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Abstract
The hub location problem (HLP) is a special type of the facility location problem
with numerous applications in the airline industry, postal services, and computer and
telecommunications networks. This paper addresses two basic variants of the HLP,
namely the uncapacitated single allocation hub location problem (USAHLP) and the
uncapacitated single allocation p-hub median problem (USApHMP). Exact solution
procedures based on Benders decomposition algorithm are proposed to tackle large
sized instances of these problems. The standard Benders decomposition algorithm is
enhanced through implementation of several algorithmic refinements such as using
a new cut disaggregation scheme, generating strong optimality cuts, and an efficient
algorithm to solve the dual subproblems. Furthermore, a modern implementation of
the algorithm is used where a single search tree is established for the problem and
Benders cuts are successively added within a branch-and-cut framework. Extensive
computational experiments are conducted to examine the efficiency of the proposed
algorithms. We have been able to solve all the instances of the problems from all
three main data sets of the HLP to optimality in reasonable computational times.

Keywords Hub location problem · Single allocation · Benders decomposition ·
Branch-and-cut · Algorithmic refinements

1 Introduction

Hubs are intermediate facilities in many-to-many distribution systems where key oper-
ations such as transshipment, consolidation, break-bulk, etc. are performed. Despite
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the traditional point-to-point shipment paradigm, traffic associated with origin–
destination (O/D) pairs in the hub networks are routed via hub facilities resulting in
smaller number of linkages each carrying a relatively large flow volume. The result-
ing concentration of traffic flows makes it possible to take advantage of economies
of scale by efficiently utilizing the transportation capacities especially on inter-hub
connections. The hub location problem (HLP) consists of determining the locations
of hub facilities and allocating the demand nodes to these hubs in such a manner that
an objective function of interest (usually total system-wide costs) is optimized.

Having determined the location of hubs in the network, the nodes which are not
selected as hubs can be assigned to the installed hubs according to different alloca-
tion protocols. Two of the main allocation types are the single and multiple allocation
schemes. Based on the single allocation protocol, which is the underlying network
topology in the current work, all the incoming/outgoing traffic to/from a non-hub
node is routed through a single hub, whereas in the multiple allocation scheme, each
non-hub node can receive and send flow through more than one hub. Figure 1 illus-
trates an example of single allocation hub network in which the square and circular
nodes represent the hubs and the non-hub nodes, respectively. From an application
point of view, single allocation networks are needed in several contexts such as the
less-than-truckload (LTL) trucking industry where each end-of-line terminal might
be assigned to a single break-bulk terminal. In a similar manner, in the telecommuni-
cation industry, when the objective is to reduce the cost of constructing the network,
single allocation networks are usually preferred (Campbell and O’Kelly 2012).

Fig. 1 An example of single allocation hub network
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HLPs constitute a difficult class of NP-hard combinatorial optimization problems
(Contreras et al. 2011a). Moreover, in case of the single allocation HLP, given a fixed
set of locations for the hubs, the allocation part of the problem is still NP-hard (Kara
1999) making it very difficult, if not impossible, to solve the real-world (usually
large-sized) instances of the problem to optimality using standard optimization pack-
ages. For this reason, developing efficient solution algorithms capable of solving the
problem instances of large sizes is of utmost practical importance.

In this paper, we address two of the basic variants of the single allocation HLP,
namely the uncapacitated single allocation hub location problem (USAHLP) and the
uncapacitated single allocation p-hub median problem (USApHMP) and propose
exact solution algorithms for solving these problems. The USAHLP assumes that the
number of hubs to be opened in the network is endogenously determined by solving
the mathematical model in which the objective is to minimize the total fixed hub
establishment costs as well as variable transportation costs. In contrast, the number
of hubs to be opened in the USApHMP is an input parameter to the model and the
objective is to minimize only the transportation costs.

The main contribution of this paper is to propose exact algorithms based on
Benders decomposition for solving large-scale instances of the USAHLP and
USApHMP. The standard implementation of the algorithm is enhanced by using a
new cut disaggregation scheme, generating strong optimality cuts, and an efficient
algorithm to solve the dual subproblems. In order to evaluate the efficiency of the
proposed algorithms, an extensive set of computational experiments were conducted
on all the three well-known data sets available in the literature of hub location. It
was shown that, the proposed algorithms are able to solve large-scale instances of the
problems to optimality in quite short and reasonable computational times.

The remainder of this paper is organized as follows. The next section discusses
the relevant literature for the HLP, the USAHLP, and the USApHMP. In Section 3,
we present the MIP formulations for the USAHLP and USApHMP. The proposed
Benders decomposition algorithms along with the associated algorithmic refinements
are presented in Section 4. Computational experiments as well as the corresponding
results are presented in Section 5. Finally, Section 6 provides some conclusions and
outlooks for future research.

2 Literature Review

The USAHLP was first introduced by O’Kelly (1992) and formulated as a quadratic
integer program. Over the years, several studies have considered the USAHLP.
Campbell (1994) presented the first linear programming formulations for the unca-
pacitated single and multiple allocation HLPs. Abdinnour-Helm and Venkatara-
manan (1998) presented a branch-and-bound (B&B) procedure as well as a genetic
algorithm (GA) to solve the problem. Their (B&B) could solve problem instances of
less than 20 nodes, whereas they were able to solve instances with up to 80 nodes
using the proposed GA. Topcuoglu et al. (2005) proposed a GA for the USAHLP and
showed that their algorithm significantly surpassed the related work prior to that time.
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Another heuristic for this problem was proposed by Chen (2007). The author pro-
posed two approaches to determine upper bounds for the number of hubs along with
a hybrid heuristic based on the simulated annealing (SA), tabu list, and improvement
procedures. It was shown that the proposed heuristic outperformed the algorithms
presented in Topcuoglu et al. (2005) in terms of running time and solution quality.

Silva and Cunha (2009) proposed three multi-start tabu search (TS) algorithm and
a two-stage integrated TS heuristic for the USAHLP and solved instances with up
to 200 nodes using their heuristics. Marić et al. (2013) presented a memetic algo-
rithm (MA) for solving the USAHLP. Their algorithm used two efficient local search
heuristics in order to improve both the location and allocation part of the problem.
A new efficient TS algorithm for the USAHLP was proposed by Abyazi-Sani and
Ghanbari (2016). The authors compared their TS algorithm with that of Silva and
Cunha (2009) and showed that their algorithm was able to find best known solutions
for all standard test problems in short computational time. Meier et al. (2016) and
Meier and Clausen (2017) proposed a row generation (RG) algorithm for solving
the single allocation HLPs assuming that the transportation costs between the hubs
are proportional to the corresponding Euclidean distances. This assumption enabled
them to construct a new linearization method for the quadratic terms of the single
allocation HLP models and incorporate it into the RG procedure for solving instances
of up to 200 nodes to optimality.

Some authors have addressed the capacitated version of the single allocation
hub location problem where the total ingoing/outgoing flow to/from each installed
hub is not allowed to exceed a pre-specified threshold level. Aykin (1994) consid-
ered the capacitated single allocation hub location problem (CSAHLP) in which
the direct service was allowed between non-hub nodes. A branch-and-bound algo-
rithm and a heuristic procedure partitioning the set of solutions on the basis of hub
locations were presented. Problem instances of up to 40 nodes were solved by the
proposed algorithms. Ernst and Krishnamoorthy (1999) presented an SA and a ran-
dom descent algorithm for solving the CSAHLP. Using the proposed algorithms they
found near-optimal solutions for the problems of up to 200 nodes. Contreras et al.
(2009) proposed a Lagrangian relaxation algorithm to obtain tight upper and lower
bounds for the CSAHLP. Contreras et al. (2011c) presented a branch-and-price algo-
rithm for solving the CSAHLP where they used the Lagrangian relaxation developed
in Contreras et al. (2009) to obtain tight lower bounds of the restricted master prob-
lem. Instances of up to 200 nodes were solved to optimality using the proposed
algorithm.

The USApHMP was first formulated by O’Kelly (1987) as a quadratic integer
program. He proposed two heuristic solution methods to solve the problem. Later,
Klincewicz (1992) developed two heuristics based on TS and greedy randomized
search procedure (GRASP) for the USApHMP and solved instances with up to 52
nodes using the proposed heuristics. Ernst and Krishnamoorthy (1996) proposed
an SA algorithm that used two move strategies for generating new solutions. They
provided solutions for the instances with up to 200 nodes. Skorin-Kapov and Skorin-
Kapov (1994) developed a TS algorithm for the USApHMP and solved instances of
25 nodes with their heuristic. Skorin-Kapov et al. (1996) developed new mixed lin-
ear formulations with tight linear programming relaxations for the USApHMP and
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its multiple allocation version. Also, for the single allocation case, they were able to
establish optimality of all heuristic solutions obtained via the tabu search algorithm
from their previous study (Skorin-Kapov and Skorin-Kapov 1994).

Kratica et al. (2007) developed two GA-based approaches for the problem that
used a set of mechanisms to increase the diversity of solutions. They improved the
best-known solutions from literature for large scale instances with up to 200 nodes.
Ernst and Krishnamoorthy (1998) proposed a branch-and-bound algorithm which
started with a set of root nodes rather than a single root node. Computational exper-
iments revealed that their algorithm was very efficient for small values of p. The
authors solved test instances of up to 100 nodes and with p = 2 and p = 3. A
hybrid algorithm combining evolutionary algorithms and local search was devel-
oped by Wolf and Merz (2007). More recently, Ilić et al. (2010) presented a new
general variable neighborhood search (GVNS) approach for the USApHMP. The
experimental results showed that the GVNS based heuristics outperformed the best-
known heuristics in terms of solution quality and computational effort. Peker et al.
(2016) identified general features of optimal hub locations for the USApHMP and
then exploited this knowledge to develop a straightforward heuristic methodology
for solving the problem. Taner and Kara (2016) proposed a new approach to fore-
cast the change in the demand patterns generated at different locations as a result of
the placement of new hubs in the USApHMP. The interested readers are referred to
the papers (Alumur and Kara 2008; Campbell and O’Kelly 2012; Contreras 2015;
Farahani et al. 2013) as recent and detailed surveys on the HLP.

Benders decomposition (Benders 1962) is a row generation based method for
solving mixed integer programming (MIP) problems. The approach is based on a
relaxation algorithm for solving the problem by partitioning it into two simpler prob-
lems. For the facility location and network design problems, Benders decomposition
algorithm has been successfully applied in numerous research works such as Fazel-
Zarandi et al. (2013), Geoffrion and Graves (1974), Magnanti and Wong (1981), Tang
et al. (2013), Tang et al. (2016), Wentges (1996), and He et al. (2018), among others.
In case of HLP, many researchers have successfully designed and applied Benders
decomposition algorithms to solve the problem in multiple allocation setting (see e.g.,
de Camargo et al. 2008, 2009b, b; Contreras et al. 2011a, b, 2012; Gelareh and Nickel
2008, 2011; Merakli and Yaman 2016; O’Kelly et al. 2015; de Sá et al. 2015). In
contrast, in case of the single allocation HLP, the algorithms proposed based on Ben-
ders decomposition are quite scarce. de Camargo et al. (2011) addressed the single
allocation hub location problem under congestion and proposed a hybrid algorithm
combining the outer-approximation technique and a specialized version of Benders
decomposition procedure for solving large-scale instances of up to 200 nodes to opti-
mality. de Camargo et al. (2013) proposed a Benders decomposition algorithm for
the many-to-many hub location routing problem. They strengthened their algorithm
using Pareto optimal cuts and minimum infeasible subsystems and solved instances
of up to 100 nodes to optimality. de Sá et al. (2013) considered the tree of hubs loca-
tion problem where the hubs were connected by a spanning tree. They proposed an
accelerated Benders decomposition algorithm to solve the problem and showed that
the proposed technique is powerful enough to solve to optimality instances of up to
100 nodes.
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3 Mathematical ProgrammingModels

Let G = (N, A) be a complete graph, where N is the set of nodes and A is the set of
arcs such that A ⊆ N × N . Assume H ⊆ N be the subset of nodes that are available
to locate hubs. For every i, j ∈ N , let wij denote the amount of flow originated at
node i and destined to node j . Define Cijkm as the transportation cost per unit flow
from node i to node j routed via hubs k and m in that order:

Cijkm = χcik + αckm + δcmj

where cij denotes the transportation cost per unit flow from node i to node j which is
linearly proportional to the distance between the nodes i and j and therefore satisfies
the triangle inequality. χ , α, and δ are cost coefficients associated respectively with
collection, transfer, and distribution links on each route. More specifically, α is the
volume discount factor to reflect a scale economies on transportation cost via the
inter-hub links (0 ≤ α ≤ 1; χ ≥ α; δ ≥ α). Let the variable Xijkm denote the
fraction of flow wij that is sent from node i to node j using the link between the
hubs k and m. Also, let the binary variable Yik ∈ {0, 1} be 1 if node i is allocated to
hub k and 0, otherwise. The problem then consists of selecting a set of nodes which
will act as hubs, deciding on how the non-hub nodes will be allocated to these hubs,
and determining the way the O/D flows will be routed within the network so that the
total system-wide costs are minimized.

In the USAHLP, it is assumed that the number of hubs to be opened in the network
is endogenously determined by the model, i.e., the model determines the optimal
number of hubs based on the trade-off between transportation costs and fixed costs
associated with opening hubs. Assuming that fk represents the fixed cost of estab-
lishing a hub at node k ∈ H , the MIP model for the USAHLP can be written as
(Skorin-Kapov et al. 1996):

(Model-USAHLP)

min
∑

k∈H

fkYkk +
∑

i∈N

∑

j∈N

∑

k∈H

∑

m∈H

CijkmwijXijkm (1)

s.t.:
∑

k∈H

Yik = 1 ∀i ∈ N (2)

Yik ≤ Ykk ∀i ∈ N, k ∈ H (3)∑

m∈H

Xijkm = Yik ∀i, j ∈ N, k ∈ H (4)

∑

k∈H

Xijkm = Yjm ∀i, j ∈ N, m ∈ H (5)

Yik ∈ {0, 1} ∀i ∈ N, k ∈ H (6)

Xijkm ≥ 0 ∀i, j ∈ N, k, m ∈ H (7)

The objective function (1) minimizes the total transportation as well as facility loca-
tion costs. Constraints (2) imply that each node i must be assigned to exactly one
hub. Constraints (3) state that non-hub nodes can only be allocated to the nodes that
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have already been selected as hubs. Constraints (4) state that if node i is assigned
to hub k, all the outgoing flow corresponding to node i aiming to a specific node j

must go through some hub m. Based on a similar reasoning, constraints (5) say that
the incoming flow to a node j assigned to hub m from any node i must be trans-
ferred using some hub k. Equations 6 and 7 are the standard domain constraints for
the model variables.

Unlike the USAHLP in which the number of hubs is determined by the model, in
USApHMP this number is a pre-specified quantity which is fed to the model as an
input parameter. Normally, in such a case, the fixed hub establishment costs are not
included in the objective function. Letting p denote the number of hub that must be
located in the network, the USApHMP can be formulated as:

(Model-USApHMP)

min
∑

i∈N

∑

j∈N

∑

k∈H

∑

m∈H

CijkmwijXijkm (8)

s.t.:
∑

k∈H

Ykk = p

(2) − (7) (9)

The objective function (8) minimizes the total transportation costs. Constraint (9)
forces the number of opened hubs to be equal to p.

4 Benders Reformulation

As previously mentioned, Benders decomposition is a classical partitioning method
for MIP problems that decomposes the original problem into two simpler ones: an
integer master problem (MP) and a linear subproblem (SP). The MP is a relaxed
version of the original problem with the set of integer variables classified as com-
plicating variables and its associated constraints. There is an additional continuous
variable, representing a transportation cost underestimator in our specific problems.
The SP is the reduced version of what would be the original problem with the val-
ues of the integer variables temporarily fixed by the MP. The algorithm solves each
one of the two simpler problems iteratively, one at a time. At each iteration, a new
constraint originated by the dual problem of the SP, known as Benders cut, is added
to the MP. After a finite number of iterations, the algorithm converges to an optimal
solution for the original MIP, if one exists.

In this section, we introduce a Benders reformulation of the models presented
in Section 3 for the USAHLP and the USApHMP. We use a modern implementa-
tion of Benders algorithm where a branch-and-cut framework is employed to solve
the master problem on a single search tree utilizing recent developments in off-the-
shelf solvers. This strategy is referred to as Branch-and-Benders-cut in the literature
and has shown to yield promising results (Rahmaniani et al. 2017). In this method,
the separated Benders cuts are added to the master problem whenever an incumbent
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integer solution is found in the branch-and-cut tree. Using this strategy, the compu-
tational burden of solving an integer problem at each iteration is avoided. To further
accelerate the convergence of our algorithms, a new cut disaggregation scheme is
introduced. Strong optimality cuts, as well as an efficient procedure for solving the
dual subproblems are also introduced to speed up the convergence of the algorithms.

4.1 Master Problem and Subproblem

By fixing the binary variables Yik = Ŷik , in the Model-USAHLP and the Model-
USApHMP, the subproblem SP for both the UASHLP and USApHMP can be written
as:

(SP)

min
∑

i∈N

∑

j∈N

∑

k∈H

∑

m∈H

CijkmwijXijkm (10)

s.t.:
∑

m∈H

Xijkm = Ŷik ∀i, j ∈ N, k ∈ H (11)

∑

k∈H

Xijkm = Ŷjm ∀i, j ∈ N, m ∈ H (12)

Xijkm ≥ 0 ∀i, j ∈ N, k, m ∈ H (13)

Note that since for every i ∈ N we have
∑

k∈H Ŷik = 1, there exists exactly one pos-
sible path for each O/D flow and hence, the SP is feasible and has a unique feasible
solution (the optimal solution). Let oi and oj denote the hubs to which nodes i and
j are assigned, respectively. Then the optimal values of the decision variables Xijkm

can be determines as:

X∗
ijkm =

{
1, if k = oi and m = oj

0, otherwise
∀i, j ∈ N (14)

Therefor, the optimal value of the objective function for the SP can be calculated as:∑
i∈N

∑
j∈N wijCijoioj

. On the other hand, since the unit routing costs Cijkm are
finite and because of constraints (11) and (12), the SP is bounded. Hence, by strong
duality it can be concluded that the dual of SP is also feasible and bounded. Let σijk

and πijm be the dual variables associated with constraints (11) and (12) in the SP,
respectively. The dual subproblem DSP can now be written as:

(DSP)

max
∑

i∈N

∑

j∈N

∑

k∈H

Ŷikσijk +
∑

i∈N

∑

j∈N

∑

m∈H

Ŷjmπijm (15)

s.t.: σijk + πijm ≤ Cijkmwij ∀i, j ∈ N, k, m ∈ H (16)

σijk, πijm ∈ R ∀i, j ∈ N, k, m ∈ H (17)

It is worth mentioning that although the SP has a unique (optimal) solution, one can-
not make such a claim for the DSP. Indeed, as it will be discussed later, the DSP has
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multiple optimal solutions. Therefore, it is important to develop an efficient method
for solving the DSP and choosing appropriate values for the optimal dual values.

Introducing a non-negative variable θ , the master problem for the USAHLP solves
the following MIP model:

(MP-USAHLP)

min
∑

k∈H

fkYkk + θ (18)

s.t.: θ ≥
∑

i∈N

∑

k∈H

⎛

⎝
∑

j∈N

σ t
ijk

⎞

⎠ Yik+
∑

j∈N

∑

m∈H

(
∑

i∈N

πt
ijm

)
Yjm∀t ∈ T = {1, ..., |T |}

(2), (3), (6) (19)

θ ≥ 0 (20)

in which (πt , σ t ) is the t th extreme point of the feasible solution space of the DSP
defined by Eqs. 16–17. Observe that constraints (2) and (3) assure the installation of
at least one hub in the network which in turn guarantees the feasibility of the SP at
any iteration. Therefore, there is no need for adding feasibility cuts to the MP at each
iteration.

Removing the fixed facility location cost term from the objective function and
adding the constraint associated with locating p hubs, the MP for the USApHMP
can be written as follows:

(MP-USApHMP)

min θ

s.t.: (2), (3), (6), (9), (19), (19) (21)

4.2 Disaggregating the Benders Cuts

A deeper analysis of the DSP reveals that one can decompose it into smaller prob-
lems, one for each i − j pair. Exploiting this fact, we can disaggregate the Benders
cut (19) resulting in the following set of Benders cuts:

θij ≥
∑

k∈H

σ t
ijkYik +

∑

m∈H

πt
ijmYjm ∀i, j ∈ N, t ∈ T (22)

Therefore, rather than adding a single cut to the MP per iteration, we can take advan-
tage of the special structure of the SP and add more than one constraint to the MP at
a time, obtaining the following modified MPs for the USAHLP and the USApHMP,
respectively:

(MPij -USAHLP)

min
∑

k∈H

fkYkk +
∑

i∈N

∑

j∈N

θij

s.t.: (2), (3), (6), (21) (23)

θij ≥ 0 ∀i, j ∈ N (24)
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(MPij -USApHMP)

min
∑

i∈N

∑

j∈N

θij

s.t.: (2), (3), (6), (9), (21), (23) (25)

The number of added optimality cuts at each iteration of the algorithm using the
above disaggregation scheme is n2 where n is the number of nodes in the network
(n = |N |).

Some authors have suggested a second scheme for the cut disaggregation in the
Benders decomposition algorithm applied to the HLP (de Camargo et al. 2008; Con-
treras et al. 2011a). They argue that the reduction in the number of iterations (and
hence, the reduction in the total solution time of the algorithm) as a result of adding
n2 cuts (one corresponding to each i − j pair) per iteration of algorithm is not jus-
tified by the increased computational effort required for solving the relaxed master
problems with n2 cuts per iteration even for small sized instances. Therefore, they
propose another cut disaggregation scheme in which the DSP is decomposed into n

smaller problems each corresponding to a node in the network as in Contreras et al.
(2011a). To this end, the new set of Benders cuts can be formulated as follows:

θi ≥
∑

j∈N |j≥i

∑

k∈H

σ t
ijkYik +

∑

j∈N |j≥i

∑

m∈H

πt
ijmYjm ∀i ∈ N, t ∈ T (26)

Based on the second disaggregation scheme proposed above, the master problems
respectively for the USAHLP and the USApHMP can be written as follows:

(MPi-USAHLP)

min
∑

k∈H

fkYkk +
∑

i∈N

θi

s.t.: (2), (3), (6), (25) (27)

θi ≥ 0 ∀i ∈ N (28)

(MPi-USApHMP)

min
∑

i∈N

θi

s.t.: (2), (3), (6), (9), (25), (27) (29)

We proposed a third type of disaggregation for the Benders cuts based on a special
property of the optimal solutions to the problems at hand. Since there are no capacity
constraints on the installed hubs in our problems and also every non-hub node is
assigned to a single hub, the minimum-cost path corresponding to an O/D pair i − j

(i, j ∈ N) is also a minimum-cost path for the pair j − i. In other words, the flows
wij and wji are routed on the same path but in opposite directions and therefore, we
can simply reduce the size of our models by just taking into account the pairs i − j

such that j ≥ i. In order to get smaller formulations and also to prevent the double
calculation of the transportation cost for a demand originating and ending at the same
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node (i.e., if wii �= 0), we define a new flow parameter Dijkm for i, j ∈ N (j ≥ i) as
follows:

Dijkm =
{

wijCijkm + wjiCjimk, if i �= j

wiiCiikm, if i = j .
Based on the above discussion, more compact formulation for the SP can be obtained
by replacing the objective function (10) with

∑
i

∑
j |j≥i

∑
k

∑
m DijkmXijkm, and

also imposing the constraints (11)–(13) for i, j ∈ N such that j ≥ i. Accordingly,
the required changes can be easily made to the DSP. Hence, the new disaggregated
Benders cuts can now be written as:

θij ≥
∑

k∈H

σ t
ijkYik +

∑

m∈H

πt
ijmYjm ∀i, j ∈ N(j ≥ i), t ∈ T (30)

The corresponding MPs for the USAHLP and the USApHMP can be stated as
follows:

(MPi≤j -USAHLP)

min
∑

k∈H

fkYkk +
∑

i∈N

∑

j∈N |j≥i

θij (31)

s.t.: (2), (3), (6), (29)

θij ≥ 0 ∀i, j ∈ N(j ≥ i) (32)

(MPi≤j -USApHMP)

min
∑

i∈N

∑

j∈N |j≥i

θij

s.t.: (2), (3), (6), (9), (29), (301) (33)

Note that the number of added optimality cuts at each iteration of the algorithm using
the new disaggregation scheme is n(n + 1)/2.

4.3 Solving Dual Subproblem and Strengthening Benders Cuts

Magnanti and Wong (1981) introduced the concept of nondominated or Parteo-
optimal cuts, i.e., the strong cuts that can improve the convergence of the Benders
decomposition algorithm. They noticed that, the DSP has multiple optimal solutions
in most applications, that results in generation of different Benders cuts. Therefore,
instead of using all of these cuts, they proposed a slightly different DSP in order to
identify the strongest non-dominated cuts and add them to the MP. The condition
under which a cut dominates another cut is problem-specific. In case of our problem,
the cut generated for the dual solution (σ t1 , πt1 ) dominates the cut corresponding to
the dual solution (σ t2 , πt2 ) if

∑

i∈N

∑

k∈H

∑

j∈N

σ
t1
ijkYik +

∑

j∈N

∑

m∈H

∑

i∈N

π
t1
ijmYjm ≥

∑

i∈N

∑

k∈H

∑

j∈N

σ
t2
ijkYik +

∑

j∈N

∑

m∈H

∑

i∈N

π
t2
ijmYjm

for all values of Yik and Yjm, and with a strict inequality for at least one point. In
other words, the larger the values of the dual variables σijk and πijm the stronger
the resulting Benders cut. A cut is said to be a Pareto-optimal cut if no other cut
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dominates it. These strong cuts are normally generated when the DSP has alterna-
tive (multiple) optimal solutions. In this case, an optimal solution to DSP should be
determined in such a manner that it provides a strong Benders cut. In order to gen-
erate strong cuts, we take a similar approach to the two-phase method introduced by
Roy (1986) for the capacitated facility location problem which has been implemented
on different problems in the literature (Üster et al. 2007; Üster and Agrahari 2011).
We note that in case of our problems, the dual values associated with Ŷik (or Ŷjm)
with zero values do not affect the optimal objective value of the DSP. In other words,
whenever Ŷik = 0 (or Ŷjm = 0), we can modify the value of corresponding dual vari-
able without altering the value of objective function, as long as that the new values
are still feasible (i.e., constraints (16) are satisfied). Based on this short discussion,
an efficient two-phase procedure for solving the DSP is proposed as follows.

Phase I In this phase, we consider a modified version of the DSP including only the
dual variables σijk and πijm corresponding to parameters Ŷik and Ŷjm with nonzero
values. It should be noted that according to constraint (2), for each node i ∈ N there
is only one hub k ∈ H such that Ŷik = 1. Using the notations oi and oj for the hubs
to which the nodes i and j are assigned, the DSP for each i − j pair (i, j ∈ N) can
be written as:

(DSPij )

max σijoi
+ πijoj

(34)

s.t.: σijk + πijm ≤ Cijkmwij ∀k, m ∈ H (35)

σijk, πijm ∈ R ∀k, m ∈ H (36)

It is clear that the optimal objective value of the above model is Cijoioj
wij and

the corresponding optimal values of variables σijoi
and πijoj

satisfy the following
equation:

σ ∗
ijoi

+ π∗
ijoj

= Cijoioj
wij (37)

which means that the optimal solution is not unique and there are multiple optima.
For instance, given any real-valued variable λ, the optimal values of σijoi

and πijoj

can be determined as:
σ ∗

ijoi
= λ (38)

π∗
ijoj

= Cijoioj
wij − λ (39)

One reasonable value for the λ which we used in our computational experiments is
λ = 1

2Cijoioj
wij .

Phase II Having fixed the values of the dual variables σijoi
and πijoj

as described in
the first phase, we now need to determine the values of the remaining dual variables
in such a way that the resulting Benders cuts be as strong as possible. To this end, for
each i − j pair (i, j ∈ N), one can solve the following linear programming model to
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obtain the values of the dual variables corresponding to the Ŷik and Ŷjm parameters
with zero values:

max
∑

k �=oi

σijk +
∑

m �=oj

πijm (40)

s.t.: σijk + πijm ≤ Cijkmwij ∀k, m ∈ H, k �= oi or m �= oj (41)

σijk, πijm ∈ R ∀k, m ∈ H, k �= oi or m �= oj (42)

However, in this work we do not solve the above linear programs and instead, we
propose a simple procedure to obtain solutions with large objective values in order to
get relatively strong cuts with very small computational burden. Our procedure can
be described as follows. Suppose that for each i − j pair (i, j ∈ N), we have fixed
the values to the variables σijoi

and πijoj
to respectively σ ∗

ijoi
and π∗

ijoj
as we did in

the first phase. Then, for any m ∈ H such that m �= oj , the largest possible value for
the dual variables πijm can be determined as:

π∗
ijm = Cijoimwij − σ ∗

ijoi
(43)

Furthermore, by fixing the values of πijm, the largest values of the dual variable σijk ,
for all k ∈ H and k �= oi , can be calculated as:

σ ∗
ijk = min

m∈H
{Cijkmwij − π∗

ijm} (44)

We note that, based on Eq. 37, the objective function value obtained for the dual
subproblem of the pair i − j (i.e., the DSPij ), is equal to Cijoioj

wij . Hence, the
objective function value for the DSP, as the sum of the corresponding values for all the
i−j pairs, equals

∑
i∈N

∑
j∈N Cijoioj

wij , which is identical to the optimal objective
function value of the SP as we calculated earlier. Therefore, from the duality theory,
it can be concluded that the solution obtained by the proposed procedure for the DSP
is optimal. The above simple procedure obtains a very good solution to the problem
(40)–(42) with large values for the dual variables which result in strong Benders cuts.
In other words, the above procedure enables us to solve the DSP to optimality and
obtain relatively strong Benders cut using a set of simple calculations and without
resorting to an off-the-shelf solvers which helps to significantly reduce the total time
spent by our proposed algorithms to obtain the optimal solutions. The pseudo-code
for the proposed procedure for solving the DSP is presented in Algorithm 1.
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5 Computational Experiments

In order to test the efficiency of the proposed solution algorithms, we use three com-
monly used data sets from the hub location literature, namely the CAB, TR, and AP
data sets. The CAB data set introduced by O’Kelly (1987) is based on the airline
passenger interactions between 25 US cities in 1970 evaluated by the Civil Aeronau-
tics Board. This data set has been used by most of the hub location researchers in
the literature. To solve the problem on the CAB data set, we have set the values of
parameters χ and δ to 1 and the parameter α is considered at five levels: 0.2, 0.4.
0.6, 0.8, and 1.0. Since the CAB data set does not include fixed cost for opening hub
facilities, the fixed cost for establishing a hub will be taken at four levels: 250, 200,
150, and 100 as in Abdinnour-Helm and Venkataramanan (1998), Abdinnour-Helm
(1998), Topcuoglu et al. (2005), Cunha and Silva (2007), and Chen (2007).

The second data set we have used in our computational experiments is the TR
data set (Tan and Kara 2007) which is based on the cargo flows between 81 cities of
Turkey. Unlike the CAB data set, the flow matrix in the TR data set is not symmet-
rical. In most of the papers using the TR data set as benchmark, only 22 out of 81
these cities which have higher values of flow interactions are considered as candidate
nodes for locating hubs (|H | = 22). However, in this paper we use the TR data set
in two settings: a) considering only the 22 high traffic cities as candidate hub nodes,
and b) considering all 81 cities as candidate hub nodes. Similar to the case of the
CAB data set, the values of parameters χ and δ are set to 1 and the parameter α is
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considered at five levels: 0.2, 0.4. 0.6, 0.8, and 1.0. The original fixed hub costs val-
ues in the TR data set are multiplied by scaling factor taking three different values as
FCS ∈ {0.05, 0.1, 0.15} .

The third data set used in our experiments is the Australia Post (AP) data set that
was first used by Ernst and Krishnamoorthy (1996). The AP data set is based on a
postal delivery in Sydney, Australia and consists of 200 nodes representing postal
districts. Similar to the TR data set, the flow matrix of the AP data set is not symmet-
rical. Furthermore, the AP data set includes demands originating and ending at the
same node, i.e., wii �= 0 for all i ∈ N . The parameters χ, α, and δ are set to 3, 0.75,
and 2, respectively. There are two types of fixed hub establishment cost values and
two types of hub capacity values in the AP data set, namely the tight and loose values.
This results in four different classes of instances as the LT, TT, LL, and TL instances
(the first letter stands for the type of the fixed cost and the second letter stands for the
type of capacity). Since we do not consider the hub capacities in our work, we use
the LT and TT instances for the USAHLP and the LL instances for the USApHMP.

All computational tests have been carried out on a computer with Intel(R)
Core(TM) i3-3220 CPU of 3.30 GHz and 16 GB of RAM, using the Microsoft Win-
dows 7 operating system. Also, the Benders decomposition has been implemented in
JAVA using CPLEX version 12.6 to solve the master problems. The proposed Ben-
ders decomposition algorithms are implemented using the lazy constraint callback
function available in CPLEX in which cuts are added to the master problem at each
time an incumbent solution is found. The relative gap parameter of CPLEX is set to
0 and hence, all the obtained solutions are optimal.

5.1 Performance Analysis of the Two Cut Disaggregation Schemes

The aim of this part of the computational experiments is to compare the effectiveness
of the different cut disaggregation schemes discussed in Section 4.2 on the perfor-
mance of the proposed Benders decomposition algorithms. As noted earlier, it is
shown in de Camargo et al. (2008, 2011a) that the second disaggregation scheme that
adds n cuts per iteration is superior to the one adding n2 cuts per iteration for the
HLP. Therefore, we compare the performance of our new proposed disaggregation
scheme (adding n(n + 1)/2 cuts per iteration) to only the one that adds n cuts. To
this end, the corresponding versions of the algorithms are implemented for both the
USAHLP and USApHMP on several instances of the three aforementioned data sets.

The detailed results of applying the two Benders decomposition algorithms on
nine problem instances from each of the CAB, TR, and AP data sets for USAHLP
are reported in Table 1. The first and second columns under the heading “CAB” give
the discount factor and fixed cost of opening hubs, respectively. The next columns
show the CPU time (in seconds) needed to obtain an optimal solution for each prob-
lem instance using the two Benders decomposition algorithms. The columns entitled
“FCS” show fixed hub cost scaling factor for the TR data set. Finally, the columns
entitled “|N |” and “Type” respectively show the number of nodes and the type of
fixed cost in the corresponding problem instance from the AP data set.

As can be observed from the above results, for the USAHLP, the overall perfor-
mance of the algorithm with n(n + 1)/2 cuts in terms of the average CPU times is
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Table 1 Effect of cut disaggregation on the algorithm’s performance for USAHLP

CAB TR (|H | =81) AP

# cuts per iteration # cuts per iteration # cuts per iteration

n n(n + 1)/2 n n(n + 1)/2 n n(n + 1)/2

α fk CPU(s) CPU(s) α FCS CPU(s) CPU(s) |N | Type CPU(s) CPU(s)

0.4 100 0.65 0.38 0.4 0.05 47.33 42.59 50 LT 4.17 4.42

150 0.64 0.39 0.1 42.35 48.93 TT 2.02 3.92

200 0.57 0.47 0.15 25.45 55.45

0.6 100 0.37 0.48 0.6 0.05 313.46 97.51 75 LT 15.79 41.55

150 0.38 0.49 0.1 173.38 144.50 TT 6.02 15.38

200 0.35 0.23 0.15 31.39 42.32

0.8 100 0.72 0.80 0.8 0.05 1183.38 247.77 125 LT 127.86 411.46

150 0.47 0.35 0.1 137.17 159.45 TT 97.59 188.05

200 0.48 0.37 0.15 95.71 156.06

Avg. 0.51 0.44 Avg. 227.74 110.51 Avg. 42.24 110.80

slightly better than the algorithm with n cuts. Although for some instances, the algo-
rithm with n performs better in terms of the CPU time, but for the instances that take
longer times to be solved, the algorithm with n(n + 1)/2 cuts performs much better.

Table 2 Effect of cut disaggregation on the algorithm’s performance for USApHMP

CAB TR (|H | = 81) AP

# cuts per iteration # cuts per iteration # cuts per iteration

n n(n + 1)/2 n n(n + 1)/2 n n(n + 1)/2

α p CPU(s) CPU(s) α p CPU(s) CPU(s) |N | p CPU(s) CPU(s)

0.4 2 0.54 0.11 0.4 4 136.21 293.15 50 2 2.38 3.47

3 0.66 0.33 6 123.24 57.97 3 2.19 3.08

4 0.24 0.28 8 1531.97 323.08 4 2.75 4.83

0.6 2 0.27 0.13 0.6 4 450.27 363.33 75 4 18.28 41.66

3 0.40 0.40 6 368.21 106.54 6 64.82 83.63

4 0.37 0.47 8 5989.68 686.88 8 31.47 29.94

0.8 2 0.39 0.30 0.8 4 1071.40 1084.03 125 5 1855.96 1286.48

3 0.43 0.45 6 1061.97 280.25 10 878.17 414.08

4 0.72 0.69 8 40219.06 800.64 15 8391.66 1271.86

Avg. 0.45 0.35 Avg. 5661.33 443.99 Avg. 1249.74 348.78
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The results for solving the USApHMP on different instances of the three data
sets using the two Benders decomposition algorithms are presented in Table 2. The
columns entitled “p” show the number of opened hubs.

It can be seen that the difference between the average CPU times is more consid-
erable for the USApHMP as compared to that of the USAHLP. In other words, the
algorithm with n(n+ 1)/2 cuts per iteration is much more efficient than the one with
n cuts in terms of the CPU time for the USApHMP. In particular, for the instances
with relatively large solution times, the algorithm with n(n + 1)/2 performs much
better. Based on the above observations, we use the algorithm with n(n+1)/2 cuts in
the rest of the computational experiments for both the USAHLP and the USApHMP.

5.2 Numerical Results for the USAHLP

Table 3 shows the solution results obtained by applying the proposed Benders decom-
position algorithm to the USAHLP on CAB data set. The first column gives the value
of discount factor (α), whereas the second column shows the value of fixed cost

Table 3 Results for the USAHLP with the CAB data set

CPU(s)

α fk Opt. Obj. Model-USAHLP Model-E&K BD

0.2 100 1029.63 142.29 2.29 0.59

150 1217.35 147.86 2.91 0.46

200 1367.35 189.52 2.71 0.33

250 1500.91 216.63 2.26 0.28

0.4 100 1187.52 132.51 5.16 0.38

150 1351.70 154.67 3.83 0.39

200 1501.63 233.58 7.79 0.47

250 1601.63 193.92 2.87 0.15

0.6 100 1333.56 164.52 21.02 0.48

150 1483.56 211.3 8.22 0.49

200 1601.21 253.93 11.29 0.23

250 1701.21 279.07 4.65 0.19

0.8 100 1458.83 169.57 32.71 0.80

150 1594.08 226.37 29.4 0.35

200 1690.58 221.13 15.51 0.37

250 1740.58 206.63 1.85 0.19

1 100 1556.63 247.4 34.9 0.54

150 1640.58 225.57 12.03 0.30

200 1690.58 213.93 1.99 0.13

250 1740.58 190.15 1.57 0.12

Average 201.02 10.25 0.37
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for installing hubs. The optimal values of the objective function are reported in the
column labeled as “Opt. Obj.”. To compare the efficiency of the proposed solution
algorithm, we have solved the problem using the Model-USAHLP and also the three-
indexed model proposed by Ernst and Krishnamoorthy (1996) using CPLEX. The
CPU time, in seconds, needed to obtain the optimal solution of the problem using
these models are presented in column labeled as “Model-USAHLP” and “Model-
E&K”, respectively. The next column under the heading of “BD” gives the solution
time for our proposed Benders decomposition algorithm.

Results reported in the above table indicate that the model proposed by Ernst and
Krishnamoorthy (1996) is much more efficient than the model proposed by Skorin-
Kapov et al. (1996) in terms of the solution time. Furthermore, it can be observed that
the proposed Benders decomposition algorithm obtains the optimal solution for all
the instances of the CAB data set in much smaller computational times (less than half
of a second on average). It should be noted that for larger instances of the problem
solving the mathematical models using off-the-shelf solvers is not practical as the
time and memory requirements of such methods grows very rapidly by the size of
the problem.

The results for solving the problem on the TR data set with |H | = 22 and |H | =
81 using the proposed Benders decomposition algorithm are shown in Table 4 .

The first column in the above table shows the different values considered as hub
fixed cost scaling factor. The results show that the Benders algorithm have obtained
the optimal solutions for all instances in very short computational times. All the
instances with 22 candidate hub nodes are solved in less than 130 seconds, whereas

Table 4 Results for the USAHLP with the TR data set using BD algorithm

|H | = 22 |H | = 81

FCS α Opt. Obj. CPU(s) Opt. Obj. CPU(s)

0.05 0.2 549.96 14.10 547.57 28.76

0.4 682.84 13.04 678.60 42.59

0.6 808.93 43.17 803.24 97.51

0.8 925.87 85.90 918.64 247.77

1.0 1015.94 126.49 1015.94 975.20

0.1 0.2 683.10 11.29 681.67 31.20

0.4 806.02 16.43 806.02 48.93

0.6 920.27 29.88 920.27 144.50

0.8 1007.68 56.41 1007.68 159.45

1.0 1056.26 47.02 1056.26 54.94

0.15 0.2 772.66 17.09 765.28 32.26

0.4 884.34 20.09 884.34 55.45

0.6 983.63 18.03 983.63 42.32

0.8 1067.22 21.16 1067.22 156.06

1.0 1071.79 3.77 1071.79 14.56
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the maximum solution time for the instances with all 81 nodes as candidate hub nodes
is less than 1000 seconds. Another interesting observation from the above table is
that in 9 out of 15 instances, the optimal set of hubs are the same for both the cases of
|H | = 22 and |H | = 81. In the other 6 instances, although some of the opened hubs
in the optimal solution are different, the optimal objective values differ very slightly
for the two cases. It should be mentioned that this is the first time in the literature
that the USAHLP is solved to optimality for the TR data set.

The results for solving the USAHLP on AP data set using the proposed Benders
decomposition algorithm are shown in Table 5 for both the loose and tight fixed costs.
The first column gives the size of the instance as the cardinality of the nodes set (|N |).
For the AP data set, 14 different problem sizes ranging from 10 up to 200 nodes are
considered. We also included the results for solving the problem by the row gener-
ation (RG) method proposed in Meier and Clausen (2017). As noted in Section 2,
the proposed row generation method is based on the assumption that the transporta-
tion costs between hubs are proportional to the Euclidean distances between them.
Since the distances in the AP data set are calculated based on the Euclidean norm, the
RG method were applied to the AP instnaces with |N | ≥ 50 in Meier and Clausen
(2017). The solution times for the row generation method are reported in the column
labeled as “RG”. Although the results reported in Meier and Clausen (2017) has been
obtained by running the RG algorithm on a different computer, but the configuration
of their macheine is very similar to that of ours.

Table 5 Results for the USAHLP with the AP data set using BD and RG algorithms

|N | Loose fixed costs (LT) Tight fixed costs (TT)

Opt. Obj. CPU(s) Opt. Obj. CPU(s)

BD RG (Meier and
Clausen 2017)

BD RG (Meier and
Clausen 2017)

10 224250.05 0.69 – 263399.94 0.22 –

20 234690.96 0.36 – 271128.18 0.32 –

25 236650.63 0.48 – 295667.84 0.68 –

40 240986.23 2.10 – 293164.84 0.67 –

50 237421.99 4.42 1.06 300420.99 3.92 2.28

60 228855.08 10.52 7.13 264742.11 10.62 5.23

70 226188.20 21.76 3.15 261294.99 8.41 1.15

75 235847.50 41.55 12.29 288778.29 15.38 1.48

90 225475.48 98.92 7.32 257415.86 50.40 6.12

100 238016.28 82.42 6.91 305097.95 60.23 3.24

125 227949.00 411.46 43.30 258839.68 188.05 16.08

150 225450.10 1259.22 107.24 234778.74 478.38 26.30

175 227655.38 2044.77 188.17 247876.80 1639.21 44.55

200 233802.98 5493.47 68.18 272188.11 20292.35 1399.53
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The results presented in Table 5 show that the proposed algorithm has solved all
the AP instances to optimality in reasonable computational times. All the instances
except the ones with |N | = 200, are solved within CPU time of smaller than an hour.
Further, it can be seen that the instances with tight fixed cost values are in general
solved in smaller computational time than their loose counterparts. The results also
show that the RG algorithm is considerably faster than the BD algorithm. However, as
noted earlier, the RG algorithm is designed for solving a special case of the problem,
where the distances between hubs are calculated using the Euclidean norm. Neverthe-
less, in most of the real-world applications (e.g. road transportation), the real (travel)
distances between hubs are substantially different from the corresponding Euclidean
distances.

5.3 Numerical Results for the USApHMP

As for the USAHLP, we first compare the performance of the proposed Benders
decomposition algorithm with those of the Model-USApHMP and the three-indexed
formulation of Ernst and Krishnamoorthy (1996). The results for this analysis are

Table 6 Results for the USApHMP with the CAB data set

CPU(s)

α p Opt. Obj. Model-USApHMP Model-E&K BD

0.2 2 1000.91 188.19 1.63 0.52

3 767.35 152.31 2.99 0.45

4 629.63 130.26 2.73 0.21

5 538.37 117.22 2.33 0.18

0.4 2 1101.63 172.66 2.39 0.11

3 901.70 156.94 4.26 0.33

4 787.52 144.39 4.40 0.28

5 707.69 130.19 4.04 0.20

0.6 2 1201.21 177.33 4.16 0.13

3 1033.56 190.17 13.73 0.40

4 939.21 186.93 10.62 0.47

5 876.59 159.91 21.44 0.34

0.8 2 1294.08 204.15 7.35 0.30

3 1158.83 186.69 27.31 0.45

4 1087.66 208.08 38.92 0.69

5 1034.10 206.10 42.66 0.49

1 2 1359.19 239.15 8.52 0.72

3 1256.63 213.00 33.01 0.58

4 1211.23 233.67 53.92 1.00

5 1173.24 300.96 80.87 1.04

Average 184.91 18.36 0.44
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reported in Table 6. The first column in this table shows the values of discount factor
(α) while the second column shows the number of hubs to be opened. For the CAB
data set, we have used four different values for the parameter p as 2, 3, 4, and 5. The
optimal values of the objective function are reported in the column labeled as “Opt.
Obj.”. The CPU times needed by CPLEX to obtain the optimal solutions using the
two models are presented in column labeled as “Model-USApHMP” and “Model-
E&K”, respectively. The next column under the heading of “BD” gives the solution
time of the proposed Benders decomposition algorithm.

Observe that in case of the USApHMP, still the solution time for the Benders
decomposition algorithm on the CAB data set is less than half of a second on average.
Furthermore, The results show that the model proposed by Ernst and Krishnamoorthy
(1996) is much more efficient than the model proposed by Skorin-Kapov et al. (1996)
in terms of the solution time.

Table 7 Results for the USApHMP with the TR data set using BD algorithm

|H | = 22 |H | = 81

α p Opt. Obj. CPU (s) Opt. Obj. CPU (s)

0.2 2 784.84 9.57 781.32 33.81

4 580.44 23.05 575.17 66.36

6 454.09 10.76 448.60 27.83

8 399.61 13.60 396.48 33.36

10 359.72 16.12 357.70 23.97

0.4 2 860.76 12.15 850.17 41.19

4 690.28 33.33 683.24 293.15

6 586.30 21.85 579.38 57.97

8 531.86 21.45 530.39 323.08

10 494.42 20.18 493.30 320.94

0.6 2 916.90 15.80 916.69 142.99

4 790.69 78.08 777.03 363.33

6 699.64 36.83 691.35 106.54

8 655.24 34.73 651.35 686.88

10 622.19 50.77 619.08 797.82

0.8 2 961.83 31.75 961.83 180.57

4 871.59 112.19 861.99 1084.03

6 805.51 66.53 792.28 280.25

8 770.82 66.84 762.10 800.64

10 742.51 42.25 737.71 2165.90

1 2 992.72 73.84 992.72 272.75

4 946.94 365.88 932.56 508.60

6 904.83 175.61 883.85 400.02

8 876.57 226.93 862.10 1845.28

10 857.28 150.02 843.38 1476.57
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Table 7 shows the results for solving the problem on the TR data set for |H | = 22
and |H | = 81 using the proposed Benders decomposition algorithm. To solve the TR
data set, five different values are used for the number of opened hubs (p) as 2, 4, 6,
8, and 10.

The results shown in the above table reveals that for the TR data set with |H | = 22,
all the instances except one of them are solved within 370 seconds of computational
time. However, the solution time for the instances with |H | = 81 are considerably
larger as the solution space of the problem has got larger in this case. Note that unlike
the case of the USAHLP, for the USApHMP only in 2 out of 25 instances the optimal
set of hubs are the same for both the cases of |H | = 22 and |H | = 81. We note again
that this is the first time in the literature that the USApHMP is solved to optimality
for the TR data set.

In order to solve the USApHMP on the AP data set we have classified the
instances with different sizes in three classes of small, medium, and large sized
instances. The instances with 10, 20, 25, 40, and 50 nodes are classified as small
sized instances for which the values for the parameter p are taken as p ∈ {2, 3, 4, 5}.
The instances with 60, 70, 75, and 90 nodes are classified as medium sized instances
for which the values for the parameter p are selected as p ∈ {2, 3, 4, 5, 10}. Finally,
the instances with 100, 125, 150, 175, and 200 nodes are classified as large sized
instances and the four values 5, 10, 15, and 20 are used as the parameter p for
these instances. Results obtained by solving the USApHMP for the AP data set
using the proposed Benders decomposition algorithm are presented in Table 8. We
also included the CPU times of solving the same instances by the row generation
algorithm presented in Meier et al. (2016).

It can be observed from Table 8 that the proposed Benders algorithm solves all
the small sized instances of the AP data set within 5 seconds of CPU time, whereas
for the medium sized instances, the maximum solution time is less than 300 second.
For the large sized instances, on the other hand, the solution times are considerably
larger but only in one of the instances he solution time has exceeded 10 hours. Similar
to the case of the USAHLP, the RG algorithm has much smaller CPU times than
the BD algorithm. However, as noted earlier, unlike the RG algorithm which is only
applicable to the problem instances where the transportation costs between the hubs
are proportional to their Euclidean distances, the BD algorithm does not have such
a limitation and hence, can be applied to any realistic problem instance like the TR
instances.

In order to evaluate the convergence speed of the proposed solution algorithms
we plotted the relative gap percent value over time (as reported in CPLEX log) for
two instances of the USApHMP with |N | = 200 and the number of installed hubs
as p = 5 and 10, respectively. The plots are shown in Fig. 2. As can be seen from
the gap progress plots, CPLEX finds the first feasible solution with a gap less than
5% in short time after it starts running. It is also observed that, when the gap drops
below 1%, the convergence process gets slower and hence, a large amount of time is
spent when the gaps is below 1%. In other words, if one decides to accept solutions
within 1% of optimality, then the solution times will be substantially smaller than the
reported values.
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Fig. 2 Gap% change over time for the USApHMP instances with |N | = 200

6 Conclusions

In this paper, we proposed efficient Benders decomposition algorithms for solv-
ing the uncapacitated single allocation hub location problem (USAHLP) and the
uncapacitated single allocation p-hub median problem (USApHMP). The standard
implementation of the Benders algorithms was enhanced by applying a number of
refinement techniques such as using a new cut disaggregation scheme, generating
strong optimality cuts, and an efficient algorithm to solve the dual subproblems
without calling the off-the-shelf optimization packages. Furthermore, a modern
implementation of the algorithm was used to solve the problem on a single search tree
in which the Benders cuts were successively added within a branch-and-cut frame-
work. Computational experiments were conducted on three well-known data sets in
the literature, namely the CAB, TR, and AP data sets. The instances for the TR data
set had not been solved to optimality in the literature before. The proposed algorithms
have shown to be able to solve all the tested instances in short and reasonable CPU
times. However, the results show that solving the USApHMP instances generally
take more time than the USAHLP instances of the same size.

An interesting avenue for further research is to modify and apply the proposed
algorithms to solve other variants of the single allocation HLPs such the single
allocation p-hub center problem and the single allocation p-hub maximal covering
problem.
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