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Problem definition: We design a combinatorial auction to clear the Turkish day-ahead electricity market and we 

develop effective tabu search and genetic algorithms to solve the problem of matching bidders and maximizing social 

welfare within a reasonable amount of time for practical purposes.  

Academic / Practical Relevance: A double-sided blind combinatorial auction is used to determine electricity prices 

for day-ahead markets in Europe. Considering the integer requirements associated with market participants’ bids and 

the non-linear social welfare objective, a complicated problem arises. In Turkey, the total number of bids reaches 

15,000, and this large problem needs to be solved within minutes every day. Given the practical time limit, solving 

this problem with standard optimization packages is not guaranteed, and therefore heuristic algorithms are needed to 

quickly obtain a high-quality solution.  

Methodology: We use nonlinear mixed-integer programming and tabu search and genetic algorithms. We analyze the 

performance of our algorithms by comparing them with solutions commercially available to the market operator.  

Results: We provide structural results to reduce the problem size, and then develop customized heuristics by exploiting 

the problem structure in the day-ahead market. Our algorithms are guaranteed to generate a feasible solution, and 

Energy Exchange Istanbul has been using them since June 2016, increasing their surplus by 448,418 Turkish liras 

(128,119 USD) per day and 163,672,570 Turkish liras (46,763,591 USD) per year, on average. We also establish that 

genetic algorithms work better than tabu search for the Turkish day-ahead market.  

Managerial Implications: We deliver a practical tool using innovative optimization techniques to clear the Turkish 

day-ahead electricity market. We also modify our model to handle similar European day-ahead markets and show that 

performances of our heuristics are robust under different auction designs. 
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mailto:kderinkuyu@etu.edu.tr
mailto:kursad.derinkuyu@epias.com.tr
mailto:nermin.kurt@epias.com.tr
mailto:gokhan.ceyhan@epias.com.tr


2 

 

1 Introduction and Background 

Electricity spot and futures markets play a central role in liberalized electricity markets by 

promoting price transparency, competition and risk management (Deng and Oren, 2006). Spot markets 

consist of two separate markets: the day-ahead market (DAM) and the intra-day market (IDM). The DAM 

is the larger of the two, and is an auction type of market that determines the day-ahead electricity prices for 

each of the 24 hours of the next day. The second market, the IDM, is much smaller and provides participants 

with the ability to adjust their day-ahead positions up to a certain amount of time  before the physical 

delivery of electricity (five minutes to two hours). As electricity demand and supply cannot be forecasted 

exactly, there will always be some amount of imbalance on the grid, after the IDM is closed for trading, and 

these imbalances need to be managed. For this purpose, the system operator organizes a last-resort market 

called the imbalance market (or reserve capacity market) to ensure that supply and demand are equal in real 

time. The timeline of these markets is illustrated below (see Tanrisever et al. (2015) for a detailed review of 

the organization and functioning of liberalized electricity markets): 

 

Figure 1: Timeline of electricity markets 

In electricity market design, the DAM is of central attention because its prices are usually accepted 

as a reference point for derivative (futures, forwards, swaps, options, etc.) and other bilateral markets. It is 

also common for regulatory authorities to index electricity tariffs to DAM prices. In this paper, our goal is 

to outline a DAM we designed for Energy Exchange Istanbul (EXIST), and provide effective solution 

methods to clear this market, determining electricity prices for the next day.  

There are two main types of DAM designs in liberalized electricity markets: pool- and exchange- 

type models. In pool-type models, commonly used in US markets (including PJM, ERCOT and MISO), 

market participants submit their bids to the market operator and self-schedule their units according to 

dispatched amounts determined by the operator. There is usually no demand-side participation in pool-type 

models, and generation companies submit the cost functions of their generating units. In these models, the 

market operator determines the total cost-minimizing dispatch schedule for the generation units (Derinkuyu 
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et al., 2015). If the resulting market price is below the cost of some generation units operating in the market, 

then additional side payments are available to those units (Gribik et al., 2007). Real instances of unit 

commitment and economic dispatch problems generate large-scale optimization problems. Industrial 

solutions of these problems typically concentrate on heuristics and Lagrangian relaxation methods (Araoz 

and Jornsten, 2011; Li and Shahidehpour, 2005; Phan, 2012). 

In exchange-type models, commonly used in European markets (including NordPool, EPEX, APX 

and Belpex), bids are either accepted from the same price (uniform pricing) or rejected, but no side payment 

is available (linear price regimes). In addition, the demand side is actively involved in day-ahead auctions. 

Unlike the pool-type models, in exchange-type models, bidders place portfolio-based bids rather than unit-

level bids. Turkish DAM is based on exchange model with some pool-type features, which are explained in 

more detail in Section 1.2. 

1.1 Day-Ahead Market Organization in Exchange-Type Models 

Participants in DAM auctions include generators, utility companies, large industrial consumers, traders and 

electricity retailers. Each participant places a bid to buy or sell a certain amount of electricity at a certain 

price for the next day. Were the supply and demand functions continuous and divisible, the problem of 

determining the market-clearing price (MCP) would be trivial. However, in practice, technological and 

economic constraints necessitate that some bids are placed as indivisible blocks. For example, a coal-

powered plant usually operates 24 hours a day, and hence it places bids to sell electricity as a block for 24 

hours. For most coal-powered plants, it is not economical to shut down the plant and start it up again. In 

another example, natural-gas-powered plants only operate for a block of hours during peak times. These 

block bids introduce complicated integrality requirements to the problem. 

The problem of determining the MCP by matching the bidders is complex in many respects. First, 

this problem does not decompose into 24 separate problems for each hour, as bidders place bids that cover 

multiple hours. In addition, some types of bids have an all-or-nothing property; that is, either the total bid 

amount is to be accepted or the bid is not to be accepted at all. Acceptance of some bids may also be linked 

to the acceptance of other bids. Hence, a combinatorial problem arises. Below, we explain the three most 

common bid types submitted by market participants in these models.  

Hourly bids: The most common bid type in DAMs is the hourly bid, where bidders simply specify 

a list of quantity-price pairs (QPPs) to buy or sell electricity for a single hour of the next day. Let q represent 

the quantity and p represent the price of a QPP. In a demand hourly bid, the pair (p, q) means that the 

participant is willing to pay at most p per megawatt hour (MWh) to buy q units of electricity. In a supply 

https://www.sciencedirect.com/science/article/pii/S0377221715001320#bib0012
https://www.sciencedirect.com/science/article/pii/S0377221715001320#bib0001
https://www.sciencedirect.com/science/article/pii/S0377221715001320#bib0001
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hourly bid, the pair (p, q) means that the participant is willing to receive at least p per MWh to sell q units 

of electricity.  

An hourly bid consists of a set of segments defined by consecutive QPPs. A segment in a supply 

(demand) hourly bid is fully accepted if the MCP of the specific hour is equal to or higher (lower) than the 

final price of the segment. However, a segment can be partially accepted if the corresponding MCP is 

between the prices of the consecutive QPPs. In Table 1, we provide a supply hourly bid example and 

illustrate the matching quantity in Figure 2. By convention, the quantity of electricity to be supplied is given 

in negative terms.   

Table 1: An example hourly supply bid 

Price (TL/MWh) 0 150 200 400 500 

Quantity (MWh) 0 -50 -100 -150 -200 

An hourly bid can be represented as a piecewise linear function generated by linearly interpolating 

its QPPs.a The matching quantity of an hourly bid is the quantity corresponding to the MCP on this piecewise 

linear function. Figure 2 shows the supply curve of the bid given in Table 1. If the MCP is 280 TL, then the 

matching quantity becomes 120 MWh for this bid. In this case, the first two segments are fully accepted and 

the third one is partially accepted. 

 

Figure 2: Piecewise linear supply curve corresponding to the bid in Table 1 

Hourly bids are usually placed by hydroelectric, wind and solar power plants, as well as electricity 

retailers and distributors. Utility companies with a portfolio of generation capacity also place hourly bids to 

match their generation profile with their demand profile. 

Block bids and paradoxical blocks: Block bids are typically placed by coal-powered and natural-

gas-powered plants, as well as by large industrial consumers and electricity retailers. These bids are the 

                                                 

a Some European exchanges, such as EPEX and APX, use a stepwise linear function to represent hourly bids. 
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second most common type of bid in DAMs, and can be viewed as an indivisible set of consecutive hourly 

bids with a single QPP. In this case, in addition to price and quantity, bidders also specify a consecutive set 

of hours during which they are willing to trade electricity for the next day. A block bid is accepted or rejected 

as a full block for all the periods it covers; partial fulfillment of a block bid is not allowed.  

In practice, this auction rule to fully accept or reject block bids may result in paradoxical situations. 

For example, consider the following simple case in Table 2, with one demand block bid and two hourly 

bids. The demand block bid is to buy 50 MWh at the price of 150TL/MWh, covering hours 0 and 1, and the 

hourly bids are specified as follows:  

Table 2: An example of a paradoxical block bid 

Hourly Bids 

Price (TL/MWh) 0 50 100 200 500 1000 

Quantity (for hour 0)  100  75 0     -50    -100    -300 

Quantity (for hour 1)  100  75 0     -50 -100 -300 

Block Bid 

Price (TL/MWh) 150 

Quantity (for hours 0 and 1) 50 

If we reject the block bid, then the clearing price for both hours (0 and 1) is 100TL/MWh. As the 

average clearing price is lower than the block bid price, the block bid should be accepted. However, if the 

block is accepted, then the average clearing price becomes 200TL/MWh, and this price implies the block 

should be rejected. This situation is referred to as a paradoxical block because neither accepting nor rejecting 

the block is feasible. The acceptance condition of a block bid can also be linked to the acceptance of another 

block bid. Suppose block bid B is linked to block bid A. Then, bid A is called the parent block and bid B is 

the child block. If the parent block is rejected, the child block cannot be accepted. 

Flexible bids: These bids specify a single QPP without specifying period information, and they can be 

accepted at any hour of the day. Similar to block bids, flexible bids have the all-or-nothing property and 

may also result in paradoxical situations. These bids are typically placed by flexible generation and 

consumption units, such as storage facilities, diesel- and fuel-oil-powered plants and cement producers.  

1.2 Turkish vs. European DAMs 

The daily operations of the Turkish DAM include a number of key steps, as summarized in Table 3. In 

essence, both in Turkey and Europe, a double-sided blind combinatorial auction is used to determine 

electricity prices for each hour of the next day by matching bidders’ supply and demand curves. The two 

markets mainly deviate from each other in their treatment of paradoxical bids, as explained above. The 
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Turkish auction allows for paradoxically accepted blocks (PABs); that is, it accepts such blocks, and the 

European auctions allow for paradoxically rejected blocks (PRBs); that is, it rejects such blocks. 

In particular, in the Turkish market, a supply (demand) block bid can be accepted even if it is out-

of-the-money; that is, the bid price is above (below) the average of the MCPs that the block bid covers. In 

this case, the corresponding loss incurred by this matching is compensated with a side payment to the 

participant submitting the block bid. In European auctions, on the other hand, a supply (demand) block bid 

can be rejected even if it is in-the-money; that is, the bid price is below (above) the average of the MCPs 

that the block bid covers, respectively. In this regard, the Turkish DAM is a combination of European 

exchange models with linear price regimes and US pool models with side payments. 

Table 3: Daily operations in the Turkish DAM 

Time Slot Operation 

00:00 - 17:00 Bilateral agreements for the next day are entered into the system by the market participants. 

00:00 - 12:30 DAM participants submit their bids for the upcoming day. 

12:30 - 13:00 Collateral payments are checked and bids are validated automatically. If there is an unusual 

bid submission, the market operator has the right to call the participant for confirmation. 

13:00 - 13:10 MCPs are determined by the optimization tool. 

13:10 - 13:30 Results are published and objections to the bid matchings are received. 

13:30 - 14:00 Objections are evaluated and resolved. 

14:00 Finalized MCPs, average hourly prices and trade volumes are publicly announced. 

European and Turkish DAMs also differ when accepting and rejecting linked block bids. Unlike in 

Europe, in Turkish DAMs, parent and child blocks are individually evaluated for acceptance; that is, 

rejecting the parent block automatically results in rejecting the child block.  

1.3 Contributions 

Considering the integer requirements associated with market participants’ bids, paradoxical block bids and 

the non-linear social welfare objective, a complicated combinatorial auction arises for the Turkish market 

operator. In particular, the auction is a non-linear integer program with as many binary variables as the 

number of block bids and the number of flexible bids multiplied by the number of periods in a day. In 

practice, the total number of bids reaches 15,000, and this large problem needs to be solved within minutes 

every day. Given the practical time limit, solving this problem for optimality with standard optimization 

packages is not guaranteed for all the possible problem instances, therefore, a heuristic algorithm is needed 

to quickly obtain high-quality solutions.  
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In this paper, we model the DAM auction in Turkey considering the relevant practical constraints. 

Exploiting the problem structure, we develop innovative adaptations of tabu search (TS) and the genetic 

algorithms (GA) to solve this problem in a reasonable amount of time for practical purposes. Our algorithms 

have been used by EXIST to clear the Turkish DAM since 1 June 2016. In addition, 

 We test the performance of our heuristics and compare them with a commercial solver (CS), which 

is CPLEX in our case. We show that the Turkish market operator generates significantly more total 

surplus using our methods. In particular, between 1 June 2016 (when the operator began using our 

heuristics) and 31 May 2017, our heuristics improved EXIST’s total surplus by 448,418 TL per day 

and 163,672,570 TL per year. This finding corresponds to an improvement of 1.80% relative to the 

CS. In addition, the CS failed to generate a feasible solution in 4.10% of all days, while our 

heuristics are guaranteed to provide a feasible solution every day.  

 We also test the robustness of the value of our heuristics under different auction rules, such as the 

PRB rule, which is used in European energy exchanges. In this case, the CS failed to generate a 

feasible solution in 0.55% of all days within EXIST’s specified time limit (10 minutes). Under the 

PRB rule, although the CS is more effective in providing a feasible solution compared to the PAB 

case, the quality of such solutions is significantly lower. Therefore, the mean savings provided by 

our heuristics over the CS are substantially larger for the PRB case. For example, the GA provides 

a mean savings of 1,986,597 TL per day (7.96% relative savings).  

 The value of our heuristics increases with problem size. We observe that if the problem size doubles, 

the relative benefit of the GA over the CS reaches 11.92% under the PAB rule and 14.35% under 

the PRB rule. This amount corresponds to a monthly savings of 89,957,040 TL and 108,288,600 

TL for these cases, respectively.  

 We also show that the TS tends to outperform the GA for problem instances where it is hard to find 

an initial feasible solution. This result is driven by the feasibility restoration capability of the TS. 

 Our algorithms are general enough to be used by other combinatorial auctions, where bidders place 

bids for a bundle of items, such as allocating cloud computing resources and procuring 

transportation services. Our modelling of block decisions as binary genes on chromosomes is a 

convenient and robust approach to handle block bidding behavior, and enables our GA to be used 

by similar combinatorial auctions.  
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2 Literature Review  

When goods present complementarities or substitution effects, the joint value of the goods to the bidders 

can be higher or lower than the sum of the individual value of the goods. In these cases, combinatorial 

auctions provide a good mechanism by which to capture these complementarities and substitution effects 

for the bidders. Since the seminal paper of Rassenti et al. (1982), combinatorial auctions have been 

extensively used in practice, ranging from school meal auctions to transportation procurement services 

(Ledyard et al., 2002; Pekeč and Rothkopf, 2003; Sheffi, 2004; Chen et al., 2005; Hortaçsu and McAdams, 

2010; Kastl 2011; Zaman and Grosu, 2013; Kim et al., 2014). Cramton et al. (2006) provide a 

comprehensive survey on this topic.  

A typical application area of combinatorial auctions is reverse auctions with package bidding. In 

these auctions, the buyer allows the bidders to bid in packages of multiple items to benefit from the bidders’ 

economies of scale, scope or proximity in providing required resources or services. For example, Olivares 

et al. (2012) examine Chilean school meal auctions, where suppliers compete to provide daily school meals 

for multiple geographical areas for a full year. The authors highlight that package bidding may motivate 

bidders to strategically discount package bids and inflate bid prices for single items, a practice that should 

be carefully considered when designing combinatorial auctions. Kim et al. (2014) empirically evaluate the 

performance of combinatorial auctions using the Chilean school meal auction data, and find that cost 

synergies and package discounts play a central role. Similarly, Caplice and Sheffi (2006) study freight 

transportation service procurement auctions. In their case, carriers can bid for packages of multiple lanes 

depending on complementarities they have among shipment volumes and routes. Other examples from 

transportation procurement include London bus route auctions (Cantillon and Pesendorfer, 2006) and 

auctions for truckload shipments for The Home Depot (Elmaghraby and Keskinocak, 2003). 

 In addition to the relatively simple single-round, single-unit combinatorial auctions, there exist very 

sophisticated models. As giant multi-national retail companies have begun to centralize their procurement 

processes, they have begun to design and run auctions for hundreds of items offered by many suppliers. 

Famous examples include the strategic sourcing practices of companies such as Mars, Motorola and P&G 

(Hohner et al., 2003; Metty et al., 2005; Sandholm et al., 2006), which have solved the winner determination 

problem of their sourcing auctions for multiple units, multiple rounds and multiple attributes. These 

problems may even include non-price attributes for items (Sandholm and Suri, 2006), complex bundle 

discounts (Metty et al., 2005) as well as business rules such as constraints on the number of winning bidders 

(Sandholm et al., 2005). The practicability of these complex combinatorial auctions heavily depends on the 

availability of efficient methods to solve the integer program of the winner determination problem. In this 
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respect, Sandholm et al. (2005) present a problem-specific branch-and-bound algorithm and report 

improvements compared to CPLEX’s integer programming solver, whereas Catalan et al. (2009) suggest a 

sequencing-based solution method under multiple scenarios.  Similarly, Bonomo et al. (2017) propose an 

efficient polynomial formulation for a multi-item auction under asymmetric bidders and quantity discounts.   

The use of combinatorial auctions in electricity markets dates back to the liberalization efforts of 

these markets in the 1990s. The startup costs of power plants and industrial electricity consumers create 

complementarities across consecutive operating hours and create motivation for bidders to place bids for a 

consecutive set of hours to avoid multiple setups (Wolfram 1998; Hortacsu and Puller 2008; Reguant, 2014). 

Hence, liberalized electricity markets allow some form of complementary bidding, and thus combinatorial 

auctions are designed in order to determine electricity prices (Meeus et al., 2009; Martin et al., 2014 and 

Derinkuyu, 2015). Unlike the combinatorial auctions discussed above, where the winner receives its bid 

price, in electricity markets a single MCP is used to pay market participants. In addition, in electricity 

combinatorial auctions, there are multiple buyers and sellers placing complementary bids.  

One of the first papers in this field, by Meeus et al. (2009), provides a combinatorial auction model 

to examine the impact of block bid restrictions in electricity markets. The authors’ model reflects the auction 

rules in European markets. For example, as noted above, unlike the Turkish market design European models 

do not allow for side payments to clear their day-ahead auction markets. Instead, in order to equalize demand 

and supply, they allow for rejecting block bids that should be accepted based on the market price; that is, 

PRBs. Based on their simulation results, the authors argue that exchanges and market participants alike 

would benefit from relaxing restrictions on block bids.  

Martin et al. (2014) consider the objective of maximizing total economic surplus in a market-

coupling framework subject to transmission constraints. Their model ensures that no one incurs a loss except 

for PRBs, as in Meeus et al. (2009). They argue that the resulting large-scale optimization problem cannot 

be solved efficiently by standard solvers, and provide an exact algorithm as well as a heuristic, both based 

on decomposition methods. Madani and Van Vyve (2015) provide a mixed-integer linear program to model 

European DAM auctions in the presence of stepwise bid curves. Also, for piecewise linear bid curves, they 

show that the problem can be formulated as a mixed-integer quadratically constrained program with a non-

linear convex quadratic constraint (with integer variables). For both formulations, the authors derive a 

Benders-like decomposition procedure and strengthen classical Benders infeasibility cuts.  

 Derinkuyu (2015) is the first to model the Turkish day-ahead combinatorial auction. He presents a 

mixed-integer programming formulation and provides aggregation and variable-elimination techniques to 

significantly reduce the problem size to be solved by commercial solvers within a reasonable amount of 

http://www.sciencedirect.com/science/article/pii/S0377221714007991
http://www.sciencedirect.com/science/article/pii/S0377221714007991
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time. Unlike the previous papers, Derinkuyu (2015) aims to minimize market prices, which eliminates the 

non-linearity with respect to the objective function. In another recent paper, Chatzigiannis et al. (2016) 

propose an iterative solution procedure based on a mixed-integer programming formulation to solve the 

current market-coupling problem in European energy markets.  

Although there is a growing literature on European electricity DAM auctions, most of this research 

is mute on the practical use and impact of the suggested algorithms. Although the developed exact methods 

perform well on real market data, the market operator must find at least one feasible solution in every 

instance, and this cannot be guaranteed by any exact solution method because the problem is NP-Hard. 

Therefore, we believe that there is a need to develop an algorithm to produce high-quality feasible solutions 

in a reasonable amount of time for practical purposes. In this paper, we fill this important gap by outlining 

the development and comparison of the two heuristic methods we devised for EXIST. In addition, unlike 

most of the above papers, our solution methods are used in practice and we compare their performance 

against a commercial solver. We provide solid monetary figures on the impact of our solution methods.  

3 The Combinatorial Multi-unit Auction Model 

In this section, we model the day-ahead combinatorial auction in the Turkish electricity market with the 

objective of maximizing social welfare, which is the summation of producer and consumer surpluses. 

Producer surplus is the difference between the total revenue earned by a producer in return for producing a 

particular amount of electricity and the bid price for generating this amount of electricity. Consumer surplus 

is the difference between a consumer’s total willingness to pay to consume a particular amount of electricity 

and the total cost of purchasing this amount of electricity. Figure 3 illustrates these concepts. 

 
Figure 3: Consumer and producer surpluses from hourly bids  

Our model includes the bid types that are currently used at EXIST; that is, hourly bids, block bids 

and flexible bids. In what follows, we provide the notation and the mathematical model: 

Consumer Surplus 

Producer Surplus 

Supply Curve 

Demand Curve 

𝑃(
𝑇𝐿

𝑀𝑊ℎ
) 

𝑄(𝑀𝑊ℎ) 

MCP 

2000 
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Sets and Indices: 

 t, T: time period and set of time periods 

 I: set of hourly supply bids 

 J: set of hourly demand bids 

 l, L(i): segment index and set of segments for hourly bid i, 𝑖 ∈ 𝐈 ∪ 𝐉  

 𝐁𝐬: set of supply block bids (𝐁𝐬𝐜: set of child supply block bids) 

 𝐁𝐝: set of demand block bids (𝐁𝐝𝐜: set of child demand block bids) 

 𝚲𝒃: set of block bids to which block bid b is linked, 𝑏 ∈ 𝐁𝐬  ∪ 𝐁𝐝 (all block bids in 𝚲𝒃 must be 

accepted to accept block bid b. This set is a singleton.) 

 𝐅𝐬: set of supply flexible bids 

Parameters: 

 𝑃𝑚𝑖𝑛
𝑡 : lowest possible market clearing price for period t  

 𝑃𝑚𝑎𝑥
𝑡 : highest possible market clearing price for period t  

 𝑃𝑚𝑖𝑛: minimum valid bid price 

 𝑃𝑚𝑎𝑥: maximum valid bid price 

 𝑃𝑖𝑡𝑙
0 , 𝑃𝑖𝑡𝑙

1 : initial and final prices for segment l of hourly bid i, in period t (𝑃𝑚𝑖𝑛 ≤ 𝑃𝑖𝑡𝑙
0 < 𝑃𝑖𝑡𝑙

1 ≤ 𝑃𝑚𝑎𝑥 

for supply bids and 𝑃𝑚𝑎𝑥 ≥ 𝑃𝑖𝑡𝑙
0  >  𝑃𝑖𝑡𝑙

1 ≥ 𝑃𝑚𝑖𝑛 for demand bids) 

 𝑄𝑖𝑡𝑙
0 , 𝑄𝑖𝑡𝑙

1 : initial and final quantity for segment l of hourly bid i, in period t (0 ≤ 𝑄𝑖𝑡𝑙
0  ≤  𝑄𝑖𝑡𝑙

1  for all 

bids) 

 𝑃𝑏 , 𝑃𝑓: price for block bid b and flexible bid f 

 𝑄𝑏 , 𝑄𝑓: quantity for block bid b and flexible bid f 

 𝑁𝑏: number of time periods that block bid b spans 

 𝛿𝑏𝑡: binary parameter equal to 1 if block bid b spans period t 

 휀: a small positive quantity 

Decision Variables: 

 𝑥𝑖𝑡𝑙: accepted fraction of segment l of hourly bid i, in period t, 𝑖 ∈ 𝐈 ∪ 𝐉, 𝑡 ∈ 𝐓, 𝑙 ∈ 𝐋(𝑖) 

 𝑦𝑏: 1 if block bid b is accepted, 0 otherwise, 𝑏 ∈ 𝐁𝐬  ∪ 𝐁𝐝 

 𝑧𝑓𝑡: 1 if flexible bid f is accepted in period t, 0 otherwise, 𝑓 ∈ 𝐅𝐬, 𝑡 ∈ 𝐓 

 𝑝𝑡: market clearing price in period t, 𝑡 ∈ 𝐓 

 𝑤𝑖𝑡𝑙: auxiliary variables to model the bid functions, 𝑖 ∈ 𝐈 ∪ 𝐉, 𝑡 ∈ 𝐓, 𝑙 ∈ 𝐋(𝑖) 
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Day-ahead Market Clearing Problem with Paradoxically Accepted Blocks (DAM_PAB) 

𝐌𝐚𝐱  F =∑∑ ∑ [0.5 ∗ 𝑥𝑖𝑡𝑙(𝑄𝑖𝑡𝑙
1 − 𝑄𝑖𝑡𝑙

0 ) ∗ (2𝑃𝑖𝑡𝑙
0 + 𝑥𝑖𝑡𝑙(𝑃𝑖𝑡𝑙

1 − 𝑃𝑖𝑡𝑙
0 ))]

𝑙 ∈𝐿(𝑖)𝑖 ∈𝐽𝑡∈𝑇

 

+ ∑ 𝑁𝑏 ∗ 𝑄𝑏 ∗ 𝑃𝑏 ∗ 𝑦𝑏 + ∑ 𝑄𝑓 ∗ 𝑃𝑓 ∗∑𝑧𝑓𝑡
𝑡∈𝑇

 

𝑓∈ 𝐹𝑑𝑏∈ 𝐵𝑑

 

−∑∑ ∑ [0.5 ∗ 𝑥𝑖𝑡𝑙(𝑄𝑖𝑡𝑙
1 − 𝑄𝑖𝑡𝑙

0 ) ∗ (2𝑃𝑖𝑡𝑙
0 + 𝑥𝑖𝑡𝑙(𝑃𝑖𝑡𝑙

1 − 𝑃𝑖𝑡𝑙
0 ))]

𝑙 ∈𝐿(𝑖)𝑖 ∈𝐼𝑡∈𝑇

 

− ∑ 𝑁𝑏 ∗ 𝑄𝑏 ∗ 𝑃𝑏 ∗ 𝑦𝑏 − ∑ 𝑄𝑓 ∗ 𝑃𝑓 ∗∑𝑧𝑓𝑡
𝑡∈𝑇

 

𝑓∈ 𝐹𝑠𝑏∈ 𝐵𝑠

 

 

Subject to: 

(1) Constraints on supply-demand balance:  

∑ ∑ (𝑄𝑖𝑡𝑙
1 − 𝑄𝑖𝑡𝑙

0 ) ∗  𝑥𝑖𝑡𝑙
𝑙 ∈𝐿(𝑖)𝑖 ∈𝐼

+ ∑ 𝛿𝑏𝑡 ∗ 𝑄𝑏 ∗ 𝑦𝑏 + 

𝑏∈ 𝐵𝑠

∑ 𝑄𝑓 ∗ 𝑧𝑓𝑡
𝑓 ∈ 𝐹𝑠

−∑ ∑ (𝑄𝑖𝑡𝑙
1 − 𝑄𝑖𝑡𝑙

0 ) ∗  𝑥𝑖𝑡𝑙
𝑙 ∈𝐿(𝑖)𝑖 ∈𝐽

− ∑ 𝛿𝑑𝑡 ∗ 𝑄𝑑 ∗ 𝑦𝑑 −

𝑑∈ 𝐵𝑑

∑ 𝑄𝑔 ∗ 𝑧𝑔𝑡
𝑔 ∈ 𝐹𝑑

= 0, ∀𝑡 ∈ 𝐓 

(2) Constraints on hourly bids:  

𝑤𝑖𝑡1 ≤ 𝑥𝑖𝑡1 ≤ 1, ∀𝑖 ∈ 𝐈 ∪ 𝐉, 𝑡 ∈ 𝐓 

𝑤𝑖𝑡𝑙 ≤ 𝑥𝑖𝑡𝑙 ≤ 𝑤𝑖𝑡(𝑙−1), ∀𝑖 ∈ 𝐈 ∪ 𝐉, 𝑡 ∈ 𝐓, 𝑙 = 2,… , |𝐋(𝑖)| − 1 

0 ≤ 𝑥𝑖𝑡|𝐿(𝑖)| ≤ 𝑤𝑖𝑡(|𝐿(𝑖)|−1), ∀𝑖 ∈ 𝐈 ∪ 𝐉, 𝑡 ∈ 𝐓  

𝑝𝑡 = 𝑃𝑚𝑖𝑛
𝑡 + ∑ (𝑃𝑖𝑡𝑙

1 − 𝑃𝑖𝑡𝑙
0 ) ∗ 𝑥𝑖𝑡𝑙 ,

𝑙 ∈𝐿 (𝑖)

 ∀𝑖 ∈ 𝐈, 𝑡 ∈ 𝐓 

𝑝𝑡 = 𝑃𝑚𝑎𝑥
𝑡 + ∑ (𝑃𝑖𝑡𝑙

1 − 𝑃𝑖𝑡𝑙
0 ) ∗ 𝑥𝑖𝑡𝑙 ,

𝑙 ∈𝐿 (𝑖)

 ∀𝑖 ∈ 𝐉, 𝑡 ∈ 𝐓 

(3) Constraints on block bids (allowing for PABs): Supply (demand) block bids having a bid price less 

(greater) than or equal to the average MCP of the periods, where the bid is active, must be accepted (except 

child block bids). 

For supply side 

− 𝑁𝑏 ∗ 𝑃𝑏 + ∑ 𝛿𝑏𝑡 ∗ 𝑝𝑡 ≤ (−𝑁𝑏 ∗ 𝑃𝑚𝑖𝑛 + ∑ 𝛿𝑏𝑡 ∗ 𝑃𝑚𝑎𝑥
𝑡

𝑡 ∈ 𝑇

) ∗ 𝑦𝑏 − 휀, ∀𝑏

𝑡 ∈ 𝑇

∈ 𝐁𝐬\𝐁𝐬𝐜 
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For demand side 

𝑁𝑏 ∗ 𝑃𝑏 − ∑ 𝛿𝑏𝑡 ∗ 𝑝𝑡 ≤ (𝑁𝑏 ∗ 𝑃𝑚𝑎𝑥 − ∑ 𝛿𝑏𝑡 ∗ 𝑃𝑚𝑖𝑛
𝑡

𝑡 ∈ 𝑇

) ∗ 𝑦𝑏 − 휀, ∀𝑏 ∈  𝐁
𝐝\𝐁𝐝𝐜

𝑡 ∈ 𝑇

 

(4) Constraints on linked block bids:  

𝑦𝑏 ≤ 𝑦𝜆 , ∀𝜆 ∈  𝚲
𝒃, 𝑏 ∈  𝐁𝐬  ∪ 𝐁𝐝 

(5) Constraints on flexible bids: A supply flexible bid must be accepted if the maximum MCP is equal to or 

greater than the bid price. 

∑𝑧𝑓𝑡
𝑡∈𝑇

≤ 1, ∀𝑓 ∈ 𝐅𝐬 

𝑝𝑡 − 𝑃𝑓  ≤  (𝑃𝑚𝑎𝑥
𝑡 − 𝑃𝑚𝑖𝑛) ∗∑𝑧𝑓𝑡

𝑡∈𝑇

− 휀, ∀𝑓 ∈ 𝐅𝐬, 𝑡 ∈ 𝐓  

(6) Decision variable definitions: 

𝑥𝑖𝑡𝑙 , 𝑝𝑡 ∈  ℝ
+, 𝑦𝑏 , 𝑧𝑓𝑡 , 𝑤𝑖𝑡𝑙 ∈ {0,1}  

In DAM_PAB, we maximize the total surplus of market participants, which is the summation of 

producer and consumer surpluses. Recall that 𝑝𝑡 is the MCP in period t. Then, the surplus of a producer for 

each type of bid can be calculated as follows: 

For hourly bids (P1) 

(∑∑ ∑ 𝑝𝑡 ∗ (𝑄𝑖𝑡𝑙
1 − 𝑄𝑖𝑡𝑙

0 ) ∗ 𝑥𝑖𝑡𝑙
𝑙∈𝐿(𝑖)𝑖∈𝐼𝑡∈𝑇

) − (∑∑ ∑ [0.5 ∗ 𝑥𝑖𝑡𝑙(𝑄𝑖𝑡𝑙
1 − 𝑄𝑖𝑡𝑙

0 ) ∗ (2𝑃𝑖𝑡𝑙
0 + 𝑥𝑖𝑡𝑙(𝑃𝑖𝑡𝑙

1 − 𝑃𝑖𝑡𝑙
0 ))]

𝑙 ∈𝐿(𝑖)𝑖 ∈𝐼𝑡∈𝑇

) 

In (P1), the first term represents the revenues of a supplier from its hourly bids based on the market 

price. The second term is the cost of supplying the market. The difference between these two terms is the 

producer surplus. The surplus term for the block and flexible bids are similarly defined below for the 

producer. As there is a single QPP in the block and flexible bids and they have the all-or-nothing property, 

the surplus of a supplier is easily calculated by multiplying the bid quantity, number of periods that the bid 

spans and the average market clearing price minus the bid price. 

For block bids (P2) 

∑ 𝑦𝑏 ∗ 𝑄𝑏 ∗ (−𝑁𝑏𝑃𝑏 +∑𝛿𝑏𝑡𝑝𝑡
𝑡∈𝑇

)

𝑏∈𝐵𝑠
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For flexible bids (P3) 

∑ 𝑄𝑓 ∗ (−𝑃𝑓 +∑𝑧𝑓𝑡 ∗ 𝑝𝑡
𝑡∈𝑇

)

𝑓∈𝐹𝑠

 

As an example, consider the hourly bid given in Table 4.  

Table 4: A partially accepted hourly supply bid given that MCP = 280 

Segment 𝑃0 𝑄0 𝑃1 𝑄1 𝑥𝑙
∗ 

1 0 0 150 50 1 

2 150 50 200 100 1 

3 200 100 400 150 0.4 

4 400 150 500 200 0 

If the MCP is 280, then the first two segments of the bid are fully accepted. The third segment is interpolated 

and 40% of it is accepted. Correspondingly, the matching quantity is found to be 120. The revenue collected 

by this bid is 280*120 = 33,600. The cost of generating this quantity is 50*150/2 + 

50*(150+200)/2+50*0.4*(200+280)/2 = 17,300. So, the producer surplus collected by the matching of this 

bid is 33,600 - 17,300 = 16,300. 

Similar to the producer surplus, we can formally define the consumer surplus both for the hourly 

and block bids as the difference of the total willingness to pay and the associated purchase cost. 

For hourly bids (C1) 

(∑∑ ∑ [0.5 ∗ 𝑥𝑖𝑡𝑙(𝑄𝑖𝑡𝑙
1 − 𝑄𝑖𝑡𝑙

0 ) ∗ (2𝑃𝑖𝑡𝑙
0 + 𝑥𝑖𝑡𝑙(𝑃𝑖𝑡𝑙

1 − 𝑃𝑖𝑡𝑙
0 ))]

𝑙 ∈𝐿(𝑖)𝑖 ∈𝐽𝑡∈𝑇

) − (∑∑ ∑ 𝑝𝑡
𝑙∈𝐿(𝑖)𝑖∈𝐼𝑡∈𝑇

∗ (𝑄𝑖𝑡𝑙
1 − 𝑄𝑖𝑡𝑙

0 ) ∗ 𝑥𝑖𝑡𝑙) 

For block bids (C2) 

∑ 𝑦𝑏 ∗ 𝑄𝑏 ∗ (𝑁𝑏𝑃𝑏 −∑𝛿𝑏𝑡𝑝𝑡
𝑡∈𝑇

)

𝑏∈𝐵𝑠

 

For flexible bids (C3) 

∑ 𝑄𝑓 ∗ (𝑃𝑓 −∑𝑧𝑓𝑡 ∗ 𝑝𝑡
𝑡∈𝑇

)

𝑓∈𝐹𝑑

 

As the objective function of the DAM_PAB is to maximize the summation of the producer and 

consumer surpluses, it is equivalent to maximizing P1+P2+P3+C1+C2+C3. Due to the supply-demand 

balance constraint and uniform market prices, the total revenue collected by the producers must be equal to 
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the total cost paid by the consumers for the total traded energy in each period of the trading day. Therefore, 

these two values cancel each other out, and the objective function reduces to the difference of the consumers’ 

total willingness to pay and the producers’ cost of generation for the traded energy in the market. Although 

the cost terms associated with block and flexible bids are linear, there exist quadratic terms in the objective 

function due to the interpolation of hourly bids. Fortunately, as we show in Proposition 1 below, the 

objective function is concave.  

The first set of constraints in DAM_PAB ensures that an hourly supply and demand balance is 

achieved. The second set of constraints limits the matched quantity of an hourly bid with the offered bid 

quantity. The third constraint set specifies the rule for accepting block bids: Supply (demand) block bids 

having a bid price less (greater) than or equal to the average MCP of the periods, where the bid is active, 

must be accepted. The fourth constraint set guarantees that a child block cannot be accepted unless its parent 

is accepted. The fifth set restricts the acceptance of a flexible bid to at most one period and also requires 

that a supply flexible bid must be accepted if the maximum MCP is equal to or greater than the bid price. 

Finally, the last set of constraints describes the binary and continuous decision variables. The proposed 

model, DAM_PAB, is a mixed-integer quadratic program with a concave social welfare function, a linear 

set of constraints and binary variables associated with block and flexible bids. 

Before presenting our solution methods, below we first provide two key results about our 

formulation that significantly reduce the solution efforts. Proposition 1 proves the concavity of the objective 

function. All proofs are available in Appendix A in the e-companion. 

Proposition 1. The objective function F is concave. 

Next, the following proposition establishes that, for a given set of block decisions, we do not have 

to enforce the full acceptance of an hourly bid segment before accepting a succeeding segment in 

DAM_PAB. This proposition significantly reduces the problem size and helps with the heuristic design 

process. 

Proposition 2. Let 𝑥𝑚
∗  and 𝑥𝑛

∗  be the optimal values of the accepted fractions of two segments in an hourly 

bid such that 𝑚 < 𝑛 and 𝑞𝑚 = 𝑄𝑚
1 − 𝑄𝑚

0 , 𝑞𝑛 = 𝑄𝑛
1 − 𝑄𝑛

0 are positive. Then, (1 − 𝑥𝑚
∗ )𝑥𝑛

∗ = 0. That is, 

if 𝑥𝑚
∗ < 1, then 𝑥𝑛

∗ = 0. In addition, if 𝑥𝑛
∗ > 0, then 𝑥𝑚

∗ = 1. 

4 Solution Methods 

In this section, by exploiting the problem structure, we develop two heuristic procedures to determine 

Turkish DAM prices. The initial phases of both heuristic methods are identical and are based on reducing 
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the size of the problem by aggregating the hourly bids. As we noted in Section 1, an hourly bid is a piecewise 

linear function, and the matching quantity is the value of this function at the MCP. Instead of separately 

considering all the hourly bids in a given hour, we can form aggregate supply and demand bids for each 

hour. In particular, we generate these aggregate piecewise linear curves by adding up all the piecewise linear 

curves of the hourly bids on the supply and demand sides separately. The resulting curves are non-decreasing 

and non-increasing in price for the supply and demand sides, respectively.  

Once we aggregate the hourly supply and demand bids, we obtain a single hourly supply and 

demand bid for each hour of the day. Note that given a set of block and flexible bid decisions, it is trivial to 

determine the optimal matching quantities for hourly bids by using Proposition 2. Each accepted block or 

flexible supply bid shifts the aggregate supply curve to the right by an amount equal to the volume of the 

accepted bid in relevant periods. Similarly, each accepted block or flexible demand bid shifts the aggregate 

demand curve to the right by an amount equal to the volume of the accepted bid in relevant periods. Finally, 

the intersection of these curves gives the MCP for each period and the matching quantities for the hourly 

bids.  

Our solution procedure consists of two steps. In the first step, we determine the set of block bids to 

be accepted to maximize the daily total surplus without considering the flexible bids. We develop two 

metaheuristics for this purpose: a tabu search and a genetic algorithm. In the second step, given the block 

bid decisions, we determine which flexible bids are to be accepted. In the next two sections, we present the 

two metaheuristics specially tailored to the DAM clearing problem. 

4.1 Tabu Search Algorithm 

A TS algorithm is a metaheuristic search method that directs a local search into different areas of the search 

space. It is well-known that local search algorithms may not be able to explore the entire feasible solution 

space, and they may get stuck at local optima. However, TSes add previously visited solution elements to a 

list and prohibits their usage to prevent the search from stopping at a local optimum. We used a TS 

framework tailored to the problem-specific features of the Turkish DAM. As with any TS algorithm, we 

first define the algorithm design elements: move, tabu law, aspiration criteria, diversification and stopping 

condition. We summarize the algorithm elements below (see Figure B.1 in Appendix B in the e-companion 

for a detailed pseudo code of the algorithm).  

Move: A move represents the set of changes to a solution to reach its neighbor solution. In our 

algorithm, we define a move as reversing a block bid decision in a given solution. However, we restrict the 

set of all possible moves and only allow the following ones due to the combinatorial nature of the problem: 
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 Rejection of an out-of-the-money block bid. 

 Acceptance of a block bid. 

According to this definition, there are m+n different moves for each solution, where m shows the 

number of accepted out-of-the-money block bids and n shows the number of rejected blocks bids. Each 

move creates a neighbor of the solution, and by using different moves we can search the neighborhood of 

the solution, which is a collection of neighbors. The surplus associated with accepting an out-of-the-money 

block bid is always non-positive. Therefore, we expect that the rejection of an out-of-the-money block bid 

increases the total surplus. 

A move may result in an infeasible solution if a parent block bid is rejected while its child block bid 

is accepted. In the case of infeasibility, we repair the solution by simply rejecting the child and grandchild 

block bids. This method results in a feasible solution, but it may not be in the neighborhood. Hence, a repair 

may lead us to a diverse solution.  

 A solution that gives the best objective among feasible and repaired solutions in the neighborhood 

is called a candidate solution for the next iteration. At each iteration, a new neighborhood is formed around 

the candidate solution that was determined at the previous iteration.  

Tabu law: Tabu law determines the rules when a solution is temporarily forbidden from being used 

as a candidate solution. A solution cannot be a candidate solution when it is on the tabu list, which is a 

collection of the candidate solutions of the previous iterations. After the neighbors are created around the 

candidate solution, it is added to the tabu list. A solution that is not on the tabu list can be a candidate 

solution for the next iterations. 

Aspiration criteria: The aspiration criteria determine the moments when we break the tabu law. If 

a repaired solution gives the best objective value among the feasible neighbors and repaired solutions but is 

on the tabu list, then we allow that solution as a candidate solution. For each repaired solution, the aspiration 

criteria can be used only once for a number of iterations. To count the number of aspirations for each repaired 

solution, we use an aspiration list.  

Diversification: Sometimes local search algorithms spend most of their time searching in a narrow 

solution space. However, promising solutions may be obtained by a wider exploration of the solution set. In 

such a case, diversification is needed to cover most of the solution space in a reasonable amount of time. 

We call our diversification mechanism a jumping procedure. The algorithm jumps to another solution when 

a maximum number of iterations for a specific solution is reached, or the search cannot find a candidate 
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solution for the next iteration in the current neighborhood. Note that the jumping points may be infeasible 

and need to be repaired. We use four jumping points. In the first one, we accept all supply and demand 

blocks, which is always feasible. The next three jumping points are the solutions where we:  

 accept all supply blocks, reject all demand blocks; 

 accept all demand blocks, reject all supply blocks and 

 reject all supply and demand blocks. 

Stopping Condition: The algorithm stops when the pre-set time limit is reached. In addition, there 

is a limit on the number of iterations for a local search around each jumping point. 

4.2 Genetic Algorithm 

A GA mimics the evolutionary process of natural selection by finding the best solution to a problem among 

all feasible solutions. The main idea behind this algorithm is that good solutions (good chromosomes) 

consist of good solution elements (good genes), and merging good elements of solutions results in better 

solutions. In our context, chromosomes correspond to a sequence of block bid decisions, and genes are 

individual block bid decisions. 

Genetic algorithms are population-based algorithms that try to iteratively improve the quality of the 

solution population. Starting with an initial population, the algorithm creates new solutions (offspring) from 

the current population and replaces low-quality solutions in the current population with higher-quality new 

solutions. At the end, the best solution in the final population is returned. The algorithm stops when a 

convergence criterion is met or the number of iterations reaches a pre-set limit. The implementation of the 

proposed GA consists of the following steps: 

a. Solution representation (coding); 

b. Generation of an initial population; 

c. Population update: parent selection, crossover operators, and mutation operators and 

d. Stopping conditions. 

Below, we report on each of the above-mentioned steps in detail for our optimization problem. 

4.2.1 Solution representation (coding) 

To determine the sequence of block bids in a solution, we sort the block bids in terms of their so-called 

moment scores, calculated as follows: 
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𝑢𝑏𝑘 =

{
 
 

 
  ∑𝛿𝑏𝑘𝑡 ∗ (𝑃𝑏𝑘 − 𝑃𝑡

0) ∗ 𝑄𝑏𝑘 ,

𝑡∈𝑇

 𝑓𝑜𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝑏𝑙𝑜𝑐𝑘𝑠

∑𝛿𝑏𝑘𝑡 ∗ (𝑃𝑡
0 − 𝑃𝑏𝑘) ∗ 𝑄𝑏𝑘 ,

𝑡∈𝑇

 𝑓𝑜𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 𝑏𝑙𝑜𝑐𝑘𝑠
  

where 𝑃𝑡
0 is the MCP at period 𝑡 found by intersecting only the hourly supply and demand bids, and k is the 

block index. We sort the block bids in a non-increasing order of 𝑢𝑏𝑘 values. Higher values of this score 

imply higher acceptance chance of the corresponding block bid. This particular sequence of genes in a 

chromosome allows us to apply the crossover operator in a smarter way, which will be explained in Section 

4.2.3. We measure the fitness of a solution by the total daily surplus resulting from the vector of MCPs and 

the set of accepted block bids. 

4.2.2 Generating an initial population 

To start the algorithm, we need an initial population of solutions. The quality and diversity of the solutions 

in the initial population are important factors in the performance of genetic algorithms. For this purpose, we 

need to place some high-quality solutions and some diversified solutions into the initial population. 

As mentioned earlier, if all bids were hourly bids, then the intersection of the aggregate supply and 

demand curves for each period would give the corresponding MCPs. Accordingly, we can approximate a 

problem by transforming block bids to hourly bids for the periods covered by the block bids. Assume we 

have supply block bid b with a price and quantity pair (𝑃𝑏 , 𝑄𝑏). For each period the block bid covers, we 

can transform it to an hourly bid by forming the set of QPPs {(𝑃𝑚𝑖𝑛, 0), (𝑃
𝑏 − 휀, 0), (𝑃𝑏 , 𝑄𝑏), (𝑃𝑚𝑎𝑥, 𝑄

𝑏)}, 

where 휀 is a small positive constant.  

Now that we have only hourly bids and all the bids can be interpolated, the problem is trivial: form 

the aggregate supply and demand bids, and their intersection gives us the MCPs. At these prices, some of 

the block bids may be partially accepted. Rounding the partially accepted block bids, we form a feasible 

block bid configuration. If this solution violates the link feasibility, we repair the solution and add it to the 

initial pool. 

For population-based heuristics, it is generally suggested to keep diverse solutions in the initial 

population. For this purpose, we try to generate solutions with different MCPs. We first divide the 24 hours 

of the day into a number of groups: 𝑔 = 1, 2,… , 𝐺. For each group, we set the MCPs either at the lower 

price limit of the auction, the upper price limit of the auction or the average of the two limits, resulting in 

3𝐺 different price arrays. For a given price array, we accept and reject the block bids based on the artificially 
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generated average MCPs of the covered periods. After eliminating any duplicate solutions that might exist, 

we can fill the remainder of the initial pool with these randomly generated solutions. 

4.2.3 Population update 

At each iteration of the algorithm, we need to select a subset of solutions (parents) and use this subset 

(mating pool) to generate new solutions (offspring). We use a crossover operator to create two new solutions 

from two parent solutions, and we apply a mutation operator to the offspring to improve their quality. 

Parent selection for reproduction: High-quality solutions must be put into the mating pool to 

generate offspring. For each solution 𝑠 in the population, we calculate 𝑛𝑠 = ⌊𝑓𝑠 𝑓⁄ ⌋, where 𝑓𝑠 is the total 

surplus of solution s, and 𝑓̅ is the average total surplus of the population. We put solution s into the mating 

pool if 𝑛𝑠 > 0 so that we favor the selection of high-quality solutions when creating new solutions. 

Crossover operator: We randomly select two parents from the current population and apply the 

crossover operator. To cross over the parent solutions, we determine a cut point, from which the solutions 

are divided into two parts, and then these parts are swapped between each other. We keep the new solutions 

in a separate list and apply a mutation operator afterwards. Before determining a cut point for the crossover, 

we implement a labeling scheme for the parents based on their gene values. As we describe in Section 4.2.1, 

the sequence of genes in a chromosome is such that block bids having higher moment scores are placed at 

the leftmost side of the solution array. Starting from the leftmost gene, we label the genes with an accept 

decision as high-fit genes, up to the first gene having a reject decision in the sequence. Similarly, starting 

from the rightmost gene, we label the genes having a reject decision as low-fit genes, up to the first gene 

having an accept decision. The genes between these two regions are labeled as medium-fit genes. An 

example for the described labeling scheme is given in Figure 4, where 1 corresponds to an accept decision 

and 0 corresponds to a reject decision. 

Figure 4: Illustrative solution labeling scheme 
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Different solutions will have different labels. However, we expect the gene values in the high-fit 

and low-fit parts of different solutions to be very similar, and the solutions to differ mostly in the medium-

fit area. After labeling the genes, we assign a probability to each gene in the medium-fit region, denoting 

the chances of each serving as a cut point for the crossover. By doing so, we prevent duplicate offspring 

solutions. Once we determine the cut point, we swap the parts of the parent solutions. Note that the crossover 

operation is not guaranteed to produce feasible offspring. We check the feasibility of each offspring and 

repair it in case of infeasibility.  

Mutation operator: We apply a mutation operator to each offspring generated as a way to obtain a 

better solution in the offspring’s neighborhood. For this purpose, we mutate the genes of an offspring one 

by one, as long as we obtain a better feasible solution. This procedure is outlined in Figure B.2 in Appendix 

B in the e-companion. 

4.2.4 Stopping conditions 

At each iteration, we add the offspring solutions to the current population and sort all the solutions in non-

increasing order of their fitness. As we keep the population size fixed, only the best solutions in terms of 

the fitness score can survive to the next iteration. We continuously monitor the convergence of the 

population and stop the algorithm when at least one of the following criteria is met: 

Criterion 1: For each block bid, calculate the number of times that block bid is accepted in all solutions 

in the population. Then, calculate the acceptance ratio of the block by dividing this number by the population 

size. If the acceptance ratio of a block bid is either too low or too high, we say that the corresponding gene 

has converged. If the fraction of converged genes is higher than a threshold value, we stop the algorithm. 

Criterion 2: If the average fitness value of the solutions in the population is above a pre-set fraction of 

the objective function value of the incumbent solution, we stop the algorithm.  

Criterion 3: If the number of population updates reaches the iteration limit, we stop the algorithm. 

4.3 Flexible Bids 

After obtaining a solution by applying the algorithms defined in Section 4.2, we now propose an algorithm 

that adds flexible bids into our solution. We start with the flexible bid with the minimum price and accept 

it if the bid price is less than the maximum MCP. If the condition holds, the flexible bid is accepted for the 

period with the maximum MCP, which is then updated. We continue with the next flexible bid with the 

minimum price and apply the procedure. The algorithm stops if all flexible bids are accepted or the price of 
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the candidate flexible bid is greater than the maximum MCP. This procedure is detailed in Figure B.3 in 

Appendix B in the e-companion. 

5 Computational Results 

In this section, we compare the performance of our algorithms with a CS (CPLEX in our case). The 

comparisons are based on (i) improvement in total surplus, (ii) computation time and (iii) the percentage of 

cases where a feasible solution is guaranteed. In Section 5.1, we show a comparison with model DAM_PAB, 

which is the current model used by EXIST. To test the robustness of our results, in Section 5.2 we explore 

the value of our heuristics for the DAM_PRB case, which reflects the forcing constraint rule in Europe (that 

is, allowing for paradoxically rejected blocks). In addition, in Section 5.3 we test the performance of our 

heuristics for large problem instances for both the PAB and PRB cases.  

Below, we first provide a descriptive summary of the auction data used in this paper. The data includes 365 

real auction instances between 1 June 2016 and 31 May 2017. In Table 5, we report the average numbers of 

different types of bids submitted daily over this period. The hourly bid is the most commonly used bid type 

in the market, comprising 98% of all bids submitted to the system. There are about 135 block bids in the 

auction, most of which are submitted in the supply side. For flexible bids, we see in Table 5 that they are 

not preferred by participants and are rarely used. In Table 6, we also present the daily average of offered 

supply and demand in MWh with respect to bid types. We see that even though the number of block bids is 

small, they constitute 20.1% of the total market volume.  

Table 5: The daily average number of bids in the DAM auction with respect to bid types between 1 June 

2016 and 31 May 2017 

Season Hourly Bid Supply Block Bid  Demand Block Bid Flexible Bid 

Summer - 2016 15,196 144 22 2 

Fall - 2016 14,843 124 20 3 

Winter - 2017 14,972 90 18 2 

Spring - 2017 15,955 109 21 1 
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Table 6: The daily average volume of supply and demand offered to the DAM with respect to bid types 

between 1 June 2016 and 31 May 2017 

Season 
Supply (MWh) Demand (MWh) 

Hourly Bid Block Bid Flexible Bid Hourly Bid Block Bid 

Summer - 2016 640,392 208,800 115 436,488 78,144 

Fall - 2016 574,200 209,760 140 395,568 73,608 

Winter - 2017 562,032 174,000 97 447,216 31,896 

Spring - 2017 610,920 183,456 75 423,312 67,056 

We test our algorithms on a workstation with an Intel®Core™i7-4790 CPU with a 3.60GHz 

processor with 32 GB RAM and a 64-bit Windows 8.1 Pro operating system. The models and algorithms 

are coded in Java language using ILOG Java Concert Technology. In the following tables, TS and GA refer 

to the tabu search and genetic algorithm, respectively, and a TS+GA solution denotes the better of the 

solutions. Additionally, we note that the monetary values in the tables of this section are given in TL (one 

TL was worth approximately 0.286 USD in June 2017).  

5.1 Numerical Results in the PAB Case 

As we model in Section 3, EXIST allows for PAB bids in day-ahead auctions. In this section, we compare 

the performance of our heuristics, implemented in practice, with the CS. Table 7 summarizes the results. 

Out of 365 days, the CS fails to generate a feasible solution for 15 days within EXIST’s specified 

time limit. In addition, for 73 days, the CS finds a feasible solution but hits the time limit before guaranteeing 

optimality. The average solution time for the CS is 203 seconds whereas the same figures for the GA and 

TS are 14 and 13, respectively. More importantly, both the TS and GA are guaranteed to find feasible 

solutions within the time limit, which is of crucial importance in operating the energy exchange.b  

 

 

                                                 

b To measure the optimality of our heuristic solutions, we let CS run up to 24 hours for each problem instance. Then, 

using the best solution obtained by CS (which is not necessarily optimal), we calculated the upper bounds on the 

optimality gap of our heuristics as 0.27% and 0.12% for the TS and GA, respectively.  
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Table 7: Improvement in total surplus by using heuristic algorithms relative to the CS, and 

corresponding solution times for the PAB case 

 
Difference from CS (TL) 

Relative Mean 

Difference from CS 

(%)c 

Solution Time (seconds) 

Min Mean Max Min Mean Max 

CS - - - - 1 203 600 

GA -10,792 443,088 24,909,711 1.78% 9 14 33 

TS -338,087 407,177 24,909,711 1.63% 5 13 24 

TS+GA -97,064 444,740 24,909,711 1.78% 9 14 33 

TS+GA+CSd -56,771 448,418 24,941,871 1.80% 14 131 600 

 The improvement provided by the GA over the CS ranges between -10,792 TL per day to 

24,909,711 TL per day and averages 443,088 TL per day. Between 1 June 2016 and 31 May 2017, this 

amount corresponds to a cumulative yearly improvement of 161,727,120 TL in total surplus. In relative 

terms, the GA improves over the CS by 1.78%. The performance of the TS is lower than the GA, and 

corresponds to a 1.63% savings over the CS on average.  

We also ran these two algorithms in parallel and selected the best solution (referred to as TS+GA 

in Table 7). In this case, we observe only a marginal improvement because the GA dominates the TS on 

almost all days. Finally, the last row of Table 7 presents the case when our heuristics are integrated with the 

CS (referred to as TS+GA+CS); that is, the best feasible solution obtained by the TS and the GA is provided 

to the CS as an initial feasible solution, and the CS runs for 10 minutes in total. This is the configuration 

used in practice. In this case, the average absolute improvement is about 448,418 TL per day. Between 1 

June 2016 and 31 May 2017, this amount corresponds to a cumulative improvement of 163,672,570 TL in 

total surplus. The relative improvement is 1.80%. 

                                                 

c The auction data includes a large number of bids placed with zero price, which is always accepted regardless of the 

employed solution method. Such bids are placed by renewable generation units, some inflexible coal power plants and 

some plants operating on a pass-through contract with the government. Hence, these plants do always operate and they 

have a fixed bulk effect on the total surplus. Accordingly, we remove this effect when calculating the relative benefits 

over the CS. Including such bids into the analysis does not affect the absolute effects reported in the tables, but reduces 

the relative difference to around 0.15% in Table 7 due to a denominator effect. 

d We have also conducted a set of experiments to consider the case of running pure CPLEX and TS+GA+CPLEX in 

parallel. The improvements were negligible in this case. In addition, practitioners’ concern on transparency and 

possibility of human mistakes precludes the practical implementation of such a parallel optimization approach.  
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5.2 Numerical Results with the PRB Constraints  

In this section, we replace the PAB rule used at EXIST with the PRB rule used in Europe (e.g., by the 

Euphemia algorithm) and compare the performance of our heuristics with the CS. This experiment enables 

us to check the robustness of our heuristics’ performance relative to different auction designs. The PRB 

constraints, which replace constraint sets (3) and (5) in the PAB model, are provided below.  

(3′) Constraints on block bids (allowing for PRBs): Demand (supply) block bids having a bid price less 

(greater) than the average MCP of the periods where the bid is active, must be rejected.  

For supply side 

(−𝑁𝑏𝑃𝑚𝑎𝑥 + ∑ 𝛿𝑏𝑡𝑃𝑚𝑖𝑛
𝑡

𝑡 ∈ 𝑇

) (1 − 𝑦𝑏) ≤  − 𝑁𝑏𝑃𝑏 +∑𝛿𝑏𝑡𝑝𝑡
𝑡∈𝑇

, ∀𝑏 ∈ 𝐁𝐬, 

For demand side 

(𝑁𝑏𝑃𝑚𝑖𝑛 − ∑ 𝛿𝑏𝑡𝑃𝑚𝑎𝑥
𝑡

𝑡 ∈ 𝑇

) (1 − 𝑦𝑏) ≤ 𝑁𝑏𝑃𝑏 −∑𝛿𝑏𝑡𝑝𝑡 
𝑡∈𝑇

, ∀𝑏 ∈ 𝐁𝐝. 

(5″) Constraints on flexible bids (allowing for PRBs): A supply flexible bid cannot be accepted in a period 

where the bid price is greater than the corresponding MCP. 

∑𝑧𝑓𝑡
𝑡∈𝑇

≤ 1, ∀𝑓 ∈ 𝐅𝐬, 

(𝑃𝑚𝑖𝑛
𝑡 − 𝑃𝑚𝑎𝑥)(1 − 𝑧𝑓𝑡) ≤ 𝑝𝑡 − 𝑃𝑓 , ∀𝑓 ∈ 𝐅

𝐬, 𝑡 ∈ 𝐓. 

Our results are summarized in Table 8.  

Table 8: Improvement in total surplus by using heuristic algorithms relative to the CS, and corresponding 

solution times for the PRB case 

 
Difference from CS (TL) 

Relative Mean 

Difference from CS 

(%) 

Solution Time (seconds) 

Min Mean Max Min Mean Max 

CS - - - - 1 289 600 

GA -626,962 1,986,597 69,987,943 7.96% 4 9 24 

TS -254,246 2,004,903 69,987,432 8.04% 2 12 17 

TS+GA -158,961 2,007,550 69,987,943 8.05% 4 12 24 

TS+GA+CS -16,883 2,012,794 69,987,943 8.07% 10 173 600 
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Under the PRB rule, out of 365 days, the CS fails to generate a feasible solution for two days within 

EXIST’s 10-minute time limit. However, for 128 days, the CS finds a feasible solution but hits the time 

limit before guaranteeing optimality. The average solution time for the CS is 289 seconds whereas the same 

figures for the GA and TS are nine and 12 seconds, respectively. In this case, although the CS is more 

effective in providing a feasible solution, the quality of such solutions is significantly lower compared to 

the PAB case. Therefore, the mean savings provided by our heuristics over the CS are significantly larger 

for the PRB case. For example, the GA provides a mean savings of 1,986,597 TL per day (7.96% relative 

savings) over the CS because in the PRB case the CS usually finds a feasible solution quickly by rejecting 

all blocks. However, improving over this low-quality feasible solution takes a very long time for the CS. In 

particular, the CS faces a dense branch-and-bound tree, in which it is very hard to improve the upper and 

lower bounds.  

We also observe that the TS performs better than the GA under the PRB rule. This is an expected 

result because our GA is highly specialized for the PAB model used by EXIST. As our design of the TS for 

the PAB case is more general, it performs better for the PRB case. Finally, for the TS+GA+CS case, the 

relative savings reaches 8.07%, which corresponds to a yearly savings of 734,669,810 TL.e 

The TS tends to outperform the GA for problem instances where it is hard to find an initial feasible 

solution. The TS searches the optimal solution both in the feasible and infeasible spaces, while the GA 

focuses on the feasible space only. In its final stage, the TS employs a feasibility restoration algorithm for 

infeasible solutions. This capability of the TS provides an advantage over the GA. In addition, the GA can 

be tailored to the PRB case by (i) calibrating the crossover probabilities of the high-, medium- and low-fit 

genes on the chromosomes and (ii) calibrating the infeasibility repair probabilities for the chromosomes. 

5.3 Numerical Results for Large Problem Instances  

Historically, we observe that the size of the day-ahead auction is increasing, with more market participants 

and more bids. In this section, we generate large problem instances and test the performance of our 

heuristics. For this purpose, we combine the auction data of two consecutive days. Hence, the size of the 

problem roughly doubles. We use auction data from 1 February 2017 to 1 April 2017. Overall, we solve 30 

large problems and report the results below for the PAB and PRB cases in Tables 9 and 10, respectively. 

                                                 

e We would like to note that European exchanges, such as EPEX, NordPool and APX, employ the PRB rule and use 

advanced optimization methods in addition to commercial solvers to clear the market. 
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Table 9: Improvement in total surplus by using heuristic algorithms relative to the CS, and 

corresponding solution times for large problems for the PAB case 

 
Difference from CS (TL) 

Relative Mean 

Difference from CS 

(%) 

Solution Time (seconds) 

Min Mean Max Min Mean Max 

CS - - - - 14 351 600 

GA -37,666 2,998,568 25,155,231 11.92% 26 38 53 

TS -461,524 2,823,919 25,002,579 11.22% 11 48 76 

TS+GA -37,666 2,998,568 25,155,231 11.92% 26 48 76 

TS+GA+CS -7,769 3,002,939 25,157,643 11.94% 51 273 600 

Table 10: Improvement in total surplus by using heuristic algorithms relative to the CS, and 

corresponding solution times for large problems for the PRB case 

 
Difference from CS (TL) 

Relative Mean 

Difference from CS 

(%) 

Solution Time (seconds) 

Min Mean Max Min Mean Max 

CS - - - - 12 493 600 

GA -528,918 3,609,620 23,683,030 14.35% 18 22 30 

TS -366,782 3,646,955 25,002,579 14.50% 9 14 34 

TS+GA -238,496 3,662,118 25,155,231 14.56% 18 22 34 

TS+GA+CS -177,136 3,683,902 25,157,643 14.64% 42 486 600 

Both for the PAB and PRB cases, the performance of our heuristics substantially increases for large 

problem instances. For example, the GA saves 11.92% and 14.35% over the CS for the PAB and PRB cases, 

respectively. This amount corresponds to a monthly savings of 89,957,040 TL and 108,288,600 TL for the 

two cases, respectively. Intuitively, as the problem size grows, the complexity of the problem also increases 

and the need for heuristics becomes overwhelming. 

Under the PAB case, out of 30 instances, the CS fails to generate a feasible solution for three cases 

(10% of all instances) within EXIST’s specified time limit. In addition, in 12 cases, the CS hits the time 

limit before guaranteeing optimality. The average solution time for the CS becomes 351 seconds whereas 

the same figures for the GA and TS are 38 and 48 seconds, respectively. Under the PRB case, the CS again 

fails to generate a feasible solution for three cases and hits the time limit before guaranteeing optimality in 

18 cases (60% of all cases). The average solution time for the CS becomes 493 seconds whereas the same 

figures for the GA and TS are 22 and 14 seconds, respectively. 
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In addition, for the PAB and PRB cases, we observe that it becomes harder to solve the problem as 

(i) the number of supply and demand blocks becomes closer to each other, (ii) block prices become closer 

to the market-clearing price and (iii) the proportion of block bids that are valid for daytime hours increases.  

6 Implementation Details 

In this section, we elaborate on the practical implementation of our heuristics at EXIST. 

Curtailment: In practice, there is no guarantee that the supply and demand curves will intersect and result 

in an equilibrium for the day-ahead market. This situation happens under two conditions: (i) when an energy 

surplus happens at the minimum price and (ii) when an energy deficit happens at the maximum price. If any 

one of these two cases happens, to restore feasibility we first remove the block restrictions; that is, constraint 

set (3) in the optimization model DAM_PAB. After removing these constraints, if there is still no feasible 

solution (i.e., the curves do not intersect) then hourly bids are uniformly cascaded until a feasible solution 

is obtained. In these cases, when curtailment happens, the equilibrium price is equal to 0 TL/MWh 

(minimum price) or 2000 TL/MWh (maximum price) for the related hours. We note that curtailment is rare 

at EXIST, and was only observed on seven days between 1 June 2016 and 31 May 2017. 

Fat Finger Errors: A fat finger error is a term used to describe a keyboard input mistake when entering 

trades to a computer. EXIST has a three-stage procedure to avoid such errors by market participants.  

a) First, when a market participant places a bid that substantially deviates from its historical bids, an 

alert is created and the participant is urged to check the bid.  

b) Second, when bids first enter the EXIST system, an algorithm checks for outliers. Then, experts 

examine these outliers to see if there may be an error and inform the related market participant.  

c) Third, before the bids are entered into the optimization model they are automatically checked as to 

whether they meet the auction criteria. 

Daylight saving time: During daylight saving changeover days, the auction is adjusted to clear either for 23 

or 25 hours.  

Collateralization: Market participants are required to provide collateral for their daily trades equal to three 

times their maximum daily trading volume over the last three months. This method reduces the default risk 

in the market. 

Ramp-up and ramp-downs: There are no ramp-up and ramp-down constraints in the Turkish DAM auction. 

Hence, market participants that experience imbalances due to ramp-ups and -downs settle these imbalances 
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in the real-time market. Starting from the fourth quarter of 2018, EXIST plans to incorporate such bid types 

into the day-ahead auction. 

Objections: After the day-ahead auction prices are settled and declared, market participants have 30 minutes 

to object to the results. By law, each objection must be addressed within one hour.  

7 Conclusions 

In liberalized electricity markets, day-ahead market design is of prime importance because prices 

in this market are usually considered a reference for derivative and other bilateral energy markets. Whereas 

pool-type DAM models are common in the US, exchange-type models are used in most European countries. 

These modelling approaches differ from each other in terms of market clearing, participation of the demand 

side, dispatching and unit commitment rules. The Turkish DAM resembles European exchange-type models 

except for the PAB rule, which is used to handle paradoxical bids. In this paper, we model the day-ahead 

electricity market auction in Turkey and develop effective tabu search and genetic algorithms to solve this 

problem in a reasonable amount of time for practical purposes. Overall, the Turkish DAM is a complex 

combinatorial auction with more than 15,000 bids and a non-linear welfare objective.  

Our algorithms have been used by the Turkish market operator, Energy Exchange Istanbul, since 1 

June, 2016. We analyze the performance of our heuristics by comparing them with a commercial solver and 

show that our method improves the total surplus by more than 160 million TL per year. The relative 

improvement compared to the CS is 1.80%. More importantly, both the TS and GA are guaranteed to find 

feasible solutions within the time limit. We conclude that the algorithms discussed in this paper significantly 

improve social welfare compared to the CS. Prior to the implementation of our work, EXIST used to rely 

on a closed-source algorithm to clear the market without fully considering market constraints. Our product 

not only provides managers with high quality solutions, but it also enables them to focus on the development 

of new DAM rules that can now be easily implemented through our framework. 

We also tested the robustness of the value of our heuristics under different auction rules and with 

larger problem instances. Specifically, we tested our heuristics under the PRB rule, used in European energy 

exchanges. In this case, although the CS is more effective in providing a feasible solution, the quality of 

such solutions is significantly lower compared to the PAB case. Therefore, the mean savings provided by 

our heuristics over the CS are significantly larger for the PRB case. For example, the GA provides a mean 

saving of around 725 million TL per year (7.96% relative savings) over the CS because in the PRB case, 

the CS usually finds a feasible solution quickly by rejecting all blocks. However, improving this low-quality 

feasible solution takes a very long time for the CS, thus the performance of our heuristics is significantly 
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larger under the PRB auction rule. In addition, the value of our heuristics increases with the problem size. 

We observe that if the problem size doubles, the relative benefit of the GA over the CS reaches 11.92% 

under the PAB rule and 14.35% under the PRB rule. Intuitively, as the problem size grows, the solution 

effort also increases and the need for heuristics becomes overwhelming. 

We observe that it is not possible for commercial solvers to guarantee a feasible solution in 

combinatorial auctions at EXIST within the time limit.  Considering the increasing size and complexity of 

these auctions over time, efficient heuristics are of crucial importance for energy exchanges under both PRB 

and PAB rules. The performance of the specific heuristics also depends on the auction parameters and rules. 

In particular, we note that the TS tends to outperform the GA for problem instances where it is hard to find 

an initial feasible solution. This effect is driven by the TS’ feasibility restoration algorithm for infeasible 

solutions. For other cases, the GA typically outperforms the TS.   

Combinatorial auctions are commonly used in clearing markets where the auctioned goods present 

complementarities or substitution effects; that is, the joint value of the goods to the bidders can be higher or 

lower than the sum of the individual value of the goods. In these cases, such as allocating cloud computing 

resources and procuring transportation services, block (bundle) and flexible bids are commonly used, and 

combinatorial auctions provide a good mechanism by which to capture complementarities and substitution 

effects for the bidders. Our modelling of block decisions as binary genes on chromosomes is a convenient 

and robust approach to handle block bidding behavior and enables our GA to be used by similar 

combinatorial auctions.  

Overall, day-ahead market operations provide a fruitful research area. Changes in auction allocation 

mechanisms and rules may affect bidding behavior in electricity markets, and exploring the impact of such 

design changes on the total surplus and market prices would be an interesting future research direction. We 

have also anecdotally observed that supply and demand shocks to the electricity market may have diverging 

effects on bidding behavior, leading to much higher prices during negative supply shocks compared to 

positive demand shocks. Overall, we believe that a thorough examination of bidding behavior under 

different auction designs and economic conditions may provide valuable guidance to managers and policy 

makers when designing such auctions in practice.  

References 

Araoz, V. and Jörnsten, K. 2011. Semi-Lagrangean approach for price discovery in markets with non-

convexities. European Journal of Operational Research, 214(2), 411-417. 



31 

 

Bonomo, F., Catalán, J., Durán, G., Epstein, R., Guajardo, M., Jawtuschenko, A., and Marenco, J. 2017. An 

asymmetric multi-item auction with quantity discounts applied to Internet service procurement in Buenos 

Aires public schools. Annals of Operations Research, 258(2), 569-585. 

Cantillon, E. and Pesendorfer, M. 2006. Auctioning bus routes: The London experience. P. Cramton, Y. 

Shoham, R. Steinberg, eds. Combinatorial Auctions. MIT Press, Cambridge, MA, 573–591. 

Caplice, C. and Sheffi, Y. 2006. Combinatorial auctions for truckload transportation. P. Cramton, Y. 

Shoham, R. Steinberg, eds. Combinatorial Auctions. MIT Press, Cambridge, MA, 539–517. 

Catalán, J., Epstein, R., Guajardo, M., Yung, D., and Martınez, C. 2009. Solving multiple scenarios in a 

combinatorial auction. Computers & Operations Research, 36(10), 2752-2758. 

Chatzigiannis, D.I., Dourbois, G.A., Biskas, P.N. and Bakirtzis, A.G. 2016. European day-ahead electricity 

market clearing model. Electric Power Systems Research, 140, 225-239. 

Chen, R.R., Roundy, R.O., Zhang, R.Q. and Janakiraman, G. 2005. Efficient auction mechanisms for supply 

chain procurement. Management Science, 51(3), 467–482. 

Cramton, P., Shoham, Y. and Steinberg, R. 2006. Combinatorial auctions. MIT Press. 

Deng, S.J. and Oren, S.S. 2006. Electricity derivatives and risk management. Energy, 31(6-7), 940-953. 

Derinkuyu, K. 2015. On the determination of European day ahead electricity prices: The Turkish case. 

European Journal of Operational Research, 244 (3), 980-989. 

Derinkuyu, K., Tanrisever, F., Baytugan, F. and Sezgin, M. 2015. Combinatorial Auctions in Turkish Day 

Ahead Electricity Market. In I. Sabuncuoglu, B.Y. Kara, B. Bidanda, eds. Industrial Engineering 

Applications in Emerging Countries. CRC Press, 49-64.  

Elmaghraby, W. and Keskinocak, P. 2003. Combinatorial auctions in procurement. T. P. Harrison, T. H. 

Lee, J. J. Neale, eds. The Practice of Supply Chain Management. Springer, New York, 245–258. 

Gribik, P.R., Hogan, W.W. and Pope, S.L. 2007. Market-clearing electricity prices and energy uplift. 

Cambridge, MA. 

Hohner, G., Rich, J., Ng, E., Reid, G., Davenport, A., Kalagnanam, J., Lee, H. and An, C. 2003. 

Combinatorial and quantity-discount procurement auctions benefit Mars, Incorporated and its suppliers. 

Interfaces, 33(1), 23–35. 

Hortacsu, A. and Puller, S.L. 2008. Understanding strategic bidding in multi‐unit auctions: a case study of 

the Texas electricity spot market. The RAND Journal of Economics, 39(1), 86-114. 

Hortaçsu, A. and McAdams, D. 2010. Mechanism choice and strategic bidding in divisible good auctions: 

An empirical analysis of the turkish treasury auction market. Journal of Political Economy, 118(5), 833-

865. 



32 

 

Kastl, J. 2011. Discrete bids and empirical inference in divisible good auctions. The Review of Economic 

Studies, 78(3), 974-1014. 

Kim, S.W., Olivares, M. and Weintraub, G.Y. 2014. Measuring the performance of large-scale 

combinatorial auctions: A structural estimation approach. Management Science, 60(5), 1180-1201. 

Ledyard, J. O., Olson, M., Porter, D., Swanson, J. A. and Torma, D. P. 2002. The first use of a combined-

value auction for transportation services. Interfaces, 32(5), 4-12. 

Li, T. and Shahidehpour, M. 2005. Price-based unit commitment: A case of Lagrangian relaxation versus 

mixed integer programming. IEEE transactions on power systems, 20(4), 2015-2025. 

Madani, M., and Van Vyve, M. 2015. Computationally efficient MIP formulation and algorithms for 

European day-ahead electricity market auctions. European Journal of Operational Research, 242 (2), 

580-593. 

Martin, A., Müller, J.C. and Pokutta, S. 2014. Strict linear prices in non-convex European day-ahead 

electricity markets. Optimization Methods and Software, 29 (1), 189-221. 

Meeus, L., Verhaegen, K. and Belmans, R. 2009. Block order restrictions in combinatorial electric energy 

auctions. European Journal of Operational Research, 196, 1202–1206. 

Metty, T., Raskina, O., Schneur, R., Kanner, J., Potts, K. and Robbins, J. 2005. Reinventing the supplier 

negotiation process at Motorola. Interfaces, 35(1), 7–23. 

Olivares, M., Weintraub, G. Y., Epstein, R. and Yung, D. 2012. Combinatorial auctions for procurement: 

An empirical study of the Chilean school meals auction. Management Science, 58(8), 1458-1481. 

Pekeč, A. and Rothkopf, M.H. 2003. Combinatorial auction design. Management Science, 49 (11), 1485-

1503. 

Phan, D.T. 2012. Lagrangian duality and branch-and-bound algorithms for optimal power flow. Operations 

Research, 60(2), 275-285. 

Rassenti, S.J., Smith, V.L. and Bulfin, R.L. 1982. A combinatorial auction mechanism for airport time slot 

allocation. The Bell Journal of Economics, 402-417. 

Reguant, M. 2014. Complementary bidding mechanisms and startup costs in electricity markets. The Review 

of Economic Studies, 81(4), 1708-1742. 

Sandholm, T., Levine, D., Concordia, M. and Martyn, P. 2006. Changing the game in strategic sourcing at 

Procter and Gamble: Expressive competition enabled by optimization. Interfaces, 36(1), 55–68. 

Sandholm, T., Subhash, S., Andrew, G. and David, L. 2005. CABOB: A fast optimal algorithm for winner 

determination in combinatorial auctions. Management Science, 51(3), 374–390. 

Sandholm, T. and Suri, S. 2006. Side constraints and non-price attributes in markets. Games and Economic 

Behavior, 55(2), 321-330. 



33 

 

Sheffi, Y. 2004. Combinatorial auctions in the procurement of transportation services. Interfaces, 34(4), 

245-252. 

Tanrisever, F., Derinkuyu, K., and Jongen, G. 2015. Organization and functioning of liberalized electricity 

markets: An overview of the Dutch market. Renewable and Sustainable Energy Reviews, 51, 1363-1374.  

Wolfram, C.D. 1998. Strategic Bidding in a Multiunit Auction: An Empirical Analysis of Bids to Supply 

Electricity in England and Wales. The RAND Journal of Economics, 29, 703–725. 

Zaman, S. and Grosu, D. 2013. Combinatorial auction-based allocation of virtual machine instances in 

clouds. Journal of Parallel and Distributed Computing, 73(4), 495-508. 

 

 

 


