = 0 and 0 otherwise,
• pt : 1 if st−1 = st = B and xt = yt = 0 and 0 otherwise,
• qt : 1 if st−1 = st = 0 and xt = yt = 0 and 0 otherwise,
• w1

t : 1 if st−1 = S and we sell S units in period t and 0 otherwise,
• w2

t : 1 if st−1 = B and we sell B units in period t and 0 otherwise,
• z1

t : 1 if we buy B − S units in period t and 0 otherwise,
• z2

t : 1 if we buy B units in period t and 0 otherwise.

The unit flow formulations for all three problems are as follows:
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Fig. 1. (a) Models 1 and 2 (b) Model 3.

• WP1 and WP2:

a0 = 1,

at−1 − at − z1
t − w1

t = 0 t ∈ [1, n],

pt−1 + z1
t−1 + z2

t−1 − pt − w2
t = 0 t ∈ [2, n],

qt−1 + w1
t + w2

t − qt − z2
t = 0 t ∈ [1, n],

w2
1 = p1 = q0 = 0,

a, z1, z2, w1, w2, p, q ≥ 0.

• WP3:

a0 = 1, (41)

at−1 − at − z1
t − w1

t = 0 t ∈ [1, n], (42)

pt−1 + z1
t−1 + z2

t−1 − pt − w2
t = 0 t ∈ [2, n], (43)

qt−1 + w1
t−1 + w2

t−1 − qt − z2
t = 0 t ∈ [2, n], (44)

w2
1 = z2

1 = p1 = q1 = 0, (45)

a, z1, z2, w1, w2, p, q ≥ 0. (46)

Both unit flow models are integral, i.e., the flow variables have integer values at the extreme points.

3. Proof of convex hull results

In the sequel we prove the convex hull result for X3 in several steps. We first construct an extended
formulation for conv(X3) using the unit flow formulation. Then we project out the additional variables
using Fourier–Motzkin.

Remark 1. As it models a unit flow problem, the polytope (41)–(46) is integral.
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We rewrite the system (41)–(46) in the following equivalent form:

1 = z1
1t + w1

1t + at t ∈ [1, n],

pt + w2
2t = z1

1,t−1 + z2
1,t−1 + p1 t ∈ [2, n],

qt + z2
2t = w1

1,t−1 + w2
1,t−1 + q1 t ∈ [2, n],

w2
1 = z2

1 = p1 = q1 = 0,

a, z1, z2, w1, w2, p, q ≥ 0.

Now we eliminate at, pt, qt by substitution and remove redundancies giving:

z1
1n + w1

1n ≤ 1, (47)

w2
2t ≤ z1

1,t−1 + z2
1,t−1 t ∈ [2, n], (48)

z2
2t ≤ w1

1,t−1 + w2
1,t−1 t ∈ [2, n], (49)

z1, z2, w1, w2 ≥ 0, (50)

w2
1 = z2

1 = 0. (51)

The polytope defined by (47)–(51) is integral since it is a projection of the integral polytope (41)–(46).
Finally we introduce the original variables xt, yt, zt and wt for t ∈ [1, n] and add the constraints that

relate them to the flow variables of the extended formulation as well as zt + wt ≤ 1 for t ∈ [1, n]:

zt ≥ z1
t + z2

t t ∈ [1, n], (52)

wt ≥ w1
t + w2

t t ∈ [1, n], (53)

xt = (B − S)z1
t + Bz2

t t ∈ [1, n], (54)

yt = Sw1
t + Bw2

t t ∈ [1, n], (55)

zt + wt ≤ 1 t ∈ [1, n]. (56)

Proposition 1. The polytope (47)– (56) is integral.

Proof. We use the approach of Lovasz [14] to prove that the polytope is integral. Given a non-zero objective
function for which the optimal value is finite, we will show that the set of optimal solutions to the integer
program lies on a face defined by one of constraints (47)–(56). Suppose that we are minimizing a linear
function over the points in this polytope with integer z1, z2, w1, w2, z and w. Let cz

t and cw
t be the objective

function coefficients of variables zt and wt, respectively, for t ∈ [1, n]. If all these coefficients are zero, since
for each solution of (47)–(51), there exist z and w with (52), (53) and (56) and since the polytope defined by
(47)–(51) is integral, all optimal solutions lie on a face defined by one of the constraints (47)–(50). Otherwise,
let t be such that cz

t or cw
t is nonzero. If cz

t > 0, then all optimal solutions satisfy zt = z1
t + z2

t and similarly
if cw

t > 0, then all optimal solutions satisfy wt = w1
t + w2

t . If not, then cz
t < 0 or cw

t < 0 and in this case all
optimal solutions lie on the face defined by zt + wt ≤ 1. □
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We now introduce two relaxations to help in describing the formulations. Let k ∈ [1, n]. First Qk

xt ≤ Bzt t ∈ [k + 1, n], (57)

yt ≤ Bwt t ∈ [k + 1, n], (58)

xt ≥ 0 t ∈ [k + 1, n], (59)

yt ≥ 0 t ∈ [k + 1, n], (60)

x1t ≤ (B − S) + y1,t−1 t ∈ [k + 1, n], (61)

y1t ≤ S + x1,t−1 t ∈ [k + 1, n], (62)

zt + wt ≤ 1 t ∈ [1, n], (63)

and Rk

z2
1 = w2

1 = 0, (64)

xt = (B − S)z1
t + Bz2

t t ∈ [1, k], (65)

yt = Sw1
t + Bw2

t t ∈ [1, k], (66)

z1
t ≥ 0 t ∈ [1, k], (67)

z2
t ≥ 0 t ∈ [2, k], (68)

w1
t ≥ 0 t ∈ [1, k], (69)

w2
t ≥ 0 t ∈ [2, k], (70)

w2
2t ≤ z1

1,t−1 + z2
2,t−1 t ∈ [2, k], (71)

z2
2t ≤ w1

1,t−1 + w2
2,t−1 t ∈ [2, k], (72)

z1
t + z2

t ≤ zt t ∈ [1, k], (73)

w1
t + w2

t ≤ wt t ∈ [1, k]. (74)

Theorem 5. After elimination of z1
t , w1

t , z2
t , w2

t from (47)– (56) for t ∈ [k + 1, n], the resulting polyhedron
Pk is given by Qk ∩ Rk plus the constraints:

z1
1k + w1

1k ≤ 1, (75)

xk+1,t + Sz2
2k ≤ πk+1,t + ρk+1,t−1 + S(w1

1k + w2
2k) t ∈ [k + 1, n], (76)

yk+1,t + (B − S)w2
2k ≤ ρk+1,t + πk+1,t−1 + (B − S)(z1

1k + z2
2k) t ∈ [k + 1, n], (77)

where πt = min{xt, (B − S)zt} and ρt = min{yt, Swt} for t ∈ [1, n].

Proof. The proof is by induction over decreasing values of k. We observe that when k = n, Pn is the
original system (47)–(56). First we consider the case when k ≥ 1. The case when k = 0 will be discussed
separately. The passage from Pk to Pk−1 consists of a series of eliminations, (i) elimination of z2

k and w2
k by

substitution, (ii) elimination of z1
k by Fourier–Motzkin and (iii) elimination of w1

k by Fourier–Motzkin and
each one will be given and proved in a separate proposition.



116 L.A. Wolsey, H. Yaman / Discrete Optimization 30 (2018) 108–120

Elimination of z2
k and w2

k

Proposition 2. Elimination of z2
k and w2

k by substitution gives Qk ∩ Rk−1 plus the constraints

Sz1
k ≤ Bzk − xk, (78)

(B − S)w1
k ≤ Bwk − yk, (79)

(B − S)z1
k ≤ xk, (80)

Sw1
k ≤ yk, (81)

(B − S)z1
k ≥ xk + B(z2

2,k−1 − w1
1,k−1 − w2

2,k−1), (82)

Sw1
k ≥ yk + B(w2

2,k−1 − z1
1,k−1 − z2

2,k−1), (83)

S(B − S)(z1
k + w1

k) ≥ B(xk+1,t − πk+1,t − ρk+1,t−1) + S(xk − yk)
+BS(z2

2,k−1 − w1
1,k−1 − w2

2,k−1) t ∈ [k + 1, n], (84)

S(B − S)(z1
k + w1

k) ≥ B(yk+1,t − ρk+1,t − πk+1,t−1) + (B − S)(yk − xk)
+ B(B − S)(w2

2,k−1 − z1
1,k−1 − z2

2,k−1) t ∈ [k + 1, n], (85)

z1
k ≥ 0, (86)

w1
k ≥ 0, (87)

z1
1k + w1

1k ≤ 1. (88)

Proof. We substitute z2
k = (xk − (B − S)z1

k)/B and w2
k = (yk − Sw1

k)/B. Inequalities (78) and (79) come
from (73) and (74), (80) and (81) come from (68) and (70) for t = k, (82) and (83) come from (72) and
(71) for t = k, (84) and (85) come from (76) and (77). (86) and (87) are the inequalities (67) and (69) for
t = k. □

Elimination of z1
k

Proposition 3. Elimination of z1
k by Fourier–Motzkin gives Qk ∩ Rk−1, the constraints (79), (81), (83)

and (87) that are unaffected, plus the constraints

xk ≤ Bzk, (89)

xk ≥ 0, (90)

xk + Sz2
2,k−1 ≤ (B − S)zk + S(w1

1,k−1 + w2
2,k−1), (91)

z1
1,k−1 + w1

1,k ≤ 1, (92)

(B − S)w1
k ≤ (B − S) + y1,k−1 − x1k, (93)

S(B − S)w1
k ≥ B(xkt − πkt − ρk+1,t−1) + BS(z2

2,k−1 − w1
1,k−1 − w2

2,k−1) − Syk

t ∈ [k + 1, n], (94)

S(B − S)w1
k ≥ B(ykt − ρk+1,t − πk,t−1) + B(B − S)(w2

2,k−1 − z1
1,k−1 − z2

2,k−1) − Syk

t ∈ [k + 1, n]. (95)

Proof. Note that z1
k appears in constraints (78), (80), (88) with one sign and constraints (82), (84), (85),

(86) with the opposite sign.
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We start with inequality (86). Inequalities (89), (90), (92) come from combining (86) with (78), (80), (88)
respectively.

Next we use inequalities (84). First note that (78) and (80) can be equivalently written as

(B − S)Sz1
k ≤ min{B(B − s)zk − (B − S)xk, Sxk} = Bπk − (B − S)xk.

Combining this with (84) gives

Bπk − (B − S)xk ≥ B(xk+1,t − πk+1,t − ρk+1,t−1) + S(xk − yk)
+ BS(z2

2,k−1 − w1
1,k−1 − w2

2,k−1) − S(B − S)w1
k t ∈ [k + 1, n],

which is the same as (94).
Combining (84) for t ∈ [k + 1, n] with (88) gives

S(B − S)(1 − z1
1,k−1 − w1

1,k−1) ≥B(xk+1,t − πk+1,t − ρk+1,t−1) + S(xk − yk)
+ BS(z2

2,k−1 − w1
1,k−1 − w2

2,k−1),

which simplifies to

Sx1k + Bxk+1,t ≤ S(B − S) + Bπk+1,t + Sy1k + Bρk+1,t−1,

using xu = (B − S)z1
u + Bz2

u and yu = Sw1
u + Bw2

u for u ∈ [1, k − 1] and z2
1 = w2

1 = 0.
We consider an instance when xu > (B−S)yu for u ∈ T ⊆ [k+1, t] and yu > Swu for u ∈ V ⊆ [k+1, t−1].

The inequality takes the form:

Sx1k + BxT ≤ S(B − S) + B(B − S)zT + Sy1k + By[k+1,t−1]\V + BSwV .

This is dominated by taking x1t − y1,t−1 ≤ B − S with weight S, xu − Bzu ≤ 0 with weight B − S for
u ∈ T , xu ≥ 0 for u ∈ [k + 1, t] \ T with weight S, yu − Byu ≤ 0 with weight S for u ∈ V and yu ≥ 0 for
u ∈ [k + 1, t − 1] \ V with weight B − S, as in

Sx1k + Sxk+1,t ≤ S(B − S) + Sy1k + Syk+1,t−1,

(B − S)xT ≤ (B − S)BzT ,

− Sx[k+1,t]\T ≤ 0,

0 ≤ BSwV − SyV ,

0 ≤ (B − S)y[k+1,t−1]\V .

Now we use inequalities (85). Combining (78) and (80) in the form (B − S)Sz1
k ≤ Bπk − (B − S)xk with

(85) gives (95).
The inequality obtained from (85) with (88) is

(B − S)y1k + Byk+1,t ≤ S(B − S) + Bρk+1,t + (B − S)x1,k + Bπk+1,t−1,

which is the same as

(B − S)y1k + ByT ≤ S(B − S) + BSwT + (B − S)x1k + Bx[k+1,t−1]\V + B(B − S)zV

for T ⊆ [k +1, t] and V ⊆ [k +1, t−1]. This is the sum of B −S times y1t ≤ S +x1,t−1, S times yu −Byu ≤ 0
for u ∈ T and B − S times yu ≥ 0 for u ∈ [k + 1, t] \ T , B − S times xu − Bzu ≤ 0 for u ∈ V and S times
xu ≥ 0 for u ∈ [k + 1, t − 1] \ V , and hence is dominated.

Finally we use (82). Inequalities (91) and (93) come from combining (82) with (78) and (88), respectively.
Combining (82) with (80) gives z2

2,k−1 ≤ w1
1,k−1 + w2

2,k−1 that is dominated by (72) for t = k − 1 as
w1

k−1, w2
k−1 ≥ 0. This concludes the proof of Proposition 3. □
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Elimination of w1
k

Proposition 4. Elimination of w1
k by Fourier–Motzkin gives Pk−1.

Proof. The variable w1
k does not appear in constraints (89), (90) and (91). Constraint (91) is the same as

(76) for t = k. w1
k appears in the constraints (83), (87), (94) and (95) with one sign and in (79), (81), (92)

and(93) with opposite sign.
Observe that (83) is the same as (95) for t = k. We treat it together with (95).
We start with constraint (87). Constraints (58), (60), (75) and (61) for t = k come from combining (87)

with (79), (81), (92) and (93), respectively.
Next we combine (95) for t ∈ [k, n]. Combining (79) and (81) with (95) gives (77) for t ∈ [k, n]. Inequalities

(95) and (92) give

(B − S)y1k + B(yk+1,t − ρk+1,t) ≤ S(B − S) + (B − S)x1,k−1 + Bπk,t−1 t ∈ [k, n]. (96)

Consider an instance with yu > Swu for u ∈ T ⊆ [k + 1, t] and xu > (B − S)zu for u ∈ V ⊆ [k, t − 1]. Taking
y1t − x1,t−1 ≤ S with weight (B − S), yu ≤ Bwu with weight S for u ∈ T , xu ≤ Bzu with weight (B − S)
for u ∈ V , 0 ≤ yu for u ∈ [k + 1, t] \ V with weight B − S and 0 ≤ xu for u ∈ [k, t − 1] with weight S, we
see that the inequality is dominated.

Inequalities (95) and (93) give

(B − S)yk + B(yk+1,t − ρk+1,t) + Sx1k + B(B − S)w2
2,k−1

≤ S(B − S) + Sy1,k−1 + B(B − S)(z1
1,k−1 + z2

2,k−1) + Bπk,t−1,

that one can rewrite as

(B − S)y1k + B(yk+1,t − ρk+1,t) + Sxk + BSz2
2,k−1 (97)

≤ S(B − S) + (B − S)x1,k−1 + BS(w1
1,k−1 + w2

2,k−1) + Bπk,t−1.

Suppose that yu > Swu for u ∈ T ⊆ [k + 1, t] and xu > (B − S)zu for u ∈ V ⊆ [k, t − 1].
If k ∈ V , then we take y1,t − x1,t−1 ≤ S with weight (B − S), yu − Bwu ≤ 0 with weight S for u ∈ T ,

xk + Sz2
2,k−1 − (B − S)zk − S(w1

1,k−1 + w2
2,k−1) ≤ 0 with weight B, xu − Bzu ≤ 0 with weight (B − S) for

u ∈ V \{k}, 0 ≤ xu with weight S for u ∈ [k +1, t]\V and −yu ≤ 0 with weight (B −S) for u ∈ [k +1, t]\T .
This gives (97).

When k ̸∈ V , we replace the third inequality by z2
2,k−1 ≤ w1

1,k−1 + w2
2,k−1 with weight BS to show that

the inequality is dominated.
Finally we combine inequalities (94) for t ∈ [k + 1, n]. (79) and (81) are equivalent to

(B − S)Sw1
k ≤ Bρk − Syk.

This combined with (94) give (76) for t ∈ [k + 1, n]. The inequalities (94) and (92) give

Sx1,k−1 + B(xkt − πkt) ≤ S(B − S) + Sy1k + Bρk+1,t−1.

Inequalities (94) and (93) give

Sx1,k + B(xkt − πkt) + BSz2
2,k−1

≤ S(B − S) + Sy1k + BSw2
2,k−1 + Bρk+1,t−1.

The proof of dominance for these last two families of inequalities is similar to the cases above with x, y and
S, (B − S) interchanged. This concludes the proof of Proposition 4. □
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Elimination of z1
1 , w1

1 from P1

Finally to complete the proof of Theorem 3, we consider the elimination of z1
1 , w1

1 from P1 as z2
1 = w2

1 = 0.
We obtain x1 = (B − S)z1

1 ≤ (B − S)z1 and similarly y1 ≤ Sw1. The constraints (76) take the form
x1t − π1t ≤ ρ1,t−1 and we note that ρ1 = y1 as y1 ≤ Sw1. Similarly the constraints (77) take the form
y1t − ρ1t ≤ π1,t−1 with π1 = x1 as x1 ≤ (B − S)z1. This concludes the proof of Theorem 3. □

Proofs of Theorems 1 and 2

The proof of Theorem 2 is almost identical to that of Theorem 3. We just note the following changes. We
replace (56) with zt, wt ≤ 1 for t ∈ [1, n]. We drop z2

1 = 0 and add z2
1 ≥ 0 in every step. Consequently, all

the terms of the form sum z2
2τ are replaced by z2

1τ . In addition, constraint (49) becomes

z2
1t ≤ w1

1t + w2
1t t ∈ [1, n],

denoted (49n).
The changes in the description of Pk are:
(61n): x1t ≤ (B − S) + y1t t ∈ [k + 1, n]
(72n): z2

1t ≤ w1
1t + w2

2t t ∈ [1, k]
(76n): xk+1,t + Sz2

1k ≤ πk+1,t + ρk+1,t + S(w1
1k + w2

2k) t ∈ [k + 1, n]
The changes in the system that we obtain after eliminating z2

k and w2
k are:

(82n): (B − S)(z1
k + w1

k) ≥ xk − yk + B(z2
1,k−1 − w1

1,k−1 − w2
2,k−1)

(84n): S(B − S)(z1
k + w1

k) ≥ B(xk+1,t − πk+1,t − ρk+1,t) + S(xk − yk) + BS(z2
1,k−1 − w1

1,k−1 − w2
2,k−1) t ∈

[k + 1, n]
In the elimination of z1

k, when combining (82n), the arguments are similar to those above leading to the
new version (94n):

S(B − S)w1
k ≥ B(xkt − πkt − ρk+1,t) + BS(z2

1,k−1 − w1
1,k−1 − w2

2,k−1) − Syk.

When we combine (82n) with (78), we obtain (91n):

Bxk + BSz2
1,k−1 ≤ B(B − S)zk + BS(w1

1,k−1 + w2
2,k−1) + S(yk + (B − S)w1

k).

Combining (82n) with (88) gives x1k ≤ B − S + y1k, which is (61n) for t = k and (93) is dropped.
Finally, combining (82n) with (80) gives Bz2

1,k−1 + Sw1
k ≤ B(w1

1k + w2
2,k−1) + yk that is a combination

of z2
1,k−1 ≤ w1

1,k−1 + w2
2,k−1, which is (72n) for t = k − 1, w1

k ≥ 0 and yk ≥ Sw1
k.

In the elimination of w1
k, the variable appears in the constraints (83), (87), (91n), (94n) and (95) with

one sign and in (79), (81) and (92) with opposite sign.
Combining (87) with (79), (81), and (92) give (58), (60) and (75), respectively.
As there are no changes in (95), combining this inequality with (79) and (81) give (77) for t ∈ [k, n] and

combining them with (92) gives dominated inequalities.
Combining (94n) for t ∈ [k + 1, n] with (79) and (81) give (76) for t ∈ [k + 1, n]. Combining (94n) with

(92) give

Sx1,k−1 + B(xkt − πkt) ≤ S(B − S) + Sy1k + Bρk+1,t (98)

that are dominated.
Combining (91n) with (79) and (81) give (76) for t = k. Combining (91n) with (92) gives S(B − S) +

Sy1k + (B − S)Bzk ≥ Sx1k + (B − S)xk which is a combination of B − S + y1k ≥ x1k and Bzk ≥ xk.
After eliminating z1

1 using Proposition 3, we use w1
1 = y1/S to obtain the result.

To prove Theorem 1, it suffices to project out the variables wt from the polyhedron describing conv(X2).
Constraints (24), (25) disappear, (27) reduces to 0 ≤

∑
u∈[1,t−1] min{xu, (B − S)zu} and is dominated and

(26) reduces to x1t ≤
∑

u∈[1,t] min{xu, (B − S)zu} + y1t.
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4. Final remarks

We terminate with a couple of brief observations relating the model and results to other work. The
following claim for the constant capacity single node flow set is well-known and cited in Atamtürk et al. [15].

When b is not a multiple of C, the convex hull of the single node flow set∑
j∈N+

xj −
∑

j∈N−

xj ≤ b, xj ≤ Czj j ∈ N, x ∈ R
|N |
+ , z ∈ {0, 1}|N |,

with N = N+ ∪ N−, N+ ∩ N− = ∅ is obtained by adding the constraints

xT − (C − λ)zT ≤ b −
⌈

b

C

⌉
(C − λ) + xN−\L + λzL

where T ⊆ N+, |T | ≥
⌈

b
C

⌉
, L ⊆ N− and λ =

⌈
b
C

⌉
C − b.

A proof for the case when N− = ∅ is given in Padberg et al. [16] and for the case in which the z variables
are integers in Atamtürk [17], but it is an open question/conjecture for the 0-1 case.

With b = B−S and C = B, we see that inequalities (35) for fixed t are precisely the flow cover inequalities
for the single node flow set consisting of (12) for t, (8)–(9) and (13)–(15). Similarly the inequalities (36)
are obtained from (11) for fixed t, (8)–(9) and (13)–(15). Thus the convex hull of X3 is obtained as the
intersection of these convex hulls for each fixed t.

As mentioned in the Introduction, it is also natural to view the warehouse model in the lot-sizing context
with xt, zt as production and set-up variables and yt, wt as sales with fixed costs, where there are constant
bounds on the stocks, but without fixed demands. Here one might also wish to look at constant capacity
production and time-varying bounds on the stock levels.
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