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Abstract

Logistics is one of the key elements of organ transplantation operations. In this
study, maximizing the potential compatible donor-recipient matches within the cold
ischemia time bounds (duration that an organ can survive without blood supply)
is the main problem that is addressed. While addressing this problem, the effects
of clustering structures on the potential organ matches are investigated. We ana-
lyze Turkey’s organ transplantation logistics structure based on its dynamics and
provide new mathematical models for maximizing potential weighted intra-regional
organ transplantation flow via evaluating different types of transportation modes
while meeting the specified time bounds. This approach considers only maximizing
the potential flow within a single time bound, so that it may not perform effectively
for every organ type. To remedy this situation, another mathematical model that
maximizes the potential flow of multiple organ types has also been developed. Addi-
tionally, in order to evaluate the performance of our results, using the outputs of the
deterministic mathematical models, we developed a simulation model to mimic the
uncertain environment realistically while being able to model the components of hi-
erarchical systems. Extensive computational analysis using a variety of performance
measures has revealed that Turkey’s organ transplantation network can be improved
by re-clustering.
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1 Introduction

Organ transplantation is a complex treatment method in medicine. The major difference

that separates this treatment from others is that this method requires a donor (a living

or dead person who donates his/her organ(s)) and a recipient (a patient who needs the

donated organ in order to survive or improve his/her quality of life). The procedure can

be defined as the transfer of an organ from a donor to a recipient to replace a damaged

or absent organ of him/her. Although helpful, the procedure can only be performed on

certain organ types including heart, kidneys, liver, lungs, and pancreas and certain tissues

such as cornea, skin, heart valves, bones, etc... Kidney transplants are the most common

ones followed by liver and heart transplants (Human Organ Transplantation, 2016).

Despite the fact that this treatment can save many lives and/or improve the quality of

life of many patients, organ transplantations involve obstacles as well. A major problem

is the significant gap between organ supply and demand. In the United States alone, 17

people die every day because they cannot access an organ in-time, and more than 80,000

patients are known to be on waiting lists (Organ Donation and Transportation, 2012). In

Turkey, only 4,500 organs were transplanted in 2015 and as of May 2016, 25,500 people

were still waiting for a suitable organ (Recent Data, 2016).

Another challenge is the compatibility of the donated organ with the recipient. It is

not only enough to find just the organ but also there are quite a lot of factors that needed

to be satisfied in order to determine a patient as a potential recipient. An organ must be

biologically compatible (blood type & tissue match and immune status) with a recipient.

Besides this, factors such as age and psychological situation are also important constraints.

This makes finding a recipient for an organ difficult as majority of the available donations

cannot be used.

Cold ischemia time is the duration that an organ can survive without a blood supply.

This limits the time an organ can spend outside of a body, thus reducing the number of

potential recipient to those that are in close proximity. Since increasing the time spent

without a blood supply decreases the chance of the organ functioning properly in the

recipient’s body, distance becomes a concern in transplantation success. Hence, this points

forward the significance of donated organ’s and recipient’s locations in the system.

There are some other issues to be considered in this process. For instance, the transplan-

tation surgeries cannot be performed at any hospital; as a matter of fact, these operations
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can only be done at specialized hospitals using specific equipments with respect to each

organ type. Moreover, organ harvesting (taking the organ from donor’s body) can only be

performed by medical teams specialized in that particular organ. Donors can come from

any city but the recipients are only located in a hospital with an organ transplantation

center. This increases the importance of the location of the donor’s city.

Transplant rejection is another issue regarding this procedure. Since the organ is foreign

to the body, the immune system may attack it despite the immunosuppresants patient

takes. This results in organ rejection which requires the immediate removal of the organ

from the body.

All of these complications imply that it is hard to maintain a well-functioning system.

Most of these issues cannot be fully controlled; however, the logistics aspect of the network

can be improved. Since the locations of patients and hospitals and transportation times are

crucial aspects of an organ transplantation network, logistics has a vital role. To address

these issues, many research has been done on the optimal organ transplantation logistics

system; in US by Stahl et al. (2005), Kong et al. (2010), Demirci et al. (2012) and Gentry

et al. (2015), in Italy by Bruni et al. (2006), in Belgium by Beliën et al. (2012) and in

Iran by Zahiri et al. (2014).

There are two major approaches practiced by different countries to find the best re-

cipient for a donated organ in the transplantation system while considering the matching

criteria: the centralized method and the hierarchical method. The centralized method

entails the use of a single waiting list for an entire region or country. When an organ is

donated, the patients obtain a matching score depending on their blood and tissue type,

size of the organ, age, level of emergency, time spent on the waiting list and distance

between the donor and recipient. (OPTN, 2016). If the recipient with the highest score

is suitable for transplantation, i.e., his/her current health and immune status are fine,

or donor’s medical history does not cause any problems, then the match is determined.

Otherwise, the next highest-scored recipient is selected. This procedure goes on until a

successful match is made. In this system, even if there is a patient waiting for an organ

in the same hospital, this patient may not necessarily be the recipient. Eurotransplant,

which coordinates organ allocation among its seven member countries, is an example of

the centralized method (Beliën et al., 2012).

The hierarchical method considers multiple waiting lists within a country, each of which

associated with a structural or geographical entity such as a hospital, a city or a region.
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When an organ is available for transplantation, candidates in the first layer of the hierarchy

(e.g., usually the donor’s hospital) are evaluated; if there are no suitable matches, then

candidates in the second layer of the hierarchy (e.g., the donor’s city) are examined. This

procedure is repeated at all layers of the hierarchy until a match is found. This system is

used by many countries including the USA, Italy and Turkey. Although the method is the

same, application varies between countries based on health care policies in practice. For

instance, in Italy, the donated organ is first taken to the a center where the allocation of

the organ is made and then taken to the recipient’s hospital, while in Turkey and in the

USA, the donated organ is directly transferred to the recipient’s hospital.

Although the centralized method is more fair as the organ is transferred to the most

suitable patient, the hierarchical method ensures that the organ is transferred to the closest

suitable recipients which increases the chances of keeping the organ functional.

This study aims to improve Turkey’s hierarchical system by evaluating the effects of

clustering structures on the potential matchings for organ transplantation. This is done

by exploring the optimal clusters for different transportation options as a strategic level

decision. The performance of these clusters is measured by a discrete event simulation

model so that the features of the organ transplantation system that cannot be captured

by the optimization models (such as hierarchical matching behavior, vehicle availability,

emergency cases, etc...) can be represented and evaluated. The use of optimization in

tandem with simulation models for organ transplantation framework is an approach that

generate optimum solutions for strategic decisions (such as facility location) while having

chance to observe and evaluate the performance of those solutions before their real-life

implementations.

As each organ type has its own characteristics, the logistics network for distinct organs

may have different structures. Therefore, this study will discuss regional clusters for each

organ type; however, to divide the country into different regions for each organ type is

not feasible. Thus, a single clustering network with the best overall performance has to be

determined. In order to achieve this, performance of the clusters of a particular organ will

be evaluated based on their suitability for other organ types. The most suitable clustering

structure will be selected by the decision makers in the Ministry of Health.

The rest of the article is structured as follows: in Section 2, a brief analysis of the

Turkish organ transplantation system is given. Next, we discuss the extended literature

on health care logistics and organ transplantation in Operations Research (OR) in Section
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3. Then, the optimization and simulation models developed in this study are presented in

Section 4 and that is followed by the computational results based on the Turkish trans-

plantation system in Section 5. In Section 6, an extended modeling approach is discussed

and its numerical results are provided. Finally in Section 7, the significant outcomes of

the current Turkish organ transplantation system (and ways to improve its performance)

are also discussed along with possible future research opportunities.

2 The Case for Turkey

In Turkey, organ allocations are coordinated by the National Coordination Center (NCC)

and nine regional coordination centers (RCCs). The NCC is responsible for the organi-

zation’s managerial and strategic level decisions, while the RCCs coordinate organ trans-

plantation between cities in their region. So, while the RCCs coordinate the region based

searches, the NCC coordinates communication among RCCs. In order to maintain the

coordination, each city is assigned to exactly one RCC.

Not every city has organ transplantation-capable hospitals, and each suitable hospital

specializes in only one organ type. Even if there may exist a donor in each city, potential

recipients are located in only those cities which have transplantation-capable hospital(s).

Therefore, each patient is registered in the system via an appropriate hospital, and every

organ type has a separate waiting list. Figure 1 depicts the current RCC locations and the

assignments of the cities to the RCCs in the Turkish organ allocation system.

Figure 1: Current RCC Locations and Assignments in Turkey

Matching a donor with a recipient in Turkey works as follows: when an organ is available

for transplantation, a country-wide search is conducted for emergency patients. If such a

patient is found within the cold ischemia time bounds, the organ is sent directly to that
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patient’s hospital via road or air transportation without considering the RCC assignment

hierarchies. If there is no suitable emergency patient, hierarchical matching begins with

the waiting list of the hospital that introduces the donated organ to the system. If a

suitable candidate is not found, the search is then expanded to other hospitals in the city.

If there is no match on this level either, the search is expanded to the cities assigned to the

donor’s RCC. The last step is to search for a potential recipient across the country. The

representation of Turkey’s organ transplantation process can be found in Figure 2.

Figure 2: Organ Transplantation Process in Turkey

The waiting lists of the RCCs and NCC are dynamically updated after each successful

transplantation. For the RCC waiting lists, the city which received the organ is moved to

the bottom of the list, so that it is ranked the last in the following organ matching. This

allows the city that was ranked the second in the previous matching to move to the first

position in the next organ matching within the same RCC. A similar approach is followed

for the NCC waiting list too. The RCC that receives the donation is moved to the end of

the list after the transplantation. This procedure is repeated continuously and all waiting

lists are updated dynamically at the end of each transplantation.
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At the later steps of the hierarchical system, even if a suitable donor-recipient match

is made, the travel time/distance may not be within the cold ischemia time bound implies

that a matched organ may not be transferred. While appropriate matching criteria greatly

increases implantation success, if the organizational structure of the organ transplantation

system is not well-established, the overall system may not function so well. Therefore,

logistics aspects of the system greatly affect the overall success.

A basic difference between an organ transplantation system like Turkey’s and other

hierarchical systems (like Italy’s) is that in systems like Turkey’s, RCCs are not responsible

for transplantation; they are simply coordinators, contacting donor and recipient cities.

This means that an organ does not have to travel to an RCC for transplantation; it travels

to the patient’s hospital directly. However, for managerial purposes, it is preferable that

RCCs are located in the cities where there is at least one transplantation hospital.

3 Related Literature

Healthcare problems have been studied in OR for almost 50 years (Brailsford, 2005). Rais

and Viana (2011) is one of the most recent review studies that examines the applications

of OR methodologies in healthcare. According to this study, healthcare related topics can

be classified as emergency medical services, specialized healthcare services, blood banking,

organ transplantation and pharmaceuticals. Location-allocation and set covering models

are widely used while solving these problems. In this section, first the studies that use these

type of models are going to be discussed and then the organ transplantation literature is

going to be reviewed in detail.

Blood banking is one of the most common issues studied in healthcare logistics. The

supply chain design of the blood banking network is addressed by location-allocation mod-

els by many authors (Nagurney and Masoumi (2012), Zahiri and Pishvaee (2016), Chai-

wuttisak et al. (2016)). Sahin et al. (2007) developed a location-allocation model for

blood services of the Turkish Red Crescent Society by decomposing the problem into sub-

problems and tackling the issue of locating service facilities and assigning demand points in

three stages. Sha and Huang (2012) locate temporary blood collection facilities and assign

donors to these locations in emergency situations while minimizing the overall system’s

costs. Jabbarzadeh et al. (2014) consider the problem of supplying blood to the ones in

need after the occurrence of a disaster and their study handles uncertainty by utilizing a
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scenario based stochastic programming approach. Zahiri et al. (2014a) is another study

which incorporates uncertainty to the blood-banking problem and they adopt a robust

stochastic programming approach. In the following year, Zahiri et al. (2015) focused on

the bood distribution network design problem in which temporary and fixed facilities are

located and donors are assigned to these points over a multi-period planning horizon while

minimizing the overall cost.

There are many studies that focus on other healthcare topics within the location-

allocation context. Araz et al. (2007) considers a multi-objective vehicle location model

for emergency services such as ambulances or firefighting vehicles, using a covering based

approach. The amount of population that can be covered by one vehicle and with backup

are maximized while the total travel distance exceeding the prespecified covering radius

is minimized in this study. Syam and Cote (2010, 2012) both address specialized health-

care services by locating traumatic brain injury treatment and rehabilitation centers and

allocating patients to them. Both studies minimize the overall cost by considering fixed

costs associated with opening trauma centers, overhead costs of equipments and labor

costs. Shariff et al. (2012) works on a healthcare facility planning problem in Malaysia,

which tries to solve the problems arisen by the limited capacity of the facilities by using

a capacitated maximal covering location problem. Mousazadeh et al. (2015) developed a

bi-objective model for a pharmaceutical supply chain design problem where they decide

the locations of the manufacturing/distribution centers along with the material flows in

the network. The overall costs and unmet demand amounts are minimized in this problem

and as there is uncertainty in the system, a probabilistic programming approach is used.

Even though the healthcare problems are addressed via OR tools for a long period

of time, organ transplantation-related studies are relatively recent. Even so depending

on the objective, problem classifications have been changing for these studies. Liberatore

and Nydick (2008) propose that for an analytical hierarchy process, organ transplanta-

tion should be considered separately from the general ”therapy/treatment” category of

healthcare problems. Rais and Viana (2011) state that organ donation studies should be

categorized under ”specialized and preventive healthcare” studies.

Despite the fact that it has been recently considered, the number of organ transplan-

tation studies in OR is increasing. Most of these articles are country based case studies

that address policy issues. For example, Genc (2008) outlines managerial problems in organ

procurement during the transplantation processes in Turkey. For Switzerland, Uehlinger et
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al. (2010) explores the effects of a new law on cold ischemia time and organ transportation

and compares it with the former law using statistical data. Deffains and Ythier (2010)

aim to find the optimal design for the stages of the transplantation processes in Spain.

Friedewald et al. (2013) proposes an alternative kidney allocation system for the USA to

increase life expectancy of recipients. In this study, they conclude that any change in the

allocation system impacts the donated kidney and recipient matchings, which affects the

equity and utility of the allocation system. Drekic et al. (2015) represents the transplanta-

tion processes in Canada as a queuing system in which the waiting lists change periodically

depending on the health conditions of the potential recipients. In their study, they aim to

infer the likely waiting times of the patients on these lists and use this information as new

data in transplantation systems.

Many studies analyze and evaluate alternative policies for managing waiting lists for

liver transplantation, such as Ratcliffe et al. (2001) for the United Kingdom and Thompson

et al. (2004) for the USA. Simulation models are applied to the organ transplantation sys-

tem, as in a national organ allocation model for kidney transplantation in the US (Taranto

et al., 2000). Different from other allocation studies, Harper et al. (2000) focuses on mul-

tiple kidney allocation policies and simulate their effects. Su and Zenios (2005) present

stochastic programming models to determine a kidney allocation policy. Shechter et al.

(2005) study a liver allocation policy using a discrete-event simulation model to test the

performance of policy changes. Alagoz et al. (2009) discusses the organ allocation and

acceptance in a comprehensive manner. The authors explain the organ transplantation

system in general and comment on studies on optimization models for a liver allocation

system. Bertsimas et al. (2013) focuses on the fairness of organ allocation policies with

a data-driven method, which is also applicable for the USA allocation system. They also

consider the medical efficiency of allocations and the flexibility in policy design. Dag et al.

(2016) tries to determine which patient and donor data to consider for better heart match-

ings and aim to estimate survival length of the recipient after the procedure. Similarly,

Misiunas et al. (2016) intends to parse the available patient and donor data correctly so

that successful pairings between two parts can be obtained more accurately.

When the studies in the organ transplantation literature are investigated, the ones

focusing on location-allocation problems are also commonly observed. One of the earliest

works is by Stahl et al. (2005) and the study focuses on the liver transplantation system in

the USA. The aim is to determine the regions in a better way so that the total and minimum
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intra-regional transplantation rate are maximized together. The authors propose a basic set

partitioning type formulation, where regions are created considering cold ischemia times

by depth search method. Kong et al. (2010) takes the same system into consideration

and utilize the very similar set partitioning perspective as Stahl et al. (2005), while only

maximizing the total intra-regional flow. Their methods of creating regions also differ and

they are based on mixed-integer programming with a branch and price algorithm. Demirci

et al. (2012) combines the two previous studies and uses the objective function of Stahl

et al. (2005) with both efficiency and equity concerns and generate the possible regions

via a branch and price algorithm as Kong et al. (2010) develop. All three of these studies

first determine and then provide alternative regions as an input to their mathematical

formulations; however, we develop mathematical models that find the optimal clusters by

itself using location-allocation approach instead of set partitioning.

Bruni et al. (2006) consider Italy’s organ transplantation logistics, aiming to attain re-

gional equity by minimizing the maximum size of the waiting lists among all regions. They

also aim to minimize the total traveled distance to transplantation hospitals while deciding

the regions and hospital locations. Beliën et al. (2012) study the Belgian case, focusing

on locating transplantation centers for each type of organ, as they consider multiple organ

types. In their mathematical formulation, they minimize the total transportation time

between the organ becomes available and transplantation is done. First, they work with

deterministic travel times; however, they relax this assumption and perform the same anal-

yses with stochastic parameters as well. Smith et al. (2013) also consider both efficiency

and equity by minimizing the population-weighted travel distance and deviation from the

desired travel distance. Different from the other studies, they have levels of transplanta-

tion centers; hence their model incorporates a hierarchical structure. Zahiri et al. have

two studies (2014b, 2014c) on multi period location-allocation of organ transplantation

centers under uncertainty, in which they show computational results for the case of Iran.

While the former study considers single-objective (minimize total cost), the latter aims to

minimize total cost and transplantation time simultaneously. Both studies have multiple

organ types and utilizes multiple transportation modes such as ground or air network. The

common characteristic of all these studies is that they either minimize the total transplan-

tation process time or the travel distance between the donor and the recipient. Besides,

we incorporate an objective function that maximizes the potential weighted intraregional

flow to obtain better clusters in the network.
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One of the most relevant studies to this one is by Gentry et al. (2015). In this study,

the aim is to redistrict the liver allocation system of the USA in a way that the disparity

in liver availability among districts is minimized. In order to achieve this, the authors

develop a binary integer program which minimizes the number of misdirected organs from

the most urgent candidates. Afterwards, they evaluate the optimal districts by using

a discrete-event simulation that is patient oriented. The key performance indicators of

the simulation are the number of misdirected allocations, transportation times, standard

deviation of the urgency scores across the districts and number of waiting list/total deaths.

Even if this study follows a similar modeling approach with ours, it only considers a single

organ type and does not evaluate multiple transportation modes separately, where this

claim is also valid for the majority of the previous studies. We enhance our model by

including two modes (ground and air) since several problems, (plane arrangement issues,

weather conditions etc.), might make the ground transportation the only viable option at

certain times. It also has a different objective than ours and develops the simulation model

considering patients as the main entities, whereas we are more concerned with the organ

deterioration during the process. Hence, the entity of our simulation model is organs, not

patients.

We would like to emphasize that, the main objective of this study is not only finding

optimal clusters for a hierarchical organ transplantation system, but also to observe the

performance of the suggested clusters with respect to the uncertain environment of organ

transplantation with a more realistic representation of the system, using the discrete event

simulation approach. We believe that it is not sufficient to suggest optimal clusters to the

system without a simulation-based performance analysis, and especially without including

hierarchical matching, emergency-related instances or vehicle availabilities. With the help

of this tool, we are able to analyze and evaluate the performance of the suggested locations

and allocations and also model real-life characteristics by including waiting lists and their

dynamics in the problem. Finally, another important contribution of this study is that it

utilizes a real life data set from Turkey while aiming to improve the logistical framework

for organ transplantation for this country.

In order to be able to compare this study with the previous ones in the location-

allocation literature of organ transplantation systems, a summary is included in Table

1.

11



Study Decisions
Modeling
Approach

Focus
Objective

Type
Simulation

Other
Characteristics

Real Life
Dataset

Stahl et al.
(2005)

Defining
regions

Set
partitioning

Efficiency /
Equity

Lowest and
total intra

regional flow
(max)

8 - USA

Kong et
al. (2010)

Defining
regions

Set
partitioning

Efficiency
Intra regional
flow (max)

8 - USA

Demirci et
al. (2012)

Defining
regions

Set
partitioning

Efficiency /
Equity

Lowest and
total intra

regional flow
(max)

8 - USA

Bruni et
al. (2006)

Defining
regions &
Selecting
hospitals

Location -
allocation

Efficiency /
Equity

Travel Distance
to

transplantation
(min)

8 - Italy

Belien et
al. (2012)

Locating
transplantation

centers
p-median Efficiency

Total process
time (min)

8
Multiple organ

types
Belgium

Smith et
al. (2013)

Locating
transplantation

centers

p-median and
max covering

Efficiency /
Equity

Travel distance
and deviation
from distance
goal (min)

8
Multiple levels of

centers
India

Zahiri et
al. (2014c)

Locating
transplantation

centers

Multi period
location -
allocation

Efficiency
Cost and

process time
(min)

8

Multiple organs
and transportation

modes
Iran

Gentry et
al. (2015)

Defining regions
& locating

centers

Location -
allocation

Efficiency
Number of
misdirected
livers (min)

4

(Patient
based)

- USA

This
Study

Defining regions
& locating

centers

Location -
allocation

Efficiency

Potential
weighted

intra regional
flow (max)

4

(Organ
based)

Multiple organs &
transportation

modes
Turkey

Table 1: Comparison of Related Studies in the Literature

4 Proposed Models

In this section, we present two optimization models: a basic model and an extended version

to find optimal clusters for the organ transplantation system. The initial model only focuses

on ground transportation while the latter takes also air transportation into account. In

both of these models, the number of clusters are fixed a priori. The objective of both
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models is to maximize the potential weighted intra-regional flow within the same cluster.

Since the aim of this study is to analyze the effects of clusterings on the potential

matches, the main motivation of the mathematical models is to develop clusters that

maximize the potential of matchings at the first layer. Thus, the mathematical models

do not take the hierarchical matching process into consideration. This means that the

mathematical formulation can only allocate the organs in an intra-regional manner. Since

the supply is quite less than the demand, it is certain that the available organs are matched

with a patient within the same region. In addition to that, the probabilistic events such

as emergency cases, matching probabilities, vehicle availabilities, etc. are very hard to

represent in such formulations. Because of these, the mathematical models cannot capture

the hierarchical structure.

As a result of these points, the best way to represent the hierarchical matching process

is through a simulation model. To achieve the desired outcomes, the outputs of the math-

ematical model (RCC locations, their allocated cities and helicopter assignments for the

extended model option) are used as the inputs of the simulation model. By this way, the

performance of the mathematical model solutions under uncertainty, with detailed system

characteristics such as more than one donation from the same donor, a three-layered hi-

erarchical structure, updated waiting lists for each organ and transplantation center and

emergency case options can be observed. In the following sections, the details of both

models are presented.

4.1 Basic Model: Clustering for Organ Transplantation

In this section, a basic model called Clustering for Organ Transplantation (COT) is intro-

duced which is O(n3) in the number of binary and real valued variables. This model is

studied in order to account for any event that may lead to the inability to use helicopters

or airplanes such as weather conditions, scheduling issues, etc. Therefore, this model only

considers the terrestrial distance between the cities in which the organ is introduced to the

system and transplantation centers. For the managerial purposes, RCCs should be selected

from cities that have at least one transplantation hospital.

Before presenting the model, we introduce the following notation to be used hereafter:

Sets:
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M : set of the potential donor cities.

N : set of cities with transplantation hospitals.

R: set of potential RCC locations.

In real life applications, R ⊆ N ⊆M .

Parameters:

Oi: total number of donated organs in city i ∈M .

Dj: total number of organ demand in city j ∈ N .

bij: terrestrial travel time between cities i ∈M and j ∈ N .

p: total number of RCCs to be located.

T : maximum allowable travel time allowed to carry the organ

from the donor city to the transplantation center.

aij =

{
1 if city i ∈M and j ∈M share a border,

0 otherwise.

Decision Variables:

zk =

{
1 if an RCC is located at k ∈ R,

0 otherwise.

xik =

{
1 if city i ∈M is assigned to the RCC in k ∈ R,

0 otherwise.

ykij =

{
1 if cities i ∈M and j ∈ N are both assigned to RCC k ∈ R,

0 otherwise.

mk
ij = total number potential organ matches between cities i ∈M and j ∈ N in the

region of RCC k ∈ R

ckij = auxiliary variable to control the contiguity; flow from city i ∈M to j ∈ N
in the region of RCC k ∈ R

The COT model can be written as follows:

max
∑
i∈M

∑
j∈N

∑
k∈R

(
1− bij

T

)
·mk

ij (1)

s.t.
∑
k∈R

xik = 1 ∀i ∈M (2)

∑
k∈R

zk = p (3)
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ykij = xik · xjk ∀i ∈M, j ∈ N, k ∈ R (4)

xik ≤ zk ∀i ∈M,k ∈ R (5)

zk ≤ xkk ∀k ∈ R (6)

bijy
k
ij ≤ T ∀i ∈M, j ∈ N, k ∈ R (7)

mk
ij ≤ Oi · ykij ∀i ∈M, j ∈ N, k ∈ R (8)

mk
ij ≤ dj · ykij ∀i ∈M, j ∈ N, k ∈ R (9)

∑
j∈N

ckij · aij −
∑
j∈N

ckji · aij = xik ∀i ∈M\R, k ∈ R (10)

∑
j∈N

ckji · aij ≤ (|M | − 2) · xik ∀i ∈M\R, k ∈ R (11)

∑
j∈N

ckji · aij ≤ (|M | − 1) · xik ∀i ∈ R, k ∈ R (12)

xik, y
k
ij, zk ∈ {0, 1} ∀i ∈M, j ∈ N, k ∈ R (13)

mk
ij, c

k
ij ≥ 0 ∀i ∈M, j ∈ N, k ∈ R (14)

In the objective function (1) the potential weighted intra-regional organ flow is aimed

to be maximized, which will increase the possibility of a match in the earlier stages, hence

decrease the amount of wasted organs. There are two major components of this objective

function; one being the potential flow and the other being the weights of each match. First,

as the organ supply is scarce compared to the demand amount, all donations are allocated

to the recipients in the mathematical model. Therefore, maximizing the exact number of

organ transplantations does not reveal the benefits of the new clustering approaches as

the answer is a constant. Hence, instead the potential intra-regional organ matches are

maximized in the objective function, where a donation is accepted to be a potential match

for each recipient city within the same region. As a result, the same supply amounts are

counted multiple times in the objective value. Second, the quality of an organ in a match

that happens in the same city with travel time 0 is not the same with another one that

happens in T time, since it deteriorates with time. Therefore, a weight is assigned to each

match which is inverse proportional to the the travel distance. The same city matches
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have weight 1, whereas this decreases towards 0 as the travel time approaches to the upper

limit, T .

Constraints (2) ensure that each city is assigned to exactly one RCC. The number of

opened facilities is set to p in Constraint (3). Nonlinear set of constraints (4) define the

possible donor-recipient matches between cities that are both assigned to the same RCC.

Constraints (5) prevent assigning a city to a non-existing RCC. Constraints (6) ensure that

if the city is an RCC, then it is assigned to itself. The maximum allowable time bound

is satisfied via constraints (7). Constraints (8) and (9) define the organ flow between two

cities by taking the minimum of organ supply and demand. The contiguity of the clusters

is guaranteed by constraints (9) - (11). These set of constraints are taken from Shirabe

(2009), which are constructed using a network flow based approach. They make sure that

the flow occurs between the cities that are adjacent to each other by utilizing the aij

parameter and the collection of cities that have a flow between is a continuous cluster.

Finally, the last two constraints define the domain of the decision variables.

Since constraints (4) are nonlinear, they can be linearized by the following constraints

(15) and (16), leading to the final mixed integer linear programming formulation.

ykij ≤
xik + xjk

2
∀i ∈M, j ∈ N, k ∈ R (15)

ykij ≥ xik + xjk − 1 ∀i ∈M, j ∈ N, k ∈ R (16)

4.2 Extended Model:
Clustering for Organ Transplantation with Helicopters

In Clustering for Organ Transplantation with Helicopters (COT-H), air transport avail-

ability is integrated to the COT model. There are three additional parameters and two

decision variables that are introduced to the updated model.

Additional Variables:

hcj =

{
1 if a city j ∈ N has a helicopter,

0 otherwise.

lkij: auxiliary variable that represents the multiplication of mk
ij and hcj

Additional Parameters:
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uij: air travel time between cities i ∈M and j ∈ N .

h: total number of helicopters available.

BN : a sufficiently big number.

Then, the mathematical model of COT-h becomes as follows:

max
∑
i∈M

∑
j∈N

∑
k∈R

(
1− bij

T

)
·mk

ij +
(

1− uij
T

)
· lkij −

(
1− bij

T

)
· lkij (17)

s.t. (2), (3), (5), (6), (8), (9), (10), (11),

(12), (13), (14), (15), (16)∑
j∈N

hcj = h (18)

(bijy
k
ij)− ((bij − uij)hcj) ≤ T ∀i ∈M, j ∈ N, k ∈ R (19)

lkij = mk
ij · hcj ∀i ∈M, j ∈ N, k ∈ R (20)

hcj ∈ {0, 1} ∀j ∈ N (21)

The objective function (17) slightly changes in this model even if it has the exact same

idea behind it. While assigning the weights to the matchs, the travel time of the specific

transportation mode has to be selected. If the organ is transported via ground network, lij

gets the value 0, thus the objective function considers the terrestrial travel times. On the

other hand, when there is a organ transfer by a helicopter, first and third terms cancel each

other out and the air travel times are taken into account while calculating the weights.

The additional constraint (18) fixes the total number of helicopters to h. Instead of

constraint set (7) that bounds the travel time in a cluster, constraint set (19) is used. When

a city does not have a helicopter, the formulation becomes the same as constraint set (7).

On the other hand, when there exists a helicopter in the city, terrestrial travel times cancel

each other out and air travel times determine the actual travel time. Nonlinear constraints

(20) defines the lkij variable and sets it to the organ flow if there is a helicopter at city j or

to 0 if there is not. Finally, constraints (21) determine the binary variable restrictions.

As constraints (20) are nonlinear, they are required to be linearized. Instead of them,

the following three constraints (22) - (24) can be used and the final version of the COT-H

model can be obtained.
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lkij ≤ hcj ·BN ∀i ∈M, j ∈ N, k ∈ R (22)

lkij ≤ mk
ij ∀i ∈M, j ∈ N, k ∈ R (23)

lkij ≥ mk
ij − ((1− hcj) ·BN) ∀i ∈M, j ∈ N, k ∈ R (24)

4.3 Simulation Model

The aim of the simulation model is to observe the performance of the mathematical model

by portraying the real life characteristics of the problem such as hierarchical matchings,

vehicle availabilities and emergency instances. The essential elements of this model are

donors, types of donated organs, matching process and transporting the donated organ

with alternative vehicles. This gives us the opportunity to translate the mathematical

model’s outputs into real life situations, thus providing a better basis for the evaluation of

its results. Since the simulation model consists of a complex and large model structure, a

simplified version of it is provided in Figure 3.

Figure 3: High-Level Illustration of the Simulation Model

The process starts when a donor emerges. It is assumed that a donor can donate one,

two or all of the following organs: kidneys, liver and heart. Then, the donor city is assigned
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using an empirical distribution. If there is an emergency patient in the system, then the

organ is sent to that recipient without consideration of the patient’s location or rank in

the waiting lists. This is usually done through air transportation to minimize time.

For non-emergency cases the destination of the organ, i.e., the candidate recipient’s city,

is defined hierarchically. To do this, initially, the probability that there is a suitable recipi-

ent in the donor’s city is determined. This is obtained via the probability 1−(1−x/100)Ni ,

where x/100 the probability that any particular donor is immunologically compatible with

any particular recipient, and Ni is the number of people waiting for a transplant in city i.

In this case, the organ is directly sent to the recipient’s hospital and transportation time

is omitted. If a match cannot be found within the same city, the RCC of the donor’s city

begins to search for a candidate recipient from the list of hospitals that are assigned to it.

In this step, the first-ranked city on the RCC waiting list (for the donated organ type) can

be matched with the donor city using the same probability, i.e., 1− (1− x/100)Ni . If the

first-ranked city is not matched with the donor city, the search continues in the order of

the cities in the waiting list. If the donor and recipient cities can be matched in the same

RCC, then the selected city is moved to the end of the list and the transportation phase

begins. If the corresponding RCC cannot find a match in its region, the NCC looks for a

candidate recipient from the list of RCCs in a similar hierarchical manner.

After the organ is matched to a recipient, it can be transported via several options. If a

helicopter is available in the donor city, then the organ is transported by air. Otherwise, if

the distance between two cities is less than the organ’s maximum allowable travel time, the

organ is transferred by using ground network. Another option is that a commercial airplane

can transport the organ if there is airline transfer between the two cities. Rarely, none of

the transportation options can be used, which results in a search for a new recipient, using

the same hierarchy.

Key performance indicators of the simulation model are determined to be the percentage

of successful transplantations within the same RCC (first level of the hierarchy), organ

travel times, number of disposed organs and number of trips done by cars, helicopters and

airplanes, which will be discussed in the computational analysis section.
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5 Computational Results

In this section, we present the numerical results of the mathematical and simulation

models using a real life data set of Turkey, which is available at www.ie.bilkent.edu.tr/

∼bkara. First, we start with explaining the steps of data collection in the following section.

5.1 Data

There are 81 cities in Turkey and as they all host potential donors, they are all considered

as donor cities. The recipients are the set of cities where transplantation operations can

be conducted. As the number of transplantation centers is limited; there are only 20

candidates for recipient cities. The details of these centers are presented in Table 2.

Kidney Transplantation Centers

City Number of Centers

Adana 2
Ankara 10
Antalya 2
Bursa 1
Denizli 1
Edirne 1

Erzurum 1
Eskişehir 1
Gaziantep 2
Istanbul 21

Izmir 7
Kahramanmaraş 1

Kayseri 1
Kocaeli 2
Konya 2

Malatya 1
Mersin 1
Samsun 1
Trabzon 1

Liver Transplantation Centers

City Number of Centers

Adana 5
Ankara 10
Antalya 3
Bursa 1

Diyarbakır 1
Erzurum 1
Istanbul 9

Izmir 3
Samsun 1

Heart Transplantation Centers

City Number of Centers

Adana 1
Ankara 6
Antalya 1
Istanbul 4

Izmir 2

Table 2: Transplantation Centers for Organ Types

The data for ground travel time between two cities is taken from Turkey’s General

Directorate of Highways. Since Turkey is not a geographically large country when flight
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times are considered, we accepted the travel time between Ankara and Istanbul as an basis

while determining helicopter flight duration between two cities. The terrestrial travel time

between Ankara and Istanbul is approximately 4.5 hours and helicopter travel time is 1.5;

therefore, flight times between two cities are assumed to be one-third of the terrestrial

travel times for the remaining pairs.

The cold ischemia time of heart, liver and kidney are 5, 12 and 18 hours, respectively.

According to the expertise and experience, the organ removal and implantation surgery

times are determined as detailed in Table 3. When these durations are subtracted from

the ischemia times of corresponding organs, approximate transportation time for a heart

is found to be 220 minutes, whereas it is 405 minutes for a liver and 570 minutes for a

kidney (Dr. Kahveci, 2012).

Organ
Ischemia

time
(hours)

Organ
removal

surgery time
(mins)

Organ
implantation
surgery time

(mins)

Average
transportation

time (mins)

Heart 5 10 70 220
Liver 12 45 270 405

Kidney 18 60 450 570

Table 3: Cold Ischemia Time for Heart, Liver and Kidneys

In the mathematical model, number of donated organs at each city and number of

recipients on the waiting lists of each transplantation center is required to be able to

determine the organ flow. We estimated the number of potential organ donations from

cadavers for each city by utilizing the data retrieved from governmental database (Republic

of Turkey Ministry of Health, 2012) and using the ratio of donations from cadavers in 2011

per 10,000 people for each RCC. We obtained the total donor ratio for each RCC by using

the information on the total number of organ donations from cadavers and living donors

in 2011.

To estimate the total number of recipients for each transplantation center, we assumed

that the number of patients in each organ transplantation hospital is similar and we scaled

the data for the total number of successful organ transplantation ratios for each RCC to

19,403 patients (the number waiting for a transplant in 2011) Then, we scaled the total

number of hospitals that can perform organ transplantation in that city to the number
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of patients in the respective RCC. This gave us the approximate number of patients on a

waiting list per city.

In the simulation model, the inter-arrival time of the donors is defined by exponential

distribution with the mean of 2.01, considering the total number of donors in the previous

year. Since the system does not track the number of patients and donors, we must omit

seasonality effects on these values. A donor city is assigned to the arriving organ with an

empirical distribution; by setting the probability to be the ratio of potential number of

donors in that city to the total donation amount. The percentage of each type of donated

organ in standard and emergency cases in 2011 are given in Figure 4. We assume that all

cities have the same matching probability of 15%, a number that is obtained by determining

the average of Turkey’s match ratio, that is between 10% and 20% (Aksiyon, 2012). The

travel times of the planes that are utilized in the simulation model are calculated by

considering the average flight times between the cities. If a direct flight is not available

between a pair of cities, then the related waiting times at the transfer airport are also

considered in the data preparation process.

Figure 4: Percentages of Donated Organs and Emergent Cases in the System

5.2 Results of Mathematical Models

The mathematical models were solved by using IBM ILOG Cplex Optimization Studio

v12.5. The results consist of three main parts. In the first section, the minimum number

of required RCCs is determined for each organ. Afterwards, the number of facilities is

fixed to these numbers and the minimum travel times are calculated. In the last section,

air transportation is introduced to the mathematical model and the minimum number of
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helicopters required for each organ is found. Each of these analyses, aims to maximize the

potential weighted matching amounts at the regional level. The dashes in the following

tables denote the settings those components are not considered.

In the model, maximum allowable travel time is determined between each transplan-

tation center and all the cities in a cluster. The model arbitrarily selects one of the cities

with a transplantation center as the RCC. Thus, within each cluster, RCC locations can

be changed without affecting optimality. Not all the cities are assigned to their nearest

RCCs, which arises mainly because the potential weighted intra-cluster flows are maxi-

mized. In the COT-H model, the helicopters can be assigned to candidate RCC locations

as the medical team responsible for harvesting the donated organs are only available at

these points.

Since the maximum allowable travel time differs for each organ type, optimization model

is run for T = 220 minutes (heart), T = 405 minutes (liver) and T = 570 minutes (kidney)

to find the minimum number of required RCCs. First the current system is evaluated with

the mathematical model, whose RCC locations and allocations can be found in Figure 1.

Currently, there are 9 RCCs and the minimum of the maximum time bound between each

donor and recipient city is 481 minutes. Thus, the current clusters cannot satisfy heart’s

and liver’s maximum allowable travel time bounds by only road transportation. It should

also be noted here that some of the clusters in the current system are not contiguous; hence

the related constraints are not included in the analysis of this setting.

As seen in Table 4, Turkey cannot be clustered in a way that the maximum allowable

travel time of heart is met in every matching pair; therefore the respective model turns

out to be infeasible. On the other hand, the minimum number of RCCs required for liver

and kidney are 6 and 4, respectively. After obtaining these data, the number of RCCs is

fixed to the corresponding p values; namely 6 for T = 405 (Instance 2) and 4 for T = 570

(Instance 3) and the original mathematical model is run to maximize potential weighted

intra-regional organ flow in the system. Outcomes of these instances can be found below

on Table 4.

Next, the travel time bounds are minimized while keeping the number of clusters fixed

at the values that are obtained in Table 4. Since there is no feasible solution for T =

220 (heart), the minimum possible T value is determined without any restrictions on the

number of RCCs. It is found out that the minimum of longest allowable travel time is

314 minutes which can be achieved with at least 8 RCCs. The illustration of this instance
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Organ Type
Travel Time Bound (T)

Fixed Number of RCC’s (p)
Minimum Number of RCC’s (p)

Objective Value

Current Case 1

-
481
9
-

90,427.27

Instance 1 Instance 2 Instance 3

Heart Liver Kidney
220 405 570

- - -
infeasible 6 4
infeasible 116,153.21 207,758.84

Table 4: Minimum Number of RCC’s Required

can be seen in Figure 5. This analysis is conducted to guide the decision makers to open

new heart transplantation centers in the future as this organ cannot be transported in the

whole country with ground network.

Figure 5: COT for p = 8 and Allowable Transportation Time T = 314 minutes

For the remaining two cases, when the number of RCCs are fixed at 6 and 4, it is

observed that the travel time bounds can be decreased to 374 and 537 minutes from 405

and 570 minutes, respectively. The objective values of these instances are quite similar to

the original time bounds of liver and kidney, which indicates that the travel times can be

decreased with the same number of RCCs while maintaining the weighted intra-regional

flow at the same level. These results can be seen in Table 5.

Fixed Number of RCC’s (p)
Minimum Travel Time (T)

Objective Value

Current Case 1

9
481

90,427.27

Instance 4 Instance 5 Instance 6

8 6 4
314 374 537

87,570.55 104,086.59 191,793.25

Table 5: Minimum Travel Times

In the next step, as heart’s travel time bound cannot be met, air transportation is
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introduced to the original model. Two different approaches are utilized in this section.

There are 5 cities in Turkey (Adana, Ankara, Antalya, İstanbul, İzmir) with heart trans-

plantation centers; however, none of these are located in the eastern region of the country.

Since this region is quite large, T = 220 minutes bound cannot be satisfied due to the lack

of facilities in this area. This issue can be overcame by selecting one RCC from a candidate

set of eastern cities (Diyarbakir, Erzurum, Gaziantep and Malatya) that maximizes the

objective function alongside to the aforementioned 5 RCCs with heart transplantation cen-

ters. Alternatively, these 5 RCC’s can again be fixed and 3 more locations can be selected

from the remaining 15 candidate RCC locations.

Initially, minimum number of required helicopters for these approaches are found as

11 and 5, respectively. On the other hand, when the current structure is analyzed, it is

observed that T = 220 (heart) minutes bound can be met with at least 14 helicopters. This

indicates that a more structured clustering approach can use less RCCs and helicopters to

satisfy heart travel time and decrease the operational costs, even though monetary aspect

of the network is not investigated in this study.

Since the matchings can be performed for liver and kidney cases in the proposed cases

via ground network, helicopters are actually not required. In order to perform analyses on

these settings, the number of RCCs is decreased by one and this resulted in the necessity

of a single helicopter for the liver and 3 extra helicopters for the kidney case. Next, these

numbers are fixed and the original model is run to obtain the maximum potential weighted

intra-regional organ flow. A comparison of the objective values of current and proposed

systems reveals that better clusters that have higher objective values can be obtained with

less RCCs. The results of these models can be found in Table 6.

Organ Type
Travel Time Bound (T)

Fixed Number of RCC’s (p)
Minimum Number of Helicopters (h)

Objective Value

Current Case 2

Heart
220
9
14

5,826.02

Instance 7 Instance 8 Instance 9 Instance 10

Heart Heart Liver Kidney
220 220 405 570
6 8 5 3
11 5 1 3

7,484.24 6,362.54 7,886.79 12,399.88

Table 6: Minimum Number of Helicopters

As a single location-allocation structure can be implemented through the network,

performance of the each cluster for different organ types is also analyzed. In the cases

where only ground transportation is allowed, it is indicated that no clustering structure
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can satisfy the heart transportation time bound (T = 220). The closest time bound

T = 314 minutes obviously satisfies the liver and kidney bounds too. When the clusters

within liver time bound (T = 405 minutes) are analyzed, it is observed that out of 6

clusters, one of them satisfies the T = 314 bound. For the 4 clusters within kidney time

bound (T = 570 minutes), one of them satisfy T = 405 minutes time bound whereas none

is within T = 314 minutes bound.

In the cases where both road and air transportation are allowed, clearly both clusterings

for T = 220 minutes satisfy liver and kidney time bounds. In the liver setting, one of the 5

clusters can meet heart time bound. Out of 3 clusters formed for kidney time bound, none

is within heart and only one is within liver time bounds. The summary of these analyses

can be found in Tables 7 and 8, and decision makers can evaluate these results in order

to select the best clustering for the organ transplantation logistics network of the entire

country.

Cluster
Structure

Instance 4 (T=314)
Instance 2 (T=405)
Instance 3 (T=570)

Number
of Clusters

8
6
4

Number of Clusters Satisfied within T
Instance 4 Instance 2 Instance 3

- 8 8
1 - 6
0 1 -

Table 7: Number of Clusters Satisfied in Different T Values, Road Transportation

Cluster
Structure

Instance 7 (T=220)
Instance 8 (T=220)
Instance 9 (T=405)
Instance 10 (T=570)

Number
of Clusters

6
8
5
3

Number of Clusters Satisfied within T
Instance 7 Instance 8 Instance 9 Instance 10

- 6 6 6
8 - 8 8
1 1 - 5
0 0 1 -

Table 8: Number of Clusters Satisfied in Different T Values, Road and Air Transportation

After analyzing the mathematical model results, we now compare the current system

and proposed solutions utilizing the simulation model.

5.3 Results of Simulation Model

We used Arena Simulation Software 13.5 to model the processes described in Section 4.3.

In the simulations, run length is set to 365 days and replication length is fitted to 50
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to achieve a sufficiently large sample size for valid statistics which stay within the 95%

confidence interval. The average values of the performance measures with their half widths

are given in the following tables.

In Table 9, the outcomes of the simulation model that only considers ground trans-

portation are given. The current system with T = 481 minutes and 9 RCCs results in

89.37% matching rate at the first level of the hierarchy. Even if the average total organ

output is approximately the same for all models, this match percentage increases to 93.38%

when there are 8 RCCs with T = 314 minutes bound. For the other two proposed clus-

ters, matching at the first level further increase to 96.95% for liver and 97.45% for kidney

settings. Another improvement observed in the proposed systems is the decrease in the

average number of plane trips, which indicates that the new clusters are not as much de-

pendent to the commercial flights as it is in the current system. This is an indirect benefit

that will be gained since these flights are not in control of the organ transplantation system

and fewer number of plane trips is desirable. From the results, it can also be concluded

that when there are less RCCs, average organ travel time increases due to larger regional

boundaries.

Organ Type
Number of RCC’s (p)

Travel Time Bound (T)

Average Organ Travel Time
Half Width

Average Total Organ Output
Half Width

Average Matching in First Layer
Half Width

Percentage of Matching in First Layer (%)
Average Number of Disposed Organ

Half Width

Average Number of Plane Trips
Half Width

Current Case 1

-
9

481

89.9
0.45
4,082
20.54
3,648
19.91
89.37
1.80
0.24

99
3.39

Instance 4 Instance 2 Instance 3

- Liver Kidney
8 6 4

314 405 570

95.43 105.72 135.24
0.68 0.51 0.76

4,081.92 4,082.08 4,083.62
20.27 19.78 20.18

3,811.42 3,921.20 3,979.26
19.65 18.98 19.68
93.38 96.95 97.45
0.26 0.22 0.00
0.14 0.13 0.00

68.64 48.06 61.24
2.44 2.05 2.25

Table 9: Simulation Model Results without Helicopters

In Table 10, the results of the simulation models of current and proposed systems

are compared while considering both air and ground transportation options. The current

system with 9 RCCs and 14 helicopters provides 89.07% matching rate within the same

RCCs for heart; however, this percentage can be increased to 96.27% with 6 RCCs and
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11 helicopters and 93.46% with 8 RCCs and 5 helicopters. When the three settings for

this organ are compared, it can be seen that both of the proposed solutions require fewer

helicopters. It is observed that even if the number of helicopters is decreased by only 3

in the first system, there are 45% less trips on average. This indicates that the ground

network of the proposed systems are established better and the current network greatly

depends on helicopter transportation. On the other hand, dependence on the air network

decreases in the proposed systems, which is a desired outcome, since helicopters may be

unavailable at times due to various reasons. Another observation made is that the average

number of disposed organs decrease in the proposed networks compared to the current

one. Finally, as it is expected, the average organ travel time increases slightly when the

air transportation option is used less frequently in the proposed systems.

For the liver case, when the number of RCCs is decreased from 6 to 5 and 1 helicopter

is introduced to the system, it is observed that the intra-regional matching percentage

decreases from 96.95% to 91.45%. Similarly, for the kidney case when there exists one less

RCC in the system and 2 extra helicopters, this rate decreases from 97.45% to 91.09%. In

both situations, even number of helicopter trips are increased compared to the heart cases,

the average organ travel times are higher since there are less RCCs and the clusters have

larger boundaries. The details of the results of all systems can be found in Table 10.

Organ Type
Number of RCC’s (p)

Number of Available Helicopters (h)
Travel Time Bound (T)

Average Organ Travel Time
Half Width

Average Total Organ Output
Half Width

Average Matching in First Layer
Half Width

Percentage of Matching in First Layer (%)
Average Number of Disposed Organ

Half Width

Average Number of Helicopter Trips
Half Width

Average Number of Plane Trips
Half Width

Current Case 2

Heart
9
14
220

78.53
0.5

4091
19.53
3644
17.91
89.07
12.84
0.78

415
6.7
52

2.34

Instance 7 Instance 8 Instance 9 Instance 10

Heart Heart Liver Kidney
6 8 5 3
11 5 1 3
220 220 405 570

97.58 107.92 129.88 144.16
0.74 0.70 0.78 0.81

4081.68 4083.26 4090.12 4097.78
21.22 20.27 18.94 19.13

3929.34 3816.16 3740.50 3732.60
20.46 18.77 18.77 17.31
96.27 93.46 91.45 91.09
6.76 8.84 0.02 0.02
0.78 0.95 0.04 0.04

226.38 26.34 7.36 92.12
5.01 1.96 0.78 3.38
49.40 80.84 147.16 126.04
1.87 2.41 3.68 3.26

Table 10: Simulation Model Results with Helicopters
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6 Model Variations to Account for Different Organ

Types

Up until now, different clusters with varying number of RCCs are proposed for each organ

type. However, it can be said that locating different RCCs in a single network depending

on the organ type is practically not that much applicable. Instead of this approach, it could

be aimed to develop a mathematical model which considers maximizing the potential flow

of all organ types simultaneously.

In the COT model, intra-regional flow is handled as a whole and independent from the

organ type. As a result, it is observed that kidney time bound can be satisfied with 4

RCCs mentioned as in the previous section. However, there a few clusters, the regions are

quite wider than usual and this decreases the applicability and effectiveness of the network

in terms of liver and heart flows. On the other hand, when the current case is analyzed, it

is found out that even with 9 RCCs, liver and heart time bounds are not satisfied in some

regions of the country. Therefore, it is required to come up with a network that has enough

number of clusters with acceptable widths and satisfies all organs’ travel time bounds as

much as possible.

At this point, the minimum maximum allowable travel time bound for road trans-

portation, that is 314 minutes, is taken into consideration and it is known that the best

clustering can be obtained with 8 RCCs for this bound. Therefore it is decided to locate

8 RCCs in this network. The aim of this extension is to make sure each possible matching

satisfies the kidney travel time bound (T = 570min) and increase the flow of all organ

types simultaneously.

6.1 Mathematical Model

In this sub-section, the extended model that is called Clustering for Organ Transplanta-

tion Extension (COT-E) is introduced. In addition to the sets, parameters and decision

variables of the COT model, some new items are introduced to the system.

Additional Set:

S: set of the organs (1=heart, 2=liver, 3=kidney)

Additional Parameters:

α: maximum percentage of supply that can be allocated to an RCC.
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β: minimum percentage of supply that can be allocated to an RCC.

Ts: maximum allowable travel time of organ s ∈ S.

f s
ij: amount of flow between cities i ∈M and j ∈ N for organ s ∈ S. (which

can be defined as minimum of supply and demand of cities)

Additional Variable:

wks
ij =


1 if cities i ∈M and j ∈ N are both assigned to RCC k ∈ R and within

the travel time of organ s ∈ S,

0 otherwise.

The mathematical formulation can be written as follows:

max
∑
i∈M

∑
j∈N

∑
k∈R

∑
s∈S

(
1− bij

Ts

)
· f s

ij · wks
ij (25)

s.t. (2), (3), (5), (6), (7), (10), (12), (13)

bijy
k
ij ≤ Ts′ − (Ts′ − Ts) · wks

ij ∀i ∈M, j ∈ N, k ∈ R, s ∈ S, s′ ∈ S : s′ > s (26)

wks
ij ≤ ykij ∀i ∈M, j ∈ N, k ∈ R, s ∈ S (27)

∑
i∈M

Oi · xik ≤ α ·
∑
i∈M

Oi ∀k ∈ R (28)

∑
i∈M

Oi · xik ≥ β ·
∑
i∈M

Oi · zk ∀k ∈ R (29)

wks
ij ∈ {0, 1} ∀i ∈M, j ∈ N, k ∈ R, s ∈ S (30)

In the objective function (25) the potential weighted flow between each alternative pair

is maximized. This time, the weight is determined specifically for each organ by using the

Ts parameter. In order to determine which matchings satisfy which organ’s time bound,

constraints (26) are developed. Here, if a matching in an RCC satisfies organ s’s time

bound, then the Ts′ values, which are the time bounds of organs that have larger T values,

cancel each other. Otherwise, the second term of the right hand side drops, and all of the

matchings are forced to satisfy the largest time bound. In constraints (27), the decision

variable w is forced to 0 if two cities are not assigned to the same RCC.

In the preliminary testings of this model, it is observed that the number of cities in a

cluster can be either too much or too few. To be able to obtain more balanced solutions,

the supply amount allocated to each cluster is is limited with an upper bound α and a
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lower bound β percentage via constraints (28) and (29). This approach is more suitable

than limiting the number of cities in a cluster because organ donation amounts hugely

vary between the cities and they cannot be treated equally. Finally the domain of the new

variable is defined in (30).

6.2 Computational Results

The sets of donor cities, recipient cities and alternative RCC locations are determined as

they were in the COT model. Similarly, the supply and demand amounts and the terrestrial

travel times take the same values as before. Ts values are also defined in the same way, but

instead of changing the T value for each run, an organ index is added to the parameter.

The indexes 1, 2, 3 represent heart, liver and kidney; therefore, T1 is set to 220, T2 to 405

and T3 to 570 minutes. As it is mentioned before, parameter p is set to 8.

While determining the α and β values, an analysis is developed. It is observed that

without any limitations, generally the COT-E model forms one cluster which contains

approximately 70% of the total supply, while some of the others are left with 1 or 2 small

cities which generate the 0.1% of the overall supply amount. The initial α value is accepted

as 45% and it is decreased to 40% and 35%, systematically. The 3 largest cities in Turkey;

Istanbul, Izmir and Ankara, contain the 31% of the overall supply. Hence, it is decided

that decreasing α value further would result in excessive limitation on the problem and

also might cause infeasibilities. Similarly for the β parameter, initial value is taken as 1%

to get rid of the solutions with clusters containing 0.1% of the total supply. Then this value

is increased to 2% and 3%, methodically. Larger β values are not investigated furthermore

in order not to highly limit the solution pool.

In the computational studies stage, first the original COT model is run with the ex-

plained α and β bounds to determine the base cases for each iteration. In this model,

potential weighted intra-regional kidney flow is maximized and according to the network,

all three organ types’ flow amounts are recorded. Then, COT-E model is run with the same

α and β combinations and the potential weighted flow of each organ type is maximized in

the objective function. The results of both models are compared and in Tables 11 and 12.

In Table 11, the potential flow amounts for each organ type are given for COT and COT-E

models, whereas in Table 12, the changes in potential flows that are obtained with COT-E

model are shown in percentages.

All of the instances are run with a time limit of 3 hours using IBM ILOG Cplex
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Heart Liver Kidney

COT COT-E COT COT-E COT COT-E

α=45%

β=1% 147,797 156,215 275,526 285,486 298,766 290,742
β=2% 151,940 154,549 247,503 251,765 288,539 283,956
β=3% 127,209 140,779 228,742 237,010 258,914 253,608

α=40%

β=1% 143,658 150,368 259,575 262,407 285,953 279,643
β=2% 138,907 149,999 248,386 256,308 283,368 276,800
β=3% 132,448 141,290 232,654 241,894 252,388 246,484

α=35%

β=1% 144,219 147,343 230,707 238,834 248,549 247,949
β=2% 122,321 129,668 202,568 214,622 230,378 224,493
β=3% 127,539 131,586 216,016 218,378 238,174 229,749

Table 11: Potential Organ Flows Obtained with COT and COT-E Models

Optimization Studio v12.5. According to the results of both models, it is observed that

kidney flow in the base models is 2.17% greater on average compared to the extended one.

This was expected as the base model maximizes only the overall kidney flow. On the other

hand, when the extended model considers heart and liver flows in addition, it is observed

that there are improvements in the flow of these two organs. For instance when the case

α = 40% and β = 2% is examined, the kidney flow decreases around 2.3%, while the

heart flow increases approximately 8% and liver flow increases about 3.2%. The remaining

instances also demonstrate a very similar structure; significant growths can be obtained in

heart and liver flows, while the decreases in kidney flow always remain relatively smaller

and at the same level. These results indicate that the COT-E model serves better than the

COT model for the individual organ types. The clustering of the α = 40% and β = 2%

instance is illustrated on a map on Figure 6 as an example.

7 Conclusions

This study analyzes the organ transportation logistics in hierarchical systems. It is ob-

served that the clustering structure plays a critical role in the matching processes within

the hierarchy. Therefore, we have proposed clustering based models with alternative trans-

portation options to find the optimal clusters for organ transplantation networks. Addi-

tionally, we developed a simulation model to analyze the outputs of the deterministic model

in an uncertain environment which represents the real life characteristics of hierarchical
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Heart Liver Kidney

α=45%

β=1% 5.69% 3.61% -2.68%
β=2% 1.72% 1.72% -1.59%
β=3% 10.67% 3.61% -2.05%

α=40%

β=1% 4.67% 1.09% -2.21%
β=2% 7.98% 3.19% -2.31%
β=3% 6.67% 3.97% -2.34%

α=35%

β=1% 2.17% 3.52% -0.24%
β=2% 6.01% 5.95% -2.55%
β=3% 3.17% 1.09% -3.54%

Table 12: Change Observed in the Flows in COT-E from COT (%)

Figure 6: COT-E for p = 8, α = 40% and β = 2%

systems. We tested the models’ performances by using data set of Turkey.

Our analysis reveals that when the number of RCCs is fixed to 8 in the COT, the

maximum travel time from the donor city to the recipient city turns out to be 314 minutes

(Figure 5), which satisfies the time bounds for liver (405 minutes) and kidney (570 minutes)

transplantations. Since the objective of the model is to maximize the total potential organ

flow within the regions, the model allocates each city to the RCC whose region maximizes

the potential organ flow even if this RCC is not the closest one.

In order to satisfy the time bound of the heart, ground and air transportation must be

used together. The current system utilizes 14 helicopters with 9 RCCs, where the proposed

solution with 8 RCC regions requires only 5 helicopters. When the number of the RCCs

is fixed (p = 8), transportation times can be decreased by more than 2.5 hours with the

proposed solution. Moreover, the objective function value representing potential weighted

intra-regional flow increases with a lower T value.
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With the current system, neither liver nor heart transplantations can be performed

without air transportation. The proposed solution enables the transportation of livers by

terrestrial methods, not only with 8 RCCs but also with 6. For kidney transportation, the

required number of RCC regions is 4. It is observed that decreasing the number of RCCs

increases the number of matches at the same RCC due to the increase in the number of

potential donors in the region. When an organ is matched with a recipient from the same

RCC, the proposed systems perform better than the current system for all organ types. In

the proposed system, the usage of airborne transportation methods is much lower than in

the current system; specifically helicopter usage is approximately 16 times lower.

In the extension, all organs are treated as equally important and it is observed that

this increases the overall balance of the network in terms of obtaining higher heart and

liver flows while decreasing the kidney flow by a small amount. The average of 9 instances

reveals a 5.4% increase in heart and 3.1% increase in liver flows, whereas a 2.1% decrease

in kidney flow.

In this study, we have greatly improved Turkey’s organ transplantation system. One

of the main contributions of this study is to highlight the logistical issues in organ trans-

plantation and guide the decision makers while optimizing these systems. We not only

have found optimal clusters for the hierarchical systems, but we have also measured the

performance of the deterministically grounded model in an uncertain, more-complex prob-

lem with a discrete event simulation model. Our methods improve system performance

by maximizing potential weighted intra-regional flow and highlighting critical cities that

define the average transportation time bounds in a cluster. Moreover, by decreasing the

transportation time from the donor city to the recipient city, we increase the time available

for surgery, which indirectly improves surgery performance, thus increasing the likelihood

of a successful transplantation. We hope that this study can be expanded to other countries

using a hierarchical organ transplantation system to find optimal clusters that maximize

potential intra-regional flow.
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