Europeanjournalof OperationalResearch270(2018)132-145

journalhomepage:www.elsevier.com/locate/ejor

Production, Manufacturing and Logistics

ContentslistsavailableatScienceDirect

European Journal of Operational Research

po
BREPEAN CURNAL OF
ERATIONAL ESEARCH

Modeling the shelter site location problem using chance constraints: A )

case study for Istanbul

Check for
updates

Omer Burak Kinay ¥ , Bahar Yetis Kara ™, Francisco Saldanha-da-Gama ¢, Isabel Correia ¢

4 DepartmentofManagement Sciences, University of Waterloo, Waterloo, ON, Canada
b Departmentofindustrial Engineering, Bilkent University, Ankara, Turkey

¢ DepartamentodeEstatisticae Investigacdo Operacional/Centrode Matemdtica, Aplicaes Fundamentais e Investigao Operacional, Faculdade de Ciéncias,

UniversidadedeLisboa, Campo Grande 1749-016, Lisboa, Portugal

4 Departamentode Matemdtica/Centro de Matemdtica eAplicagdes, Faculdade de Ciéncias e Tecnologia, Universidade NovaLisboa, Caparica2829-516,

Portugal

ARTICLE INFO ABSTRACT

Articlehistory:
Received7 December2017
Accepted5 March2018

Availableonline 11 March 2018

Keywords:

Inthiswork, we developand testanew modelingframeworkfor the sheltersite location problem under
demand uncertainty. In particular, we propose a maxmin probabilistic programming model thatincludes
two types of probabilistic constraints: one concerning the utilization rate of the selected shelters and
the other concerning the capacity of those shelters. By invoking the central limit theorem we are able
to obtain an optimization model with asingle set of non-linear constraints which, nonetheless, can be

Location approximated using a family of piecewise linear functions. The latter, in turn, can be modeled mathe-

Humanitarianlogistics
Sheltersitelocation
Probabilistic programming
Approximations

maticallyusing integervariables.Eventually,anapproximatemodel is obtained,whichisa mixed-integer
linear programming model that can be tackled by an off-the-shelf solver. Using the proposed reformula-
tion we areable to solve instancesof the problem using dataassociated with the Kartal districtinIstan-
bul, Turkey. We also consider alarge-scale instance of the problem by making use of data for the whole

Anatolianside of Istanbul. The results obtained are presented and discussed in the paper. They provide
clear evidence that capturing uncertainty in the shelter site location problem by means of probabilis-
tic constraints may lead to solutions that are much different from those obtained when a deterministic
counterpartis considered. Furthermore, itis possible to observe that the probabilities embedded in the
probabilistic constraints have a clear influence in the results, thus supporting the statement that a prob-
abilistic programming modeling framework, if appropriately tuned by a decision maker, can make a full
difference when it comesto find goodsolutions for the problem.

© 2018 ElsevierB.V.Allrightsreserved.

1. Introduction

Turkey is a country much vulnerable to natural disasters. Since
the beginning of the 20th century more than half-million homes
have been destroyed (Ozmen, Nurlu, Kuterdem, & Temiz2010)due
to different kinds of disasters (e.g, earthquakes, landslide, flood).
Among these sudden events, earthquakes are the ones with the
most severe consequences being responsible for approximately
80% of the destroyed homes.

In recent years, much literature has emerged in the topic of
disaster management operations. The reader can refer to Altay
and Green (2006) Caunhye, Nie, and Pokharel (2012) Galindo
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and Batta (2013) and Hoyos, Morales, and Akhavan-Tabatabaei
(2015) and to the references therein.The review paper by Galindo
and Batta (2013) emphasizes the role of Operations Research and
stochastic modelingin that topic.

The existing work in disaster operations management can be
classified according to four main categories namely, the following
ones: (i) mitigation; (ii) preparedness; (iii) response; and (iv) re-
covery. The pre-disaster operations are related with categories (i)
and (ii) while categories (iii) and (iv) refer to pos-disaster oper-
ations. In particular, mitigation refers to the actions taken in or-
der to prevent and mitigate the consequences of a disaster. The
preparedness phase involves the elaboration of plans to provide
a more efficient response when a disaster occurs. The response
phase starts immediately after the event and aims to quickly pro-
vide the affected people with relief goods such as water, food,
medical care, and shelter. Finally the recovery phase takes usually
much time and aims to recover all the damaged (infra)structures
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in order to ensure the normal functioning of the affected
region.

When a disaster results in people losing their homes it is
necessary toaccommodate such people intemporary shelter areas
until the disaster recovery process is finished. Therefore the prob-
lem that consists of selecting new temporary shelter areas is one
of the fundamental facility location problems in the preparedness
phase for disaster relief. The problemis knownin theliterature as
the sheltersite location problem (Kilci1, Kara, & Bozkaya, 2015).

Most of the developed countries have specific organizations
that are responsible for locating shelter areas and providing
the emergency supplies to the affected people. For instance,
in the earthquake occurred in central Italy in August 24, 2016,
the Italian Civil Department (Dipartimento Protezione Civilg http:
[[www.protezionecivile.gov.it) took the lead in terms of sheltering.

In the particular case of Turkey that we consider in
more detail in this work, it is up to the Red Crescent
(http://www.ifrc.org)), namely to its Turkish branch (Tirk Kizilayz,
http://www.kizilay.org.tr) to organize this type of response. In re-
gions where the probability of a catastrophe is high (e.g. Istanbul)
the organization selects possible shelterlocations beforea disaster
occurs. This is accomplished by considering several criteria for
ranking potential shelter locations (e.g. distance to healthcare
institutions, electrical infrastructure, sanitary system, etc). The
reader should refer to Kilc1 et al. (2015) for all the details. When
a candidate shelter locationis identified, it is classified between 0
and 1 with respect to each of these criteria. The final weight of a
candidatelocationresultsfrom computinga convexcombination of
all its scores. Finally, all potential shelters locations can be sorted
non-increasingly according to their weights. When a disaster
occurs, the Turkish Red Crescent uses the list oflocations induced
by the abovesorting for sequentially deciding about the shelters to
construct. Theselection process proceedsuntil thesheltering made
available is enough foraccommodating all the affected people.

The above methodology can be easily improved by capturing
other aspects. This fact was observed by Kilci et al. (2015) who
considered the following additional aspects: (i) distance between
the potentiallyaffected peopleand the shelterareas; (ii) utilization
rate of the shelters; and (iii) pairwise utilization difference of the
open shelter areas. In order to accommodate these issues, Kilci
et al. (2015) proposed an integer linear programming formulation
for the shelter site location problem. This is a model aiming at
maximizing the minimum weight of the shelters to open while
deciding about the assignment of the population areas (or regions,
zones, et ceterd) to those shelters and simultaneously ensuring
a minimum threshold for their utilization rate. The authors also
consider ashelter pairwise balancing constraint.

Unfortunately, neither can the occurrence of a disaster nor its
consequences be predicted in most of the cases (e.g. earthquakes).
Moreover, its destruction level may vary significantly according to
intensity, location and duration; hardly can the impact be known
in advance. Consequently, the amount of sheltering needed may
vary significantly.

Since the selection of the candidate locations for the shelters
is made a priorj it is important to take uncertainty into account
when doing it. One possibility for dealing with this uncertainty is
to plan for covering all the demand whatever it may turn out to
be. However, this can easily lead to a so-called “fat” solution and
thus avery costly one in which the installed capacity may be sig-
nificantly above the actual needs. Alternatively, one may consider
uncertain demand and keep imposing “hard” capacity constraints
ensuring that the installed capacity should hold for all possible
scenarios. In this case, we would have to plan for the worst-case
scenario, which may be a very unlikely one (as it surely is in
the case of disaster events). Another possibility that emerges and
that motivates this work is to consider a kind of “service level”

constraints ensuring that with some (high) probability, each open
shelter can cope with the demand of those districts previously as-
signed to it.In other words, we can consider achance-constrained
model for the problem. This allows capturing a finite set of sce-
narios with each one calling for some (predictable) amount of
sheltering. Furthermore, if necessary, by using historical data, it
is reasonable to assume that the probability associated to each
scenario canbe accurately estimated. In this case, the shelter areas
are selected in such a way that with prespecified probabilities, (i)
the total demand does not exceed the shelters’ capacity; and (ii)
the utilizationrate of the sheltersis notbelow a given threshold.

As we can conclude by the results obtained and that will be
reported later in the paper, this type of model may provide good
trade-off solutions for the shelter site location problem under
demand uncertainty. Moreover, under some mild assumptions, the
model can beapproximated by a deterministic mixed-integer non-
linear programming problem forwhich anapproximationapproach
can be devised. In particular, we can consider a mixed-integer
linear programming optimization model that can be tackled by a
general-purpose solver.

The remainder of this paper is organized as follows: in
Section 2 we review the most relevant literature related with our
work. In Section 3 we present an optimization model for the
problem.Section 4 focuses onthe development of anapproximate
mixed-integer linear programming model. The results of the
computational tests performed using this model are reported in
Section 2 The paper ends with anoverview ofthe work done and
also with some guidelines for future research.

2. Literature review

The application of OR/MS models and methods to disaster op-
erations management is not new (Altay & Green 2006; Galindo &
Batta 2013). Within this field, humanitarian logistics has emerged
as an important topic in which much research has been done,
whichisattested by Kovacsand Spens(2007)Ortufioetal.(2013)
and Leiras, de Brito, Peres, Bertazzo, and Yoshizaki (2014) among
others.

A relevant class of problems in the context of humanitarian
logistics concerns location problems for disaster relief (e.g., Rawls
& Turnquist 2010). Kilc1 et al. (2015) classified such problems
according to (i) an emergency medical location problem; (ii) a
relief material warehouse location problem; (iii) a shelter site
location problem. Most of the existing literature covers categories
(i) and (ii). In this work, we focus on category (iii). In this case,
the literature is scarce indicating that this is a family of problems
whose study is much unexplored. Nevertheless, we can find some
related literature as we detail next.

Sherali, Carter, and Hobeika (1991) studied a problem that
consists of selecting a set of shelters to open together with an
evacuation plan for automobiles that altogether minimize the
evacuation time. The authors developed a non-linear mixed-
integer programming formulation and developed a heuristic and
an exact approach based upon a generalized Benders decomposi-
tion method. They presented tests using the network of a city in
southeastern Virginia.

Alcada-Almeida, Tralhdo, Santos, and Coutinho-Rodrigues
(2009) considered a potential disaster triggered by firein an urban
area and proposed a multiobjective model for locating p shelters
together with the identification of evacuation routes. Data from
the city of Coimbra, Portugal, was considered in that study. The
work would be later extended by Coutinho-Rodrigues, Tralhdo,and
Alcada-Almeida (2012) where a multi-objective location-routing
model was proposed for shelter site location and evacuation plan-
ning. An exogenous risk measure is considered for the evacuation
paths and for the shelters. Suchriskis included in some of the six
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objectives considered. The model aims at identifying the number
and location of shelters as well as a set of primary and secondary
evacuationroutes.

Chanta and Sangsawang (2012) investigated a bi-objective
model to determine the locations for at most p shelters to serve a
region suffering from a flood disaster. One objective concerns the
minimization of the total weighted distance from each affected
area to the closest shelter; the other one aims at maximizing
the population that has a shelter within a prespecified distance
(coverage objective). The proposed model is assessed using data
fromBangkruai districtin central Thailand.

Bayram, Tansel, and Yaman (2015) analyzed a shelter site
location problem combined with evacuation traffic management.
The goal is to find a solution that minimizes the total evacuation
time in case of a disaster. The proposed models were tested using
networks available in the literature as well as the Istanbul road
network.

Chen and Yu (2016) considered a median-type problem set-
ting a maximum number of facilities to open in the context
of emergency medical service (EMS). The goal is to ensure an
effective EMS after a disaster. A Lagrangean relaxation based ap-
proachis proposed for tackling the mathematical model proposed.
The methodology is tested using a set of randomly generated
instances.

The above mentioned works assume a deterministic setting in
which thedatais fully knowninadvance andis not subjectto any
type of uncertainty (e.g., data is estimated using historical series).
However, when planning for mitigating the consequences ofa dis-
aster it is often the case that the use of deterministic information
oversimplifies the problem. This is the case, for instance, when the
consequences of a disaster may vary significantly. A quantitative
approachforbetter hedging against such uncertainty requires it to
be explicitly considered inamodel. In this case, historical data can
be used to define a set of possible scenarios (for instance in terms
of the population that need sheltering) as well as for estimating
their occurrence probabilities.

Although stochastic facility location problems have been
studied for many years (the reader can refer to Correia and
Saldanha-da-Gama (2015) and to the references therein) to the
best of the authors’ knowledge, the first paper investigating a
stochastic shelter site location problem is due to Li, Jin, and
Zhang (2011) who focused on disasters caused by hurricanes. The
authors proposed a two-stage stochastic programming formulation
for the problem that consists of locating a set of shelters (first-
stage decision) and distributing the resources and the affected
populations among the shelters (second-stage decision). Data
from the Gulf Coast region of the USA was considered to test the
developed solution algorithm which is a decomposition approach
based upon the L-shaped method.

Li, Nozick, Xu, and Davidson (2012) proposed a bilevel op-
timization model for selecting a set of shelter locations that is
robust for a range of hurricanes scenarios. In particular, the au-
thors consider possible disruptions at the shelters. The upper-level
problem is a two-stage stochastic programming problem defining
the location-allocation problem related with the shelters; The
lower-level problem focus on the behavior of the evacuees when
it comes to choose an evacuation route. With this purpose, a so-
called dynamic user equilibrium model is considered. The overall
goal is to minimize the total system cost. Heuristic algorithms are
developed for finding feasible solutions to the problem. A case
study inNorth Carolina, USA, is presented.

Bayram and Yaman (2018a) investigated a two-stage stochastic
approach whose objective is the minimization of the total evacu-
ation time. In the first stage, at most p shelters are to be located.
The allocation of affected populations to the shelters and to the
routes that were not disrupted is made in the second phase. By

reformulating the problem as a second order conic mixed-integer
programming model the authors can make use of general purpose
solver for tackling it. In a following work, Bayram and Yaman
(2018b) consider the same setting; however, now they introduce
a scenario-based two-stage stochastic evacuation planning model
and proposed an exact algorithm based on Benders decompo-
sition to solve the second stage which is a second-order cone
programming problem.

As mentioned before, in the current paper we consider a
different perspective when it comes to capturing uncertainty in
the shelter site location problem: we allow having a service level
below 100% for one or several scenarios and we consider “soft”
constraints for the minimum utilization rate of the selected shel-
ters. This is accomplished by considering probabilistic constraints
both for the installed capacity and for the utilization rates.

The integration of probabilistic programming (Charnes &
Cooper, 1959; Prékopa, 1995) with Location Analysis has its roots
in the seminal paper by ReVelle and Hogan (1989) focusing the
location of emergency facilities see (Birge & Louveaux, 2011;
Correia & Saldanha-da-Gama, 2015; Snyder, 2006). In fact, like in
that work, most of the related literature emerges from the need
to locate emergency facilities. This is the case with the paper by
Beraldi, Bruni, and Conforti (2004) aiming at designing a robust
emergency medical service. The authors developed a chance-
constrained model for determining where to locate facilities as
wellas the numberofemergencyvehicles toassign toeach facility.
The goalisto ensureacertainreliable levelof service at minimum
cost. More recently, Zhang and Li (2015) proposed a model with
chance constraints for designing an emergency medical service
assuming uncertain demand. The probabilistic constraints are
then approximated by second order conic inequalities rendering a
model tractable by an off-the-shelf solver.

Bilsel and Ravindran(2011) proposed a multi-objective chance-
constrained model for hedging against uncertainty in a supplier
selection problem. In this case, the set of facilities (suppliers) is
not a specific decision to make since they exist and are known
in advance. However, not all are necessarily used in a solution.
Accordingly, the allocation decisions to make induce the facilities
to select. Uncertainty is associated with demand, capacity at sup-
pliers and variable costs. Assuming that the stochastic parameters
follow a normal distribution, the authors are able to linearize
the non-linear deterministic equivalent. That assumption is then
relaxed and a more general settingis considered.

In the context of a bio-terrorist attack, Murali and Ordonez
(2012) studied a chance-constraint model for locating emergency
facilities. By assuming alognormal distribution for the demand the
authors were able to linearize the chance constraints. A heuris-
tic approach was developed in that work for the approximate
problem.

Hong, Lejeune, and Noyan (2015) proposed a model for a
stochastic pre-disaster relief network design problem. The model
determines the sizes and locations of the response facilities as
well as the amount of emergency supplies to be stocked in order
to assure some network reliability. The model includes a chance-
constraint that establishes a high probability in the demand
satisfaction.

Elci, Noyan, and Biilbiil (2016) studied a post-disaster two-
echelon network design problem. In the first echelon a local
distribution center receives the relief supplies and sends them to
the points of distribution while in the second echelon the demand
points receive the relief supplies from the points of distribution.
The authors propose a model that considers equity and accessi-
bility measures and takes into account the uncertainty associated
with the demands and with the transportation network structure
after a disaster. The demand satisfaction constraints are modeled
as chance constraints.
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Table 1
Synthesisofthe relatedliterature.
Study Demand Location Allocation Closest Chance Service Objective Underlying setting
decisions pattern assignment con- level
constraints straints

Sheralietal. Deterministic Single Evacuationtime(min) Evacuationplanning
(1991)

Beraldietal. Stochastic Multiple Total cost(min) Emergency medical
(2004) services

Alcada-Almeida Deterministic Single Distance &risk & time Sheltersitelocation&
etal.(2009) (min) evacuation paths

Rawlsand Stochastic Single Total cost(min) Prepositioningof
Turnquist emergencysupplies
(2010)

Bilseland Stochastic Single Total cost(min) SupplierSelection
Ravindran
(2011)

Lietal.(2011) Stochastic Single Total cost(min) Sheltersiteloocation
Chantaand Deterministic Single ViaObjective Coverage(max); total Sheltersitelocation&
Sangsawang distance(min) evacuation paths

(2012)

Coutinho- Deterministic Single Distance&risk &time Sheltersitelocation&
Rodriguesetal. (min) evacuation paths
(2012)

Lietal.(2012) Stochastic Single Traveled distance & Sheltersitelocation

unmetdemand(min)

Muraliand Stochastic Single Coverage(max) Location of distribution
Ordénez(2012) centersforbio-terror

attack

Bayramand Stochastic Single Evacuationtime(min) Sheltersitelocation&
Yaman evacuationroutes
(2018a,b)

Bayram etal. Deterministic Single Traveltime (min) Sheltersitelocation&
(2015) evacuationroutes

Hongetal.(2015)  Stochastic Single Total cost(min) Pre-disasterrelief

networkdesign

Kilci etal.(2015) Deterministic Single Minimunweight of Sheltersite location

facilities (max)

ZhangandLi Stochastic Single Total cost(min) Locationofemergency
(2015) medicalservices

ChenandYu Deterministic Single Total cost(min) Locationof EMS
(2016) facilities

Elcietal.(2016) Stochastic Single Accessibility (max) Locationof distribution

centers

Thisstudy Stochastic Single Minimunweight of Sheltersitelocation

facilities (max)

Finally, we quote the paper by Lin (2009) to which some of
our methodological developments are related. That author used
probabilistic constraints to model service level in a single-source
capacitated facility location model with uncertain demand. Two
probability distributions were considered for the demand: Poisson
and Normal. When the demand occurs according to a Poisson
distribution the stochastic problemis equivalent toa deterministic
single-source capacitated facility location problem. In turn, for
Normal distributed demand, the stochastic problem is equivalent
to a mixed-integer non-linear programming problem. Lower and
upper bounds were then developed for its optimal value.

Table 1 pivots on the characteristics of this study and puts
together all the main aspects of the aforementioned related liter-
ature explicitly. What emerges clearly from observing this table is
that the shelter site location problem was never considered from
a chance-constrained modeling framework perspective although
it seems to make much sense as above explained. To the best of
the authors’ knowledge, our work is the first study of the shelter
site location problem literature that considers chance constraints
for capturing the stochastic nature of the demand under a disaster
event. Besides it is also worth-noticing that we are considering
service-level requirements combined with capacitated facilities
and single-sourcing. In our case, evacuation decisions are implicit
by using the closest assignment constraints. Finally, we are con-
sidering a maxmin type of objective function. Therefore, unlike

other works, we do not aim at minimizing the total evacuation
time.

3. Sheltersite location under uncertainty

In this section, we introduce a chance-constrained model
for the shelter site location problem. We start by presenting a
deterministic version of the problem which will be extended
and worked out in Section 3.2 by including the probabilistic
constraints.

3.1. Deterministic problem

Our starting point is a deterministic model resulting from the
one proposed by Kilc1 et al.(2015)

As mentioned in the introductory section, in the particular case
of Turkey (the case we are focusing on in this work) the Turkish
Red Crescent ranks each potential sheltering location according to
their weights which, in turn, are computed using several criteria
(e.g. distance to healthcare institutions, electrical infrastructure,
sanitary system, etc).

In terms of capacity, it is assumed that at least
3.5square meters are allocated to each person in a shelter
area. Additionally a shelter must have space assigned to facilities
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related with accessibility (roads), health, education, sanitation,and
nutrition.

In theirmodel, Kilc1 etal. (2015) assumed that people livingin
the same district are all assigned to the closest open shelter. This
isameans to help keeping the social structure of the society after
a disaster.

Some assumptions of the model proposed by Kilci et al.
(2015) that we also consider in this work are the following:

The set of candidate locations for the shelters is known in ad-
vance. This set onlyincludes candidate locations such that their
distance to the nearest health center and to the nearestroad is
below maximum values previously decided for the accessibility
to those infrastructures; in other words, instead of considering
constrains (5) and (6) of Kilc1 et al.(2015) we make a prepro-
cessing and we only consider explicitly in the model the feasi-
ble possibilities.

There is a maximum capacity (measured in square meters) for
eachshelterlocation;

Each shelterlocation has a weight that canbe previously com-
puted (according tothe criteria already mentioned);

The utilizationrate of each shelter must be above avalue spec-
ified in advance;

Each district must be assigned to the closest open shelter; we
note that this condition is in a way, a means for considering
spacial attributes of a population.

The population of each district is assumed to be concentrated
initscentroid;

The objective is the maximization of the minimum weight of
open shelters.

Before presenting an optimization model for the shelter prob-
lem we introduce the following notation to be used hereafter:
Sets

I Setofcandidateshelterlocations.
] Setofdistricts.
Parameters
w;: weight ofcandidate shelterlocationiel; w ; €[01]
d;: total demandofdistrict jeJ (squaremeters).
qi: capacityofcandidateshelterlocationicl (squaremeters).
ij: distancebetweencandidateshelterlocationiel and district jeJ.

threshold forthe minimumutilization rateof ashelter.

For each j¢J the distances j can be sorted non-decreasingly,
thus providing an ordered sequence for the candidate shelter
locations in terms of their distances to each district. We denote
by i #) the tth closest candidate shelter location to district je]
=1 1.

The decisions to be made can be represented by the following
variables:

1 ifcandidatelocationiis chosen asashelter area,
0 otherwise.

Xi =

i€
1 ifdistrict jisassigned to shelterlocation i .
Yij = ! s l (lje)

0 otherwise.
Wphin = Minimumweight among the open shelters.

The following optimization model can now be proposed for the
problem:

maximize W mijp (1)

subjecttow min <wix; + 1—x ;  iel (2)
yij=1 jeJ (3)

d

Yij1j =Xi,1 JeJ (4)

r—1
yi]-rj injr - Xijs ]E] r=2 |I| (5)
s=1
d;jyij < qix; 1€l (6)
jd
diyij > qix; el (7)
jd
xi €1 iel (8)
yij €01} i€l jej (9)

The objective function (1) quantifies the minimum weight
across the open shelters (to be maximized); Constraints (2) help
defining the (linear) objective function; Constraints (3) guarantee
that each district is assigned to exactly one shelter area; Con-
straints (4) and (5) ensure that each district is assigned to the
closest open shelter area; Constraints (6) ensure that the capacity
of the opened shelter areasis notexceeded; Constraints(7) define
the minimum utilization rate for the opened shelters; finally,
constraints (8)and(9) define the domain of the decision variables.

3.2. Achance-constrained model

We introduce now a stochastic version of the above problem
assuminguncertainty indemandsd ; (€.
Denote by  afinite set of scenarios such that each scenario
e determines a vector of demands d  ; |y . Denote by
the probability that shelter iel does not have enough capacity
to handle all the demand assigned to it. We propose replacing
constraints (6) by

diyij <qixi >1-— ; el (10)
jd
Similarly, when demands are uncertain, satisfying “hard” min-

imum throughput constraints (7) should not be the goal. Instead,
we canconsider

diyij > qxi >1-— ; i€l (11)
jd
which, by applying standard principles from Probability Theory
leads to

diyij < qxi < ; lel (12)
Jjd
Thevalues ; and ; (e)aretypicallysmall(e.g.,0.010r0.05)
since violating the capacity and utilization rate constraints should
not be highly probable. In synthesis, we propose the following
chance-constrained model for the shelter site location problem
under stochastic demand:

maximize 1
subjectto 2 — 5 8 — 12

Throughout this work, we assume that demands are indepen-
dent. Formanydisasters this seems tobeareasonable assumption.
Infact, eventslike hurricanes, earthquakes and flooding often have
a very local effect in the sense that depending on slopes, wind,
etc, the consequences may vary significantly from one village to
another one that is close by. This results in demands having low
correlationthat we neglect in the following developments.

In a shelter site location problem a solution typically consists
of several sub-districts to be served (demand points) and a small
number of shelters to be installed. In the particular case of Turkey,
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if we think of a city like Istanbul, each sub-district, in fact, aggre- 4. A mixed-integer linear programming approximation
gates demand corresponding to many neighborhoods. Accordingly,
a large number of neighborhoods is typically allocated to each In this section, we propose replacing equalities (17) by ap-
open shelter. Therefore, we can invoke the central limit theorem proximating expressions. This is accomplished by considering a
to find deterministic equivalents for the probabilistic constraints piecewise linear approximation of 12 in [0,1], which, in turn, can
(10)and (12) be modeled usinginteger variables Beale & Forrest, 1976; Beale &

For each district je/ denote by u j and Jz the expected value Tomlin, 1970; Jeroslow & Lowe, 1984).
and variance, respectively, for its demand. The total demand to be Consider the real valued function f i = ¢ that maps the
accommodated by shelter iel can be written as D i= g djyij. interval[0,1] over itself. Additionally, denote by
WeknowthatED ;]= ig jYij-Assumingindependent demafnds, bi=0 b - b -1 b,=1
we getVarD ;]= id jzy,-j. When the number of terms defining o _ N
D, islarge enough, the central limit theorem assures that asetof breakpointsinducing a partition of [0,1].

For every i€] taking i €[01] there is me{0 n—1}

D; — E[D;] ~N 01 such t.hat' i €b mb 1 ]ie, ; canbewritten as alinear convex
\/sz'] combinationofb  andb ;1

Accordingly, constraints(10)areequivalent(approximately)to : imZm & im1 Pl

with  jm + 1 =land i jmyr =0

iXi — E[D; , -
qiXi — E[D;] >z, el (13) _ Foreveryme{ n— 1}
\,VCIT[D,'] fm =b m—|—bm|-1 —b mbml-l
wherez 1 . denotesthe 1- ; quantile of a standardized normal is the line segment connecting points b b2 and b 4 b fm :
dist.ribution. A simi!ar reasoning a.llow us to conclude that con- Finally, 12 can be approximated by f_m = imb% o brzm- -
straints(12) are equivalent (approximately) to The previous analysis shows that for every ie| ; can be
written as ;= "_; ;nbm and 2 can be approximated
qiX; — E[D;] : : : i .
<z. 1€l (14) (from above—the function being approximated is convex) by
vvarD i n_ ..b2 giventhat arenon-negativevaluessatisfying
wherez . isthethe ; quantile of astandardized normal distribu- "
tion. im = 1 (19)
Constraints(13)and(14)are non-linear dueto the denominator m=1
since it includes the decision variablesy ~ ; (€. Lin (2009) pro- im <tim m=1 n (20)
posed handling this non-linearity by defining a new set of
variables as follows: n
- tim <2 (21)
\/ g Y , =
= tel tm+tiy <1 m=1 n—2m  '=m+2 n (22)
Vg
tme01l} m=1 n 23
Obviously we have 0<  ; < 1 Furthermore, (13) and (14) to- im €0T) (23)
gether cannow bereplaced by For eachie/the binaryvariables t im M=1 n)ensurethat
atmosttwobreakpoints are used to define one value of the piece-
j q; . wise linear function and if two of them are used then they must
| \/:2 Yij+Z1 i = /:zxi tel (15) be adjacent. In other words, variables§ ; t .} define a special
i Kok V.o Kok ordered set of type 2 (SOS2)(see, e.g., Beale & Forrest (1976).
The full (approximate) deterministic equivalent model to be
; : ) solved now will be denoted by (P) and is the following:
/—12 Vii+Z , i= %X;’ el (16) o y(P) 5
i VoW & vVook maximize Wiy (1)
2 : :
1'2: i oy el (17) subjectto W pin <wixi+ 1—x; i€l (2)
jid gk )
yij=1 jej (3)
0< ;<1 iel (18) d
i1 =X € 4
Accordingly, an approximate deterministic equivalent for the Yy1j =% J (4)
chance-constrained model proposed for the shelter site location r1
problemis the following: Viirj =X, r — Xi, s jeJr=2 1| (5)
.. =1
maximize 1
. . n .
subjectto 2 — 5 8 9 / J Vi+zi b < qi x. iel(15)
15 — 18 4 VvV Kk m=1 N JZ
The above model is a mixed-integer non-linear model due ' n
to the left-hand side of constraints (17) In the next section, we —_J Vij+z im b > ¢Xi icl (16)
derive anapproximation for handling these constraints. id \/ ok _ N jz
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2 n

—— yij = imby i€l (24)
jid ok m=1
n

im =1 1€l (25)
m=1
im <tm 1€l m=1 n (26)
n

tn <2 iel (27)
m=1

tm +tiw <1 iel m=1 n—2 m "=m+2 n (28)

xi €01} iel (8)

Vij 6{01} iel ]G] (9)

tm €01} icl m=1 n (29)
im>0 1el m=1 n (30)

Constraints (26}(28) are the SOS2 constraints. We also note
thatinstead of (25)we can consider

n

im =Xi iel (25 /)

m=1

In fact, for some i€] if x i =1 then we have the original
constraints; otherwise, we have 1= = in =0 which, by
(24) together with (9) rendersy ;; =0 jgJ and thus constraints
(15) and (16) become trivial inequalities not relevant the problem
(as it should be the case if shelter i is not selected to open). The
new right hand side for constraints (25) strengthens the linear
programming relaxation of model (P).

The previous model makes use of the closest assignment
constraints(4) and (5) also considered by Kilc1 etal.(2015) These
constraints were introduced into the literature by Rojeski and
ReVelle (1970) They are referred to as the RR closest assignment
constraints (Espejo, Marin, & Rodriguez-Chia 2012). If larger in-
stances of the problem are to be solved, other possibilities can
be considered. In this paper given that we assume all distances
known we can consider the following alternative:

Il
Vijsj +xi,r <1 jeJr=1 -1 (31)
s+1
Constraints (31) were first proposed by Wagner and Falkson
(1975) As shown by Espejo et al. (2012) these constraints dom-
inate the RR constraints. In the next section we show results
concerning their use in the context of our problem.

5. Computational experiments

In this section, we use the approximation model derived
in Section 4 for assessing the relevance of considering chance
constraintsin the stochastic shelter site location problem.

We start by presenting results using the data reported by Kilci
etal.(2015) This is important to test the relevance of considering
a stochastic approach instead of a deterministic one. Afterwards,
we use the approximate model for a large data set that includes
the whole Anatolian side of Istanbul.

The deterministic model and the mixed-integer approximation
were coded in Optimization Programming Language (OPL) and
were solved using IBM CPLEX 12.6.1. All tests were runon a Linux

OS with four AMD Opteron Interlagos 6282SE 16 Core 2.6 giga-
hertz 16 megabytes L3 cache server processors with 96 gigabytes
of RAM.

For both datasets(the oneintroduced by Kilc1 etal.(2015)and
the large-scale one introduced in the current work), 51 break-
points were used in the piecewise linear approximations required
to formulate model (P). Although our experience with some
specific running configurations shows that a much lower number
of breakpoints renders approximations with a negligible error, we
decided to keep a large value in order to be safe in terms of the
accuracy of the presented results. Accordingly, the interval [0,1]
was always partitioned into 50 sub-intervals.

In all tests reported in this section, constraints 25
instead of (25)

Before presenting the results obtained namely, the optimal
solutions for theinstances studied, we would like to point out that
for a specific solution we can develop measures that allow us to
understand features such as fairness, accessibility, efficiency, and
equity. These are important aspects when it comes to analyzing a
solution to our problem.

Regarding fairness we note that our objective—maximization of
the minimum shelter weight—targetsthe least-advantaged districts
covered in the problem. In other words, by considering that ob-
jective function, we are targeting fairness for the least advantaged
disaster victims. Additionally, for all the specific solutions that will
be presented next, additional measures were computed, namely:
the average walking distance and the maximum walking distance.
The average walking distance provides a measure of accessibility.
In turn, the maximum travel distance can be looked at as an
efficiency measure since it gives an indication of how far from
the closest shelter is the population group that needs to walk the
most. The lower this value the more efficient the system can be
looked at; in fact, a small maximum distance tells us that all the
demand points have a shelter close by. Another efficiency measure
concerns the utilization rates of the shelters. The higher the
average utilization rate the more efficiently the shelters are being
used. Finally, regarding equity, we can compare the maximum
travel distance with the average travel distance. The closer these
values are to each other the more fairness the system exhibits.
Likewise, we can compare the highest shelter utilization rate with
the average. The farther away these values are from each other
the more we find some sheltersless populated than others, giving
an indication that in the former case, accommodated populations
have more utility than inthe latter.

5.1. Computationalresults for the Kartal district

Kartal is one of the 39 districts of Istanbul with an area of
38.54squarekilometers and with approximately 425,00 inhab-
itants. In Kartal, there are 25 potential shelter locations, whose
weightsrange from 0.674 to 0.982 with an average of 0.827 and a
standard deviation of 0.097. 20 demand points can be considered,
each one corresponding to the centroid of one sub-district of
Kartal and whose number of inhabitants is known. This data set
was constructed by Unal (2010) as part of his Ph.D. thesis where
he conducted extensive surveys and analysis with experts.

The above data would be used later on by Kilc1 et al.
(2015) who considered a so-called Percent Affected Ratio (PAR) of
0.125.Thisvalue indicates that 12.5% ofthe population would need
to stay in a shelter after an earthquake. However, in the event
of a disaster, hardly will this parameter be known in advance; as
discussed before, it may depend on different aspects. This means
that when shelter locations are being decided, varying demand
should not be neglected. We capture such variability via PAR In
particular, we start by considering three different patterns, all
centered in the original value considered by Kilc1 etal. (2015}

") were used
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Fig.1. Comparisonof deterministicsolutionswith respectto additionalmeasures.

Table 2

Solutionsobtained using thedeterministicmodels (13(9)
(a) =@o (b) =@®0 —®0
SolutionA SolutionB SolutionC

Objectivevalue: 0.847 Objectivevalue: 0.803  Objectivevalue: 0.739
Openshelters:  10-19-25 Openshelters: 4-10-14 Openshelters: 14-23

Pattern 1 — high variability: PAR=0125x U[(B5115]
Pattern 2 — moderate variability: PAR=0125 x U[(P0110]
Pattern 3 — low variability: PAR=0125x U[(®5105]

Ua B denotesarandomnumber generated according toacon-
tinuous uniform distributionin theinterval [g J|. Foreach pattern
above and for each sub-district jeJ ten values were generated for
PAR Each one was then multiplied by the number of inhabitants
associated with that demand point and also by 3.5square meters
(recall that in our problem the demand is measured in square
meters). Accordingly, for each PAR pattern used a sample was
obtained containing 10 possible values for the demand of location
jeJ From each such sample it was possible to estimate j and
by means of the corresponding sample values. We call demand
pattern to the sample of 10 values for the demand obtained
according to one of the above PAR generation schemes, i.e., we
have demand pattern 1, demand pattern 2 and demand pattern 3

We also note that the expected value for PAR is always 0.125
which means that we are keeping the expected values of this
parameter around that value. This is a way for understanding the
effect of the variability of demand in the solutions keeping the
expected demands equal to the values considered by Kilc1 et al,
(2015)

In the following analysis for Kartal district we never refer to
CPU time since model (P) was always solved within afew seconds
that we consider not significant enough to report in this paper.

5.1.1. Results using the deterministic model

Using the dataintroduced by Kilc1 etal. (2015)i.e.,considering
the single value for the demand induced by PAR=0125 we
solved the deterministic model (1}(9) We run the model using
three different thresholdsin terms of the minimum utilizationrate
of ashelter: 70%, 80%and 90% (i.e., =07 respectively).
The results are presented in Table 2 The details of each solution
interms of accessibility, efficiency and equity measures are shown
on Fig. 1. For instance, solution A was obtained when  was set
equal to 0.7. This led to the selection of shelters 10, 19 and 25

and to an optimal objective value (minimum weight of the open
shelters) of 0.847.

As we can observe in Table 2 an increase in  corresponds
to a decrease in the optimal value of the problem, i.e., we get a
decrease in the solution fairness. This is not surprising since the
stricter we are in terms of the minimum utilization rate the more
flexible we must be in terms of considering alternative shelters
(thus with a lower weight) and the less fair the solution may
become.

Observing these solutions in more depth as depicted in Fig. ],
we conclude thatfor solution Ctheaverage traveleddistanceis the
largest, indicating a smaller level of accessibility when compared
with other solutions. On the other hand, the maximum traveled
distance is achieved in solution A indicating that this solution
seems not to be so efficient as the other two. Interestingly, when
we compare the maximum travel distance with the average, we
obtain the smallest difference in solution B indicating a higher
equity level. Moreover, for solution A, we observe that number of
disaster victims covering the maximum travel distance is 8.7% of
total number of disaster victims whereas this proportion is 5.2%
and 2.4% for solution B and solution C, respectively. This points out
anotherimportant aspectof analysis: the level of maximum travel
distance measure based on the percentage of people serviced
at that level. Naturally, the lower this percentage is, the lower
influence maximum travel distance measure on the quality of the
solution has.

Another interpretation of the results can be based on the
average and maximum utilization rates of the solutions. As it is
expected, an increase in  results in an increase in the average
utilization rates as they are bounded from below by this value.
We also observe that the equity between open shelters increases
towards solution C as the difference between two aforementioned
measures are decreasing, which indicates that the utilizations of
open shelters are closer to each other.

5.1.2. Results using the approximate model (P)

The next step in our computational experiments was to solve
the approximate model P using different values of i and i€l
Since we considered the same values for all potential shelter site
locations ic] hereafter we denote those probabilities simply by
and

For both probabilities we considered the values 0.01, 0.0275,
0.05, 0.075, and 0.1. This resulted in the values 0.990, 0.975.
0.950, 0.925, 0.900, respectively for 1— ;i which can be looked
at as a “shelter coverage level”. The combinations of the different
valuesfor 1- and yields 25 different instances. In turn, each
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Table 3

Resultsfor ~ =@0and lowvariabilityindemand.

(a)Optimalsolution.

0.010 0.025 0.050 0.075 0.100
0.025 A A A A A
0.075 A A A A A
0.100 A A A A A
(b)SolutionA — capacity used(%).
Openshelters Maximum (%) Average(%) Minimum (%)
10 97 92 89
19 77 73 71
25 84 80 77
Table4
Newsolutions emergingwhen the(approximated)chance-constrainedmodel isused.
SolutionD SolutionE SolutionF
Objectivevalue:  0.809 Objectivevalue:  0.801 Objectivevalue:  0.801
Openshelters: 13-18-19-25  Openshelters: 8-9-12-25  Openshelters: 4-8-9-12
Table5
Resultsfor ~ =@0and moderatevariabilityindemand.
(a)Optimalsolution.
0.010 0.025 0.050 0.075 0.100
0.010 D D A A A
0.025 D D A A A
0.050 D D A A A
0.075 D D A A A
0.100 D D A A A
(b)SolutionA - capacityused(%). (c)SolutionA - capacity used(%).
Openshelters  Maximum (%) Average(%) Minimum(%) Openshelters  Maximum(%) Average(%) Minimum(%)
10 101 93 85 13 83 77 70
19 80 74 67 18 99 92 83
25 88 81 73 19 91 84 76
25 88 81 73

combination can be considered for each of the three demand
patterns considered. This will be reported next. We perform a full

analysisfor =070

Results for =07,

The results obtained for =07 can be found in Tables 3 5
and G

We can observe that Table 3 a is filled with solution A—the

deterministicsolution obtained for =07 For this same value of

, when the demand variability increases, new solutions emerge
namely, those depicted in Table 4 In particular, the dominance of
solution A decreases as we can observe in the solutions depicted
in Table 5 (for medium demand variability) and in Table G (for
higher demand variability).

It interesting to observe from Fig. 2 that when the chance-
constrained model was considered, the quality measures we have
been considering (accessibility, efficiency, and equity) improve
without a deterioration in our fairness objective. This is a clear
indication that a model capturing uncertainty can better hedge
againstit yielding a solution that overall can be considered better
than a solution ignoring uncertainty.

For moderate demand variability we can observe in Table 5 a
that a new solution, solution D, emerges as an optimal solution to
model (P).

This solution has a lower objective value than solution A
but the open shelters can handle the -strictness better than in
solution A. From the utilization rates (fable 5b and ) one can

conclude thatsolution D has neither values greater than 100% nor
lower than 70% whereas solution A can be out of these boundaries
in the extreme cases.

Finally, also for =07 we analyze the results when demand
exhibits the highest variability (Table 6). A new solution emerges
now (solution F). Nevertheless, in Table G we can see that so-
lutions E and F are alternative optima for many combinations of

and . In fact, they have the same objective value of 0.801.
However, from Fig. 2 it can be seen that despite having the same
maximum walking distance value, solution F is superior in terms
of accessibility since it renders a better average walking distance.
Similarly, both solutions E and F have the same maximum utiliza-
tionrates, whereas solution F has a higher average utilizationrate,
which indicates that its fairness is relatively higher. On the other
hand, solution A does not seem to cope well with high variability;
itis only valid on the left-down corner (most loose part) of  vs.

table.

Results for =08

The results obtained when  was set to 0.8 can be found
infables 7-9 for the different demand patterns.Inthese tables, we
can see abehavior similar to thatobserved for =07 Again, the
deterministic solution-now solution B—dominates all through the
optimal results of model (P)when the lowest variability is consid-
ered for the demand (lable 7a). With an increase in the demand
variability, solution B ceases to be the optimal one. Moreover, the
problem starts to become infeasible for some combinations of
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Table 6
Resultsfor ~ =(@0and highvariabilityin demand.
(a)Optimalsolution.

0.010

0.025

0.050

0.075

0.100

0.010 EorF EorF EorF EorF EorF
0.025 EorF EorF EorF EorF EorF
0.050 EorF EorF EorF EorF A
0.075 EorF EorF EorF EorF A
0.100 EorF D D D A
(b)SolutionA - capacity used(%). (c)SolutionD - capacity used(%).
Openshelters Maximum(%) Average(%) Minimum(%) Openshelters Maximum (%) Average (%) Minimum (%)
10 105 94 80 13 87 78 66
19 84 75 63 18 104 93 78
25 91 82 69 19 95 85 72
25 91 82 69
(d)SolutionE - capacity used(%). (e)SolutionF - capacityused(%).
Openshelters Maximum(%) Average(%) Minimum(%) Openshelters Maximum (%) Average (%) Minimum (%)
8 98 88 74 4 98 88 74
9 97 87 74 8 97 87 74
12 92 82 69 9 99 88 72
25 91 82 69 12 97 77 73
Table 7
Resultsfor ~ =@0andlowvariabilityindemand.
(a)Optimalsolution.
0.010 0.025 0.050 0.075 0.100
0.010 B B B B B
0.025 B B B B B
0.050 B B B B B
0.075 B B B B B
0.100 B B B B B
(b)SolutionB - capacity used(%).
Openshelters Maximum(%) Average(%) Minimum (%)
4 89 85 82
10 90 86 83
14 100 96 92
Table 8
Resultsfor ~ =@0and moderatevariabilityindemand.
(a)Optimalsolution.
0.010 0.025 0.050 0.075 0.100
0.010 Inf Inf Inf Inf Inf
0.025 Inf Inf Inf Inf Inf
0.050 Inf Inf Inf Inf Inf
0.075 C C C C C
0100 C C C C C
(b)SolutionC - capacity used(%).
Openshelters Maximum(%) Average (%) Minimum (%)
14 103 95 86
23 101 93 84
and .Inparticular, afewextracomputations with thedataled us thefirstthreerowsin Table &).Therefore, we conclude that when

to conclude that for the highest variability in the demand, feasible
solutions start to be obtained only if we considered values of

largerthan 0.23.

In Table 7, we observe that if solution B was implemented,
the lower and upper limits in terms of utilization rate of the
open shelters are between 82 and 100%. In other words, for the
probabilities considered, the solution is always feasible. However,
when we move to Table 8 we observe that if we implemented
solution C, in some cases, the utilization rates are slightly higher
than the 100%. In other words, we are observing that in some
cases, solution C is not a feasible solution (as no solution is—see

=B for some demand patterns the values selected for and

were too strict. Similarly, for Table 9 we present utilizationrates
for solution C if it was implemented which allow us to conclude
why the solution is never feasible: the utilization rate shows
maximum values significantly above 100% and minimum values
below 80%. As stated in Table % no feasible solution was found
for the combinations of and

that for
Results for

The results obtained for

Like for

=

=B the valuesselected for

analyzed. Again, this indicates
and  were too strict.

=(D are depicted in Tables 10-12
=B we observe that for some demand patterns, the
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Fig.2. Comparisonof newsolutionswith respecttoadditional measures.

Solution F

Table9
Resultsfor ~ =@0andhigh variabilityindemand.
(a)Optimalsolution.
0.010 0.025 0.050 0.075 0.100
0.010 Inf Inf Inf Inf Inf
0.025 Inf Inf Inf Inf Inf
0.050 Inf Inf Inf Inf Inf
0.075 Inf Inf Inf Inf Inf
0.100 Inf Inf Inf Inf Inf
(b)(Infeasible)solution C- capacityused(%)if thesolution wasimplemented.
Openshelters Maximum(%) Average(%) Minimum (%)
14 103 95 86
23 101 93 84
Table 10
Resultsfor ~ =®0andlowvariabilityindemand.
(a)Optimalsolution.
0.010 0.025 0.050 0.075 0.100
0.010 Inf Inf C C C
0.025 Inf Inf C C C
0.050 Inf ITlf C C C
0.075 Inf Inf C C C
0.100 Inf Inf C C C
(b)SolutionC - capacity used(%).
Openshelters Maximum(%) Average(%) Minimum (%)
14 99 94 91
23 97 92 88
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Table 11
Resultsfor ~ =M®0andlowvariabilityindemand.

Optimalsolution.

0.010 0.025 0.050 0.075 0.100
0.010 Inf Inf Inf Inf Inf
0.025 Inf Inf Inf Inf Inf
0.050 Inf Inf Inf Inf Inf
0.075 Inf Inf Inf Inf C
0.100 Inf Inf Inf Inf C
(b)SolutionC - capacity used(%).
Openshelters Maximum(%) Average(%) Minimum (%)
14 103 95 86
23 101 93 84
Table 12 Table 13
Resultsfor ~ =®0andhigh variabilityindemand. Solutioninformationfor the AnatoliansideofIstanbul.
0.010 0.025 0.050 0.075 0100 Shelter Weight Utilization Shelter Weight Utilization
rate (%) rate (%)
0.010 Inf Inf Inf Inf Inf
0.025 Inf Inf Inf Inf Inf 5 0.788021  98.39 111 0.866857 7198
0.050 Inf Inf Inf Inf Inf 8 0.844608  89.99 136 0.876425  65.83
0.075 Inf Inf Inf Inf Inf 15 0.843545 64.25 166 0.855216 91.04
0.100 Inf Inf Inf Inf Inf 24 0793249  42.26 168 0.796147  93.85
33 0.850611 51.61 169 0.805162 38.54
41 0.876523  96.25 171 0.893454  55.35
46 0.781146  47.72 175 0.866260  56.30
valuesfor and weretoo strict toallowobtaininga feasible so- 49 0.873054  97.97 195 0.820383  86.46
lution. This meansthatif weimpose aminimum utilization shelter >0 0813283 98.07 200 0.810284  65.51
te 0of 90% then we mustincrease the probabilities and/or 72 0819029 83.32 204 0.791751 5640
rate oroue - the probal _ 81 0.837859  90.66 210 0.877855  50.57
Model (P)was developed considering animportantassumption: 91 0.800685 41.28 216 0.790012 5410
the validity of the central limit theoremfor the instance athand. It 95 0.891362  90.72 220 0.800323  56.94
should be noted that that the number of sub-districts assigned to
a shelter site is generally less than 30. Nevertheless, the demand
of each sub-district is itself the result of the aggregation (i.e. the Table 14 :
. ] CPUtimesforthetwoenhancements studied.
sum) of the demand of many neighborhoods. Accordingly, when
we are adding the demand of one or several sub-districts we are Closestassignment CPUtimesusing CPUt}mesdeﬁmng the
certainly considering anumber of neighborhoods clearly above 30 constraints (263(29) 5052's
thus, we are on the safe side wheninvoking the CLT. (4)and(5) 43hoursand 48 20hoursand 21
minutes minutes
(31) 4hoursand 24 2hoursand 2 minutes
minutes

5.2. Results for large-scale data

Inorder to evaluate the behaviorof model (P) when large-scale
data is used, we considered the whole Anatolian Side of Istanbul.
Such data set contains 270 candidate shelter locations and 230
districts (demand points). Overall we have a 500-node instance.
All the corresponding information has been gathered for this study
(population, potential shelters weights, etc.) and it can be made
available upona request to the authors.

In these tests, we assumed PAR=0125 we considered de-
mand pattern 1—lowervariabilityindemand; weset = =01Q
Regarding  we set it to 0.00, i.e., we considered full flexibility
in terms of the minimum utilization rate of the selected shelters.
This was away tolook into the importance of such threshold.

Using model (P), we were able to obtain a solution in43 hours
and 48 minutes. The selected shelters as well as their weights
and their utilization rates are presented inTable 13 Such solution
calls for opening 26 shelters whose minimum weight (objective
function value) corresponds to the weight of shelter 46 and is
equal to 0.781146. Regarding the utilizationrates, we observe that
the minimum value is 38.54%. From this Table we computed the
average whichis equal to 71.75%.

Since the CPU time turned out to be excessively high, we
explored the possibility of using constraints(31)instead of (4) and
(5) By doing so, we were able to obtain the same solution de-
tailed in Table 13 but taking only 4 hours and 24 minutes, which
represents a89.9% improvement in the CPU time.

As mentioned when introducing constraints (19}(23) for each
il ; t ;) defines a special ordered set of type 2 (SOS2).
Thisfeature can beexplicitly setin CPLEX, thus avoiding having to
consider constraints (26}(29) in model (P) explicitly.

Table 14 summarizes the CPU time comparisons considering
this alternative implementation as well as considering the closest
assignment constraints (31)instead of (4) and (5)

We can observe that defining the SOS2 explicitly and using
(31) as the closest assignment constraints renders a prominent
combination to use for obtaining the best CPU time performance.

The results we obtained are encouraging in the sense that
when uncertainty exists in a shelter site location problem (and it
is likely that it indeed exists), considering a modeling framework
such as the one we proposed in this paper, may render better
solutions then if a deterministic model was considered. By better
solutions we do not mean that they are better for a particular
scenario or realization of the uncertainty. That is not the case. In
fact, if we knew the exact demand for sheltering, then our model
would not be necessary.In that case, we should directly considera
single-scenario (deterministic) model and find the optimal solution
for it. What our results show is that under uncertainty, a solution
obtained from our model may better hedge against uncertainty,
thus leading to better (“expected”) results than if a deterministic
setting was assumed.
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6. Conclusions

In this work, we proposed a chance-constrained optimiza-
tion model for the shelter site location problem as a means for
capturing uncertainty in the demand. By invoking the central
limit theorem we were able to obtain a non-linear deterministic
equivalent model, which was reformulated in order to “isolate”
the non-linear terms in a way that these can be approximated by
a family of piecewise linear functions. Eventually, it was possible
to obtain a mixed-integer linear programming model that can
be tackled by an off-the-shelf solver when medium and large
instances of the problem are considered. In particular, it was
possible to solve the stochastic shelter site location problem at
hand using data from the Kartal district in Istanbul, Turkey, as
well as usinga muchlarger set of data, namely the one associated
with the whole Anatolian side of Istanbul.

The results show that different combinations of (i) shelter uti-
lizationrates, (ii)demand “servicelevel”,and (iii)demand pattern,
may lead to completely different solutions. This is an indication
that these aspects should be involved in a modeling framework
for the problem. Moreover, comparisons were performed using
a deterministic counterpart model. Again, clear differences were
observed in the results. This supports the claim that capturing
uncertainty in the shelter site location problem by means of
probabilistic constraints may lead to solutions that can better
hedge against uncertainty.

Accordingto the approaches andresultsreportedin thisarticle,
the contributions of this study can be summarized as follows:
Demand uncertainty was included in the shelter site location
problem, whichresultedin amorerealisticapproachtobe usedin
the preparedness phase of disaster management. The stochasticity
istackled by formulating a chance-constrained optimization model
which requires an approximation approach using SOS2 variables.
Therelevance of the new modeling framework was evaluated by a
series of computational tests.

This work represents a new research direction when it comes
to handling the shelter site location problem. It also represents a
contribution to the study of chance-constrained facility location
problems under amaxmin objective.

One aspect that deserves future research has to do with the
objective function. As we observed in the end of Section 5.2 the
maxmin objective of the problem studied in this paper may easily
render alternative optimal solutions as our intuition could foresee.
However,when welook closely at these solutions, we immediately
realize that they have different characteristics. This allows and
even encourages a fine tuning in the decision making process via,
forinstance,a goal programmingapproach.

Another aspect that deserves future research is the possibility
of embedding sheltering utilization balancing requirements in the
probabilistic modeling framework proposed in this work. This
poses new technical challenges when it comes to tackling the
problem

Finally, another challenge emerging from the work done has to
do with the assumption made about the demands. In this work,
they are assumed to be independent. It would be interesting to
investigate the casein which they are correlated.
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