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The human visual system is remarkably good at
decomposing local and global deformations in the flow
of visual information into different perceptual layers, a
critical ability for daily tasks such as driving through rain
or fog or catching that evasive trout. In these scenarios,
changes in the visual information might be due to a
deforming object or deformations due to a transparent
medium, such as structured glass or water, or a
combination of these. How does the visual system use
image deformations to make sense of layering due to
transparent materials? We used eidolons to investigate
equivalence classes for perceptually similar transparent
layers. We created a stimulus space for perceptual
equivalents of a fiducial scene by systematically varying
the local disarray parameters reach and grain. This
disarray in eidolon space leads to distinct impressions of
transparency, specifically, high reach and grain values
vividly resemble water whereas smaller grain values
appear diffuse like structured glass. We asked observers
to adjust image deformations so that the objects in the
scene looked like they were seen (a) under water, (b)
behind haze, or (c) behind structured glass. Observers
adjusted image deformation parameters by moving the
mouse horizontally (grain) and vertically (reach). For two
conditions, water and glass, we observed high
intraobserver consistency: responses were not random.
Responses yielded a concentrated equivalence class for
water and structured glass.

Introduction

Humans can expertly distinguish multiple layers in
the same retinal location. This is a crucial ability when
interacting with 3D objects in our environment because
we are surrounded by a see-through medium, the
atmosphere, which is not always uniformly clear. For
example, we can effectively navigate while driving
through heavy fog, hard rain, or a heat haze by
separating these atmospheric effects from the optic flow
caused by our own motion through the objects. This
ability requires the human visual system to split visual
information into different layers, such as a transparent
medium and an object in the background.

Light entering a transparent medium changes its
direction depending on the angle of incidence and the
refraction index of the medium. This causes distortions
in the image. For instance, when light waves pass
through an air to water boundary, the direction of light
changes depending on the refractive indices of these
two mediums (Snell’s law). The direction of light, hence
the distortions in the image, depends on the water’s
surface shape, (e.g., amplitude of the waves on the
water’s surface; Figure 1a). Moreover, the various
physical causes of light refraction introduce many types
of layering in visual information. Atmospheric refrac-
tion includes phenomena such as rain, fog, or haze. For
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example, the third image in Figure 1a might as well be
mistaken for a transparent steam layer. It can also be
caused by single scattering of light: on a clear day, we
can see objects in large distances, so that the sharpness
of contours remain the same but contrast might change
(known as airlight or Koschmieder’s law). Or multiple
light scattering can be caused by the molecules in the
medium, such as a glass of diluted milk (Kubelka
Munk theory). In the case of multiple scattering, the
medium might become translucent by completely
obscuring the object behind (Koenderink & van Doorn,
2001). These distinct impressions of transparency each
cause characteristic disarray in images but only a small
part of these many physical causes of layering is studied
in the scope of visual perception.

From our own experience we know that complex
visual scenes are perceptually split into multiple causal
layers so that we perceive the shape and material of
objects and surfaces, and the prevailing illumination in
a scene. For instance, we recognize shadows as a
separate layer and we do not trip over them while
walking. Evidence for perceptual layer decomposition
lies in our ability to interpret 3D shape, which requires
the ability to distinguish between shading, shadows,
and reflectance of a surface in static scenes (Zhou &
Baker, 1996; Schofield, Rock, Sun, Jiang, & George-
son, 2010; Dövencioğlu, Welchman, & Schofield, 2013;
for a review, see Kingdom, 2011). Transparency
perception is investigated in numerous studies in the
scope of decomposing reflectance and illumination
layers; these studies establish classical examples where a
background texture seen through a uniform transpar-
ent layer has reduced contrast (Metelli, 1970; Ander-
son, 1997). In these examples, sharpness of contours
remains unchanged and the layer affects only the
contrast. In 3D shape-from-shading tasks with textured
surfaces, the coherence of first order (local mean
luminance) and second order (local luminance ampli-
tude) local luminance values can account for the

perception of luminance and reflectance related
changes (Schofield, Hesse, Rock, & Georgeson, 2006).
When local luminance cues are aligned congruently,
this is seen as changes in the shading gradient of a
corrugated surface; whereas incongruent alignment of
these cues is interpreted as the reflectance changes on a
flat surface (e.g., painted stripes). The human visual
system is sensitive to these cues (Schofield & George-
son, 1999) and can perceptually learn to benefit from
them in order to decompose an illumination layer from
a change in surface reflectance (Dövencioğlu et al.,
2013). In these elaborate findings about local changes
in luminance values due to transparency, there are no
comments on the potential geometric aspect of local
changes in the image. How about the transparent
layers, such as clear water, where the contrast remains
mostly the same but the contours change? The
transparent materials in daily life are mostly complex:
they are thick and not uniform and the traditional
photometric approaches so far do not cover the
geometric distortions due to the refractive properties of
transparent layers.

Transparency perception in complex scenes involv-
ing a see-through material is very different than the
classically studied phenomenon; it requires the visual
system to recognize the material, detect image distor-
tions, and causally attribute those distortions to the
object or the transparent medium. A couple of recent
studies report global cues in images to recognize glass
from mirror (Kim & Marlow, 2016; Tamura, Higashi,
& Nakauchi, 2018). Fleming, Jäkel, and Maloney
(2011) present compelling evidence that image distor-
tions convey information about transparent material’s
intrinsic properties. Human observers estimate the
refractive index of the material to make judgments
about a transparent blob’s thickness and the authors
suggest that a mechanism similar to shape-from-texture
might be involved in perceiving compressions and
magnifications of the background texture due to a

Figure 1. Refraction of light. (a) A piece of blue modeling clay is photographed under water, when the water is still (first image) and

when it is wavy (remaining three images). Photographs show shape distortions and phase breaks due to the ripples on the water,

making it impossible to recover the veridical shape of the modeling clay. (b) Photographing set-up viewed from the side reveals two

different shapes of modeling clay inside a full water tank.
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transparent medium. Following studies also report that
the human visual system is sensitive to image distor-
tions due to a transparent material but argue that
participants depend on image similarities, such as
specular highlight shape, while matching refractive
indices of thick transparent blobs (Schlüter & Faul,
2014, 2016). In another study, Kawabe, Maruya, and
Nishida (2015) use spatial deformations coupled with
dynamic deformations to inquire the strength of
observers’ perceived water layer ratings. The authors
report a specific band (0.13–1.03 c/8) of spatial
deformations that yield a percept of a transparent
water layer when coupled with temporal distortions.
These studies imply that the visual system uses image
distortion cues to make judgments about thick
transparent materials such as water and similarly clear
liquids. Although these are appealing material exam-
ples, they constitute only a small portion of complex
transparent layers.

We encounter much richer examples of transparent
layers in daily life, and although they all convey some
type of image distortions in the optic field, some (e.g.,
water and structured glass) differ considerably. Often in
naturalistic examples, transparent layers carry both
geometric deformations, such as seeing pebbles through
clear water, and photometric deformations, such as
reduced contrast due to absorbed light when seeing
objects through haze or fog. In most cases, neither type
of distortion is uniform throughout the image, in the
sense that the impressions vary locally, sometimes due
to the changing thickness of the transparent medium.
Yet, the visual system readily perceives fine differences
in transparent materials; for example, it is not even a
challenge to distinguish multiple transparent materials
when we see a cold glass of ice cubes and water with
sweat beads on the glass’ surface. What are the image
distortions that the human visual system uses to
identify these different types of transparencies?

Recently, Koenderink, Valsecchi, van Doorn, Wa-
gemans, and Gegenfurtner (2017) presented an advan-
tageous tool to apply image distortions locally. With
the eidolon factory, one can deform an image while
keeping the local disarray uniform throughout, plus
control the disarray by using two simple parameters.
This tool also enables us to introduce photometric
distortions by changing the coherence in the image, thus
edge quality and the contrast in the image disarray can
be controlled independently. Within the eidolon factory
one can parameterize image distortions locally in a way
that matches our understanding of the receptive fields
of the human vision. Eidolons allow us to break the
image deformation magnitude into two parameters:
with the reach parameter we control the intensity
independently from the grain parameter that charac-
terizes the locality of deformations. Moreover, the tool
provides the conceptual freedom to define eidolons, an

equivalence class of appearance such that perceptually
similar stimuli are eidolons; that is, they fall in the same
class even if they are not identical. As an example for
our specific purpose, looking into a 1-m deep pool and
a 1.5-m deep pool produce slightly different images but
they are likely to be perceived in the same way so these
fall in the same equivalence class. The importance of
this equivalence class concept manifests itself in the
wide range of results in our brainstorming exercise in
which observers list all the transparent materials they
can think of.

Here, we present a new type of transparency that is
created by local image disarray and allows us to
generate materials that appear transparent. Since it is
not possible to cover the wide diversity of transparent
materials, we will focus on three exemplars for each of
the matter states: glass, water, and haze. We first
explore these most common transparency examples to
parametrically identify their equivalence classes with
2D shapes defined by contours only. Next we use
images of 3D objects with different surface colors and
reflectances. We first ask, when the transparent layer’s
boundary is not visible and there is no texture in the
background, whether it is still possible to induce the
percept of an object seen through a transparent layer.
Since local image deformations are most effective when
edges are present, this condition mostly relies on the
object boundary. Next, we occlude the object boundary
as well to explore perceived transparency via image
distortions on surface properties only. We demonstrate
that, even in the absence of the object boundary, it is
possible to generate perceived transparency in static
images and we describe these parametrically. We
investigate the role of surface reflectance with four
different objects. Finally, we make an attempt at
predicting these equivalence classes for perceived
transparency in rigid and nonrigid complex scenes.

Brainstorming

Purpose

The few transparent material examples in the
literature are focused around water and similar clear
materials (Fleming et al., 2011; Kawabe et al., 2015),
and haze (Kawabe & Kogovšek, 2017), but there are
more examples for common transparent materials. This
brainstorming session was performed to explore the
rich lexicon for transparent layers in daily language, in
anticipation that common words would serve as a first
model to equivalence classes of transparency in
complex scenes, which is a relatively new field of study.
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Procedure

Prior to the experiments, in a 10-min brainstorming
session, observers were given a pen and paper and
asked to write down as many transparent layers as they
can think of. Observers wrote detailed descriptive lists
of transparent layers in German or Turkish, which
were then translated into English. Throughout the
translations, we picked the first meaning or the most
common synonym among the English words that
corresponded to the original German and Turkish
words.

Observers

Fourteen naive observers participated in Experiment
1, sixteen different observers participated in Experi-
ment 2, and 10 different observers completed Experi-
ment 3. In total, all 40 observers completed a
brainstorming session prior to the specific experiments.
Participants were students at the Justus-Liebig-Uni-
versity Giessen, Germany (30 women, 10 men; mean
age¼ 24.4 6 2.5), with normal or corrected-to-normal
vision. Observers gave written informed consent and
they were paid 6 Euros per hour for their participation.
Experimental procedures adhered to the principles put
forth by the Declaration of Helsinki.

Results and discussion

Results of the brainstorming session are presented as
a word cloud in Figure 2. The combined list of
transparent materials included 668 items. We manually
assigned a category; for instance, word list items such
as most liquids, ocean, saliva, rain, and ice were in the
category water; glass(es), contact lenses, windshield,
window, glass bottle, magnifying glass, and diamond
were in category glass. In total, 24.7% of the items
belonged to the glass category. This was followed by
plastic (18.7%), water (16%), air (7.6%), textile (3.7%),
and paper (2.7%); the remaining items did not fall into
any of these categories. Overall, 171 words were not
categorized (26.5%; e.g., fingernails, fly wings, ghosts,
magnetic fields, Harry Potter’s invisibility cloak as in
Rowling, 2014). Note that the word cloud in Figure 2
depicts accumulated words and not the related
categories; that is, window, glass, and glasses are
individually represented in the cloud but they all fall
into the glass category in the above description.

The most frequent categories resulting from this
session are somewhat in agreement with our explor-
atory experimental conditions of glass and water. The
second frequent category in our findings, plastic,
suggests a different type of transparent layer. Although

plastic is physically separate from glass, optically they
can be identical. Since we aim to isolate image
distortion properties for transparent layers, it is more
important that each layer has characteristic optical
traits, rather than identical physical properties. Hence,
we add the next frequent category, air, and include haze
as a third experimental condition. Agreeing with the
three states of the matter that exist under normal
conditions, we carry on to study glass (solid), water
(liquid), and haze (gas) in the following experiments.
Finally, the richly detailed examples in each category
confirm that conceptualizing transparent layers in
terms of equivalence classes is more effective than, for
example, searching for instances of water.

Experiment 1: Generative shapes

Motivation

We first wanted to see whether it is possible to induce
perceived transparent layers in 2D shapes defined by
luminance contrast and separated by different contour
shapes (Figure 3). Participants adjusted image defor-
mations by controlling reach and grain parameters on
luminance defined eidolons of the generative shapes.
Here, we report results for water and glass trials, results

Figure 2. Brainstorming session before the experiments. Word

cloud representing results of all observers during the brain-

storming session prior to the experiments. Higher frequency

words are indicated with larger fonts (e.g., glass, water, window,

air, plastic). Color is used to increase readability.
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relating to haze trials can be found in Supplementary

Appendix B (Supplementary Appendix Figure B1a).

Stimuli: Fiducial images and their eidolons

We used binary luminance defined shapes as fiducial

images to create stimuli for Experiment 1 (Figure 4a).

In Experiment 1, fiducial images were based on a novel

set of base shapes created by segmenting and combin-

ing different shapes from the MPEG-7 data set
(Latecki, Lakamper, & Eckhardt, 2000; Morgenstern,
Schmidt, & Fleming, 2017). Images were created as
filled polygons with patch function in MATLAB, and
luminance of the polygons were set to low contrast
binary values (background¼ 0, figure ¼ 65). Images
were 600 3 600 pixels in Experiment 1. One may
wonder, why not use a basic convex shape instead of
these? The effect of distortions differ vastly depending
on the shape. To illustrate these effects, we give two
examples of eidolons in Figure 4. We apply the same
image distortions to a simple convex shape (left
column) and another shape with more boundary
structure (right column). As this example depicts, the
distortions are more pronounced in the second shape,
and even within this shape, distortions have a more
dramatic effect on the limbs compared to the convex
body. In other words, the shape with limbs is
maximally susceptible to distortions. Thus, we chose to
include simple 2D shapes with different shapes of
limbs, as can be seen in Figure 4a.

Note that the fiducial images were not shown in the
experiments, we used them to create eidolons that were
used as stimuli (Koenderink et al., 2017). We produced
a set of controlled image deformations to the fiducial
images. First, images were scale decomposed and a
local spatial disarray generated by Gaussian random
fields was applied to all scales; afterward, scales were
combined again to construct an eidolon (i.e., a ‘‘fuzzy
doppelgänger,’’) of the fiducial image. The local
disarray is parameterized by way of two variables: The
grain parameter is the width of the blurring kernel,
which controls the rate of change in deformation as a
function of local distance. The reach parameter denotes
the intensity of the local disarray, (i.e., the amount of

Figure 3. Motivation for the stimuli used in Experiment 1. Two

fiducial images (top row) are manipulated the same way with

the eidolon factory (reach ¼ 8, grain ¼ 8 pixels) and the

resulting eidolons are shown in the bottom row.

Figure 4. Examples of stimuli used in Experiment 1. (a) Eight fiducial images based on the MPEG-7 database. (b) Example eidolons of

the eighth fiducial image show possible reach (R) and grain (G) adjustments with lowest parameter values used (leftmost, R¼ 1, G¼
1), small grain and high reach values (second left, R¼ 8, G¼ 2), intermediate (third, R¼ 5, G¼ 5), and the highest parameter values

used in Experiment 1 (rightmost, R ¼ 10, G ¼ 10).
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displacement for a given pixel). A third parameter,
coherence, controls whether the disarray at different
scale levels is synchronized; a coherent disarray has
aligned dislocations for coarse and fine structures in the
image. Further details of the concept of eidolons can be
found in the original paper by Koenderink et al. (2017).

For each fiducial image we created a set of 100
eidolons (1–10 pixels for reach and grain) by using the
eidolon factory in MATLAB (MathWorks, Natick,
MA; 2017a, https://github.com/gestaltrevision/
Eidolon). In Experiment 1, all image disarray was
coherent.

Procedure

We used an adjustment method to see how observers
varied image distortions for transparent layers of
different nature. MATLAB Psychophysics Toolbox
(Kleiner et al., 2007) was used to present stimuli on a
FlexScan EV2750 monitor (EIZO, Hakusan, Ishikawa,
Japan) at a resolution of 2,560 3 1,440 pixels. In each
trial, observers saw an eidolon through an aperture
(Experiments 1 and 2, hard edged, radius¼ 300 pixels)
and above a title to indicate one of the three conditions:
‘‘Make the object look like it is seen (a) under water, (b)
behind haze, (c) behind structured glass.’’ Note that the
instructions were given in German, the German word
‘‘Milchglas’’ was used to describe the structured glass in
all experiments. Stimuli remained on screen until the
observer indicated a decision by pressing the space bar.
Observers were seated 50 cm from the screen, they
adjusted image deformation parameters by moving the
mouse horizontally (grain) and vertically (reach), which
steered a white dot that was always visible on the screen.

In Experiment 1, we used eight shapes (Figure 4) for
which participants adjusted image disarray for three
layers (water, haze, structured glass) for two repeti-
tions, resulting in a blocked session of 48 trials. In
Experiment 1, during half of the trials, grain and reach
values increased as the cursor moved rightward and
upward, respectively. For the other half of trials,
controls were reversed: observers had to move the
cursor leftward and downward to increase grain and

reach values, respectively. This manipulation was done
to see whether observers remembered the cursor’s
screen position instead of focusing on the image
distortions, but the results were similar, so we kept the
controls straightforward in Experiments 2 and 3. All
trials were interleaved in one block in Experiment 1.

Analysis and data exclusion

We look at the individual mean values for reach and
grain parameters separately and we report the group
means in this paper. Further, we pool across partici-
pants for the reach and grain adjustments in each
experiment and present these in normalized histograms.
After we calculate the histogram for 10 bins (number of
steps in stimulus range¼ 10), we divide each bin count
by the maximum number of trials in a bin. In this way,
the normalized histogram gives the frequency of a
stimulus value instead of the raw trial count. We use a
nonparametric Wilcoxon signed rank test to establish
significant differences between the histograms. Finally,
we performed a cluster analysis using diffusion maps
(Coifman et al., 2005) on the pooled trial data to
predict the rigid and nonrigid layers as used in
experimental conditions.

We exclude haze trials from further analyses due to
the fact that between-subjects variability was high as
described below. Unlike the other two layer conditions,
haze trials did not indicate any grouping in one or two
of the quadrants; instead, they were scattered. We
analyzed the separation of pooled trials to decide
whether there were any clustering in the data. To
quantify the separation of pooled trials, we first
determined the centroid per condition (water, haze,
glass). Then we calculated L1 distance (Minkowski
distance, p¼ 1) of each condition’s trial to its centroid.
We present the sum of distances for all experiments in
Table 1, as one can see, the highest sums and thus the
highest separations are for the haze conditions in all
experiments (values marked in bold). The sum of L1

distances for haze trials were highest, suggesting that
settings for this condition were scattered around all
possible parameter values with no indication of

Experiment 1 Experiment 2 Experiment 3

C ¼ 1 C ¼ 1 C ¼ 0 C ¼ 1 C ¼ 0

Water 812 [8,8] 1,433 [9,7] 1,377 [9,8] 1,329 [7,8] 1,290 [8,8]

Haze 916 [5,8] 2,449 [5,5] 2,332 [7,7] 1,742 [5,4] 1,804 [5,7]

Glass 870 [2,9] 2,400 [4,8] 2,166 [4,9] 1,049 [2,9] 930 [2,10]

Table 1. L1 distance sums for all experiments. Shown are the L1 distance values for all trials for each layer condition (rows) in separate
experiments for coherent (C¼ 1) and incoherent (C¼ 0) conditions (columns). For each condition, the smallest sum is shown next to
the centroid values in brackets. The highest value in each column is bold. The centroids indicate grain and reach values, respectively,
in pixel units.
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Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/937491/ on 01/10/2019

https://github.com/gestaltrevision/Eidolon
https://github.com/gestaltrevision/Eidolon


clustering (see also Supplementary Appendix B, Sup-
plementary Appendix Figure B1).

Observers

Fourteen naive observers participated in Experiment
1. All observers were from the Justus-Liebig-University
Giessen, Germany (12 women, 2 men; mean age¼ 24.9
6 3.5), with normal or corrected-to-normal vision.
Observers gave written informed consent and were paid
6 Euros per hour for their participation.

Results

Figure 5 shows the group mean for grain and reach
parameter adjustments (solid icons) overlaid with mean
individual responses (transparent icons). For both
grain and reach adjustments for water trials (blue
icons), 11 out of 14 participants’ settings are clustered
in the upper right quadrant, suggesting that partici-
pants preferred large values for both parameters (lgrain
¼ 7.0, lreach ¼ 7.9). Larger parameter adjustments
generate wave-like image disarray as shown in the
examples on the right panel of Figure 5 (right, blue
panel). For glass trials, large reach adjustments were

frequently coupled with small grain values for all
participants, except for three, (red icons, lgrain¼ 3.5,
lreach ¼ 8.0). The group mean (large red icon) and
corresponding ‘‘grainy’’ image deformations are also
depicted in Figure 5 (right, red panel).

Another way of looking at the parameter adjustment
results is to compare histograms for pooled trials.
Discrepancy between water and glass trials are evident
from separate distributions of grain adjustments
(Figure 5, histograms along the horizontal axis). Glass
trials present a narrow positively skewed histogram
(red bars) and these are visibly separate from the
negatively skewed wider distribution of water trials
(blue bars). There is no separation for reach adjust-
ments of water and glass (Figure 5, histograms along
the vertical axis). Evidently, the separation between
water and glass trials for reach settings is smaller than
the separation between water and glass trials for grain
settings: Wilcoxon test confirms that reach values for
water and glass come from the same distribution (Z ¼
�1.5, p¼ 0.1), where grain values for water and glass
are different (Z ¼ 8.7, p , 10�17).

The stimuli in Experiment 1 differed in boundary
shapes and sizes; despite these differences, observers
preferred similar image disarray for all types of stimuli.
We did not find an effect of shape on parameter
adjustments, either for water or for glass trials

Figure 5. Individual and mean data from Experiment 1. Grain (horizontal axis) and reach (vertical axis) adjustments for each observer

(n¼ 14) are plotted in separate icons for water (blue diamond) and glass (red square) trials. Each icon represents an observer’s mean

adjustments for all trials averaged over objects. Group means for each layer are also plotted with corresponding colors and larger

icons 6 standard error of the mean. On the right, example eidolons are shown for water (blue panel, top row) and glass (red panel,

bottom row) that correspond to group mean settings. Note that the stimuli used in Experiment 1 has lower contrast, we use black

and white values here to improve printed figures. The reach and grain settings of these examples are taken from the group means.

Outside each axes, we plot normalized histograms for water (blue bars) and glass (red bars) trials pooled across participants.

Histograms along the horizontal axis show data for grain adjustments, along the vertical axis we show histograms for reach

adjustments.
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(Supplementary Appendix D, Supplementary Appen-
dix Figure D1).

In half of the trials, screen coordinates were flipped
to discourage participants from paying attention to
screen locations instead of the image deformations.
This did not make any effect on the parameter
adjustments (see Supplementary Appendix A, Supple-
mentary Appendix Figures A1 and A2).

Discussion

These results suggest that image distortions solely
can yield a transparent layer percept, even in the
absence of context. We also see the benefit of
describing image distortions in two parameters: one
parameter controls the locality and size of the group
of pixels to be shifted whereas the other determines
how much this group of pixels is shifted. The locality
measure seems to make the difference according to
the nature of the transparent layer. The difference in
grain results suggests a clear separation between
water and glass layers in terms of the locality of the
disarray, whereas the similarity in reach settings
suggests that the intensity of the image disarray is
similar for both water and glass. We next investigate
whether this trend transfers to more complex objects
in Experiment 2.

Experiment 2: Glavens full

Motivation

After establishing the required image disarray for 2D
shapes in Experiment 1, we wanted to explore whether
having more information than a luminance defined
boundary would result in similar parameter adjust-
ments when perceiving a transparent medium. We
introduced shape complexity to our stimulus set, in the
sense that they convey 3D shape information with
additional color and shading. Here a different group of
participants (n ¼ 16) adjusted reach and grain
parameters for eidolons of 3D objects in order to make
them look like they are seen under water and behind
structured glass.

Stimuli

We used rendered 3D objects as fiducial images to
create stimuli for Experiment 2 (Figure 6a). Fiducial
images for the stimuli were images of 3D scenes rendered
with spherical objects called Glavens (Phillips, Egan, &
Perry, 2009). The surface of this globular object was
rendered with Cycles Render Engine in Blender 2.73a, it
was illuminated with a ‘‘campus’’ environment map

Figure 6. Stimuli used in Experiment 2. (a) Screenshots of the 3D scenes were used as fiducial images. (b) Examples of coherent

eidolons corresponding to the fiducial images in (a) with large reach, small grain settings (first row) and large reach, large grain

settings (second row).
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(Debevec, 2002). We used a mixed shader combining
bidirectional scattering distribution (BSDF) nodes for
diffuse (0% gloss) and glossy (10% gloss) components.
The lightness value was 0.1 for dark objects, and 0.8 for
light objects (roughness¼ 0, hue¼ 0.5, saturation¼ 1).
To investigate the effects of (a) contrast on the object, we
add dark glossy objects with high contrast on the surface
due to highlights as compared to light glossy objects, and
(b) contrast with the background, we add dark diffuse
objects that present high contrast with the background
due to lightness and light diffuse objects with lower
contrast with the background. We had 27 viewpoints:
1208 camera rotations on the x, y, and z axes, each
participant viewed 4 out of these 27 viewpoints
randomly. Images were 6003600 pixels in Experiment 2.

Again, the fiducial images were not shown in the
experiments; instead, we used them to create eidolons
that were used as stimuli (Koenderink et al., 2017). We
produced a set of controlled image deformations to the
fiducial images as in Experiment 1. In addition to
coherent eidolons with sharper looking edges, we also
used incoherent eidolons. This parameter controls the
alignment of decomposed (and disarrayed) layers of the
image. While a coherent disarray has aligned layers of
coarse and fine structures, an incoherent disarray has
shifted recomposition and as a result, the eidolons look
fuzzier. This incoherence might give the impression of a
less clear transparent medium, such as haze.

For each fiducial image we created a set of 100
eidolons (1–10 pixels for reach and grain) by using the
eidolon factory (https://github.com/gestaltrevision/
Eidolon). In Experiment 2, during the first test block,
stimulus image disarray was coherent, whereas the
second test block included incoherent disarray eidolons.

Observers

Sixteen different observers participated in Experi-
ment 2. All observers were from the Justus-Liebig-
University Giessen, Germany (11 women, 5 men; mean
age¼ 24.8 6 1.6), and had normal or corrected-to-
normal vision. Observers gave written informed con-
sent and they were paid 6 Euros per hour for their
participation.

Procedure

As in Experiment 1, we used an adjustment method
to see how observers varied image distortions for
transparent layers of different nature.

In Experiment 2, participants completed 96 trials (2
reflectances 3 2 lightnesses 3 3 layers 3 8 repetitions)
per block (Figure 6). They first completed the coherent

block, and then the incoherent block. All trials were
interleaved in blocks in Experiment 2.

Analysis and data exclusion

The analysis procedure and exclusion of haze trials
were as described in Experiment 1.

Results

Data from individual participants in Figure 7 (both
blocks) lie strictly in the upper and lower right
quadrants for water trials except from one participant
(blue transparent icons). Likewise, for glass trials,
individual data are mostly clustered in the upper left
quadrant showing that participants preferred higher
reach and lower grain values. These settings result in
grainy image deformations as shown with example
eidolons in Figure 7 (red panels on the right). We show
the group mean for grain and reach parameter
adjustments: In line with Experiment 1, for both
coherence blocks, mean grain and reach adjustments
for water trials (blue icons) are in the upper right
quadrant. The majority of participants adjusted large
values for the parameters in both coherent (Figure 7a;
blue icons, lgrain ¼ 7.0, lreach ¼ 8.2) and incoherent
(Figure 7b; blue icons, lgrain¼ 7.5, lreach¼ 8.4) blocks.
For glass trials, similarly large reach adjustments were
coupled with smaller grain values in both coherent
(Figure 7a; red icons, lgrain ¼ 4.8, lreach ¼ 6.5) and
incoherent (Figure 7b; red icons, lgrain ¼ 4.6, lreach ¼
7.3) blocks.

Pooled trial histograms are very close to one another
for reach adjustments, as can be seen from the
normalized histograms along the vertical axes in Figure
7.

At a glance, for the coherent block (Figure 7a) the
difference between water and glass histograms for reach
values is smaller than for grain (along horizontal axis)
adjustments. For the incoherent block (Figure 7b),
again we observe a smaller difference for reach values
(bars along vertical axis) than for grain (bars along
horizontal axis) values. Indeed, the reach values for
water and glass in the coherent block (Z ¼ 2.2, p ,

0.04) and the incoherent block (Z¼ 0.6, p¼ 0.6), both
remain insignificant at a Bonferroni corrected level a ,
0.0125. Grain values for water and glass, on the other
hand, are different in both blocks (coherent block: Z¼
16.4, p , 10�59, incoherent block: Z¼ 17.8, p , 10�71).
In accordance with Experiment 1, perceived water and
glass layers were distinguished dominantly in the
locality of disarrays but not the required distortion
intensity.
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Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/937491/ on 01/10/2019

https://github.com/gestaltrevision/Eidolon
https://github.com/gestaltrevision/Eidolon


Coherent versus incoherent eidolons

When we contrast the coherence in water trials
(Figure 7a vs. 7b, blue bars along the vertical axis),
there are small but significant differences in reach
values (Z ¼�5.0, p , 10�6), where smaller difference
grain values remain insignificant (same figure, blue bars

along the horizontal axis, Z ¼�2.3, p , 0.02).
Similarly, comparisons for coherent versus incoherent
glass trials reveal a significant difference for reach
values (same figure, vertical red bars, Z¼�11.0, p ,

10�27); but not for grain values (horizontal red bars, Z
¼ 0.6, p¼ 0.6). Overall, when we compare coherence of
the eidolons, we only observe differences in the reach

Figure 7. Individual and mean data from Experiment 2. (a) Coherent block: Grain (horizontal axis) and reach (vertical axis) adjustments

for each observer (n¼16) are plotted in separate icons for water (blue) and glass (red) trials. Each icon represents an observer’s mean

adjustments for all trials averaged over objects. Group means for each layer are also plotted with corresponding colors and larger

icons 6 standard error of the mean. On the right, example eidolons are shown for water (blue panel, top row) and glass (red panel,

bottom row) that depict the group mean settings for reach and grain. Normalized histograms for water (blue bars) and glass (red bars)

trials pooled across participants are shown outside the axes. Histograms along the horizontal axis show data for grain adjustments

and along the vertical axis, we show histograms for reach adjustments. (b) Results from incoherent block with same participants are

shown in line with (a).
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settings: observers prefer higher reach values for
incoherent eidolons in both water and glass trials.

Surface reflectance

In Experiment 2, we used four objects as stimuli
(Figure 6a: GlossLight, GlossDark, DiffuseLight,
DiffuseDark). When we compare the adjusted param-
eters for each object at a conservative significance level
(Bonferroni correction: a , 0.05/24¼ 0.0021) we
observe a single significant difference for the grain
value comparisons for coherent water trials, between
the DiffuseLight and GlossDark objects (DlG¼0.46, Z
¼ 3.3, p , 10�4), and none for the reach values.
Observers set smaller grain values for the dark object
with highlights than for the light diffuse object.
Detailed results for each object are shown separately in
Supplementary Appendix D, Supplementary Appendix
Figures D2 and D3.

Discussion

The addition of 3D surface properties to objects does
not deviate from the parameter trends for transparent
layers we find in Experiment 1: we observe large reach
and grain values for perceived water layer, and large
reach and small grain values for perceived glass layer.
Moreover, in line with Experiment 1, we observe the
difference between the two types of layers only in the
grain parameter of image distortions.

We also note a difference between coherent and
incoherent eidolons. These differences reveal that for
both layers, observers set higher intensity image
disarray for the incoherent stimuli, and the amount of
difference is larger for the glass layer. Higher reach
settings for the incoherent block can probably be
related to the blurred edges of the incoherent stimuli.
When there are no sharp edges, one can expect that
observers set larger disarray to form above threshold
image distortions for a transparent medium.

Finally, we also find an interesting difference in
relation to the surface reflectance of objects: a dark
glossy one behaves differently from a light diffuse one.
At a glance, these two objects differ strikingly by the
local contrast on their surfaces: the glossy dark object
has highlights that show bright white patches on the
dark surface color (hence, small grain settings suffice),
whereas the diffuse light object has minimal local
luminance contrast that makes it harder to perceive
image disarray on its surface. We look further into the
effects of 3D object properties on perceived transpar-
ency in Experiment 3.

Experiment 3: Glavens no boundary

Motivation

We found differences related to surface reflectance in
Experiment 2. In Experiment 3, we reduced the surface
related cues to 3D shape by occluding the object
boundary. When there is no visible object boundary,
observers rely on the reflectance to recover 3D shape
curvature and we expect fine details such as surface
highlights to play a crucial role here.

Stimuli and procedure

Similar to Experiment 2, stimulus set consisted of
eidolons of glavens rendered with diffuse/glossy surface
reflectance, and dark/light surface color. Essentially,
the same eidolons as in Experiment 2 were shown
behind a Gaussian aperture that occluded the object
boundary (radius¼ 220 pixels). We repeated the same
procedure as in the previous experiment with a different
group of participants.

Observers

Ten different observers completed Experiment 3. All
observers were from the Justus-Liebig-University
Giessen, Germany (7 women, 3 men; mean age ¼ 23.2
6 1.8), and had normal or corrected-to-normal vision.
Observers gave written informed consent and they were
paid 6 Euros per hour for their participation.

Analysis and data exclusion

Analysis procedure and exclusion of haze trials were
as described in Experiment 1.

Results

Overall, compared to Experiments 1 and 2, the data
patterns for water and glass layers remained similar,
with large reach and grain values for perceived water,
and large reach values paired with small grain values
for perceived glass. However, we observe lower reach
adjustments paired with higher grain values for water
trials and vice versa for glass trials. Detailed findings
are reported below.

For both coherence blocks, mean grain and reach
adjustments for water trials (Figure 8a and b, blue
icons) are again in the upper right quadrant. Partici-
pants prefer large values for the parameters in both
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coherent (Figure 8a, blue icon, lgrain¼ 7.1, lreach¼ 6.9)
and incoherent (Figure 8b, blue icon, lgrain¼ 7.6, lreach
¼ 6.7) blocks. For glass trials (Figure 8, red icons),
similarly large reach adjustments were coupled with
smaller grain values in both coherent (Figure 8a, red
icon, lgrain ¼ 2.7, lreach ¼ 8.3) and incoherent (Figure
8b, red icon, lgrain¼ 2.8, lreach ¼ 8.5) blocks. In
comparison to the previous experiment, when the
object boundary is occluded so more edges are missing,

the image distortions remain visible but very subtle
(Figure 8, eidolons in the right panel).

The trial distributions are significantly separate in all
of the conditions (Figure 8). For the coherent block
(Figure 8a), as visible in the overlapping blue and red
histograms, difference between water and glass histo-
grams for reach values is smaller than for grain
adjustments. For the incoherent block (Figure 8b),
again we observe a smaller difference for reach values

Figure 8. Individual and mean data from Experiment 3. (a) Coherent block: Grain (horizontal axis) and reach (vertical axis) adjustments

for each observer (n¼10) are plotted in separate icons for water (blue) and glass (red) trials. Each icon represents an observers mean

adjustments for all trials averaged over objects. Group means for each layer are also plotted with corresponding colors and larger

icons 6 standard error of the mean. On the right, example eidolons are shown for water (blue panel, top row) and glass (red panel,

bottom row) trials’ reach and grain means. Normalized histograms for water (blue bars) and glass (red bars) trials pooled across

participants are shown outside the axes: horizontal histograms show data for grain adjustments, vertical histograms show reach

adjustments. (b) Results from incoherent block with same participants are shown in line with (a).
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than for grain values. The reach values for water and
glass (histograms along the vertical axes) yield signif-
icant differences in distributions both in the coherent
(Z ¼�6.3, p , 10�9) and the incoherent block (Z¼
�7.5, p , 10�13). Grain value distributions for water
and glass are also different in both blocks (histograms
along the horizontal axes, coherent: Z ¼ 14.2, p ,
10�45, incoherent: Z ¼ 14.5, p , 10�47). As can be
expected, observers consistently adjust larger grain
settings for water trials in both blocks, which is in line
with findings from our previous experiments. Surpris-
ingly, this time we also find that observers set higher
reach parameters for glass trials compared to water
trials (in both blocks), a finding we have not observed
in Experiment 1 or 2.

Coherent versus incoherent eidolons

Overall, coherent versus incoherent blocks reveal
very small differences. In water trials, there is no
significant difference in reach value distributions (Z ¼
1.5, p¼ 0.1), whereas grain values yield small but
significant differences (Z ¼�4.3, p , 10�4). Preferred
grain settings are larger for the incoherent water stimuli
when compared to coherent, but there is no distinction
for coherence in reach adjustments of water trials.
Comparison for coherent versus incoherent glass trials
reveal small but significant differences for reach (Z ¼
�3.0, p , 0.003), but differences for grain adjustments
remain insignificant (Z¼�1.0, p ¼ 0.3). In contrast to
our findings for water, the effect of coherence in glass
trials are only evident in reach settings.

Surface reflectance

Similar to Experiment 2, pairwise comparisons
reveal one object distinction at the conservative
significance level of a , 0.0021: the diffuse light object
results in higher grain adjustments when compared to
the diffuse dark object in coherent glass trials (DlG ¼
0.55, Z ¼ 3.1, p , 0.002). Detailed results for each
object are shown separately in Supplementary Appen-
dix D, Supplementary Appendix Figures D4 and D5.

Discussion

Pairings for reach and grain parameter settings
remain in line with Experiments 1 and 2. We also find
that layers are distinguished mostly by the grain
parameter. Unlike the previous experiments, in this one
we also observe distinctions in reach settings for the
first time. One reason for this may be the missing object
boundary information in the stimuli, the lack of the

object outline might result in preferred image distor-
tions to be more intense overall. The effect of eidolon
coherence is trickier to interpret. Higher reach settings
in the incoherent block may be related to the blurred
outlines of the incoherent stimuli: when there are no
sharp outlines, edge quality is lower, so one can expect
that observers set a larger disarray to increase the
intensity of image distortions and form a percept of a
transparent medium. It is interesting to note that the
increased magnitude in image distortions manifests
itself in locality values for perceived water but in
intensity values for perceived glass. One reason for this
maybe because larger locality for perceived water are
more natural as it can be related to larger ripples,
whereas if the locality value of distortions are too large
for perceived glass it might stop looking like glass and
appear too diffuse.

Predicting transparent layer classes

Despite the variety in our stimuli throughout three
experiments, the same trends in our findings prevail. By
analyzing the two image disarray parameters, we see
two separate trends for a rigid (glass) and a nonrigid
(water) transparent layer. Next, we try to classify these
parameter adjustments by using a diffusion map
analysis (Coifman et al., 2005). A diffusion map
analysis is done by a nonlinear dimensionality reduc-
tion algorithm that maps the elements of the dataset to
a lower dimension Euclidean space via the eigenvalues
of a Markov matrix. Then, by taking the diffusion
coordinates into account, it performs k-means cluster-
ing on these data points. We predict two different
clusters for a rigid and a nonrigid transparent layer,
from the pooled data of (unlabelled) water and glass
trials. An attempt to include haze trials and cluster data
into three classes is included in Supplementary Ap-
pendix C.

In Figure 9, we present raw data of all trials from
Experiments 1, 2, and 3, color coded for when
participants adjusted grain and reach so that the layer
looks like water (blue discs) and when the layer looks
like glass (red discs). For each trial, the adjustments of
the grain and the reach parameter are plotted on the
horizontal and the vertical axes respectively. We then
combined these settings and clustered them into two
classes: the same figure shows superimposed circle icons
for predicted water (blue circles) and glass (red circles)
clusters. The predictions are strongly correlated with
our measured trials for each experiment.

Figure 9a shows Experiment 1 results: out of 448
trials, 75.8% of water trials and 77.2% of glass trials fall
into the predicted clusters, resulting in a significant
correlation (Pearson’s r ¼ 0.53, p , 10�33). For
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Experiment 2 (Figure 9b), out of 1,024 trials, overlap is
higher for water trials, and 90.8% in coherent block
(left panel) and 91.9% in incoherent block (right panel)
of them are predicted. Glass trials fall into the predicted
cluster for 70.7% of the time in the coherent block, and
75.6% of the time in incoherent block. Overall
correlation between experimental layers and predicted
classes is significant in both coherent (r¼ 0.63, p ,

10�112) and incoherent (r¼ 0.69, p , 10�142) blocks.
Finally, in Experiment 3 (Figure 9c), out of 640 trials,
86.6% of water trials are predicted accurately in the
coherent block (left panel) and 84.1% in the incoherent
block (right panel). The predicted class for glass layer
contains 83.1% of glass trials in the coherent block and
89.4% in the incoherent block. The correlations
between predicted and actual classes are strong
(coherent block, r¼ 0.70, p , 10�93; incoherent block, r
¼ 0.74, p , 10�109).

Discussion

Transparent scenes often present rich visual details
in our daily life, such as a swimming pool, a rainy
windshield, or a shower screen. It is crucial to
understand the nature of a transparent medium, for
example, to distinguish rocks from the fish in a river.
Here we first show that static image distortions alone
can induce the percept of a transparent layer.
Moreover, we parametrically manipulate these changes
in images to identify different types of complex
transparent layers.

We give a first account of how transparent layers in
complex scenes can be explored in three adjustment
experiments. High interobserver consistency in param-
eter adjustments confirm that the data trends in our
findings are far from random. First, we show that when
asked to imitate a water layer, participants consistently

Figure 9. Predicted classes for water and glass from Experiments 1 through 3. (a) Grain (horizontal axis) and reach (vertical axis)

adjustment data for all trials in Experiment 1. Filled icons depict trials where participants adjust for water (blue discs) and glass (red

discs). Overlaying hollow icons show the predicted classifications for two clusters of water (blue circles) and glass (red circles).

Correlation coefficients between measured and predicted classes are inscribed in each panel. (b) Same for trial data from Experiment

2, for the coherent (left panel) and the incoherent (right panel) blocks. (c) Same for trial data from Experiment 3, coherent (left panel)

and incoherent (right panel) blocks.
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pick large parameter values that result in large local
radius, wave-like intense deformations. When asked to
imitate a structured glass layer, the intensity of
deformations remain similar but they consistently pick
a smaller radius for local deformations which gives a
grainy and diffuse look. For haze, adjustments between
participants are less consistent (see below). This pattern
transfers across a variety of stimuli from 2D lumi-
nance-defined shapes to 3D objects with more complex
surface properties. Finally, when we cluster the
parameter settings, our analyses reveal clearly separate
classes for rigid (glass) and nonrigid (water) transpar-
ent layers that are overlapped by participants’ choices.
This suggests that the parameters are predictive in
separating the rigidity of the perceived transparency.

Here, we report a simple way of describing
perception of transparent layers in complex scenes.
With only two parameters of local image deformations,
namely locality and amplitude of the disarray, we can
classify a rigid and a nonrigid transparent layer from
participants’ adjustments. When image deformations
are larger (high grain values), the data indicate a
nonrigid layer of water; participants perceive a rigid
transparent layer (structured glass) when local defor-
mations are smaller (low grain values). The intensity of
deformations we measured are the same for both rigid
and nonrigid transparent layers. Our experimental
procedure allowed us to study the nature of local image
disarray for perceived transparency, but it is not within
the scope of this study to infer how strongly the
observers perceived a transparent layer.

Recent evidence suggests that image deformations
cause percepts of transparent layers in complex scenes
including colored texture backgrounds (Fleming et al.,
2011; Kawabe et al., 2015; Kawabe & Kogovšek, 2017).
In Kawabe et al. (2015), the authors argue that image
deformations are not enough to perceive transparent
layers and that low-level motion signals are also
required. Here, we provide several lines of proof that
participants agree on the required image deformation
parameters for convincing transparent layers, sepa-
rately for a rigid and a nonrigid equivalence class,
suggesting that static deformations are sufficient. One
should note, however, that our interactive reach-grain
adjustment task might have produced spurious dy-
namic information, which might have somewhat
enhanced the transparency impression for observers.

Equivalence classes of transparent layers

Semantically, instances of a transparent layer that
fall into the same equivalence class are as many as the
richness of our lexicon: a swimming pool, a clear pond,
a glass of water, or saline solution are just some
examples that can be classified as water. This was also

evident in the word lists from our brainstorming
sessions. So, when testing for transparent layers, we
avoided fully detailed verbal descriptions of water,
haze, and structured glass. We also kept the 3D object
geometry and scene properties, such as lighting or
background, constant and as minimal as possible. This
allowed us to emphasize image deformations in our
stimuli, as small as a few pixels that were detected by
the participants. We also intentionally avoided intro-
ducing background texture, because we aimed at
experimenting how 2D and 3D objects are seen through
a transparent material by manipulating object proper-
ties such as boundary and surface reflectance.

Background texture

With increasing focus in the literature on materials
(Adelson 2001; for a review, see Fleming, 2017) and
advances in computer graphics, it is now possible to
explore layer decomposition with increased complexity.
In naturalistic and complex scenes, it is often the case
that the transparent medium has no intrinsic boundary
visible (e.g., an outdoor scene on a foggy day), and the
objects are immersed in the transparent medium.
Transparency perception in complex scenes with
composite material properties has found attention only
in the last decade, most of the time using a blob
detached from the background texture. Previous
studies that focus on how we perceive thick transparent
materials (Fleming et al., 2011; Schlüter & Faul, 2014,
2016) directly test the perceived thickness, shape,
refractive index, and transparency of the transparent
blob. Often they also report that the human visual
system is sensitive to the properties related to the
distorted texture background such as the density of
texture and blob’s distance from it. Kawabe et al.
(2015) suggest that edge continuity and the shape of
texture elements might cause a small difference in the
spatiotemporal tuning of their dynamic image distor-
tions (but see also Kawabe & Kogovšek, 2017). We
believe that the background texture’s spatial scale has
an effect on the properties of the perceived transparent
layer. To test this, we ran a pilot experiment with
colored texture images from the McGill Database
(Olmos & Kingdom, 2004). Figure 10 shows the results
of a pilot experiment testing this idea (the complete set
of results and analysis details can be found in
Supplementary Appendix E, Supplementary Appendix
Figures E1 and E2). It illustrates that participants tend
to prefer smaller deformations for background textures
with smaller elements, suggesting a noticeable rela-
tionship between texture element size and required
image deformation. For example, textures 17 and 14 in
Figure 10 contain both small pebbles and require
exactly the same amount of disarray amplitude (reach
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values for dark green and orange icons), and are both
far from texture 10, which contains large texture
elements, (i.e., leaves). While it was not our aim here to
search for a systematic relation between spatial content
and image distortions required to obtain a specific
apparent transparency class, these data suggest that
there is a dependency on the spatial scale of the texture
in images, such that smaller parameter settings are
being made for textures with smaller element sizes.

Rigid versus nonrigid transparent layers

The visual system is very good at rapidly discrimi-
nating rigid and nonrigid motion (Jain & Zaidi, 2011),
and we have a rich lexicon to describe these differences
(e.g., turning vs. twisting, rotating vs. revolving). These
3D motion types manifest themselves as different
deformation patterns in the optic flow; similarly, here
we find that local image deformations differ for rigid
and nonrigid transparent layers. Why is this the case?

Humans can recognize nonrigid objects (e.g., liquids
from static images; Paulun, Kawabe, Nishida, &
Fleming, 2015), or even make fine judgments, such as
the viscosity of liquids from midlevel shape cues (van

Assen et al., 2018). It has been argued that image
deformations can provide cues to perceived transpar-
ency, but weaker in the static case in comparison to
dynamic image distortions (Kawabe et al., 2015;
Kawabe, 2017).

More recently, the dependency between optical and
mechanical properties of materials has been explored
(Schmid & Doerschner, 2018), to provide evidence that
mechanics of rigid and nonrigid materials can be
inferred from static cues. Most of the time, optical
properties in an image suffice for the way we expect
materials to behave, except from chemical ‘‘miracle’’
examples (see Waitukaitis, & Jaeger, 2012; Grossman,
2013). When we think about rigidity in the scope of
transparent layers, it is important to acknowledge that
the visual system attributes motion information to
nonrigid materials from local image deformations (e.g.,
image of an oozing liquid). Rigid and nonrigid
materials behave very differently when exposed to
external forces. Deformations of nonrigid materials
under stress are continuous as a flowing river or gravity
on raindrops, but rigid materials do not deform until a
further limit; that is, they endure stress until a breaking
point. For rigid transparent materials, local image
deformations might mean structural patterns formed
while nonrigid, as in ice or structured glass, or local
deformations might suggest additional layers, such as
sweat beads or raindrops on glass or plastic.

Our findings support that the visual system is very
efficient to identify whether the image deformations are
caused by rigid or nonrigid shape dynamics. We find
that local image distortions, in general, are a useful way
to study transparent materials as they systematically
change with the materials’ inferred motion or structure.
Eidolons give more control over the local image
disarray, making them better tools to study rigid
transparent layers, Newtonian fluids (such as water or
air), and non-Newtonian fluids that change their
apparent viscosity under stress (such as honey or
saliva).

Why are observer settings for haze all over the
place?

Understanding and parametrically describing trans-
parent layers in images are also useful for image
processing algorithms to clean up noisy images, such as
dehazing photographs while preserving color informa-
tion (El Khoury, Thomas, & Mansouri, 2014). For this
reason and for being a common atmospheric event, we
included haze as one our transparency classes.

Participants were more consistent when adjusting
image deformations for water and glass, compared to
haze; hence, our classifications for the former were
much better clustered than the haze parameterization.

Figure 10. Reach and grain adjustments for water. Colored

diamonds correspond to group means (n¼ 10) for five sample

textures in the pilot texture experiment. Next to each symbol,

the corresponding texture and the radial average of the

textures’ set mean-subtracted fast Fourier transforms (FFTs)

(subtracting the set mean emphasizes differences in the

amplitude spectra between textures) are shown. This figure

illustrates that the frequency content of the texture affects

observers’ settings systematically. For example, settings for

texture 14 (dark green) and 17 (orange) are quite close to each

other and so are the corresponding set mean-subtracted radial

averages of the textures’ FFT. In contrast, the mean setting for

texture 10 (light green) is further away from 14 and 17, and so

is the shape of its FFT. Also see Supplementary Appendix E,

Supplementary Appendix Figures E1 and E2.
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One explanation for this might be because haze is
semantically more complex than, for example, water by
definition. Perhaps it is more ambiguous to visualize
instances of haze compared to well-defined examples of
water or glass. The physical cause of haze has to do
with airlight: air becomes visible due to scattering of
light, reducing the visibility of objects in the back-
ground. Mist, fog, snow, volcanic ash, widespread dust,
sand, and haze are listed as classes of obscuration in
international meteorological codes (World Meteoro-
logical Organization, 1995). Unlike mist, that is defined
as dispersion of water, haze is the atmospheric
phenomenon in which dry particles such as dust, sand,
or volcanic ash are obscuring visibility, similar to fog.
So, even though snow haze, caused by suspension of
the snow particles in air, and dust haze, which can be
caused by many things from ash to industrial gases,
belong to the same class (haze), the two have rather
different kinds of physical interaction. Therefore, the
instances in an equivalence class of haze may have
larger dissimilarities, whereas for water, one can think
of many examples with similar refractive indices that
fall into the same class. Thus, the ambiguity of haze
might have caused a variety of image deformation
settings in this study. The distortions when we see
through a hazy transparent layer are sometimes blurry
as in reduced contrast or intensity. Another explana-
tion might be that if the observers wanted to mimic
these types of distortions then our parameter range
might not be suitable since we provided no control over
the coherence parameter of eidolons in this study.

Conclusion

We focused on perceived transparent layers in
complex scenes by way of image distortions. When
objects are seen through water, glass, or haze, these
transparent layers induce characteristic distortions in
the image. In the case of water and glass, object
contours deform whereas the edge quality and contrast
remains unchanged. Haze, on the other hand, mostly
reduces contrast without large affect on the shape of
the contours. We used highly controlled image distor-
tions to induce distinct impressions of these transparent
layers. We found high interobserver consistency for
image disarray settings, groups of observers readily
agreed on perceived water and perceived glass layers.
The high intraobserver consistency also suggested that
our method captured parameter settings for perceived
transparency reliably: since repetitions showed different
objects and viewpoints, settings for perceived trans-
parent layers cannot be reduced to pixelwise image
properties. The settings were also robust in the sense
that the patterns transferred across simple 2D shapes to

more complex 3D objects with, for example, glossy
surfaces. Here we propose a novel method that, based
on local image distortions, generates images that
convey a vivid sense of transparency. Even though the
images generated by this method may not appear as
naturalistic as those produced by specialized 3D
graphics software, our approach was very successful in
identifying equivalence classes of water and glass, and
our results were predictive to separate rigid from
nonrigid transparent layers. Due to the richness in
examples of complex transparent layers, we found it
more efficient to inquire equivalence classes of, for
example, water. Our results also suggest that complex
transparency perception can effectively be studied with
local image disarray parameters.

Keywords: transparency, layer decomposition, eidolon
factory, image disarray, image distortion, surface
reflectance
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