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a b s t r a c t 

This work aims at investigating multi-criteria modeling frameworks for discrete stochastic facility loca- 

tion problems with single sourcing. We assume that demand is stochastic and also that a service level is 

imposed. This situation is modeled using a set of probabilistic constraints. We also consider a minimum 

throughput at the facilities to justify opening them. We investigate two paradigms in terms of multi- 

criteria optimization: vectorial optimization and goal programming. Additionally, we discuss the joint use 

of objective functions that are relevant in the context of some humanitarian logistics problems. We ap- 

ply the general modeling frameworks proposed to the so-called stochastic shelter site location problem. 

This is a problem emerging in the context of preventive disaster management. We test the models pro- 

posed using two real benchmark data sets. The results show that considering uncertainty and multiple 

objectives in the type of facility location problems investigated leads to solutions that may better support 

decision making. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

A facility location problem consists of deciding where to locate

ne or several facilities in order to serve a set of demand points.

ften, the goal is to minimize the total cost that includes estab-

ishing the facilities and supplying the demand. In a discrete set-

ing there is a finite set of potential locations for the facilities; in

he single-source variant of the problem, all the demand of a cus-

omer must be supplied from a single facility. The reader can refer

o the book chapter by [20] for a synthesis of the most relevant

ork done on fixed-charge facility location problems that includes

he single-source capacitated facility location problem as a partic-

lar case. 

In this paper we investigate the single-source extension of the

roblem that emerges when (i) facilities are capacitated, (ii) de-

ands are stochastic, and (iii) multiple objectives are to be jointly
onsidered. 

� This manuscript was processed by Associate Editor Dr. Joseph Geunes. 
∗ Corresponding author. 

E-mail address: bkara@bilkent.edu.tr (B.Y. Kara). 
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Two well-known paradigms in multi-criteria optimization will

e considered: vectorial optimization and goal programming. Con-

erning stochasticity, we assume that it can be captured mathe-

atically via a set of probabilistic constraints. 

In addition to proposing different modeling frameworks for a

eneral problem, we investigate the relevance of such develop-

ents by applying the new models to a case study in the context

f the so-called shelter site location problem, which is a problem

merging in the context of preventive disaster management. In this

ase, typically, a weight can be assigned to each facility with larger

eights indicating larger suitability of the facilities according to

heir purpose. The specific objectives considered in the case study

re the maximization of the minimum weight among the selected

acilities; the maximization of the average weight among the se-

ected facilities; the minimization of the average distance traveled

y the customers to reach their assigned facility. The first objective

ay not appear as natural/intuitive as the other two. However, its

elevance is justified by applications in which a focus is put on the

east advantaged populations/customers. In such cases, the maxi-

ization of their “benefit” is a way for achieving a more “fair” sys-

em. We deepen this discussion in Section 4 when introducing the

ase study. 

https://doi.org/10.1016/j.omega.2018.02.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/omega
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Single-source (capacitated) facility location problems have been

studied for many years; in fact, many references can be found such

as those by [5,12,16,22,27,37] , just to name a few. A common aspect

to all these works is the use of a cost-oriented objective function—

to be minimized. Furthermore, demand is deterministic, i.e, it is

known in advance and it is not subject to any sort of uncertainty. 

The relevance of developing optimization models and solution

techniques in the context of facility location under uncertain de-

mand has been widely recognized by the scientific community.

This is attested by the literature covering that aspect which, in

turn, has encouraged new research directions to be explored. For

additional information the reader can refer to [11] and to the refer-

ences therein. In the particular case of problems with single sourc-

ing, we refer to the works by [2,3] , who study the so-called facility

location problem with Bernoulli demands. This is a single-source

capacitated facility location problem with unit-demand customers

and uncertainty in demand. The objective is to minimize the to-

tal (expected) cost, which includes the setup cost for the facilities

plus the expected service and outsourcing cost (outsourcing occurs

when the installed capacity is not enough for handling the occur-

ring demand). Bieniek [7] worked on the same setting but con-

sidering other probability distributions for the demand. In these

works, the problems were formulated mathematically using a two

stage stochastic programming modeling framework. 

A different type of approach was proposed by [28] . In this case,

the demand of a customer is measured in terms of the quantity of

a commodity to be delivered. Again, the goal is to minimize the to-

tal cost for establishing the facilities and supplying the customers.

The author considered a service level that is captured mathemat-

ically using probabilistic constraints. This is motivated by the fact

that considering “hard” capacity constraints may be meaningless

when demand is uncertain. Nevertheless, if the uncertain demand

can be described using a probability law it is possible to consider

probabilistic constraints stating that the probability of having ca-

pacity for supplying the occurring demand should be above some

threshold exogenously defined. 

Kinay et al. [26] also consider a single-source discrete facility

location problem with stochastic demand. Again, a service level

constraint is included in the optimization models proposed. How-

ever, the objective function is of a totally different nature: the goal

now is to maximize the minimum weight among the installed fa-

cilities. The problem is motivated by an application in the context

of humanitarian logistics calling for the potential locations to be

previously assigned a numerical weight that summarizes quantita-

tively several relevant features. The maxmin objective considered

in that work was initially introduced by [25] and raises an interest-

ing discussion in the context of discrete capacitated single-source

facility location problems. In fact, that objective is prone in terms

of producing “plateaus” in the objective function space: one can

easily find multiple optimal solutions. However, in practice, a de-

cision maker does not look at these solutions as being “equally”

good/optimal. Accordingly, there is room for considering other ob-

jectives that may guide the decision maker when the time comes

for deciding among those alternative optima. The above aspects

trigger the work done in the current paper. 

The literature focusing on stochastic multi-criteria facility loca-

tion problems is still scarce. Even if we consider deterministic fa-

cility location problems, [35] argue that there is still much room

for investigating the topic. When it comes to the particular case in

which we have single sourcing even less can be found. To the best

of the authors’ knowledge, the closest works focusing on that very

specific type of problems are due to [13] who, focus on a bi-criteria

single-allocation hub location problem and to [29] who integrated

the three dimensions we are also considering in our work using a

weighting approach rather than the multi-criteria approaches that

we propose. 
The contribution of the current paper to the literature is three-

old: (i) to consider multiple objective functions in a discrete ca-

acitated single-source facility location problem with probabilistic

onstraints; (ii) to discuss the use of several objectives of practi-

al relevance that have not been often used in the context of dis-

rete facility location problems; (iii) to present a case study show-

ng that the analysis performed in this work leads to solutions that

an better adjust to a real setting. 

As already mentioned, in this paper we study two paradigms

n terms of multi-criteria analysis: vectorial optimization and goal

rogramming. In the first case, no hierarchy is associated with the

bjective functions to be considered. In the second case, a hierar-

hy is assumed for the objectives and thus, each objective can be

ptimized only after the ones higher in the hierarchy have been

tudied and considering the multiple optimal solutions obtained so

ar. 

Concerning the use of vectorial optimization in discrete facility

ocation we refer the reader to [34] , who present references un-

il 2005, to [35] with recent references and to the survey paper

y [47] . Looking into these references we observe that not much

ork has been published that is related with multi-criteria dis-

rete facility location problems and let alone when it comes to

ingle-source problems. A notable exception is the paper by [15] .

his is a work proposing an interactive procedure aiming at find-

ng non-dominated solutions to a bi-criteria single-allocation facil-

ty location problem. In particular, the authors proposed a specially

ailored approach for the auxiliary problem considered for finding

on-dominated solutions. 

The application that triggered the current work and that un-

erlies the case study to be discussed may call for the use of a

oal programming approach since it conveys a case in which we

ay easily find a hierarchy between different but relevant objec-

ives. Looking into the literature, we were able to find two works

onsidering the use of goal programming in the context of dis-

rete facility location problems: these are the papers by [40] and

4] . Nevertheless, in both works, multiple sourcing is assumed. The

losest work to what we are presenting in this paper is the work

y [43] , who considered fuzzy set theory for capturing vagueness

nd ambiguity that may emerge when considering qualitative cri-

eria. Nevertheless it is worth pointing out that in fact the authors

o not consider uncertainty in demand—as we do in the current

ork—but vagueness in the information required for defining the

riteria to be used. 

Last but not least, we note that although not much work can be

ound in terms of optimization models and tools for multi-criteria

iscrete facility location, the study of several objective functions

n the context of location analysis in general is far from novel. In

ther words, although related literature have considered a wide

ariety of objective functions, a single objective is considered at

 time, rather than using a multi-criteria approach. The interested

eader can refer to the reviews provided by [14,17,47] , as well as to

he book chapters by [34] and [35] . 

Current et al. [14] classify the objectives of relevance in facility

ocation according to: (i) cost minimization, (ii) demand-oriented,

iii) profit maximization, and (iv) environmental-oriented. In turn,

17] classify the objectives as (i) pull, (ii) push, and (iii) balance

bjectives. [47] specify 9 often-used objectives in location analysis,

ach of which falling in one of the above categories. 

In this paper, we specifically analyze three objective functions

f relevance in humanitarian logistics, two of which based upon

easuring the potential locations for opening the facilities with

 weight previously determined according to several features. Ac-

ordingly, we consider the maximization of the minimum weight

mong the selected locations and the maximization of the average

eight (across the selected locations). Additionally, we analyze an-
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ther objective that is related with the overall distance traveled by

ustomers. 

The remainder of this paper is organized as follows: in

ection 2 we discuss modeling aspects related with chance-

onstrained single-source discrete facility location problems. In

ection 3 we analyze the new objectives considered in this work

nd their inclusion in mathematical modeling frameworks using

ectorial optimization and goal programming. In Section 4 we

resent a case study and provide some methodological specifica-

ions required by it. In Section 5 we report the results of exten-

ive numerical experiments performed for evaluating the relevance

f the models proposed. The paper ends with an overview of the

ork done. 

. A modeling framework for stochastic single-source 

apacitated facility location problem 

The basic ingredients for a discrete single-source capacitated fa-

ility location problem include a set I of potential locations for the

acilities, a set J of demand points, a value q i associated with each

ocation i ∈ I denoting the capacity of a facility if installed in that

ocation and a value d j associated with each demand point j ∈ J rep-

esenting its demand. The decisions to make are twofold: the loca-

ion of the facilities and the allocation of demand points to the

pen facilities. An optimization model can be formulated consider-

ng two sets of decision variables: for i ∈ I, x i is equal to 1 is facility

 is open and zero otherwise; for i ∈ I and j ∈ J, y ij is equal to 1 if

emand point j is allocated to facility i and zero otherwise. Accord-

ngly, a generic optimization model for the problem can be written

s follows (see, for instance, [16,24] , and [20] ): 

inimize f (x , y ) , (1) 

ubject to 

∑ 

i ∈ I 
y i j = 1 , j ∈ J, (2) 

∑ 

j∈ J 
d j y i j ≤ q i x i , i ∈ I, (3) 

 i ∈ { 0 , 1 } , i ∈ I, (4) 

 i j ∈ { 0 , 1 } , i ∈ I, j ∈ J. (5) 

Function f ( x, y ) represents the objective function to be mini-

ized with (x , y ) = ((x i ) i ∈ I , (y i j ) i ∈ I, j∈ J ) denoting the vector of de-

ision variables; constraints (2) ensure that each demand point is

llocated to one and only one facility whereas constraints (3) are

he capacity constraints. These constraints also ensure that a de-

and point can be allocated to a facility only if the facility is open.

Finally, (4) and (5) define the domain of the decision variables.

e note that the above model can be enhanced in terms of the

ounds provided by linear relaxation by the inclusion of the so-

alled strong-model inequalities y i j ≤ x i , i ∈ I, j ∈ J (see, for in-

tance, [22] ). 

As we detailed in the introductory section, in this work we fo-

us on the situation where demands are stochastic, i.e., we assume

hat ξ = (d 1 , . . . , d | J| ) is a random vector with a joint cumulative

istribution function that we assume to be given in advance (e.g.,

stimated using historical data). In this case, the (hard) capacity

onstraints (3) are no longer well-defined. One possibility could be

o state those constraints using the most conservative values for

he demands. However, planning for the largest possible demands

ay render a too “fat” namely, if that “scenario” corresponds to

 very unlikely “future”. An alternative is to consider probabilistic

onstraints ensuring a pre-specified service level. Let us denote by
i a user-defined threshold (or an upper bound) value of the prob-

bility of exceeding the capacity of plant i , once the plants to be

pened are decided and the allocations are determined. A service

evel constraint adequate for replacing (3) is 

 ξ

[ ∑ 

j∈ J 
d j y i j ≤ q i x i 

] 

≥ 1 − γi , i ∈ I. (6)

he above constraints, which have been considered by other au-

hors (e.g., [28] and [26] ), lead to a generalization of the original

odel since they reduce to (3) when data are deterministic and all

emand must be supplied (i.e., a service level equal to 100%). 

In addition to the above service level constraints, there are

ther ways for extending model (1) –(5) . One aspect of relevance

n some problems is the existence of a minimum throughput that

ustifies opening a facility. This has been discussed in the context

f logistics applications by [32] and [33] and in a broader context

y [2,3] . In the context of humanitarian logistics, this aspect may

lso be important as discussed by [25] and [26] . In the latter work,

he authors propose mathematical expressions for modeling such

onditions: they consider a minimum threshold denoted by β for

he utilization rate of a facility and include the following set of ad-

itional constraints in their optimization model: 

 ξ

[ ∑ 

j∈ J 
d j y i j ≥ βq i x i 

] 

≥ 1 − ζi , i ∈ I. (7)

In the above constraints, ζ i denotes the (exogenous) probability

hat the minimum threshold of shelter i ∈ I is not satisfied (recall

hat demands are random). 

Since we are working with a problem emerging in the context

f facility location with single sourcing we also consider a fea-

ure of practical relevance in these problems, which is discussed

n the paper by [19] as well as in some references therein: the

eed for imposing the so-called closest assignment constraints in

ingle-source facility location problems (depending on the appli-

ation considered). These constraints are used to model situations

n which the demand points should be assigned to the closest fa-

ility among those selected to operate. As we will see in the case

tudy presented in Section 4 , these constraints help to mimic the

ehavior of people when searching for the closest facility that can

upply their needs. Several alternatives have been proposed in the

iterature for modeling mathematically the closest assignment con-

traints. Possibly, the best-known conditions are the original in-

qualities proposed by [39] and [45] . Kılcı et al. [25] and Kınay et

l. [26] considered them in the context of humanitarian logistics to

imic the behavior of the victims of a disaster when looking for

elp. Espejo et al. [19] showed that [45] ’s closest assignment con-

traints ( WF ) dominate the ones introduced by [39] ( RR ). Hence,

hey suggest using the former, i.e.: 

| I| ∑ 

 = r+1 

y i j (s ) , j + x i j (r) ≤ 1 , j ∈ J, r = 1 , . . . , | I| − 1 . (8)

n the above expression i j ( r ) stands for the r -th closest candidate

acility location to demand point j ∈ J , r = 1 , . . . , | I| . For every de-

and point j ∈ J , one can easily find the above sorted facilities by

orting non-decreasingly the distances, say � ij , between the poten-

ial locations i ∈ I and customers j ∈ J . 

In synthesis, the starting point for our study is the generic

odel 

inimize (1) , 

ubject to (2) , (4) − (8) , 

y i j ≤ x i , i ∈ I, j ∈ J. (9) 

We note the need for including the inequalities (9) in the ab-

ence of inequalities (3) . 
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2 Taking after the 20 th century American philosopher John Rawls and based upon 

his notable ideas on justice as fairness stated in his work, entitled “A Theory of 

Justice”, published in 1971. 
Before discussing a multi-criteria setting it is important to

deepen the analysis of the probabilistic constraints (6) and (7) be-

cause they raise some mathematical difficulties when it comes to

tackling the model. As we explain next, it is possible to take ad-

vantage of the fact that we are working with a facility location

problem in order to overcome such difficulties. 

We first note the well-known fact that in many real-world facil-

ity location problems the number of demand points is quite large,

namely when compared to the number of facilities that are even-

tually open (see, e.g., the discussion presented by [9] ). From a

demand allocation perspective, this fact leads to “many” demand

points being assigned to each open facility. Furthermore, often, de-

mand points are themselves the result of some previous aggrega-

tion. Accordingly, we often observe that the total demand served

by a facility is actually the sum of “many small demands”. 

A second aspect to consider is that under uncertainty, demands

can often be assumed independent. This means that instead of

working with the joint cumulative probability function associated

with the underlying random vector ξ = (d 1 , . . . , d | J| ) we can di-

rectly consider the marginal cumulative distribution functions as-

sociated with the random variables d 1 , . . . , d | J| . This typically sim-

plifies the analysis. 

Although starting from a general setting, the above remarks

allow us to invoke the Central Limit Theorem, thus deriving an

approximate model for the problem we are investigating. Denot-

ing by μj and σ 2 
j 

the expected value and variance of d j ( j ∈ J ), by

z α the α-quantile of the standard normal distribution and defin-

ing v i = 

√ ∑ 

j∈ J σ 2 
j 

y i j √ ∑ 

j∈ J σ 2 
j 

, i ∈ I, (6) and (7) can be altogether replaced by

the following deterministic constraints (the reader should refer to

[28] and [26] for all details): 

∑ 

j∈ J 

μ j 

�
y i j + z 1 −γi 

v i ≤
q i 
�

x i , i ∈ I, (10)

∑ 

j∈ J 

μ j 

�
y i j + z ζi 

v i ≥
βq i 
�

x i , i ∈ I, (11)

v 2 i = 

∑ 

j∈ J 

σ 2 
j 

�2 
y i j , i ∈ I, (12)

0 ≤ v i ≤ 1 , i ∈ I, (13)

with � = 

√ ∑ 

j∈ J σ 2 
j 

. In (12) we still have the quadratic term v 2 
i 
.

Since v 2 
i 

∈ [0 , 1] for all i ∈ I (by definition), [26] proposed approx-

imating v 2 
i 

for every i ∈ I by a piecewise linear (convex) function

which they model via integer programming using an ordered set

of type 2 variables (SOS2) that they denote by { λi 1 , . . . , λin } with

n representing the number of sub-sets into which the interval [0,

1] is to be partitioned. We recall that in a SOS2 of non-negative

variables, at most two such variables can be positive; moreover, if

exactly two are positive then they must be consecutive in the or-

dered set [6] . The way of describing mathematically SOS2 variables

is nowadays commonly known and thus we omit it here. Never-

theless, the interested reader can refer to [6] or [46] for further

details. 

If we denote by b m 

> 0 the m -th break point of interval [0, 1],

m ∈ { 1 , 2 , ., n } (with b n = 1 ) then, for every i ∈ I, v i and v 2 
i 

can be

approximated by 
∑ n 

m =1 λim 

b m 

and 

∑ n 
m =1 λim 

b 2 m 

, respectively, with

(i) 
∑ n 

m =1 λim 

= 1 , (ii) 0 ≤λim 

≤ 1, and (iii) (λi 1 , . . . , λin ) being a

SOS2. Constraints (10) –(13) can now be reformulated as follows: 
∑ 

j∈ J 

μ j 

�
y i j + z 1 −γi 

n ∑ 

m =1 

λim 

b m 

≤ q i 
�

x i , i ∈ I, (14)

∑ 

j∈ J 

μ j 

�
y i j + z ζi 

n ∑ 

m =1 

λim 

b m 

≥ βq i 
�

x i , i ∈ I, (15)

∑ 

j∈ J 

σ 2 
j 

�2 
y i j = 

n ∑ 

m =1 

λim 

b 2 m 

, i ∈ I, (16)

n ∑ 

m =1 

λim 

= x i , i ∈ I, (17)

im 

≥ 0 , i ∈ I, m = 1 , . . . , n. (18)

(λi 1 , . . . , λin ) SOS2 , i ∈ I (19)

In a standard integer programming formulation of SOS2 vari-

bles, the right-hand side of constraints (17) is usually 1. However,

n our case, we can enhance the model by considering x i . We also

ote that constraints (14) together with (17) imply (9) (they ensure

hat y i j = 0 when x i = 0 ). Summing up, we proceed with our study

y considering the model: 

inimize (1) , 

ubject to (2) , (4) , (5) , (8) , (14) − (19) . 

. Multi-criteria approaches 

As we mentioned in Section 1 , the objective function f ( x, y ) of-

en considered in single-source facility location problems is the to-

al cost for opening facilities and serving the customers (see, e.g.,

10,12,16,20,23,24] ). Even when stochastic demands have been con-

idered, authors have assumed so [2,3] . 

Specific applications/problems may call for the use of other ob-

ective functions. Eiselt and Laporte [17] provide a classification of

bjectives of relevance in the context of facility location problems.

his is highlighted by [47] , who revisit those objectives. When it

omes to such applications we find several examples. For instance,

quitable response time is often an objective when locating emer-

ency services (see, for instance, [42] and [38] ). Marsh and Schiling

30] revisit different models for capturing equitable distribution of

ustomers to facilities. Erkut et al. [18] investigate a multi-criteria

acility location problem in the context of solid waste manage-

ent. The authors consider economic and environmental criteria

uch as the greenhouse effect and energy consumption. 

More recently, [25] and [26] discuss a single-source facility lo-

ation problem emerging in the context of preventive humanitar-

an logistics: the shelter site location problem. They focus on ob-

ectives other than cost-oriented ones. Since these objectives are at

he core of our case study, we specify them in detail. 

In the shelter site location problem, each potential location for

 shelter is given a weight previously computed using data corre-

ponding to different aspects related with each location. These as-

ects help determining the “suitability” of potential locations and

nclude terrain slope, distance to health institutions, soil type, elec-

rical infrastructure, sanitary system, ownership status, et cetera .

he goal is to select the locations for sheltering in such a way

hat the minimum weight among the open facilities is maximized.

his represents, in fact, a so-called Rawlsian objective 2 that is usu-

lly imposed by the organizations leading the process of building
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helters. In such a case, the objective function to consider (and to

e maximized) is f (x , y ) = W min = min i ∈ I| x i =1 { w i } , where w i repre-

ents the weight of location i ∈ I . This is a maxmin non-linear ob-

ective function that can be linearized straightforwardly. 

An alternative objective function is briefly mentioned by

26] but not considered explicitly in the models presented in that

aper: the average weight of the open facilities. This is an objective

unction that also makes use of the weights w i , i ∈ I . It is formally

efined as 

f (x , y ) = W avg = 

∑ 

i ∈ I w i x i ∑ 

i ∈ I x i 
(to be maximized) . 

his particular objective is not novel (see for instance [14] ); how-

ver, its use in a multi-criteria context along with a Rawlsian ob-

ective is. On the other hand, linearizing this objective is not as

traightforward as it is for W min . Nevertheless, it can be done by

efining a new set of nonnegative auxiliary variables. For i ∈ I we

efine τi = W avg × x i . By summing in i ∈ I we obtain 

 

i ∈ I 
τi = W avg ×

∑ 

i ∈ I 
x i (20) 

sing a set of appropriate constraints we can eventually ensure

hat W avg represents, in fact, the average of the weights of the se-

ected facilities by using the following constraints to linearize con-

traint (20) [46] : 

i ≤ W avg × x i , i ∈ I (21) 

i ≤ W avg , i ∈ I (22) 

i ≥ W avg −
[
(1 − x i ) × W avg 

]
, i ∈ I (23) 

∑ 

i ∈ I 
τi = 

∑ 

i ∈ I 
(w i × x i ) , (24) 

i ≥ 0 , i ∈ I, (25) 

 avg ≥ 0 . (26) 

In the above constraints, W avg denotes the upper bound for

 avg . In the shelter site location problem it can be set equal to 1.

onstraint (21) ensures that τ i is equal to 0 when the correspond-

ng x i is 0. Constraints (22) and (23) ensure that τ i equals to W avg 

hen x i is equal to 1. Constraint (24) is the linear representation

f constraint (20) which is obtained by replacing W avg according

o its definition provided before. The rest of the constraints are the

omain constraints for the new variables τ i and W avg . 

Finally, we refer a third objective of relevance in some applica-

ions: minimizing the average distance traveled to a facility. This

s a relevant objective to consider in single-source facility location

roblems when the closest assignment constraints are considered.

n fact, when the facilities have a limited capacity, the satisfaction

f those constraints does not necessarily mean that the total trav-

led distance is minimized. As before, denote by � ij the distance

etween candidate facility location i and demand point j ; then the

verage distance traveled per person can be defined as: 

f (x , y ) = Average Distance Traveled (ADT) = 

∑ 

i ∈ I, j∈ J � i j d j y i j ∑ 

j∈ J d j 
. 

The fact that several objective functions can be considered

ithin the context of single-source facility location problems raises

 question: is a single objective function selected among those

nes enough to capture the goals of a decision maker? If not, then,
 multi-criteria setting becomes more appropriate. As mentioned

n Section 1 , not much work can be found in terms of multi-

riteria discrete facility location problems and let alone when

t comes to problems with single sourcing. Next, we fulfill this

ap by considering multiple objectives in a chance-constrained

ingle-source discrete facility location problem. We study two well-

nown paradigms in multi-criteria optimization: vectorial opti-

ization and goal programming. 

.1. Vectorial optimization 

Suppose that we have L objective functions of interest, denoted

y f � ( x, y ), � = 1 , . . . , L . If no hierarchy is established between the

bjectives then the problem can be formulated as a vectorial opti-

ization problem: 

inimize f (x , y ) = ( f 1 (x , y ) , . . . , f L (x , y ) ) , 

ubject to (2) , (4) , (5) , (8) , (14) − (18) . 

t is well-known that in general there will be no single solu-

ion that simultaneously optimizes all objectives individually. This

eads to replacing the concept of optimality by Pareto optimality or

fficiency [21] . The main question becomes the determination of

areto solutions. 

Two popular methods for generating Pareto solutions in vecto-

ial optimization problems are the weighting method and the ε-

onstraint method (see, e.g., [31] ). We focus our attention on the

atter due to the advantages it often has when compared with the

ormer (the interested reader can refer to the above-mentioned

eference for a deeper discussion). 

In the ε-constraint method we optimize one objective function

fter setting the others as constraints (the so-called side objec-

ives). The problem can be stated as follows (w.l.o.g.): 

inimize f 1 (x , y ) , 

ubject to f � (x , y ) ≤ ε � , � = 2 , . . . , L, 

(x , y ) ∈ S, 

ith S denoting the feasibility set, i.e., the set of solutions ( x, y )

atisfying (2), (4), (5), (8) , and (14) –(18) . The Pareto solutions are

btained by performing a parametric variation in the vector of co-

fficients (ε 2 , . . . , ε L ) 
T . 

In the particular case of two objective functions (the most

ommon in the location analysis literature), we can implement

his method quite efficiently. In this case we have f (x , y ) =
( f 1 (x , y ) , f 2 (x , y )) . 

Denote by f 1 = ( f 1 1 , f 
1 
2 ) and f 2 = ( f 2 1 , f 

2 
2 ) two points in the cri-

eria space such that f 1 
1 

≤ f 2 
1 

and f 1 
2 

≤ f 2 
2 

. Using the terminology

ntroduced by [8] , we define by R ( f 1 , f 2 ) the rectangle in the crite-

ia space induced by f 1 and f 2 . 

A point f in the criteria space corresponding to a feasible solu-

ion with objective function values in R ( f 1 , f 2 ) that corresponds to

 solution with smallest value for f 2 ( x, y ) among all solutions with

mallest value for f 1 ( x, y ), if it exists, is denoted by 

f = 

lex min 

(x , y ) ∈ S 
{

f 1 (x , y ) , f 2 (x , y ) | f (x , y ) ∈ R ( f 1 , f 2 ) 
}

nd can be determined by solving the sequence of optimization

roblems 

f 1 = min 

(x , y ) ∈ S 

{
f 1 (x , y ) | f (x , y ) ∈ R ( f 1 , f 2 ) 

}
nd 

f 2 = min 

(x , y ) ∈ S 

{
f 2 (x , y ) | f (x , y ) ∈ R ( f 1 , f 2 ) ∧ f 1 (x , y ) ≤ f 1 

}
. 

Using the same terminology we can represent the process of

nding a point in the criteria space corresponding to a feasible

olution and with objective values in the rectangle R ( f 1 , f 2 ) with
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smallest value for f 1 ( x, y ) among all solutions with smallest value

for f 2 ( x, y ). 

Assume that all the Pareto solutions (corresponding to the so-

called efficient frontier in the criteria space) are sequenced non-

decreasingly according to the values of the first objective function.

The first and the last of such points are, respectively 

f ∗ = 

lex min 

(x , y ) ∈ S { f 1 (x , y ) , f 2 (x , y ) | f (x , y ) 

∈ R ((−∞ , ∞ ) , (−∞ , ∞ )) } 
and 

f ∗∗ = 

lex min 

(x , y ) ∈ S { f 2 (x , y ) , f 1 (x , y ) | f (x , y ) 

∈ R ((−∞ , ∞ ) , (−∞ , ∞ )) } . 
Now, all the efficient solutions can be obtained starting from f ∗

and iteratively finding the non-dominated point that is closest to

the last non-dominated point, say f l , by solving 

lex min 

(x , y ) ∈ S 
{

f 1 (x , y ) , f 2 (x , y ) | f (x , y ) ∈ R ( f l − (0 , ε) , f ∗∗) 
}

with ε denoting a small constant. This is done until f ∗∗ is reached.

In Section 4 we present results obtained after applying this

methodology to a specific problem. 

For the three-objective case, the methodology for finding all the

Pareto solutions is not as straightforward as the lexicographic one

just revisited for the bi-objective case. In particular, an algorithmic

approach is necessary for a successful and efficient implementa-

tion. In fact, it is well-known that the components of the ε-vector

should be determined appropriately in order to ensure that the se-

quence of mono-objective problems defined by the application of

the ε-constrained method allows finding all the Pareto solutions. 

A particular case of interest for us is the one in which one of

the objective functions can take values in a finite set of rather

small cardinality. This idea was explored by [1] in the context

of a relief item distribution problem in the event of a disaster.

Those authors aimed at minimizing the total transportation time

of the items, the number of first-aid workers required, and the

non-covered demand among all affected areas. A three-criteria op-

timization problem was considered and a procedure for determin-

ing all the Pareto solutions was developed. Taking advantage of the

fact that one of the objective functions takes integer values in a fi-

nite set, the authors choose as the single objective function to op-

timize one that takes fractional (continuous) values. The remain-

ing objective functions induce two constraints. The integrality of

one of the objective functions set as constraints makes it simpler

to develop an iterative methodology for implementing ε-constraint

method. In fact, all possible values of the one-sided objective are

known in advance since they are finite (and they are just a few).

Therefore, in the approach proposed in that work the authors set

this objective function to its lowest possible value and perform the

classical ε-constraint method for two objective functions as long

as the model generates feasible solutions. When infeasibility is de-

tected, the algorithm proceeds with the selection of the next value

of the integer objective function. The process continues until all

possible values of the integer objective function have been consid-

ered. The interested reader can refer to [1] for further details and

for a detailed proof of their methods. 

The above mentioned methodology can be applied even if one

objective function can take fractional (continuous) values provided

that only a finite number of values are possible. This is the case if

we consider an objective function such W min . We elaborate on this

idea later in Section 4 . 

3.2. Goal programming 

When a hierarchy between the multiple objectives of interest is

previously established by the decision maker, vectorial optimiza-

tion is not the appropriate paradigm to consider for finding Pareto
olutions. In that case, each objective function should be optimized

nly after the objective functions that are higher in the hierarchy

ave been optimized: a goal programming procedure emerges. The

andidate optimal solutions in each level of the hierarchy are the

ultiple optimal solutions (if they exist) obtained in the previous

evels. 

Like in the previous section, we assume that there are L objec-

ive functions of interest, denoted by f � ( x, y ), � = 1 , . . . , L . A goal

rogramming model can be stated by assigning a different prior-

ty level to each goal. The priority levels are numbers in { 1 , . . . , K} ,
ith K denoting the total number of goals. A goal typically involves

he achievement (or failure by the smallest amount possible) of

target” values for one or several objective functions. Moreover, a

oal is optimized only after all the previous goals in the hierarchy

ave been optimized. Accordingly, when we write P k [ f k ] we are in-

icating that function f k should be the k th to be optimized. The

roblem can be written generically as follows: 

inimize 

K ∑ 

k =1 

P k 

[ 

L ∑ 

� =1 

α+ 
�k 

d + � + 

L ∑ 

� =1 

α−
�k 

d −� 

] 

, 

ubject to (2) , (4) , (5) , (18) , (14) − (18) , 

f � (x , y ) + d −� − d + � = G � , � = 1 , . . . , L, 

d −� , d 
+ 
� ≥ 0 , � = 1 , . . . , L. 

n this model, the overall objective function is conceptual since

 1 , . . . , P K are denoting priority levels; they represent neither a

uantity nor a measure. This “objective function” indicates that

rst we optimize 
∑ L 

� =1 α
+ 
� 1 

d + 
� 

+ 

∑ L 
� =1 α

−
� 1 

d −
� 

; afterwards we opti-

ize 
∑ L 

� =1 α
+ 
� 2 

d + 
� 

+ 

∑ L 
� =1 α

−
� 2 

d −
� 

in the set of multiple optimal so-

utions found for the first function; et cetera . The process stops ei-

her when the functions in all priority levels have been consid-

red or when we reach a priority level for which multiple optima

re no longer available. In this case, the single solution at hand is

he optimal solution to the overall problem. In the above model,

 � denotes the target value for objective function f � ( x, y ); d −
� 

and

 

+ 
� 

denote the shortage and the surplus with respect to the tar-

et ( � = 1 , . . . , L ). Finally the coefficients α+ 
�k 

and α−
�k 

define the in-

olvement (and its extent) of objective function f � ( x, y ) in goal k . 

The above model is interesting when one goal at a higher level

n the hierarchy is prone to render multiple optimal solutions. This

s exactly what happens in real world problems such as those dis-

ussed by [25] and [26] and that we will consider in the next sec-

ion for illustrative purposes. 

. A case study 

In order to show the relevance of the modeling aspects and

rocedures discussed in the previous sections, we consider a spe-

ific problem emerging in the context of humanitarian logistics:

he shelter site location problem. 

The handbook by the [41] emphasizes that having previously

stablished shelter areas is crucial when it comes to disaster recov-

ry. For the victims who lose their homes under some unfortunate

vent, it is critical to find a safe and secure shelter in which they

an preserve their lives with dignity. The problem emerging in the

reparedness phase for disaster relief that consists of choosing lo-

ations for sheltering is the so-called shelter site location problem

nd it has been studied by [25] and [26] . 

There are several features specific to the shelter site location

roblem that were considered in the aforementioned studies. First,

andidate shelter locations are identified in advance and each of

hem is assigned a weight, which is a value in [0, 1]. The weights

re computed taking many aspects into account (see [25] for all

he details). The candidate locations can be parks, yards, school

ardens, parking lots, et cetera ; i.e. a spot that can be character-
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zed as safe in the event of a disastrous situation. Second, there

re service level requirements, which are related with capacity and

inimum utilization rates for the shelters. 

One specific case the authors are aware occurs in Turkey. In

his country, the current methodology for selecting shelter areas

onsiders as a primary objective the maximization of the mini-

um weight of open shelter areas [25] . As discussed before, this

axmin objective can be looked at as a Rawlsian approach to

he problem since it targets fairness for the least advantaged vic-

ims of a disaster. This objective was introduced mathematically in

ection 3 ( W min ). In th current work, it is also chosen as the pri-

ary objective. 

While raising the minimum weight of the selected shelter loca-

ions to the possible maximum level, the above Rawlsian objective

oes not ensure that the best-weighted locations are utilized al-

hough this is of relevance in the shelter site location problem. In

ther words, there may be alternative optima w.r.t. W min but with

 different value for the average weight across the selected shel-

ers, i.e., for W avg . In fact, as discussed before, an objective function

uch as W min is prone to generate plateaus in the objective space.

n other words, one can easily obtain multiple optimal solutions

hen considering that measure alone. This provides strong evi-

ence that by considering only a Rawlsian perspective we may ob-

ain solutions in which the available resources are not used in the

est way. Hence, a second objective (maximizing W avg ) emerges as

elevant for ensuring a better public welfare. 

Finally, when considering an optimization model for supporting

ecision making in the shelter site location problem, the closest as-

ignment of populations to shelters is a key constraint to consider

o that the models can “mimic” the behavior of people moving to-

ards open facilities. Although these constraints aim at achieving

 desirable outcome, they may not guarantee the best solution in

erms of total distance traveled, which decreases its applicability.

imilarly, it is easy to see that by only minimizing the total dis-

ance we cannot guarantee the closest assignment of the victims

o the open shelters. Accordingly, another important objective to

onsider is the minimization of the average distance traveled—ADT

Recall the definition introduced in Section 3 ). 

In synthesis, the three measures introduced in Section 3 are of

reat relevance in an application such as the shelter site location

roblem. Hence, we proceed with the analysis of our case study by

onsidering the three objectives induced by those measures. 

.1. Modeling specifications 

The general formulation presented in Section 2 can be spec-

fied for the single ( Rawlsian ) objective chance-constrained prob-

em. Such specification leads to the optimization model that is in-

roduced by [26] : 

aximize W min , (27) 

ubject to W min ≤ w i x i + (1 − x i ) , i ∈ I, (28) 

(2) , (4) , (5) , (8) , (14) − (18) . 

In the above model it is assumed that w i ∈ [0, 1], i ∈ I . This for-

ulation poses one difficulty if we wish to consider the objective

unction W min within a vectorial optimization modeling frame-

ork. In fact, if a lexicographic approach such as the one described

n Section 3 is considered, the objective function (27) will be rep-

esented as a constraint in some iterations ( W min = W 

∗
min 

) ensuring

hat the value of W min does not deteriorate from W 

∗
min 

( W 

∗
min 

rep-

esents the optimal solution of the counterpart model solved in

he previous iteration with objective function (27) ). In this case,

onstraint set (28) is not enough to ensure that the outcome in

erms of W represents, in fact, the minimum weight across the
min 
elected shelters. In other words, we may have an inconsistency

n terms of the meaning of W min and its actual value produced

y a lexicographic approach. What is more, this may lead to skip-

ing some potential non-dominated solutions. These issues can be

revented by including a few additional constraints and a set of

uxiliary binary variables denoted by a i , ( i ∈ I ), as follows: 

 min = 

∑ 

i ∈ I 
(w i · a i ) , (29) 

∑ 

i ∈ I 
a i = 1 , (30) 

 i ≤ x i , i ∈ I, (31) 

 i ∈ { 0 , 1 } , i ∈ I. (32) 

Before presenting the data and the results for our case study,

e emphasize that when dealing with W avg , the constraints (21) –

26) are appended to the corresponding models. 

.2. Specialization of the ε -constraint method for the 3-criteria 

tochastic shelter site location problem 

In Section 3 we pointed out that the ε-constraint method con-

ists of solving a sequence of single objective problems consider-

ng one of the objective functions and incorporating the other ones

the side objectives) as constraints. We also mentioned the paper

y [1] where an exact approach is proposed for finding all Pareto

olutions in a 3-criteria problem when one of the objective func-

ions takes values in a finite set (of small cardinality). Next, we

dapt those ideas to our 3-criteria shelter site location problem. 

In our problem we are considering the following three objective

unctions: 

f 1 ( x, y ) : ADT (minimize); 

f 2 ( x, y ) : W avg (maximize); 

f 3 ( x, y ) : W min (maximize). 

f 3 can take values in a finite set (whose cardinality is at most

hat of I ). Hence, a single objective problem that we can consider

or determining Pareto solutions is the following: 

inimize f 1 (x , y ) , 

ubject to f 2 (x , y ) ≥ ε 2 (33) 

f 3 (x , y ) ≥ ε 3 

(2) , (4) , (5) , (8) , (28) , 

(14) − (18) , (21) − (26) , (29) − (32) (34) 

e denote this problem by P 1 ( ε2 , ε3 ). We also consider a second

roblem to be used in our algorithmic approach, that we denote

y P 2 ( ε2 , ε3 ), which results from replacing in P 1 ( ε2 , ε3 ) (34) by 

f 3 (x , y ) = ε 3 . 

ote that in constraints (33) and (34) we are using “ ≥ ” instead of

≤ ” because both objective functions f 2 ( x, y ) and f 3 ( x, y ) are to be

aximized. Accordingly, some changes are necessary with respect

o the “pure” minimization context considered in Section 3 . 

The proposed algorithm for finding all the Pareto solutions con-

ists of two main stages. In the first one, we find all the non-

ominated and (weakly) dominated solutions. In the second stage,

e iteratively eliminate the latter. 

The first stage is detailed in Algorithm 1 . In this algorithm, we

enote by ˆ f 1 , ˆ f 2 , and 

ˆ f 3 the current values of the objective func-

ions considered. Recall that | I | denotes the cardinality of poten-

ial shelter sites (which implies the maximum number of distinct
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Algorithm 1 A Methodology for 3-Objective ε-constraint Method. 

1: SS := ∅ ; ε 2 := 0 ; ε 3 := 0 

2: Solve P 1 (ε 2 , ε 3 ) and set W min := 

ˆ f 3 . 

3: for iter = 1 : | I| do 

4: while P 2 (ε 2 , ˆ f 3 ) is feasible do 

5: Solve P 2 (ε 2 , ˆ f 3 ) 

6: X := opt[ ̂  f 1 , ˆ f 2 , ˆ f 3 ] 

7: SS := SS ∪ { X} 
8: ε 2 := ε 2 + k 2 
9: end while 

10: ε 2 := 0 and ε 3 := 

ˆ f 3 + k 3 
11: if P 1 (ε 2 , ε 3 ) is infeasible then 

12: break for 

13: else 

14: Solve P 1 (ε 2 , ε 3 ) and find the next feasible W min := 

ˆ f 3 . 

15: end if 

16: end for 
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3  
weight values). Furthermore, we denote by opt[ ̂  f 1 , ˆ f 2 , ˆ f 3 ] the opti-

mal solution to the current model P 2 ( ε2 , f 
3 ). Finally, SS denotes the

solution set (to be obtained by the execution of the algorithm). 

We first solve the model P 1 (0, 0) which will produce an ini-

tial value for W min (line 2). Even though W min can take values

from a discrete set, it is not necessary to start from the lowest

possible value. In fact, P 1 (0, 0) will yield the lowest such value

for a non-dominated solution, i.e., all the values for W min smaller

than the one obtained when solving P 1 (0, 0) render either infea-

sible or dominated solutions. In lines 4–9 of the algorithm, us-

ing P 2 (ε 2 , ˆ f 3 ) , we fix W min and solve the model as if it is a bi-

objective one while increasing the second objective function value

by k 2 until infeasibility is reached. In the meantime, we save the

results in our solution set. Afterwards, we detect the next possible

W min value by solving P 1 (0, ε3 ) where ε3 is assured to be strictly

greater than the previous W min . The procedure is repeated until

all the range of values for W min has been covered. Adequate val-

ues for the step sizes should result from a preliminary analysis

performed using the specific data involved in an instance of the

problem. For the data we considered in our study, we provide the

details in Section 5 . 

This algorithm may produce (weakly) dominated solutions.

These can be eliminated using a simple post processing procedure:

a solution is compared with all other solutions; if it is associated

with lower W min and W avg values and higher distance value than

some other solution, then it is removed from the solution set. The

procedure is detailed in Algorithm 2 . ParetoSet denotes the set of

Algorithm 2 Post Processing of Solutions to Obtain the Pareto

Frontier. 

Require: SS // Solution set that is obtained from Algorithm 1. 

1: ParetoSet := SS

2: for i = 1 : | SS − 1 | do 

3: for j = i + 1 : | SS| do 

4: if f 1 (SS j ) ≤ f 1 (SS i ) and f 2 (SS j ) ≥ f 2 (SS i ) and f 3 (SS j ) ≥
f 3 (SS i ) then 

5: (SS i ) is dominated, ParetoSet := ParetoSet \ { SS i } 
6: else 

7: (SS i ) is a non-dominated solution. 

8: end if 

9: end for 

10: end for 

Pareto solutions obtained at the end of the whole procedure, and

SS is the i -th solution in set SS (the incumbent solution set). 
i 
The proof that the overall approach ( Algorithm 1 and 2 ) pro-

ides the exact Pareto frontier for our problem follows exactly the

ame reasoning as the similar proof presented by [1] for their spe-

ific context. 

emark 1. In the above specialization of the ε-constrained method

e chose ADT to be optimized (i.e., we set f 1 (x , y ) = ADT ). We

ould have chosen W avg (making the necessary adjustments to

lgorithm 1 ). The resulting Pareto front would, of course, be the

ame (we are determining all the Pareto solutions). However, a

et of preliminary computations showed that minimizing the ADT

esults in significantly lower run times compared to maximizing

 avg . 

.3. Specialization of the goal programming model for the 

ulti-criteria stochastic shelter site location problem 

As explained by [25] and [26] the existing quantitative ap-

roaches for the shelter site location problem call for a primary

bjective function to be optimized: W min . If a decision maker looks

t such objective as clearly more relevant than any other, then we

hould use an approach that enables us to solve the problem for

hat objective and then consider the set of (likely to exist) multi-

le optimal solutions to optimize other objectives. In other words,

ther objectives of interest can be optimized in the restricted set

f solutions that contains the multiple optimal solutions to W min .

his motivates the use of a goal programming approach. Using the

erminology presented in Section 3.2 a goal programming model

an be generically formulated for the shelter site location problem

s follows (we consider without loss of generality that W avg has

riority 2 and ADT priority 3): 

inimize P 1 [ d 
−
1 ] + P 2 [ d 

−
2 ] + P 3 [ d 

+ 
3 ] , 

ubject to W min + d −1 = w 

MAX , 

W avg + d −2 = w 

MAX , 

ADT − d + 3 = 0 , 

(2) , (4) , (5) , (8) , (28) , 

(14) − (18) , (21) − (26) , (29) − (32) 

d −1 , d 
−
2 , d 

+ 
3 ≥ 0 

n the above model, w 

MAX denotes again the maximum value

cross all weights associated with the shelters. Moreover, the vari-

bles d + 
1 

, d + 
2 

and d −
3 

(that according to the general model of

ection 3.2 should be included in our model) are not being consid-

red. We could have considered them but they are trivially equal

o 0 due to the specification made for the goals. In fact, neither

 min nor W avg can be greater than w 

MAX and ADT cannot be neg-

tive. In case we only wish to consider W min with one side objec-

ive we can simply set P 2 = 0 or P 3 = 0 , depending on the objective

e wish to exclude. In case we do not consider objective W avg we

hould also omit constraints (14) –(18) . 

. Computational experiments 

In this section, we consider two different data sets to test

he multi-criteria chance-constrained modeling frameworks spec-

fied for our case study. We start by presenting the data we have

orked with and then we analyze the results obtained. 

.1. Data sets 

The first data set corresponds to Kartal, which is the 11 th most

opulated district among the 39 districts of the metropolitan area

f Istanbul. Kartal has more than 425,0 0 0 inhabitants and it is a

8.54 km 

2 district located near the western extension of the North
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Table 1 

Used data sets’ specifications. 

K45 IST220 

Number of candidate shelter location 25 100 

Number of demand points 20 120 

Minimum weight 0.674 0.140633 

Maximum weight 0.982 0.893454 

Mean weight 0.827 0.575811 

Standard deviation of weights 0.097 0.202467 
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Table 2 

Step sizes to consider in the ε-constraint method. 

Objective function Step size K45 Step size IST220 

W min 10 −3 10 −6 

W avg 10 −5 10 −5 

ADT 10 −3 10 −3 
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natolian fault. This area is considered to be a first degree earth-

uake threat zone which indicates its vulnerability against a future

isaster. 

The Kartal data set contains 45 relevant points that include the

otential shelter locations and the possibly affected populations in

ase of an earthquake. This data was collected by [44] and has al-

eady been used in the literature ( [25] and [26] ). This data set will

e referred as K45 in the upcoming sections: “K” stands for Kartal

nd “45” for the total number of points involved in this set. 

Istanbul is the world’s 5 th most crowded and 6 th most densely

opulated city. It has 35% of its total population located in the east

ide of the Bosphorus, which is known as the Anatolian Side. The

eismic research [36] shows that a catastrophic earthquake will in-

vitably hit the city in the near future. For this reason, in our study,

e decided to consider the whole Anatolian side of Istanbul: it cor-

esponds to our second data set. Naturally, it is significantly larger

ompared to K45 . This data set will be referred to as IST220 in the

pcoming sections: “IST” stands for Istanbul and “220” stands for

he number of points involved in this set. 

The specifications of the two data sets just introduced are given

n Table 1 . In both cases, population data was obtained from the

urkish Statistical Institute. 

In his Ph.D. thesis, [44] indicates that approximately 12.5% of

he population of Istanbul would be in need for temporary hous-

ng if an earthquake occurs [25] . named this value as the Percent

ffected Ratio ( PAR ) and performed an extensive analysis with that

pecific percentage. However, [26] note that this parameter can-

ot be known in advance since it is dependent on many aspects of

n uncertain-in-nature event; therefore, when shelter locations are

eing decided, demand variability should be accounted for. In this

tudy, we have included such variability via the PAR value using

wo different scenarios, both centered in the original value consid-

red by [25] and [44] . In particular, we follow the same procedure

ntroduced in [26] : 

Scenario 1 — Low Variability: PAR = 0 . 125 × U[0 . 95 , 1 . 05] ; 

Scenario 2 — High Variability: PAR = 0 . 125 × U[0 . 85 , 1 . 15] . 

In the above scenarios, U [ a, b ] denotes a pseudo-random ran-

om number generated according to a continuous uniform distri-

ution in the interval [ a, b ]. For each scenario, 10 values were gen-

rated for PAR and each one was then multiplied by the number

f inhabitants to obtain demand samples. From each such sample,

j and σ 2 
j 

are computed for all demand points j ∈ J to be used in

onstraints (14) –(16) . 

In order to observe the behavior of the models proposed in the

revious sections we also consider different values of β—the min-

mum allowed utilization rate of a shelter. The alternative values

ested were 0.30, 0.50 and 0.70. These alternatives lead to a vary-

ng size of the solution space, which enriches our analysis. 

The chance constraint parameters γ i and ζ i ( i ∈ I ) used in con-

traints (6) and (7) were set to 0.90 and 0.10, respectively. 

For both data sets, 10 breakpoints, b 1 = 0 . 1 , . . . , b 10 = 1 , are

sed in the piecewise linear approximation considered for v 2 
i 

and

epresented by constraints (14) –(18) . This means that the interval

0, 1] was always partitioned into 10 equal sub-intervals. In fact, a
et of preliminary tests showed that this number ensures an accu-

ate approximation for the value of v 2 
i 
. 

All of the models presented in this work were coded in Java API

f CPLEX and solved using IBM CPLEX v12.6.1 that runs on a Linux

S with 4xAMD Opteron Interlagos 6282SE 16 Core 2.6GHz 16MB

3 cache server processors with 96 GB of RAM. 

.2. Results for 2-criteria vectorial optimization models 

In this section, we present the computational results obtained

hen considering a vectorial optimization modeling framework for

he chance-constrained shelter site location problem we are inves-

igating. We perform pairwise comparisons with our primary ob-

ective, W min . 

While implementing the lexicographic approach, we need to

efine the step sizes for the transitions between consecutive iter-

tions while not leaving out any non-dominated solutions (or to

e adequately sensitive as required by the decision makers). It can

e said that larger step size values speed up the computations of

he models; whereas constitute a potential for overlooking some

on-dominated solutions. Thus, it is essential to determine the step

izes so that they are sufficiently small to determine all solutions

n the Pareto front and large enough to yield shorter computa-

ional times. To come up with suitable step size values for our case,

e performed computational experiments with different values to

nd the most suitable ones. The weight data for candidate shelter

ites of K45 and IST220 data sets have 3 and 6 decimals, respec-

ively. Therefore, since the smallest difference of W min values be-

ween two solutions can be 10 −3 and 10 −6 , we set these numbers

o be the stepsize of W min values for of K45 and IST220 . For the

tep size of the W avg measure, we started with 10 −3 and changed

t by the factor of 0.1 until 10 −6 . By the extensive computational

nalyses, we realized that 10 −5 is sufficiently small for the step

ize of W avg . Likewise, the stepsize of ADT measure is set to be 1

eter ( 10 −3 kilometers) for both data sets. The step size values for

ach measure and data set are shown on Table 2 . 

.2.1. Data set K45 

We look into Pareto solutions for two different bi-criteria prob-

ems: in the first one we aim at maximizing both W min and W avg ;

n the second one we aim at maximizing W min along with the

inimization of ADT. 

 min vs. W avg . The results obtained when considering the objec-

ive functions W min and W avg can be found in Table 3 . This table

ontains two sub-tables, each of which are for a different variabil-

ty level. In each sub-table we distinguish the different values of β
nalyzed. For each such value, we present a first line corresponding

o max W min . In this line, we observe the values obtained for the

bjective functions W min and W avg when the single objective prob-

em corresponding to maximizing W min only was solved to opti-

ality. Then, we present all the Pareto solutions obtained when

 vectorial optimization modeling framework was considered in-

olving both W min and W avg . We also provide the number of lo-

ated shelters for each solution on a third column in each subtable

eaded by “# ”. 

Observing Table 3 we conclude that in all of the 6 combina-

ions of β and variability levels, the optimal solution to the single
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Table 3 

Results for K45 —W min vs. W avg . 

Scenario 1: Low variability 

W min W avg # 

β = 0.3 max W min 0.847 0.89825 4 

Pareto solution 1 0.847 0.89825 4 

Pareto solution 2 0.827 0.93740 6 

β = 0.5 max W min 0.847 0.88167 3 

Pareto solution 1 0.847 0.88167 3 

Pareto solution 2 0.827 0.9374 5 

β = 0.7 max W min 0.847 0.88167 3 

Pareto solution 1 0.847 0.88167 3 

Scenario 2: High variability 

W min W avg # 

β = 0.3 max W min 0.847 0.89825 4 

Pareto solution 1 0.847 0.89825 4 

Pareto solution 2 0.827 0.91360 5 

Pareto solution 3 0.809 0.93220 5 

β = 0.5 max W min 0.847 0.88167 3 

Pareto solution 1 0.847 0.88167 3 

Pareto solution 2 0.803 0.91560 4 

Pareto solution 3 0.801 0.9156 5 

β = 0.7 max W min 0.847 0.88167 3 

Pareto solution 1 0.847 0.88167 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Results for K45 —W min vs. ADT. 

Scenario 1: Low Variability 

W min ADT # 

β = 0.3 max W min 0.847 2.983 4 

Pareto solution 1 0.847 2.911 4 

Pareto solution 2 0.827 1.698 5 

Pareto solution 3 0.801 1.572 7 

Pareto solution 4 0.694 1.500 8 

β = 0.5 max W min 0.847 3.068 3 

Pareto solution 1 0.847 3.068 3 

Pareto solution 2 0.827 1.728 5 

Pareto solution 3 0.694 1.671 7 

β = 0.7 max W min 0.847 3.068 3 

Pareto solution 1 0.847 3.068 3 

Pareto solution 2 0.827 1.789 5 

Scenario 2: High Variability 

W min ADT # 

β = 0.3 max W min 0.847 3.068 3 

Pareto solution 1 0.847 2.911 3 

Pareto solution 2 0.809 2.077 6 

Pareto solution 3 0.803 1.990 6 

Pareto solution 4 0.801 1.532 7 

Pareto solution 5 0.694 1.505 8 

β = 0.5 max W min 0.847 3.068 3 

Pareto solution 1 0.847 3.068 3 

Pareto solution 2 0.809 2.435 4 

Pareto solution 3 0.803 1.211 4 

Pareto solution 4 0.801 1.974 5 

β = 0.7 max W min 0.847 3.068 3 

Pareto solution 1 0.847 3.068 3 

Pareto solution 2 0.809 2.732 4 

Pareto solution 3 0.801 2.424 4 

Pareto solution 4 0.674 2.217 5 

Table 5 

Results for IST220 —W min vs. W avg . 

Scenario 1: Low Variability 

β = 0.3 W min W avg # 

max W min 0.595974 0.73458 12 

Pareto solution 1 0.595974 0.82540 10 

β = 0.5 max W min 0.595974 0.74345 9 

Pareto solution 1 0.595974 0.80902 7 

Pareto solution 2 0.580393 0.80996 7 

β = 0.7 max W min 0.595974 0.74225 5 

Pareto solution 1 0.595974 0.75822 6 

Pareto solution 2 0.580393 0.78775 6 

Scenario 2: High Variability 

β = 0.3 W min W avg # 

max W min 0.595974 0.74888 9 

Pareto solution 1 0.595974 0.82243 13 

β = 0.5 max W min 0.595974 0.72726 7 

Pareto solution 1 0.595974 0.80902 7 

β = 0.7 max W min 0.595974 0.75822 6 

Pareto solution 1 0.595974 0.75822 6 

w  
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W  

T  

a  

f  

n  

i

P  

s  
objective problem (max W min ) provides directly a Pareto solution

(it always coincides with the Pareto solution 1). This can be ex-

plained by the fact that the data set under consideration is small

and thus the number of Pareto solutions is itself small and not very

“rich”. This is confirmed by the fact that for the setting where the

solution space is the smallest ( β = 0 . 7 ), we only have one Pareto

solution which is also provided by the single-objective solution for

W min . We note also that not all the Pareto solutions obtained for

the low variability setting are Pareto solutions in the high variabil-

ity one and vice versa. It could also be observed that the number

of located shelters tends to be larger for lower β values and tends

to increase when the W avg improves. 

W min vs. ADT. For the second objective pairing, i.e., W min and ADT,

the results are provided in Table 4 . This table reads as Table 3 . 

Like observed when working with W min and W avg not all the

Pareto solutions obtained for the low variability setting are Pareto

solutions in the high variability one and vice versa. This indicates

that capturing uncertainty (i.e., taking variability into account) is

relevant since different solutions may be obtained . 

Concerning the number of shelters selected, we can observe

that it is quite similar to what was observed in Table 3 . 

Another interesting aspect is that, for β = 0 . 3 (the less restrict-

ing value of β), the single objective solution corresponding to max-

imizing W min is weakly dominated by the first Pareto solution

in both variability scenarios. This shows the ability of our multi-

criteria framework to look for the alternative optimal solution for

W min that minimizes ADT. 

Observing Table 4 we also conclude that significant improve-

ments can be achieved in ADT if we allow deteriorating the value

of W min a little. Those improvements range between 28% and 50%.

Taking into account that ADT is an average value (per person), such

improvements mean that the total distance traveled by all disas-

ter victims can be significantly reduced in some cases. Hence, by

using a multi-criteria approach thus obtaining a set of Pareto so-

lutions we can provide the decision makers with a deeper insight

concerning the trade-off between different objectives. 

5.2.2. Data set IST220 

The same scheme applied for K45 was also used for IST220 with

the results reported next. This is a much larger data set and thus,
e expect to observe the benefits of applying a multi-criteria mod-

ling framework to the problem more explicitly. 

 min vs. W avg . The results for this setting can be observed in

able 5 that reads as the previous tables. The most prominent char-

cteristic turns out to be the small number of Pareto solutions

ound. Nevertheless, maximizing W min or W avg individually does

ot necessarily lead to the same solution. This can be observed

n more than one case. We recall that for each setting, the “last”

areto solution maximizes W avg . Even though the number of Pareto

olutions is considerably small, unlike the K45 data set, among the
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Table 6 

Results for IST220 —W min vs. ADT—low variability demand. 

Scenario 1: Low Variability

Wmin ADT #

β
=

0.
3

max Wmin 0.595974 4.864 8
Pareto solution 1 0.595974 2.143 9
Pareto solution 2 0.587395 1.837 9
Pareto solution 3 0.580393 1.784 7
Pareto solution 4 0.577434 1.455 8
Pareto solution 5 0.572222 1.416 6
Pareto solution 6 0.502137 1.372 8
Pareto solution 7 0.462376 1.370 8
Pareto solution 8 0.417498 1.325 6
Pareto solution 9 0.376080 1.266 9
Pareto solution 10 0.347547 0.989 8

Scenario 1: Low Variability

Wmin ADT #

β
=

0.
5

max Wmin 0.595974 4.494 10
Pareto solution 1 0.595974 2.247 6
Pareto solution 2 0.580393 1.995 6
Pareto solution 3 0.572222 1.739 4
Pareto solution 4 0.502137 1.636 7
Pareto solution 5 0.471939 1.620 8
Pareto solution 6 0.462376 1.575 7
Pareto solution 7 0.417498 1.326 6
Pareto solution 8 0.347547 1.135 7
Pareto solution 9 0.268146 1.026 7

Scenario 1: Low Variability

Wmin ADT #

β
=

0.
7

max Wmin 0.595974 2.342 5
Pareto solution 1 0.595974 2.342 4
Pareto solution 2 0.572222 1.869 4
Pareto solution 3 0.502137 1.814 7
Pareto solution 4 0.471939 1.680 8
Pareto solution 5 0.417498 1.372 5
Pareto solution 6 0.268146 1.185 7

0.3 0.4 0.5 0.6 0.7 0.8
1

2

3

4

5 SO[β = 0.3]

Wmin

A
D

T
(k

m
/p

er
so

n)

0.3 0.4 0.5 0.6 0.7 0.8
1

2

3

4

5
SO[β = 0.5]

Wmin

A
D

T
(k

m
/p

er
so

n)

0.3 0.4 0.5 0.6 0.7 0.8
1

2

3

4

5

SO[β = 0.7]

Wmin

A
D

T
(k

m
/p

er
so

n)

Table 7 

Results for IST220 —W min vs. ADT—high variability demand. 

Scenario 2: High Variability

Wmin ADT #

β
=

0
.3

max Wmin 0.595974 4.483 9
Pareto solution 1 0.595974 3.881 16
Pareto solution 2 0.574319 3.830 17
Pareto solution 3 0.556093 3.784 17
Pareto solution 4 0.545592 2.908 20
Pareto solution 5 0.510776 2.859 20
Pareto solution 6 0.502137 2.507 23
Pareto solution 7 0.485232 2.475 23
Pareto solution 8 0.471939 2.464 23
Pareto solution 9 0.456579 2.451 23
Pareto solution 10 0.433190 2.447 25
Pareto solution 11 0.417498 2.403 25
Pareto solution 12 0.410607 2.359 24
Pareto solution 13 0.376080 2.254 25
Pareto solution 14 0.347547 2.226 25
Pareto solution 15 0.335902 2.220 24
Pareto solution 16 0.335560 2.193 24
Pareto solution 17 0.284405 2.165 25
Pareto solution 18 0.253225 2.111 27
Pareto solution 19 0.241292 1.903 31
Pareto solution 20 0.215851 1.780 30

Scenario 2: High Variability

Wmin ADT #

β
=

0
.5

max Wmin 0.595974 5.232 5
Pareto solution 1 0.595974 4.307 8
Pareto solution 2 0.574319 4.286 9
Pareto solution 3 0.556093 4.249 9
Pareto solution 4 0.546913 4.234 10
Pareto solution 5 0.502137 3.296 13
Pareto solution 6 0.456578 3.285 12
Pareto solution 7 0.453114 3.169 13
Pareto solution 8 0.434373 3.131 16
Pareto solution 9 0.410607 2.882 17
Pareto solution 10 0.405868 2.852 16
Pareto solution 11 0.376080 2.598 18
Pareto solution 12 0.335560 2.536 17
Pareto solution 13 0.253225 2.486 20
Pareto solution 14 0.241292 2.218 22

Scenario 2: High Variability

Wmin ADT #

β
=

0
.7

max Wmin 0.595974 5.533 5
Pareto solution 1 0.595974 5.387 6
Pareto solution 2 0.574319 5.235 6
Pareto solution 3 0.502137 4.296 8
Pareto solution 4 0.485232 4.193 8
Pareto solution 5 0.471939 4.136 9
Pareto solution 6 0.440460 3.893 10
Pareto solution 7 0.417498 3.881 10
Pareto solution 8 0.410607 3.578 9
Pareto solution 9 0.376080 3.366 11
Pareto solution 10 0.140633 3.349 11
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Table 8 

Results overview for K45 —3-criteria model. 

Number of 

solutions found 

Number of 

solutions in the 

Pareto Front 

Solution 

time 

Low variability β = 0 . 3 15 10 3.2 sec 

β = 0 . 5 7 4 1.5 sec 

β = 0 . 7 2 2 0.6 sec 

High variability β = 0 . 3 19 17 4.9 sec 

β = 0 . 5 5 5 1.6 sec 

β = 0 . 7 4 4 1.6 sec 

Table 9 

Pareto Solutions for K45—3-criteria model. 

Scenario 1: Low Variability 

W min W avg ADT # 

β = 0.3 Pareto solution 1 0.694 0.86100 1.500 8 

Pareto solution 2 0.694 0.86400 1.505 8 

Pareto solution 3 0.801 0.90414 1.527 7 

Pareto solution 4 0.801 0.90757 1.532 7 

Pareto solution 5 0.801 0.91067 1.618 6 

Pareto solution 6 0.801 0.91467 1.623 6 

Pareto solution 7 0.827 0.92533 1.698 6 

Pareto solution 8 0.827 0.93740 1.789 5 

Pareto solution 9 0.847 0.89160 2.911 5 

Pareto solution 10 0.847 0.89825 2.921 4 

β = 0.5 Pareto solution 1 0.694 0.87300 1.671 7 

Pareto solution 2 0.827 0.89983 1.728 6 

Pareto solution 3 0.827 0.93740 1.789 5 

Pareto solution 4 0.847 0.88167 3.068 3 

β = 0.7 Pareto solution 1 0.827 0.93740 1.789 5 

Pareto solution 2 0.847 0.88167 3.068 3 

Scenario 2: High Variability 

W min W avg ADT # 

β = 0.3 Pareto solution 1 0.694 0.86400 1.505 8 

Pareto solution 2 0.801 0.90757 1.532 7 

Pareto solution 3 0.801 0.91467 1.623 6 

Pareto solution 4 0.801 0.92100 1.801 6 

Pareto solution 5 0.801 0.93220 1.893 5 

Pareto solution 6 0.803 0.87950 1.990 6 

Pareto solution 7 0.803 0.89883 2.004 6 

Pareto solution 8 0.803 0.90450 2.026 6 

Pareto solution 9 0.803 0.90560 2.096 5 

Pareto solution 10 0.803 0.91240 2.117 5 

Pareto solution 11 0.809 0.88050 2.077 6 

Pareto solution 12 0.809 0.89983 2.091 6 

Pareto solution 13 0.809 0.90550 2.112 6 

Pareto solution 14 0.809 0.90680 2.182 5 

Pareto solution 15 0.809 0.91360 2.204 5 

Pareto solution 16 0.847 0.89160 2.911 5 

Pareto solution 17 0.847 0.89825 2.921 4 

β = 0.5 Pareto solution 1 0.801 0.85400 1.974 5 

Pareto solution 2 0.801 0.91560 2.060 5 

Pareto solution 3 0.803 0.91240 2.117 5 

Pareto solution 4 0.809 0.86350 2.435 4 

Pareto solution 5 0.847 0.88167 3.068 3 

β = 0.7 Pareto solution 1 0.674 0.85040 2.217 5 

Pareto solution 2 0.801 0.86075 2.423 4 

Pareto solution 3 0.809 0.85825 2.732 4 

Pareto solution 4 0.847 0.88167 3.068 3 
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5 settings out of 6, the first Pareto solution found immediately

improves the objective function W avg value significantly when we

compared to the single-objective solution that maximizes W min .

In addition to those, on the contrary to what was observed on

Table 3 and Table 4 , one can notice that the multi-criteria frame-

work is able to decrease the number of located shelters for two

cases ( β = 0 . 3 and β = 0 . 5 for low variability). This implies that

no generalization could be made on the relation between number

of located shelters and W avg improvement. Nevertheless, the trend

for an increase in the number of shelters when β decreases is still

present. 

W min vs. ADT. The results obtained when the objective functions

considered are W min and ADT are depicted in Tables 6 and 7 . These

tables read as the previous ones but each one is associated with

one variability level (small and high, respectively). Since the num-

ber of Pareto solutions is considerably higher than before, a graph-

ical representation of the results is also provided at the bottom of

the tables. 

For the low variability scenario, when β is 0.3 and 0.5 the av-

erage distance is improved more than 50% when we move from

the single objective solution corresponding to W min to the first

Pareto solution found. On the other hand, when β is 0.7 the so-

lution space seems to be considerably reduced and such changes

are not immediately observed or else they are not significant. Also,

for this value of β , fewer Pareto solutions exist. 

Looking into the number of located shelters of the solutions for

each value of β , we cannot observe a general decremental or incre-

mental pattern. Interestingly, for β = 0 . 5 , all the Pareto solutions

have fewer open shelters when compared to the solution rendered

by the single objective model. 

For the high variability setting, a similar pattern can be ob-

served in terms of number of Pareto solutions whilst β is increas-

ing. However, the stochasticity effects are significant on the av-

erage distance values, specifically in the earlier iterations. There-

fore, this is again another major indication that (Pareto) solutions

can be highly affected by the demand variability. Additionally, the

higher demand variability leads to an increase in the number of

Pareto solutions found. Although we can observe improvements in

terms of ADT in the initial iterations of three β levels, the improve-

ment rates are not as significant as the low variability scenario.

Compared to what we observed in the low variability scenario, we

observe a significant increase in the number of selected shelters

in the Pareto solutions obtained. This is particularly true for the

lower value of β . Furthermore, we realized that no Pareto solution

has less shelters selected than the number obtained by the sin-

gle scenario model. For both low and high variability settings, the

results show that there may be several quite different trade-off so-

lutions which gives strength to the need of considering a multi-

criteria model for obtaining such solutions. This is more evident in

the large IST220 data set considered. 

5.3. Results for the 3-criteria vectorial optimization model 

We consider now the vectorial optimization problem induced

by the three objectives identified as relevant for the shelter site

location problem: W min , W avg , and ADT. 

The preliminary analysis whose results led to the values pre-

sented in Table 2 can also be used for specifying the step sizes

necessary to run the ε-constrained method. In fact, the values k 2 
and k 3 required by Algorithm 1 are directly taken from that table. 

Like for the bi-criteria cases, we first present the results for K45

and then for IST220 . 
.3.1. Data set K45 

In Table 8 , we can observe algorithm specifications For this 45-

ode instance, it can easily be noticed that the run times are small.

urthermore, it seems that the number of non-dominated solutions

s slightly larger for the high variability scenario setting. In addi-

ion, the effect of the solution space size is observed on the grad-

al decrease in terms of Pareto solutions when we observe the in-

rease of β . Table 9 shows the solutions defining the Pareto front

or each setting. 
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Fig. 1. Low variability & β= 0.3. 

Fig. 2. Low variability & β= 0.5. 

Table 10 

Results overview for IST220 —3-criteria model. 

Number of 

Solutions Found 

Number of 

Solutions on 

Pareto Front 

Solution 

time 

Low Variability β = 0 . 3 1323 416 4h 1m 

β = 0 . 5 462 209 3h 8m 

β = 0 . 7 89 62 22m 

High Variability β = 0 . 3 1168 476 4h 3m 

β = 0 . 5 287 153 58m 

β = 0 . 7 40 28 8m 
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.3.2. Data set IST220 

As expected, the number of iterations observed for IST220 is

ignificantly higher than for K45 . Table 10 provides an overview of

he results obtained. For β = 0 . 3 , the number of iterations turns

ut to be more than 10 0 0 along with the total solution time

lightly exceeding 4 hours for both uncertainty levels. With an in-

rease of β to 0.5, we observe a decrease of more than 60% in the

umber of solutions while the number of Pareto solutions is dra-

atically decreased for high variability scenario as opposed to the

early halved state of low variability one. 

Since the number of solutions in the Pareto front is large, a

abular identification of such solutions is not informative. For this

eason we depict those solutions graphically. Figs. 1–3 show the

on-dominated solutions for the three β levels and for the low

ncertainty case. Likewise, Figs. 4–6 illustrate the Pareto solutions

or the high variability case. For better understanding of the field

f view in the 3-dimensional figures, front and side-views of the

raphics are also provided. 
Looking into these figures we observe that the solutions define

 “cascade” pattern. This can be explained by the accumulation of

olutions around a single value of W min . Moreover, we can observe

ore scattered solutions when β increases; i.e., the solutions seem

o be more disjoint points than lines of points for higher β . As

he number of Pareto solutions is scaled up for this 3-criteria set-

ing (for IST220 ), it could be easily said that for a decision maker,

he selection of a solution among these will not be as easy as in

ther settings. Nevertheless, a decision maker would certainly have

 deeper insight concerning the trade-off between the different ob-

ectives considered. 

.4. Results for the goal programming model 

The next set of results refers to the application of goal program-

ing procedure to the multi-criteria shelter site location problem.

ue to the practical relevance that optimizing W min currently has

or the institutions responsible for organizing sheltering (see [26] )

e always consider that objective as the one with the highest pri-

rity. Then we study separately its combination with the other two

bjective functions. In other words, we present the results of our

oal programming model considering (i) W min and W avg ; (ii) W min 

nd ADT. 

As before we present results for both K45 and IST220 data sets. 

.4.1. W min Vs. W avg 

The obtained results are depicted in Table 11 , where we always

bserve two values for W avg . The first one is the value obtained

hen optimizing W min only; the second one results from deter-

ining the best possible value of W avg when keeping W min to the

ptimal value found. We can observe that for K45 the goal pro-

ramming approach does not seem to be worth considering. In
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Fig. 3. Low variability & β= 0.7. 

Fig. 4. High variability & β= 0.3. 

Fig. 5. High variability & β= 0.5. 

Fig. 6. High variability & β= 0.7. 
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Table 11 

Goal Programming results—W min vs. W avg . 

Data set Uncertainty 

level 

β level W min W avg Improvement 

K45 Low 0.3 0.847 0.89825 - 

0.89825 

K45 High 0.3 0.847 0.89825 - 

0.89825 

K45 Low 0.5 0.847 0.88167 - 

0.88167 

K45 High 0.5 0.847 0.88167 - 

0.88167 

K45 Low 0.7 0.847 0.88167 - 

0.88167 

K45 High 0.7 0.847 0.88167 - 

0.88167 

IST220 Low 0.3 0.595974 0.73458 12.2% 

0.82450 

IST220 High 0.3 0.595974 0.74888 9.8% 

0.82243 

IST220 Low 0.5 0.595974 0.74345 8.8% 

0.80902 

IST220 High 0.5 0.595974 0.72726 11.2% 

0.80902 

IST220 Low 0.7 0.595974 0.74225 2.2% 

0.75822 

IST220 High 0.7 0.595974 0.75822 - 

0.75822 

Table 12 

GP results for W min vs. Average Traveled Distance. 

Data Set Uncertainty 

Level 

β Level W min ADT Improvement 

K45 Low 0.3 0.847 2.983 2.4% 

2.911 

K45 High 0.3 0.847 3.068 5.1% 

2.911 

K45 Low 0.5 0.847 3.068 - 

3.068 

K45 High 0.5 0.847 3.068 - 

3.068 

K45 Low 0.7 0.847 3.068 - 

3.068 

K45 High 0.7 0.847 3.068 - 

3.068 

IST220 Low 0.3 0.595974 4.864 55.9% 

2.143 

IST220 High 0.3 0.595974 4.483 13.4% 

3.881 

IST220 Low 0.5 0.595974 4.494 50.0% 

2.247 

IST220 High 0.5 0.595974 5.232 17.7% 

4.307 

IST220 Low 0.7 0.595974 2.342 - 

2.342 

IST220 High 0.7 0.595974 5.533 2.6% 

5.387 
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act, no improvement occurs in W avg . However, as the data set gets

arger ( IST220 ), we see the improvements achieved by implement-

ng this approach, especially when β = 0 . 3 and β = 0 . 5 . When β
s set to its maximum value, the benefits seem to diminish signifi-

antly. 

.4.2. W min Vs. ADT 

The results obtained when considering W min and ADT in a goal

rogramming modeling framework, are presented on Table 12 . We

an clearly see that goal programming works extremely well, es-

ecially for IST220 when low uncertainty is assumed. This is a

trong indication that the single-objective model can easily gen-

rate multiple optimal solutions thus providing room for improv-

ng ADT namely, when the solution space is larger. By using this
i-objective setting, we could easily detect the alternative solution

ith the same W min value but an approximately 50% better dis-

ance value in certain cases. 

. Conclusions 

In this work we proposed modeling frameworks for multi-

riteria chance-constrained discrete facility location problems with

ingle sourcing. We considered two well-known paradigms in

ulti-criteria decision making: vectorial optimization and goal

rogramming. We discussed ways of handling mathematically a set

f probabilistic constraints that were included in the models. 

We applied our modeling frameworks to the stochastic shelter

ite location problem using real data from Istanbul, Turkey. This

equired specializing existing methods and tools namely, when it

omes to finding the exact Pareto front for 3-criteria vectorial op-

imization problems. 

Our results show that the drawbacks of using only the Rawlsian

pproach can be smoothed by considering other objectives both

hen using a vectorial optimization modeling framework or goal

rogramming. 

The computational experiments highlight the importance of

apturing uncertainty in the multi-criteria shelter site location

roblem. Nearly for all tested settings, it is observed that the num-

er of efficient solutions found changes according to the demand

ariability. Moreover, the solutions themselves change according to

he “degree” of uncertainty considered. This gives support to the

laim that demand variability is worth considering in the decision

aking process as a way for providing resource management plans

hat can better hedged against uncertainty. 

The computational experiments reported in this work show the

ffect of the size of the feasibility set on the relevance of con-

idering a multi-criteria modeling framework. We could observe

hat such relevance is higher when large-scale data sets are used

ith “looser” constraint settings (e.g. service level constraints with

ower β values). Accordingly, by obtaining many efficient solutions,

 decision maker can be provided with richer information for eval-

ating the trade-offs between different objectives and select the

ne that emerges as the most convenient or appealing. 

One interesting aspect calling for further research would be the

evelopment of multi-criteria decision analysis tools such as ana-

ytical hierarchy process or multi-attribute value theory as a means

or a rational selection of the best-fitting efficient solution among

any. This would give a help to the decision maker in the search

or the solutions that is closest to an “ideal preference”. 

Another research direction includes the development of algo-

ithmic procedures for tackling larger instances of our problem,

amely if a much larger number of scenarios is required for ap-

ropriately describing the underlying uncertainty. 
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