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The nuclear spin bath (NSB) dynamics and its quantum control are of importance for the storage and processing
of quantum information within a semiconductor environment. In the presence of a carrier spin, primarily it is the
hyperfine interaction that rules the high frequency NSB characteristics. Here, we first study the overall coherence
decay and rephasings in a hyperfine-driven NSB through the temporal and spectral behaviors of the so-called
Loschmidt echo (LE). Its dependence on the NSB size, initial polarization, and coupling inhomogeneity are
separately investigated, which leads to a simple phenomenological expression that can accommodate all of these
attributes. Unlike the prevailing emphasis on spin 1/2, the NSBs with larger spin quantum numbers are equally
considered. For this case, additionally the effect of nuclear electric quadrupole interaction is taken into account
where its biaxiality term is influential on the decoherence. The insights gained from model systems are then put
to use for two generic realistic semiconductor systems, namely, a donor center and a quantum dot that represent
small and large nanoscale NSB examples, respectively. The spectrum of LE for large quantum dots can reach
the 100 MHz range, whereas, for donor centers, it reduces to a few MHz, making them readily amenable for
dynamical decoupling techniques. The effect of quadrupole interaction on LE is seen to be negligible for large
quantum dots, while it becomes significant for donor centers, most notably in the form of depolarizing a polarized
NSB.
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I. INTRODUCTION

Nuclear spins in a solid state matrix are largely immune to
charge noise which grants them coherence lifetime in excess
of one second at room temperature, which is by several orders
longer than that of the electron spins [1]. This electrical isola-
tion qualified them early on for several quantum information
processing tasks [2]. Generally, nuclear spins are thought to be
ideal as quantum registers [3–5], and in various ways they can
be harnessed for gate operations [6,7]. In virtually all of these
cases, for rapid and convenient manipulation by electrical [8]
or optical [9] means an intermediary electron associated with
a charged quantum dot or a defect center is exploited. For
this composite system of an electron and the nuclear spin bath
(NSB), the hyperfine (hf) interaction is the leading process that
affects the coherence of both parties [10–13].

Intimately, this subject is linked with the central spin model
that makes up a large body of literature [14–17]. Till now, the
emphasis in this model has been on the decoherence of the
electron, but undoubtedly it will be highly beneficial to visit
the hf-driven coherence dynamics from the NSB standpoint.
One source of motivation for this comes from a proposal based
on maximally entangled state generation between two electron
spins by sequentially allowing them to interact with a NSB
mediated by hf interaction (HFI) [18]. Its noteworthy feature
is that no information about the NSB, let alone a special
preparation, is required for the success of this recipe. As its
offspring, a quantum interface between optical fields and the
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polarized nuclear spins was suggested for a singly charged
quantum dot, again aided by HFI that allows both high-fidelity
read-out and write-in of quantum information between the
NSB and the output field [19]. The established competence of
dynamical decoupling techniques for suppressing the dipolar
fluctuations is another point that needs to be reassessed in
the case of the strong and inhomogeneous nature of the
HFI [20].

These matters substantiate the need for a deeper understand-
ing of the dynamics of NSB under HFI. For this purpose the
Loschmidt echo (LE) is a suitable measure which corresponds
to the return probability of a spin bath to its initial state [21]. It
makes an ideal tool for tracking the bifurcated NSB dynamics
when it is hf-coupled to an electron spin in a superposition state,
i.e., a general qubit state [22]. It needs to be mentioned that
LE is directly accessible experimentally by means of nuclear
magnetic resonance tools, where it has been used to monitor
the degree of decoherence; see Refs. [23,24] and references
therein. Quite recently it was employed for protecting fragile
quantum superpositions in spin-1/2 clusters [25], and for
characterizing the spreading of initially localized quantum
information across different degrees of freedom in many-body
systems in the context of information scrambling [26].

Our aim in this work is to develop a simple understanding
of the HFI-driven NSB temporal and spectral characteristics,
specifically by revealing the dependencies on bath size, cou-
pling nonuniformity, initial state, and the nuclear spin quantum
number I . We observe that, for unthermalized nanoscale
NSBs having a narrow distribution, LE can reveal recoherence
effects, as it resembles a closed system dynamics within the
duration of interest [22]. Remaining within the HFI-driven
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regime, under simple scalings we show that LE curves for
different bath size or spin I coalesce to a universal one.

In the literature, exclusively the spin-1/2 NSB has been
treated [3–7,9,16–19], and sometimes indirectly through the
so-called pseudospin approximation [22], despite the fact
that group III-V semiconductors involve quadrupolar nuclei,
where I � 1 [27]. Therefore, we extend our consideration
to the nuclear electric quadrupole interaction (QI) practically
resulting from the atomistic strain in semiconductor structures
for the case of quadrupolar NSB [28,29]. We identify under
what circumstances and how the action of QI on LE becomes
significant. Finally, we consider two realistic cases of a lateral
quantum dot that corresponds to a large NSB, and a donor
center representing a small reservoir, and compare their LE
spectra.

The paper is organized as follows. In Sec. II we present our
model Hamiltonian, a discussion of its connection to physical
phenomena, and other theoretical elements that our analysis
is based on. Section III contains our results, where we first
establish basic dependencies of the LE, and then use them in
interpreting two realistic solid-state examples corresponding
to small and large NSB prototypes. Conclusions are provided
in Sec. IV, and the Appendix embodies some derivations of
LE expressions.

II. THEORY

A. Hyperfine interaction with the central spin

The two subsystems in our model are the central spin 1/2
(frequently referred to as the qubit) that is represented with
the spin up/down basis states (|↑〉, |↓〉), and the homospin I

nuclei forming the bath sector. In this work the considered
nuclear spin length I numerically ranges between 1/2 and
9/2. The qubit and bath spins together are treated in our
model as a closed system within the timescale of relevance for
the hf-dominant regime. In the absence of qubit longitudinal
relaxation, the so-called pure dephasing Hamiltonian [30] is
expressed as

Ĥ = Ĥ+ ⊗ |↑〉〈↑| + Ĥ− ⊗ |↓〉〈↓|, (1)

where the nuclear spin dynamics is conditioned on the qubit
states as |↑〉 → Ĥ+, |↓〉 → Ĥ−, with

Ĥ± = ±
∑

i

Ai Î
z
i . (2)

Here Î z
i is the ith nuclear spin operator’s component along

the central-spin quantization axis, and Ai is its hf coupling
frequency. For convenience we set the Planck’s constant to
unity, h → 1.

B. Loschmidt echo

To track its quantum coherence, we start the system with
the qubit being in the superposition state in the chosen z-
computational basis |ψ〉 = C+|↑〉 + C−|↓〉, which is taken to
be initially uncorrelated with the bath sector |B0〉, hence in
tensor product form

|�(t = 0)〉 = |ψ〉 ⊗ |B0〉. (3)

As the system evolves under the Hamiltonian of Eq. (1) this
product state turns into an entangled state,

|�(t )〉 = C+|↑〉 ⊗ |B+(t )〉 + C−|↓〉 ⊗ |B−(t )〉. (4)

Therefore the initial superposition information of the qubit
leaks to the bath state, which is a sign of loss of qubit coherence
that can be identified from the degree of distinguishability of
the two pathways from the bath sector as

L(t ) = 〈B−(t )|B+(t )〉 = 〈B0|eiĤ−t e−iĤ+t |B0〉. (5)

This is directly related to the so-called the Loschmidt echo
(LE), also known as the probability of return to initial config-
uration, as M (t ) = |L(t )|2 [21].

For this essentially one-body Hamiltonian of Eq. (2), an
analytical form for L(t ) for a spin-I environment can be written
as

L(t ) =
∏

i

⎧⎨
⎩

Ii∑
mi=−Ii

W
mi

i e−i2Aimi t

⎫⎬
⎭, (6)

where

W
mi

i =
(

2Ii

Ii + mi

)
[cos(θi/2)]2(Ii+mi )[sin(θi/2)]2(Ii−mi ) (7)

is the weight function, which is completely independent of
azimuthal angle φ; m ∈ {−I,−I + 1, . . . , I − 1, I } are the
possible eigenvalues along the quantization axis; θ is the polar
angle; and the subscript i again denotes the nuclear site index.
The simplest case is the homospin-1/2 environment, where
Eq. (6) reduces to

L(t ) =
∏

i

{
cos2(θi/2)e−iAi t + sin2(θi/2)eiAi t }, (8)

which has a structure very similar to that derived in Eq. (16)
of [31]. It is straightforward to calculate power spectra (see
the Appendix), |M (f )|2 through the Fourier transform of LE,
which yields

M (f ) =
∑

m1,m2, . . . , mN ,

m′
1, m

′
2, . . . , m

′
N

(
N∏

i=1

W
mi

i W
m′

i

i

)

× δ

(
f + 1

π

N∑
i

Ai (mi − m′
i )

)
. (9)

C. Initial bath state

For nanoscale spin baths, in contrast to mixed states the
pure states become more appropriate and can be prepared
through various means [30]. Moreover, the dependency on the
initial nuclear spin states can be substantially suppressed by
dynamical decoupling techniques [20]. Therefore, we shall
mainly employ different pure initial bath states, |B0〉. For
these, we assume the individual nuclear spins to be coherent
spin states [32] centered at the spherical angles |θi, φi〉 (see
the Appendix). For unpolarized baths we start with ran-
domly selected angles from a uniform distribution over the
Bloch sphere. In the case of baths with initial polarization,
this distribution is restricted to a cone defined by a polar
angle θp.
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D. Nuclear electric quadrupole interaction

As we mentioned in the Introduction we also consider nuclei
with I > 1/2, and they possess aspherical charge distributions
giving rise to a nonzero electric quadrupole moment [33,34].
These quadrupolar nuclei are affected by the gradient of an
electric field that is present at a nuclear site. Such a setting
becomes readily available in low-dimensional alloy structures
of group III-V semiconductors (like InGaAs quantum dots)
arising from the atomistic scale distortions within the tetrahe-
dral bonding of polar constituents [28,29]. Thus, a quadrupolar
NSB has an additional interaction channel described by the
Hamiltonian

ĤQ =
∑

i

fQi

6

{
3
(
Î z
i

)2 + ηi

2
[(Î+

i )2 + (Î−
i )2]

}
, (10)

where Î± ≡ Î x ± iÎ y are the standard spin raising/lowering
operators, fQi and ηi are respectively the quadrupolar fre-
quency and the tensorial electric field gradient biaxiality at
the ith nuclear site, and here we dropped a constant Î 2

i term
[33]. We should note that QI is not conditioned on the state of
central spin, unlike the HFI. So, when both interactions coexist
the total Hamiltonian takes the form

Ĥ = (ĤQ + Ĥ+) ⊗ |↑〉〈↑| + (ĤQ + Ĥ−) ⊗ |↓〉〈↓|. (11)

E. Physical relevance of the model

Before proceeding further, we would like to express the
particular timescale and physical context where this model is
practically relevant. First of all, it should be mentioned that
we are using the so-called Fermi-contact HFI which applies
to semiconductor conduction band electrons; for the holes
the dipolar HFI needs to be considered [35,36]. In this work
we are interested in the pure dephasing regime where no
longitudinal relaxation hence qubit spin-flip takes place. This
process becomes crucial in quantum information data writing
stage where the spin flip-flop part of the HFI is set to resonance
by applying a suitable external static magnetic field; but during
the storage it is intentionally detuned by turning off this field to
maintain coherence [37]. In general, for the so-called nuclear
spin nonsecular part of the HFI, we refer to Cywiński et al. for
conditions on how it can be ignored [38].

Furthermore, due to fixed lattice spacing in a solid state
environment that limits the proximity of two neighboring
spins, the dipole-dipole interaction typically proceeds within
millisecond or longer durations [7]. This makes it more than
three orders of magnitude slower than that of the HFI and can
be safely discarded within the time frame under consideration
here [10,11]. In connection to this, we should point out that we
consider a single realization of NSB, as opposed to ensemble
averaged calculations as in the seminal work of Ref. [10]. The
latter particularly wipes out the coherent oscillations in LE
by removing some of the integrals of motion which could be
justified in the presence of dipole-dipole interaction [39]. As
mentioned above, our work does not apply to this long-term
regime.

Another related effect is the indirect HFI originating from
the mean nuclear polarization which leads to additional nuclear
spin precession [40]. It plays a role in the relaxation of the
electron spin transverse polarization [41–43]. However, since

we focus on the NSB dynamics this indirect HFI can be
practically omitted when the electron Knight field is high
enough [40]. Finally, the presence of an external magnetic field
will result in a negligible Zeeman splitting in comparison to
HFI because of the very small nuclear magnetic moment [27].
Under these conditions the Hamiltonian in Eq. (11) can serve
as a good model for studying the evolution of NSB coherence
subject to HFI of the central spin [30], along with QI where
applicable.

III. RESULTS

A. Study of basic dependencies

We would like to gain a functional understanding of LE
by probing separately the dependency on key variables before
we confront realistic cases. In this section, we prefer to use
normalized time and frequency, defined with respect to the
mean value of hf coupling constants, Ā = ∑N

i=1 Ai/N , so that
the normalized time becomes t̃ ≡ tĀ and the normalized fre-
quency is f̃ ≡ f/Ā. We should note that other normalization
schemes also exist in the literature [16,17,44].

We begin by analyzing a typical temporal behavior of LE
of a spin-1/2 reservoir composed of N = 1000 nuclei, each
initially starting as a coherent spin state |θi, φi〉 with the angles
chosen randomly from a uniform distribution over the full
Bloch sphere. The hf coupling constants of the spins in NSB are
inevitably detuned from each other even for the homonuclear
case due to spatial variation of the central electron wave
function over the lattice. We assume a uniform spread in hf
coupling constants with a maximum deviation of 0.025Ā. As a
matter of fact, this is quite small compared to actual cases, but
our aim here is to demonstrate the level where it starts to inflict
a significant effect. Figure 1 (top) shows the initial dephasing in
LE followed by diminished-amplitude rephasings, all of which
of the same Gaussian profile with equal half-widths. The lower
panel of Fig. 1 displays the dependency of size N ; as expected,
larger NSB exhibits faster dephasing, which is in agreement
with the experimental observation that the decoherence rate
increases with the number of dynamically coupled spins [23].
For a sufficiently large NSB (such as N � 1000 here) these
echos are periodic of the form [cos t̃]αNI with a Gaussian
revival envelope.

Coherence time and the revival amplitudes highly depend
on the initial bath polarization, which is illustrated on the
upper plot of Fig. 2. Here, for each nuclear spin we choose
an initial coherent spin state to be centered at the polar angle
θi that is within a cone defined by the angle θp > θi which
approaches π for the limit of unpolarized NSB (i.e., over
the full Bloch sphere). Thus, this introduces a nonvanishing
initial Overhauser field that persists in time within the pure
dephasing model. As observed in this plot higher polarization
of NSB results in increased echo amplitudes together with a
wider half-width. In the lower part of Fig. 2, this time we study
the effect of different spread of hf coupling constants, where
�Amax is the maximum deviation from the NSB mean value
(i.e., �Amax = max{|Ai − Ā|}). The form [cos t̃]αNI deduced
from Fig. 1 implies that there should be no change in echo
widths since the mean value of coupling constants (Ā) remains
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0.0

0.2

0.4

0.6

0.8

1.0

M
(t

)

HW = 0.04 HW = 0.04 HW = 0.04

10−2 10−1 100 101

normalized time (tĀ)
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FIG. 1. Top: LE for N = 1000. Insets show the half-width (HW)
of revivals. Bottom: Effect of different numbers of nuclear spins, N ,
forming the bath. In all cases I = 1/2, �Amax = 0.025Ā, and initial
bath coherent spin states are uniformly distributed over the Bloch
sphere.

same, which is indeed confirmed by this figure. Moreover, a
narrower hf distribution causes larger rephasing amplitudes.

Next, we study the dependency on the nuclear spin quantum
number I . As this value is increased from 1/2 up to 9/2 its
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FIG. 2. Top: Effect of initial nuclear spin polarization (θp) on
LE, �Amax = 0.025Ā. Bottom: Effect of spread in the hf coupling
constants (�Amax) of individual nuclear spins; initial bath coherent
spin states are uniformly distributed over the Bloch sphere. In all cases
N = 100, I = 1/2.
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FIG. 3. Comparison of different spin-I values. Top: Temporal
behavior; the inset illustrates the coalescence of the family of curves
under the indicated normalization. Bottom: Spectral behavior. In all
cases N = 1000, �Amax = Ā, and the initial bath spins are uniformly
distributed over the Bloch sphere.

eigenspectrum gets denser, and more closely resembles a clas-
sical spin when I � 1 [45,46]. Figure 3 (top) shows that the LE
width decreases with increasing I , as it directly increases the
mean hf field, causing faster nuclear spin precession, and hence
faster dephasing. These family of curves coalesce to a single
one (see the inset of Fig. 3) under the tĀ

√
I timescaling. The

lower panel in Fig. 3 displays the corresponding power spectra
of the temporal behavior. As our primary aim is to compare
spectral broadenings under various cases, here and throughout
this work each spectrum is vertically shifted to set its dc limit
to 0 dB. This facilitates verifying the widening of LE spectrum
in proportion to

√
I for homospin-I NSBs.

An analytical derivation of LE for a general NSB would
be highly desirable, but it has remained a formidable task.
Cucchietti et al. obtained a form valid under restrictive as-
sumptions and only for spin-1/2 baths [47]. On the other hand
our controlled-parameter studies as summarized in Figs. 1–
3 lead to a widely applicable phenomenological expression
given by

M (t̃ ) ∼ exp[−NI (αp sin2(t̃ ) + βpσ 2 t̃2)], (12)

where σ 2 is the variance of the hf coupling constants and
αp, βp are NSB polarization-dependent fitting parameters. It
faithfully captures all of the size, spin-I , and hf coupling
inhomogeneity dependencies of both echo periodicity and
amplitudes for N � 1000 NSBs, and has a Gaussian form.
Specifically, it predicts that the inhomogeneous broadening in
hf couplings has no effect on the initial coherence decay rate
(see the bottom panel in Fig. 2), which is instead controlled by
the NI product, together with the initial bath polarization as
shown in Figs. 1–3.
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FIG. 4. Effect of QI on unpolarized (θp = π ) and polarized
(θp = π/8) NSBs with (top) I = 3/2 and (bottom) I = 9/2, for two
different N values with �Amax = Ā.

So far, we have only included the hf coupling of each
nucleus with the central spin [Eq. (1)]. In the case of quadrupo-
lar NSBs having I � 1, the QI as described by Eq. (10)
becomes operational. In Fig. 4 the temporal behaviors of LE
of spin-3/2 and -9/2 NSBs are compared for various mean
f̄Q = ∑N

i=1 fQi/N rates from weak to strong coupling limits.
We should point out that the QI has a null effect on LE for
a nuclear spin under ηi = 0, i.e., at a uniaxial electric field
gradient site [29]. This is because the (Î z

i )2 term in Eq. (10)
commutes with the ±Î z

i parts of HFI; that is, the fluctuations
caused by (Î±

i )2 terms are critical, and, together with them,
the (Î z

i )2 term imposes a nontrivial outcome on the dynamics.
This necessitates η > 0, where for alloy quantum dots (like
InxGa1−xAs) η ∼ 0.2–0.6 [28]. Since ηi term appears in the
product with fQi in Eq. (10), for simplicity we fix the former to
ηi = 0.5 for all nuclear spins, and let �fQ,max = 0.2f̄Q. The
distribution of hf coupling constants is taken as �Amax = Ā,
which prohibits any revival of LE beyond the initial decay, as
inferred from Fig. 2. We can mention that its precise value
is not critical, as a choice of, say, �Amax = 0.25Ā generates
indiscernible results within our time frame of interest. In such
a practical setting, we first observe that, for a given bath size N ,
as QI gets stronger it causes a faster decay, and hence broadens
the frequency spectrum of LE. Moreover, the contribution of
QI is much more pronounced on polarized NSBs (minding
the logarithmic timescale in Fig. 4), acting in the direction to
depolarize NSB. Furthermore, we note that the significance of
QI decreases as the bath size N increases. This stems from
the fact that the (normalized) first decay rate f̃1D , as can
be extracted from the variance of M (t̃ ) from Eq. (12), has

the dependence f̃1D ∝ √
NI , so that, for a given f̄Q, as N

increases so does f̃1D , rendering ineffective the QI within the
first decay time frame of the LE.

B. Realistic solid-state models

In the light of these basic findings we are ready to compute
and interpret LE of realistic NSBs, for which we choose a
donor/defect center within a semiconductor host matrix, and
a lateral quantum dot, to represent small and large reservoir
cases, respectively. For the spatial distribution of hf coupling
constants the electron envelope wave function is chosen to be
of the form [44]

�(ri ) = �(0) exp

(
− r2

i

2l2
0

)
, (13)

where ri is the distance of the ith nuclear site from the origin
and l0 is the electron confinement radius. In our choice, the
NSB constitutes all the nuclei with |�(ri )/�(0)| > 10−3. An
effective number of spins Neff can be defined as [11]

Neff = ρ
4πl3

0

3v0
, (14)

in terms of the ratio of spinful nuclei, ρ, and the volume
occupied by a single atom, v0, constrained by normalization
condition v0

∑
i |�(ri )|2 ≈ 1. For a typical donor center with a

radius of 5 nm, the number of effective spins is Neff = 100, and
the sum of coupling constants becomes

∑Neff
i=1 Ai ≈ 0.141 μeV

for the ratio of ρ ≈ 0.05 of spinful nuclei, as in silicon [48]. In
the case of a large NSB, we choose a disk-shaped quantum
dot where the electron envelope wave function is taken to
be Gaussian (uniform) in the radial (growth) direction, with
radius (height) 12.5 nm (3 nm). The effective number of spins
becomes Neff = 10 000, and the sum of couplings is estimated
as

∑Neff
i=1 Ai ≈ 70.856 μeV.

The LE power spectra for both systems are compared
in Fig. 5 under various parameters, which corroborates the
individual traits discussed in the previous section. First of all,
a finite initial polarization of the NSB significantly narrows
the spectrum compared to unpolarized one. Moreover, as
observed in Fig. 3, there occurs

√
I widening of the spectra for

spin-I NSBs. Apart from these common features, the generic
quantum dot system has about two orders of magnitude broader
frequency bandwidth compared to the donor center case, with
the latter being limited to a few megahertz. This directly
follows from their

√
Neff ratio, as demonstrated in the lower

part of Fig. 1 and Eq. (12). Hence, for a spin-9/2 quantum
dot (as with indium nuclei) the power spectrum can spread
to some 100 MHz. Regarding QI, the quadrupolar frequency
dictated by strain is typically in the range fQ ∼ 2–8 MHz for
typical quantum dots [28], and 3–6 MHz for defect centers, as
in hexagonal BN flakes [49]. In our examples here, the mean
hf coupling constant Ā is about 0.34 MHz (1.7 MHz) for the
donor center (quantum dot), so as a representative value we
consider f̄Q/Ā = 10, along with ηi = 0.5. From Fig. 5 it can
be seen that QI is ineffective on LE for a large quantum dot,
whereas it has an influence on the donor center with polarized
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FIG. 5. Power spectra of LE for realistic systems under different
spin-I , polarization (θp) and quadrupolar frequencies (f̄Q). Top:
Donor center, Neff = 100. Bottom: Lateral quantum dot, Neff =
10000. For the bottom case, f̄Q/Ā = 0, 10 curves become indis-
cernible for each I .

NSB having a small NI product, in line with our conclusions
from Fig. 4 and Eq. (12).

Finally, we would like to comment on the utility of such
power spectra as in Fig. 5. In simple terms, they specify the
characteristic bandwidth of HFI and QI fluctuations in relation
to the qubit coherence. As such, this may help to assess the
efficacy of the dynamical decoupling techniques [20]. In a more
specific context, the spectrum of NSB hf fluctuations plays
a crucial role in the recently discovered hf-mediated electric
dipole spin resonance, in the form of both driving and detuning
it [50,51].

IV. CONCLUSIONS

HFI is commonly the dominant process that governs the
short-term dynamics of the NSB in solid state systems [11].
The analysis of the hf-induced quantum fluctuations can be
worthwhile for various practical settings, such as prolong-
ing the qubit coherence in the storage phase of quantum
registers [42,52], or for obtaining indistinguishable photons
from quantum dots having a resident electron [53]. This work
offers a simple theoretical exposition via the temporal and
spectral characterization of the LE, which is an experimentally
measurable correlation for the degradation of the information
contained in a quantum state in nanoscale NSBs [23,24]. We
extract basic dependencies on various reservoir parameters like
size, initial polarization, coupling inhomogeneity, and spin
quantum number, and we suggest a phenomenological LE
expression. We hope that it may also initiate further theoretical
studies for its rigorous derivation.

Additionally, the effect of QI on LE is taken into account
for the quadrupolar nuclei which are prevalent in III-V semi-
conductors. In particular, it is the QI biaxiality term that has
important ramifications on the qubit decoherence. From the
moderate coupling regime onwards (f̄Q � Ā) QI causes a
faster decay of initial coherence that gets more pronounced for
polarized and small NI -product NSBs. Lastly, we contrasted
two realistic cases of a donor center and a quantum dot
representing small and large NSBs, respectively. Here, for
quantum dots with NI � 5000, the LE spectrum can stretch
to 100 MHz range, and the effect of QI is rather negligible. On
the other hand, for donor centers, as this width narrows down
by more than an order of magnitude the dynamical decoupling
techniques become feasible, and at the same time QI can show
its influence.

Throughout our work we excluded the intrabath interactions
which come into play in the lower frequency regime. To extend
it to this long-term dynamics where new experimental findings
are available [54], or alternatively to study spin diffusion
phenomena [55], efficient many-body techniques specifically
devised for handling a large number of spins, like the cluster-
correlation expansion, can be invoked [52,56].
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APPENDIX: SOME EXPRESSIONS ON LE

A coherent spin state |� = (θ, φ)〉 can be expressed as

|�〉 =
m=I∑

m=−I

(
2I

I + m

)1/2

[cos(θ/2)]I+m

× [sin(θ/2)]I−me−i(I−m)φ |m〉. (A1)

Initially at t = 0, the overall bath state can be expressed as
the tensor product of spin coherent states, meaning for this
one-body Hamiltonian we can compute L(t ) as the product of
individual spin evolutions. Then, Eq. (5) becomes

L(t ) =
N∏

i=1

〈�i (0)|e−i2Ai Î
z
i t |�i (0)〉, (A2)

from which we can directly arrive at

L(t ) =
N∏

i=1

⎧⎨
⎩

Ii∑
mi=−Ii

W
mi

i e−i2Aimi t

⎫⎬
⎭ (A3)

after carrying out inner products. We can rewrite Eq. (A3)
as

L(t ) =
N∏

i=1

Li (t ), (A4)
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where

Li (t ) =
Ii∑

mi=−Ii

W
mi

i e−i2Aimi t . (A5)

The Fourier transform of L(t ) becomes the convolution of
all Li (f ) in the frequency domain in the form

L(f ) = L1(f ) ∗ L2(f ) ∗ · · · ∗ LN (f ). (A6)

Then, calculating Li (f ) yields

Li (f ) =
∫ ∞

−∞
e−i2πf

Ii∑
mi=−Ii

W
mi

i e−i2Aimi t dt,

=
Ii∑

mi=−Ii

W
mi

i

∫ ∞

−∞
e−i2πf e−i2Aimi t dt,

=
Ii∑

mi=−Ii

W
mi

i δ(f + Aimi/π ). (A7)

Inserting this expression into Eq. (A6) leads to

L(f ) =
∑

m1,m2,...,mN

(
N∏

i=1

W
mi

i

)
δ

(
f + 1

π

N∑
i

miAi

)
. (A8)

Similarly, for its complex conjugate we have

[L(f )]∗ =
∑

m′
1,m

′
2,...,m

′
N

⎛
⎝ N∏

j=1

W
m′

j

j

⎞
⎠δ

⎛
⎝f − 1

π

N∑
j

mjAj

⎞
⎠.

(A9)

Hence, the Fourier transform of LE, M (f ) = L(f ) ∗ [L(f )]∗,
is given by the expression

M (f ) =
∑

m1,m2, . . . , mN ,

m′
1, m

′
2, . . . , m

′
N

(
N∏

i=1

W
mi

i W
m′

i

i

)

× δ

[
f + 1

π

N∑
i

(mi − m′
i )Ai

]
. (A10)
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