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Enhanced polymer capture speed and extended translocation time in pressure-solvation traps
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The efficiency of nanopore-based biosequencing techniques requires fast anionic polymer capture by like-
charged pores followed by a prolonged translocation process. We show that this condition can be achieved by
setting a pressure-solvation trap. Polyvalent cation addition to the KCl solution triggers the like-charge polymer-
pore attraction. The attraction speeds-up the pressure-driven polymer capture but also traps the molecule at the pore
exit, reducing the polymer capture time and extending the polymer escape time by several orders of magnitude.
By direct comparison with translocation experiments [D. P. Hoogerheide et al., ACS Nano 8, 7384 (2014)], we
characterize as well the electrohydrodynamics of polymers transport in pressure-voltage traps. We derive scaling
laws that can accurately reproduce the pressure dependence of the experimentally measured polymer translocation
velocity and time. We also find that during polymer capture, the electrostatic barrier on the translocating molecule
slows down the liquid flow. This prediction identifies the streaming current measurement as a potential way to
probe electrostatic polymer-pore interactions.
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I. INTRODUCTION

The 21st century has brought the convergence of previously
independent scientific disciplines with the aim of understand-
ing complex structures. Biopolymer analysis by nanotechno-
logical approaches is a clear example of this scientific turnover
[1,2]. Along these lines, driven polymer translocation has
recently undergone rapid progress [3–13]. Serial sequencing
of biopolymers by means of a simple nanopore and an applied
voltage offers clear advantages over alternative biosensing
techniques that require the biochemical or mechanical mod-
ification of each molecule before sequencing.

The predictive design of polymer translocation devices
necessitates primarily the characterization of the electrohydro-
dynamic and entropic effects governing this highly complex
transport process. The entropic contributions from polymer
conformations and steric polymer-pore interactions during
translocation have been scrutinized by Brownian simulations
[14–17] and the tension propagation theory [18–20]. The
electrohydrodynamics of polymer translocation has been con-
sidered both by numerical simulations and continuum theo-
ries. Monte Carlo (MC) studies by Luan and Aksimentiev
investigated the effect of the electroosmotic (EO) flow [21,22]
and DNA mobility reversal by polyvalent counterions [23].
By Brownian simulations coupled with a Fokker-Planck (FP)
approach, the authors of Ref. [24] analyzed the electrostatic
barrier acting on polymers translocating through α-hemolysin
pores. In Ref. [25], the effect of dipoles placed on the polymer
surface was modeled with the aim of extending the transloca-
tion time of the molecule.

Theoretical formulations of purely voltage-driven poly-
mer transport have been mostly based on mean-field (MF)
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Poisson-Boltzmann (PB) electrostatics and hydrodynamic
Navier-Stokes equation. Along these lines, the pioneering drift
transport theory developed by Ghosal allowed the consistent
derivation of the DNA translocation velocity in terms of the
electrophoretic (EP) and EO velocity components [26,27].
Ghosal’s midpore approximation was subsequently relaxed
by Lu et al. via the numerical solution of the coupled PB
and Stokes equations [28]. The effect of polymer-pore inter-
actions on the unzipping of a DNA hairpin was studied in
Ref. [29]. Wong and Muthukumar investigated the role played
by the EO flow during diffusion-limited polymer capture by
a positively charged pore [30]. Additional models considering
the nonequilibrium dynamics of the translocation process on
polymer capture [31,32] have been compared with experiments
[33]. The details of the polymer hydrodynamics have been
also investigated in Refs. [34–36] by continuum approaches.
In Ref. [37], we characterized the correlation-corrected elec-
trohydrodynamics of polymer translocation without the con-
sideration of polymer-pore interactions. Then in Ref. [38], we
incorporated into the electrohydrodynamic transport model of
Ref. [27] the repulsive barrier originating from electrostatic
polymer-pore interactions at the MF level. This improvement
extended the drift formalism of Ref. [27] to include the
barrier-limited capture regime prior to translocation. Finally,
we have recently extended our purely voltage-driven translo-
cation model of Ref. [38] beyond MF level and identified
an electroosmotically facilitated polymer capture mechanism
[39].

Polymers can alternatively be transported by an externally
applied hydrostatic pressure gradient between the cis and
trans sides of the membrane. The pressure gradient induces
a streaming flow through the pore. The drag force exerted by
this streaming current carries the polymer from the cis to trans
side of the membrane. At the theoretical level, streaming flow-
driven polymer transport has received less attention than its
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electrohydrodynamic counterpart. Solving Edward’s polymer
diffusion equation, Stein et al. studied entropic effects on
polymer transport through nanoslits [40]. In Ref. [41], we
predicted ionic correlation-induced streaming current inver-
sion in pressure-driven polymer translocation events. At this
point, we note that the precision of polymer translocation
requires, among other factors, the extension of the translocation
time on polymer capture [7]. Translocation experiments by
Hoogerheide et al. showed that this goal can be achieved by
setting a pressure-voltage trap, which consists of imposing a
pressure gradient with the aim of counterbalancing the external
voltage [12,13]. It was observed that the resulting suppression
of the net drift force allows us to trap the translocating molecule
without causing significant perturbation of the ionic current
signal. Via the numerical solution of the electrohydrodynamic
formalism of Ref. [28] coupled with an effective diffusion
equation, the experimental data of translocation time was also
interpreted in Ref. [13].

In this article, we characterize the additional effect of
direct electrostatic polymer-membrane interactions in polymer
translocation events driven by a pressure and a voltage. To
this end, in Sec. II, we extend the voltage-driven transport
model of Ref. [38] to include the streaming current induced by
an applied pressure gradient. Section III deals with the elec-
trohydrodynamic mechanism driving such a pressure-voltage
trap. First, we confront our theory with the experiments of
Ref. [13]. We show that our newly derived scaling laws (34) and
(37) can quantitatively describe the experimentally measured
evolution of the polymer translocation velocity and time with
the pressure gradient. Then, in terms of the experimentally
tunable system parameters, we fully characterize the polymer
conductivity of anionic pores under pressure-voltage traps. Our
theory also predicts that during polymer capture, like-charge
polymer-pore interactions transmitted to the liquid by the drag
force slow down the liquid flow. This suggests that the nature
and magnitude of electrostatic polymer-pore interactions can
be extracted from streaming current measurements.

In addition to a prolonged polymer translocation, the ef-
ficiency of nanopore-based sequencing methods requires fast
polymer capture by the pore. Considering that most of the
silicon-based solid-state pores carry negative surface charges
of high density [8], the technical challenge consists in driving
as fast as possible an anionic polymer into a like-charged pore
by overcoming the electrostatic polymer-pore repulsion. In
Sec. IV, we show that rapid polymer capture and extended
translocation can be mutually achieved by setting a pressure-
solvation trap driven by charge correlations. To this end,
we generalize the formulation of polymer pore-interactions
beyond the MF level. This extension is introduced within
the test charge theory of Ref. [42] explained in Sec. IV A.
We note that the test charge theory has been previously
shown to accurately describe the experimentally observed
similar charge attraction between polyelectrolytes [43,44] and
polymer-membrane complexes [45,46].

Within this correlation-corrected pressure-driven transport
formalism, we show that polyvalent cations added to the KCl
solution amplify electrostatic correlations and turn polymer-
pore interactions from repulsive to attractive. This like-charge
attraction enhances the polymer capture speed but also traps
the molecule at the pore exit, reducing the barrier-limited

polymer capture time and extending the polymer escape time
by several orders of magnitude. This result is the key prediction
of our work. We note that a similar trapping mechanism
resulting from the inversion of the fixed pore charge on pH
variation has been experimentally observed in translocation
events in α-hemolysin pores [47]. In terms of the experimen-
tally controllable system parameters, we throughly identify
the parameter regime maximizing the enhancement of the
polymer capture speed and escape time by the electrostatic
trap. It should be noted that this trapping mechanism differs
from the facilitated polymer capture process of Ref. [39]
where the polymer capture speed is enhanced by the EO flow
rather than polymer-pore interactions. The approximations and
possible improvements of our model are elaborated on under
Conclusions.

II. TRANSLOCATION MODEL

Our translocation model is depicted in Fig. 1. The cylin-
drical nanopore of radius d, length Lm, and negative surface
charge density −σm is in contact with a reservoir containing
the KCl electrolyte, a multivalent cation species of valency
q > 0, and anionic polymers of low concentration whose
interactions can be neglected. The reservoir concentration of
the ionic species i is ρbi , and the bulk electroneutrality reads
ρb+ − ρb− + qρbq+ = 0. The dielectric permittivities of the
pore and the membrane are, respectively, εw = 80 and εm = 2.
Considering that dsDNA has a large persistence length of about
50 nm, we neglect conformational polymer fluctuations. Thus,
the translocating polymer is modelled as a rigid cylinder of
length Lp and typical radius a = 1 nm of dsDNA molecules.
The discrete helicoidal charge distribution on the DNA back-
bone is approximated by a continuous surface charge density
−σp, with the numerical value σp = 0.4 e/nm2 previously
obtained by fitting experimental current blockage data [37].
Polymer translocation from the cis to trans side occurs under
the effect of the applied voltage �V and pressure �P , and the

FIG. 1. Schematic depiction of the pore with length Lm, radius d ,
and negative wall charge density −σm. The confined solution includes
monovalent K+ and Cl− ions, and multivalent cations of valency q.
The dielectric permittivities of the pore and the membrane are εw =
80 and εm = 2. The polymer of length Lp , radius a, charge density
−σp , and the right end position zp translocates under the effect of the
pressure gradient �P = Pc − Pt and voltage �V = Vt − Vc. The
electric field E = −Eûz has magnitude E = �V/Lm.
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potential barrier Vp(zp) resulting from electrostatic polymer-
membrane interactions.

The translocation dynamics is characterized by the polymer
number density c(zp,t) satisfying the Smoluchowski equation
[31,48]

∂tc(zp,t) = −∂zp
J (zp,t), (1)

J (zp,t) = −D∂zp
c(zp,t) + vp(zp)c(zp,t), (2)

where zp is the position of the polymer with diffusion coef-
ficient D = ln(Lp/2a)/(3πηLpβ) [49,50], with the inverse
thermal energy β = 1/(kBT ), the Boltzmann constant kB ,
the liquid temperature T = 300 K, and the solvent viscosity
η = 8.91 × 10−4 Pa s. Furthermore, J (zp,t) stands for the net
polymer flux through the pore, with the polymer velocity

vp(zp) = −βDU ′
p(zp), (3)

where Up(zp) is the polymer potential that will be derived be-
low. At steady state with constant polymer density, ∂tc(zp,t) =
0, the integration of the uniform flux condition J (zp,t) = J0

together with the fixed density condition at the pore entrance
c(zp = 0) = ccis and an absorbing boundary at the pore exit
c(zp = Lp + Lm) = 0 yields the polymer number density in
the form

c(zp) = ccise
−βUp(zp)

∫ Lp+Lm

zp
dz eβUp(z)

∫ Lp+Lm

0 dz eβUp(z)
. (4)

Moreover, the translocation rate defined as the polymer current
per density Rc ≡ J0/ccis follows as

Rc = D∫ Lm+Lp

0 dzeβUp(zp)
. (5)

We finally note that in the dilute polymer regime where
polymer interactions are negligible, the number density (4)
is equivalent to the polymer probability function.

The following part generalizes the electrohydrodynamic
transport model of Ref. [38] to include the pressure gradient.
In order to derive the polymer potential Up(zp), we introduce
first the PB and Stokes equations for the electrostatic potential
φ(r) and convective fluid velocity uc(r) in the pore,

1

r
∂r [r∂rφ(r)] + 4π�B[ρc(r) + σ (r)] = 0, (6)

η

r
∂r [r∂ruc(r)] − eρc(r)E + �P

Lm

= 0, (7)

with the radial distance r from the pore axis, the Bjerrum length
lB = βe2/(4πεw), the electron charge e, and the density of
mobile charges ρc(r) = ∑3

i=1 qiρbie
−qiφ(r) and fixed charges

σ (r) = −σmδ(r − d) − σpδ(r − a). In Eqs. (6) and (7), the
cylindrical symmetry of the model was preserved by neglecting
electrohydrodynamic edge effects associated with the finite
pore length. This approximation is justified by the fact that the
pore and polymer lengths considered in our work are much
larger than the Bjerrum length �B ≈ 7 Å corresponding to the
spatial scale where finite electrohydrodynamic size effects on
polymer capture would be relevant. In Sec. III B, this point
will be confirmed by comparison with experiments. Now, we
combine the PB and Stokes Eqs. (6) and (7) to eliminate the

density ρc(r), and integrate the result with the no-slip boundary
condition at the pore wall uc(d) = 0 and at the DNA surface
uc(a) = vp(zp). Finally, we account for Gauss’s law φ′(a) =
4π�Bσp and the force balance relation on the polymer Fel +
Fdr + Fb = 0, with the electrostatic force Fel = 2πaLpeE, the
drag force Fdr = 2πaLpηu′

c(a), and the barrier-induced force
Fb = −V ′

p(zp). After some algebra, the liquid and polymer
velocities follow as

uc(r) = μeE[φ(d) − φ(r)] − βDp(r)
∂Vp(zp)

∂zp

+ �P

4ηLm

[
d2 − r2 − 2a2 ln

(
d

r

)]
, (8)

vp(zp) = vdr − βDp(a)
∂Vp(zp)

∂zp

, (9)

with the effective diffusion coefficient in the pore

Dp(r) = ln(d/r)

2πηLpβ
, (10)

EP mobility coefficient μe = εwkBT /(eη), and the drift veloc-
ity component

vdr = μe�V

Lm

[φ(d) − φ(a)] + γ a2�P

4ηLm

, (11)

where

γ = d2

a2
− 1 − 2 ln

(
d

a

)
. (12)

Combining Eqs. (3) and (9), and integrating the result, the
effective polymer potential that determines the density (4)
finally becomes

Up(zp) = Dp(a)

D
Vp(zp) − vdr

βD
zp. (13)

In Eq. (13), the interaction potential corresponds to the
electrostatic coupling energy between the fixed pore and
polymer charges,

Vp(zp) = ��p[lp(zp)], (14)

where ��p(lp) stands for the electrostatic grand potential
of the polymer portion located in the pore. The position-
dependent length of this portion reads

lp(zp) = zpθ (L− − zp) + L−θ (zp − L−)θ (L+ − zp)

+(Lp + Lm − zp)θ (zp − L+), (15)

with the auxiliary lengths

L− = min(Lm,Lp); L+ = max(Lm,Lp). (16)

The explicit form of the polymer grand potential ��p(lp) in
Eq. (14) will be specified in Secs. III and IV according to the
approximation level.

III. PRESSURE-VOLTAGE TRAPS

We characterize here the pressure-voltage-driven transloca-
tion of polymers in the monovalent KCl solution of reservoir
concentration ρb. Electrostatic correlations being negligible in
monovalent electrolytes, charge interactions will be formulated
within MF electrostatics.
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A. Computation of the drift velocity and electrostatic barrier

According to Eq. (11), the computation of the drift velocity
vdr in Eq. (13) requires the knowledge of the pore potential
φ(r). In the cylindrical pore geometry, the corresponding PB
Eq. (6) does not possess a closed-form solution. Within an
improved Donnan approximation that allows us to preserve
the nonlinearity of Eq. (6), the pore potential was derived in
Ref. [38] in the form

φ(r) = − ln(t +
√

t2 + 1) + 8π�B

κ2
d

σmd + σpa

d2 − a2

+ 4π�B

κd

T1I0(κdr) + T2K0(κdr)

I1(κda)K1(κdd) − K1(κda)I1(κdd)
. (17)

In Eq. (17), we introduced the ratio of the membrane and
pore charge densities t = (dσm + aσp)/[ρb(d2 − a2)], the
auxiliary coefficients T1 = σmK1(κda) + σpK1(κdd) and T2 =
σmI1(κda) + σpI1(κdd) with the modified Bessel functions
Im(x) and Km(x) [51], and the effective pore screening and
bare Debye-Hückel parameters

κd = κb(1 + t2)1/4; κb =
√

8π�Bρb. (18)

Inserting the potential (17) into Eq. (11), the drift velocity
becomes

vdr = 4π�Bμe��V

κdLm

+ γ a2�P

4ηLm

, (19)

with the auxiliary coefficient

�= T1[I0(κdd) − I0(κda)] + T2[K0(κdd) − K0(κda)]

I1(κda)K1(κdd) − K1(κda)I1(κdd)
. (20)

The MF level interaction energy between the polymer
portion in the pore and the fixed pore charges reads

β��p(lp) =
∫

drσp(r)φm(r). (21)

The polymer charge density is

σp(r) = −σpδ(r − a)θ (z)θ (lp − z). (22)

The electrostatic potential φm(r) induced exclusively by the
pore charges follows from Eq. (17) by setting σp = 0,

φm(r) = − ln
(
tm +

√
t2
m + 1

) + 4

μmκ2
m

d

d2 − a2

+ 2

μmκm

K1(κma)I0(κmr) + I1(κma)K0(κmr)

I1(κma)K1(κmd) − K1(κma)I1(κmd)
, (23)

with the charge ratio tm = dσm/[ρb(d2 − a2)], the screening
parameter κm = κb(1 + t2

m)1/4, and the Gouy-Chapman length
μm = 1/(2π�Bσm). Substituting the charge density (22) into
Eq. (21), the interaction potential (14) finally becomes

Vp(zp) = −2πaσpkBT φm(a)lp(zp). (24)

In an anionic pore where φm(a) < 0, the potential (24) rises
with the penetration length lp. Thus, this potential acts as an
electrostatic barrier that limits the polymer capture. Finally,
introducing the characteristic inverse lengths associated with
the drift (19) and the barrier (24),

λd = vdr

D
; λb = −2πaσpφm(a)

Dp(a)

D
, (25)

FIG. 2. (a) Average polymer velocity 〈vp〉 and (b) translocation
time τp = (Lm + Lp)/〈vp〉 versus pressure. Solid curves are from
Eq. (29) and squares mark the linear result (30). The experimental
velocity data in (a) are from Fig. S3 of the supplemental information
of Ref. [13]. The data of average escape time in (b) are from Fig. 4(b)
of Ref. [13]. The model parameters are given in the main text.

the polymer velocity (9) and potential (13) follow as

vp(zp) = vdr − Dλb

[
θ (L− − zp) − θ (zp − L+)

]
, (26)

βUp(zp) = λblp(zp) − λdzp. (27)

B. Comparison with trapping experiments

Using the polymer density function (4) and Eqs. (26) and
(27), we calculate first the average polymer velocity

〈vp〉 =
∫ Lp+Lm

0 dzpc(zp)vp(zp)∫ Lp+Lm

0 dzpc(zp)
. (28)

Carrying out the integrals in Eq. (28), one obtains

〈vp〉 = vdr − Dλb

J1 − J3

J1 + J2 + J3
, (29)

where the coefficients Ji=1,2,3 depending on the parameters
λd,b and L± are reported in Appendix. In Fig. 2(a), we display
the pressure dependence of the velocity (29) together with the
experimental velocity data of Ref. [13]. The experimental pa-
rameters taken from Ref. [13] are the voltage �V = −100 mV,
the salt density ρb = 1.6 M, the monomer number N =
615 bps corresponding to the polymer length Lp = 180 nm,
and the pore radius d = 5 nm. The pore length and charge
density were adjusted to the values Lm = 200 nm [52] and
σm = 0.13 e/nm2 that provided the best agreement with the
magnitude of the velocity data. The charge density value
is comparable with the experimental value ∼30 mC/m2 ≈
0.18 e/nm2 measured at the solution pH ∼ 8 [53] where the
translocation experiments of Ref. [13] were carried out.
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In the barrier-driven regime λb � λd , Eq. (29) simplifies to
〈vp〉 ≈ D(λd − λb). Passing to the linear PB approximation,
and expanding the inverse lengths of Eq. (25) in terms of σp

and σm, the velocity follows as

〈vp〉 ≈ fpσp − fmσm

gκbη

e�V

Lm

+ γ a2�P

4ηLm

− e2σpσm ln(d/a)

gηεwκ2
bLp

,

(30)
where we introduced the geometric coefficients

fp = K1(κbd)I0(κba) + I1(κbd)K0(κba) − (κbd)−1, (31)

fm = K1(κba)I0(κbd) + I1(κba)K0(κbd) − (κba)−1, (32)

g = I1(κbd)K1(κba) − I1(κba)K1(κbd). (33)

The approximation (30) derived in the barrier-dominated
regime will be shown to work as well in the drift-driven regime
λb 	 λd , where 〈vp〉 ≈ Dλd ≈ D(λd − λb).

The first component of Eq. (30) accounts for the EP
drift (positive term) and the EO drag (negative term). The
second and third components originate respectively from the
streaming current, and the electrostatic barrier induced by like-
charge polymer-membrane repulsion that hinders the polymer
capture. Equation (30) reported in Fig. 2(a) indicates that as
a result of the drag force induced by the streaming flow, the
average velocity rises linearly with pressure as

〈vp〉 ≈ γ a2

4ηLm

(�P − �P ∗), (34)

with the critical pressure for polymer trapping

�P ∗ = −4(fpσp − fmσm)

γga2κb

e�V + 4 ln(d/a)e2σpσmLm

γga2εwκ2
bLp

.

(35)

A successful translocation requires the polymer to travel
the distance Lm + Lp. The translocation time can thus be
estimated in terms of the velocity (29) as

τp ≈ Lm + Lp

〈vp〉 . (36)

Figure 2(b) shows that with the same parameters as in Fig. 2(a),
this theoretical estimation can accurately reproduce the experi-
mental escape times of Ref. [13]. The linear PB approximation
for τp obtained from Eq. (34)

τp ≈ 4ηLm(Lp + Lm)

γ a2(�P − �P ∗)
(37)

indicates that the quick rise of the experimental escape time
with decreasing pressure occurs according to an inverse power
law (see the square symbols).

C. Effect of salt, polymer length, and pore size

We scrutinize here the effect of the experimentally tuneable
parameters on polymer trapping. Figures 3(a) and 3(b) illus-
trate the salt dependence of the polymer velocity and also show
the accuracy of the approximation (30) (square symbols). In
Fig. 3(a) where translocation is driven by the streaming current
(�P > 0) and limited by voltage (�V < 0), the increment of

FIG. 3. [(a) and (b)] Salt dependence of the average polymer
velocity (29) at various pressure gradients. [(c) and (d)] The critical
pressure gradient (35) for polymer trapping. The voltage is �V =
−100 mV (left plots) and 100 mV (right plots). The other parameters
are the same as in Fig. 2.

the ion density rises the polymer velocity (ρb ↑ 〈vp〉 ↑) and
switches its sign from negative to positive. Thus, added salt
favors polymer capture. In order to gain analytical insight into
this effect, we expand Eq. (30) in the corresponding strong salt
regime κa � 1 and κd � 1 to obtain

〈vp〉 ≈ (σp − σm)e�V

ηLmκb

+ γ a2�P

4ηLm

. (38)

According to Eq. (38), the velocity increase by added salt
originates from the screening of the voltage-induced drift
opposing the polymer capture. Due to the same screening
effect, in Fig. 3(b) where polymer transport is driven by
voltage (�V > 0), added salt of high density (ρb � 0.1 M)
turns the velocity from positive to negative (ρb ↑ 〈vp〉 ↓)
and blocks polymer transport. Setting Eq. (38) to zero,
the ion concentration for polymer trapping in strong salt
follows as

ρb> ≈ 2

π�B

[
(σp − σm)e�V

γ a2�P

]2

. (39)

In agreement with Figs. 3(a) and 3(b), Eq. (39) predicts the
reduction of the characteristic salt density with increasing
pressure gradient, i.e., |�P | ↑ ρb> ↓.

In the dilute salt regime of Fig. 3(b), one notes the presence
of a second critical salt density where the velocity cancels. To
explain the origin of this reversal point, we expand Eq. (30)
for κa 	 1 and κd 	 1 to get

〈vp〉 ≈ (apσp − amσm)e�V

ηLm

+ γ a2�P

4ηLm

−da ln(d/a)

d2 − a2

kBT σpσm

ηLpρb

, (40)

with the auxiliary coefficients

ap = −a

2
+ ad2 ln(d/a)

d2 − a2
; am = d

2
− a2d ln(d/a)

d2 − a2
. (41)
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FIG. 4. (a) Critical polymer length (46) against the pressure �P at the voltage �V = 100 mV. (b) Liquid velocity (8) at vanishing voltage
�V = 0 and pressure �P = 2 atm. (c) Polymer velocity (29) against the pore radius at the voltage �V = 100 mV. The salt density in (b) and
(c) is ρb = 0.05 M. The other parameters are the same as in Fig. 2.

Equation (40) indicates that in Fig. 3(b), enhanced polymer
conductivity by added salt (ρb ↑ 〈vp〉 ↑) stems from the
screening of repulsive polymer-membrane interactions. Thus,
polymer trapping at dilute salt originates from the competition
between the drift force and the electrostatic barrier. The
corresponding salt concentration follows from Eq. (40) as

ρb< ≈ 4da ln(d/a)Lm

(d2 − a2)Lp

kBT σpσm

γ a2�P + 4(apσp − amσm)e�V
.

(42)

In accordance with Fig. 3(b), Eq. (42) predicts the rise of the
lower critical salt concentration by enhanced negative pressure,
i.e., |�P | ↑ ρb< ↑.

The phase diagrams of Figs. 3(c) and 3(d) illustrate the
salt dependence of the critical pressure (35). One sees that
regardless of the voltage sign, the critical pressure is reduced
by dilute salt, i.e., ρb ↑ �P ∗ ↓. The low ion density expansion
of Eq. (35)

�P ∗ ≈ −4(apσp − amσm)

γ a2
e�V + 4da ln(d/a)σpσmLm

βγ a2(d2 − a2)Lpρb

,

(43)

indicates that this behavior results from the screening of the
electrostatic barrier. In voltage-driven transport (�V > 0), this
trend is reversed in the strong salt regime where the critical
pressure rises, ρb ↑ �P ∗ ↑. The high density expansion of
Eq. (35)

�P ∗ ≈ −4(σp − σm)e�V

γ a2κb

(44)

shows that the rise of �P ∗ is due to the shielding of the voltage-
induced drift force on DNA.

We consider now the effect of the finite polymer length.
According to Eq. (43), in the dilute salt regime, the capture of
shorter polymers requires higher pressures, i.e., Lp ↓ �P ∗ ↑.
This finite-size effect is also displayed in Figs. 3(c) and 3(d).
The obstruction of polymer capture by finite molecular length
is due to the repulsive barrier term of Eq. (30); the streaming
current and voltage act on the whole polymer of length Lp

while the barrier affects solely the polymer portion in the pore.
Hence, the net drag force on the polymer decreases with the
length of the molecule. As a result, the polymer velocity (30)

drops with decreasing polymer length (Łp ↓ 〈vp〉 ↓) as

〈vp〉 ≈ vdr

(
1 − L∗

p

Lp

)
, (45)

with the critical molecular length for polymer trapping

L∗
p = 4e2σpσm ln(d/a)Lm

γ a2εwgκ2
b�P + 4εwκb(fpσp − fmσm)e�V

. (46)

Figure 4(a) shows that the competition between the barrier and
the streaming current results in the decay of the length (46) with
pressure, i.e., �P ↑ L∗

p ↓. As depicted in the same figure, the
dilute salt expansion of Eq. (46),

L∗
p ≈ 4da ln(d/a)Lm

(d2 − a2)ρb

kBT σpσm

γ a2�P + 4(apσp − amσm)e�V
,

(47)

predicts that the same competition leads to the decay of the
critical length with added salt, i.e., ρb ↑ L∗

p ↓.
During polymer capture (zp < L−), the electrostatic barrier

also affects the liquid velocity. For the sake of simplicity, we
consider a purely pressure-driven polymer transport and set
�V = 0. The linear PB limit of Eq. (8),

uc(r) = �P

4ηLm

[
d2 − r2 − 2a2 ln

(
d

r

)]

− σpσm

gηβρbLp

ln

(
d

r

)
, (48)

shows that the barrier slows down the streaming flow around
the DNA molecule. This effect is illustrated in Fig. 4(b).
The decrease of the polymer length enhances the barrier and
reduces the fluid velocity below the Poiseuille profile (black
curve), Łp ↓ uc(r) ↓. Below the critical length Lp = L∗

p ≈
160 nm, the velocity of the polymer and the surrounding liquid
becomes negative. This prediction suggests that the magnitude
of the electrostatic polymer-membrane interactions can be
extracted from the streaming current blockade in pressure-
driven translocation events.

We finally investigate the effect of pore confinement. Fig-
ure 4(c) shows that as a result the barrier attenuation, at positive
pressures �P � 0, the polymer velocity uniformly rises with
the pore radius, d ↑ 〈vp〉 ↑. The reduction of the translocation
time with increasing pore radius has been observed in voltage-
driven translocation experiments [10]. Then, at negative pres-
sures �P < 0, the velocity initially rises, reaches a peak, and
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decays at large pore radii (d ↑ 〈vp〉 ↓) where the streaming
current opposing the polymer capture overcomes the EP drift.
The cancellation of the polymer velocity at two different pore
radii is an observation of practical significance for the design
of polymer trapping devices.

IV. PRESSURE-SOLVATION TRAPS

In nanopore-based biosensing approaches, the improve-
ment of the sequencing precision necessitates the mutual en-
hancement of the capture speed and translocation time [3,7,8].
Here, we show that in purely pressure-driven translocation,
this goal can be achieved by adding polyvalent cations to the
KCl solution. At vanishing voltage �V = 0 where the drift
velocity (11) simplifies to

vdr = γ a2�P

4ηLm

, (49)

electrostatic interactions come into play only through the
interaction potential Vp(zp) in Eq. (13). In the presence of
polyvalent charges, the derivation of this potential requires the
computation of the polymer grand potential ��p(lp) beyond
MF electrostatics. Section IV A reviews the inclusion of the
corresponding charge-correlations within the one-loop (1l) test
charge theory developed in Refs. [42,44].

A. Correlation-corrected grand potential

In the 1l test charge theory, the correlation-corrected
polymer grand potential is calculated by approximating the
molecule by a charged line located on the pore axis. The
corresponding linear charge density is related to the surface
charge density of the cylindrical DNA molecule as τ = 2πaσp.
The polymer grand potential is obtained by expanding the
electrostatic grand potential of charged system at the quadratic
order in the polymer charge density σp(r) given by Eq. (22).
This expansion yields [44]

��p(lp) = ��mf (lp) + ��s(lp), (50)

with the MF component accounting for the direct electrostatic
coupling between the polymer and pore charges

β��mf (lp) =
∫

drσp(r)φm(r), (51)

and the polymer self-energy bringing 1l-level electrostatic
correlations

β��s(lp) = 1

2

∫
drdr′σp(r)[v(r,r′) − vb(r − r′)]σp(r′).

(52)

The MF-level grand potential component (51) includes
the polymer charge density (22) and the membrane-induced
potential φm(r) solving the PB equation

1

4π�Br
∂r [r∂rφm(r)] +

3∑
i=1

ρbiqie
−qiφm(r) = σmδ(r − d). (53)

Equation (53) cannot be solved in a closed form. The improved
Donnan solution of this equation was derived in Ref. [42] in

the form

φm(r) = φd + 4π�Bσm

κd

[
2

κdd
− I0(κdr)

I1(κdd)

]
, (54)

where the Donnan potential φd and screening parameter κd are
obtained from the relations

3∑
i=1

ρbiqie
−qiφd = 2σm

d
; κ2

d = 4π�B

3∑
i=1

ρbiq
2
i e

−qiφd .

(55)
Substituting the potential (54) into Eq. (51), one obtains

β��mf (lp) = lpψmf , (56)

where we introduced the MF grand potential density

ψmf = −τφd − τ
4π�Bσm

κd

[
2

κdd
− 1

I1(κdd)

]
. (57)

The polymer self-energy (52) includes the pore Green’s
function v(r,r′) solving the kernel equation

[∇ε(r)∇ − ε(r)κ2(r)]v(r,r′) = − e2

kBT
δ(r − r′), (58)

with the dielectric permittivity function ε(r) = εwθ (d − r) +
εmθ (r − d) and the local screening parameter

κ2(r) = 4π�B

3∑
i=1

ρbiq
2
i e

−qiφm(r)θ (d − r). (59)

Equation (52) also contains the bulk Green’s function vb(r) =
�Be−κb |r|/|r|, where the bulk screening parameter is

κ2
b = 4π�B

3∑
i=1

ρbiq
2
i . (60)

In Ref. [42], Eq. (58) was solved within a Wentzel-Kramers-
Brillouin (WKB) approach and the self-energy (52) was
obtained in the form

β��s(lp) = lpψs(lp), (61)

with the self-energy per polymer length

ψs(lp) = �Bτ 2
∫ ∞

−∞
dk

2 sin2(klp/2)

πlpk2

{
ln

[
pb

p(0)

]
+ Q(k)

P (k)

}
.

(62)

The auxiliary functions in Eq. (62) are defined as

Q(k) = 2p3(d)dB0(d)K0(|k|d)K1[B0(d)]

− 2γ |k|dp2(d)B0(d)K1(|k|d)K0[B0(d)]

− [p3(d)d − p2(d)B0(d) − κ(d)κ ′(d)dB0(d)]

×K0(|k|d)K0[B0(d)], (63)

P (k) = 2p3(d)dB0(d)K0(|k|d)I1[B0(d)]

+ 2γ |k|dp2(d)B0(d)K1(|k|d)I0[B0(d)]

+ [p3(d)d − p2(d)B0(d) − κ(d)κ ′(d)dB0(d)]

×K0(|k|d)I0[B0(d)], (64)
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with the dielectric contrast parameter γ = εm/εw, the screen-
ing parameter pb =

√
k2 + κ2

b , and the functions p(r) =√
k2 + κ2(r) and B0(r) = ∫ r

0 dr ′p(r ′).
In anionic pores characterized by a cation excess, one has

p(0) > pb. Consequently, the logarithmic term of the self-
energy (62) is negative. Thus, this attractive solvation com-
ponent favors polymer capture [54]. Then the second term of
Eq. (62) originating from polymer-image-charge interactions
is repulsive and limits polymer penetration. Taking now into
account Eq. (15), the polymer-pore interaction potential (14)
can be finally expressed in terms of the polymer grand potential
(50) as

Vp(zp) = ��p(lp = zp)θ (L− − zp)

+��p(lp = L−)θ (zp − L−)θ (L+ − zp)

+��p(lp = Lp + Lm − zp)θ (zp − L+). (65)

B. Computing translocation time

In the presence of strong polymer-pore interactions, the drift
approximation (36) for the polymer translocation time ceases
to be accurate. Thus, we derive here the general form of the
translocation time. By plugging Eq. (3) into Eqs. (1) and (2), the
polymer diffusion equation takes the form of a Fokker-Planck
equation

∂tc(zp,t) = D∂2
zp

c(zp,t) + βD∂zp
[c(zp,t)U ′

p(zp)]. (66)

In the translocation process characterized by Eq. (66), the mean
first passage time τp(z2; z1) from the initial point z1 to the final
point z2 solves the equation [48]

D∂2
z1
τp(z2; z1) − βDU ′

p(z1)∂z1τp(z2; z1) = −1. (67)

Solving Eq. (67) with reflecting and absorbing boundary con-
ditions, respectively, at the points z1 = 0 and z2 = Lm + Lp,
the translocation time follows as

τp ≡ τp(Lp + Lm; 0) = τc + τd + τe, (68)

where the capture, pore diffusion, and escape times are,
respectively,

τc = Iτ (0,L−), (69)

τd = Iτ (L−,L+), (70)

τe = Iτ (L+,Lp + Lm), (71)

with the auxiliary integral

Iτ (zi,zf ) = 1

D

∫ zf

zi

dz′eβUp(z′)
∫ z′

0
dz′′e−βUp(z′′). (72)

C. Faster polymer capture and longer translocation
on Spm4+ addition

We consider the effect of spermine (Spm4+) molecules
on polymer capture and translocation. Figures 5(a) and 5(b)
illustrate the polymer translocation rates and times versus
the Spm4+ concentration of the electrolyte KCl + SpmCl4.
Figures 5(c) and 5(d) display in turn the polymer-pore inter-
action and effective potential profiles. In the density regime
ρb4+ � 10−4, the addition of Spm4+ molecules to the KCl

FIG. 5. (a) Translocation rate (5) and (b) time (68) versus the
Spm4+ density at various KCl densities given in the legend. The open
squares in (b) are from Eqs. (78)–(80). (c) Interaction potential (65)
and (d) polymer potential (13) at the monovalent salt density ρb+ =
13 mM and various Spm4+ densities indicated by the dots of the same
color in (a) and (b). The pressure gradient is �P = 2 atm in all figures.
The other parameters are the same as in Fig. 2.

solution enhances the translocation rate and reduces the
translocation time, i.e., ρb4+ ↑ Rc ↑ τp ↓. The increase of the
translocation speed is induced by the onset of the like-charge
polymer-pore attraction; Spm4+ molecules screen the repulsive
MF-level electrostatic barrier (57) and amplify the attractive
component of the self-energy (62). Figures 5(c) and 5(d)
show that this switches the interaction potential Vp(zp) from
repulsive to attractive and turns the polymer potential Up(zp)
to downhill (compare the black and blue curves).

Enhancing further the Spm4+ density from ρb4+ = 10−4 M
(blue dots) to 10−3 M (purple dots), the translocation time
rises together with the translocation rate, i.e., ρb4+ ↑ Rc ↑
τp ↑. This intriguing discorrelation between the translocation
rate and time originates from the solvation-induced trapping
of the polymer. Added Spm4+ molecules amplify the like-
charge DNA-pore attraction. This enhances the depth of the
interaction potential Vp(zp) and the effective potential Up(zp)
develops a minimum at zp = Lm [see the purple curves in
Figs. 5(c) and 5(d)]. Thus, the like-charge DNA-membrane
attraction that speeds up the polymer capture also traps the
molecule at the pore exit. The consequence of this trapping
mechanism on the characteristic times (69)–(71) is illustrated
in Fig. 6(a). The increment of the Spm4+ density from ρb4+ =
10−5 M to 10−3 M reduces the polymer capture time and
amplifies the escape time (ρb4+ ↑ τc ↓ τe ↑) by several orders
of magnitude. This result is the key prediction of our work.

Rising the bulk Spm4+ density beyond the value ρb4+ ≈
10−3 M, charge screening weakens the pore potential φm(r)
and the Spm4+ excess in the pore. Figures 5(c) and 5(d) show
that this attenuates the like-charge DNA-pore attraction and
removes the minimum of the effective potential (see the red
curves). In Fig. 5(b), one sees that the removal of the trap at
ρb4+ � 10−3 M results in the decrease of the translocation time,
i.e., ρb4+ ↑ τp ↓. One also notes that due to the screening of
the like-charge attraction, the weak rise of the monovalent salt
density reduces the trapping time (ρb+ ↑ τp ↓) by orders of

062406-8



ENHANCED POLYMER CAPTURE SPEED AND EXTENDED … PHYSICAL REVIEW E 97, 062406 (2018)

FIG. 6. (a) Translocation time (68) (black curve) and its drift limit
(82) (purple curve), capture time (69) (blue curve), escape time (71)
(red curve), and (b) the ratio of the lengths λd and λb in Eq. (76) against
the Spm4+ density. In (a), the squares and dots mark respectively
the asymptotic laws (81) and (83) on their validity regime. The
monovalent salt density is ρb+ = 13 mM and the pressure gradient
�P = 2 atm. The other parameters are the same as in Fig. 2.

magnitude. Thus, the alteration of the monovalent salt density
can allow the sensitive tuning of the trapping time.

D. Characterization of the barrier, drift, and trapping regimes

In order to gain a quantitative insight into the features dis-
cussed in Sec. IV C, we evaluate analytically the characteristic
times (69)–(71). To this end, we approximate the self-energy
(62) by its limit reached for a long polymer portion in the pore,
i.e., κblp � 1. This limit reads

lim
lp→∞

ψs(lp) = ψs = �Bτ 2

{
− ln

[
κ(0)

κb

]
+ Q0

P0

}
, (73)

where Q0 ≡ Q(k → 0) and P0 ≡ P (k → 0) or

Q0 = 2κ2(d)dB(d)K1[B(d)]

−{κ2(d)d − [κ(d) + κ ′(d)d]B(d)}K0[B(d)], (74)

P0 = 2κ2(d)dB(d)I1[B(d)]

+{κ2(d)d − [κ(d) + κ ′(d)d]B(d)}I0[B(d)], (75)

with the function B(r) = ∫ r

0 dr ′κ(r ′). Then, we introduce the
characteristic inverse lengths embodying the effect of the drift
force and polymer-pore interactions,

λd = 3πβLpγ a2�P

4 ln(Lp/2a)Lm

; λb = 3 ln(d/a)

2 ln(Lp/2a)
ψtot, (76)

where we defined the total electrostatic energy density

ψtot = ψmf + ψs, (77)

with its MF component ψmf given by Eq. (57). In terms of
the inverse lengths (76), the polymer potential (13) takes the

piecewise form of Eq. (27). The characteristic times (69)–(71)
can be now analytically evaluated as

τc = 1

D(λd − λb)2
[e−(λd−λb)L− − 1 + (λd − λb)L−], (78)

τd = [1 − e−(λd−λb)L−][1 − e−λd (L+−L−)]

Dλd (λd − λb)

+ 1

Dλ2
d

[e−λd (L+−L−) − 1 + λd (L+ − L−)], (79)

τe = 1

D(λd + λb)2
[e−(λd+λb)L− − 1 + (λd + λb)L−]

+ e−λd (L+−L−)

D(λd + λb)
[1 − e−(λd+λb)L−]

×
{

1 − e−(λd−λb)L−

λd − λb

+ 1

λd

[eλd (L+−L−) − 1]

}
. (80)

Figure 5(b) shows the good accuracy of this approximation
(compare the red curve and the square symbols).

The effect of Spm4+ molecules on the translocation time can
be quantitatively characterized in terms of the inverse lengths
λb and λd . Their ratio corresponding to the adimensional
interaction potential is displayed in Fig. 6(b). In the barrier-
driven regime λb > λd corresponding to the spermine density
range ρb4+ � 10−5 M, the expansion of Eqs. (78)–(80) for
λd/λb < 1 yields the characteristic time hierarchy τc � τd �
τe and

τp ≈ τc ≈ e(λb−λd )L−

D(λb − λd )2
. (81)

Thus, the capture time is the dominant characteristic time of
the barrier-driven regime. The asymptotic law (81) reported
in Fig. 6(a) by square symbols corresponds to the Kramer’s
reaction rate for polymer capture by overcoming the barrier
Ub = kBT (λb − λd )L−.

Figures 6(a) and 6(b) show that as one rises the Spm4+

density beyondρb4+ ≈ 10−5 M, the removal of the electrostatic
barrier Ub reduces sharply the capture time (81) and drives
the system into the drift-dominated regime λd > λb > −λd .
Indeed, in the strict limit |λb|/λd 	 1, the expansion of
Eqs. (78)–(80) yields the limiting law

τp ≈ τdr = Lm + Lp

vdr
(82)

indicating purely drift-driven transport at velocityvdr. Equation
(82) is displayed in Fig. 6(a) by the purple curve.

In Fig. 6(b), one sees that the increase of the Spm4+ density
further beyond the value ρb4+ ≈ 10−3.5 M drives the sytem
into the trapping regime λb < −λd . Expanding Eqs. (78)–(80)
for λb/λd < −1, one gets τe � τc,d and

τp ≈ τe ≈ −λb

Dλd (λb + λd )2
e−(λb+λd )L− . (83)

Hence, in the trapping regime, the escape time dominates the
translocation. The asymptotic law (83) displayed in Fig. 6(a)
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FIG. 7. (a) Polymer capture time (78) (dots) and escape time (80) (solid curves) against the density of the polyvalent cation species Im+

(see the legend) in three different electrolyte mixtures KCl + IClm. Each mixture has a different K+ density: ρb+ = 13 mM (Spm4+), 6.8 mM
(Spd3+), and 1.5 mM (Mg2+). (b) The peak value τ ∗

p of the translocation time and (c) the corresponding Im+ density ρ∗
bm+ against the bulk K+

concentration. In (c), the dots are from Eq. (86). (d) Critical polymer length (87) splitting the barrier, drift, and trapping regimes in the Spm4+

liquid. The pressure gradient is �P = 2 atm. The other parameters are the same as in Fig. 2.

by circles corresponds to the reaction rate for the unbinding
of the polymer from the pore exit where the molecule is
trapped in a potential well of depth Ub = kBT |λb + λd |L−.
In this regime, the abrupt rise of the escape time (83) on
Spm4+ addition stems precisely from the lowering of the trap
depth Ub by the intensification of the like-charge polymer-pore
attraction.

At this point, the question arises whether the solvation-
induced trapping can be induced by counterions of lower
valency. Figure 7(a) displays the polymer capture and escape
times in three different electrolyte mixtures KCl + IClm. Each
solution has a different bulk K+ density indicated in the
caption. The figure shows that as long as the monovalent salt
concentration of the liquid is lowered together with the valency
of the multivalent cation species Im+, trivalent Spd3+, and
divalent Mg2+ counterions can reduce the capture time and
extend the escape time as efficiently as quadrivalent Spm4+

molecules. In Fig. 7(b), this point is illustrated in terms of the
peak translocation time versus the monovalent salt density. One
notes that the lower the valency of the polyvalent counterion
species, the lower the K+ density range where the maximum
translocation time rises sharply.

In Fig. 6, the correlation between τp and λb/λd indicates
that the polyvalent cation density ρ∗

bm maximizing the trapping
time can be evaluated by identifying the minimum of the
grand potential (77). To this end, we pass to the pure Donnan
approximation and set φ(r) → φd . The screening function (59)
becomes κ(r) = κd . Consequently, the grand potential density
(77) simplifies to

ψtot ≈ −τφd + �Bτ 2

[
− ln

(
κd

κb

)
+ K1(κdd)

I1(κdd)

]
. (84)

To progress further, we consider the Gouy-Chapman (GC)
regime of dilute salt κbμ 	 1 with the GC length μ =
1/(2π�Bσm). Expanding the equalities in Eq. (55), at leading
order, the Debye potential and screening parameter follow as
φd ≈ − ln [2σm/(mρbm+d)]/m and κ2

d ≈ 8π�Bmσm/d. Sub-
stituting these equalities into Eq. (84) and carrying out another
expansion for κbμ 	 1, the grand potential density finally

becomes

ψtot ≈ τ

m
ln

(
2σm

mρbm+d

)

− �Bτ 2

2
ln

{
2mσm

d[2ρb+ + (m2 + m)ρbm+]

}
. (85)

The density ρ∗
bm maximizing the translocation time τp follows

from the equation ∂ψtot/∂ρbm+ = 0 as

ρ∗
bm+ = 4ρb+

(m2 + m)(m�Bτ − 2)
. (86)

In the derivation of the density (86), the system was assumed
to be in the trapping regime. This requires both the polymer
self-energy and the grand potential (85) to be negative. Thus,
the polymer charge density should satisfy the inequality τ >

2/(m�B). Figure 7(c) illustrates the numerically evaluated
characteristic density ρ∗

bm+ (solid curves) together with the
analytical estimation (86) (dots). Equation (86) indicates that
ρ∗

bm rises linearly with the K+ concentration (ρb+ ↑ ρ∗
bm ↑) and

drops rapidly with the polyvalent counterion valency according
to an inverse cubic polynomial law (m ↑ ρ∗

bm ↓).
Finally, we characterize finite-size effects on polymer

trapping. By equating the characteristic inverse lengths in
Eq. (76), the critical polymer length separating the drift and
interaction-dominated regimes follows as

L∗
p = 2 ln(d/a)Lm

πβγ a2�P
|ψtot|. (87)

Figure 7(d) displays Eq. (87) against the Spm4+ density.
The transition from the drift-driven (Lp > L∗

p) to the bar-
rier/trapping regime (Lp < L∗

p) on polymer length reduction
stems from the decrease of the pressure-induced drag force
on the polymer. The corresponding balance between polymer-
pore interactions and the drift force was scrutinized in Sec. III C
for monovalent solutions.

In the dilute Spm4+ regime of Fig. 7(d) characterized by
repulsive polymer-pore interactions (ψtot > 0), added Spm4+

molecules suppress the electrostatic barrier and lower the
critical length, i.e., ρb4+ ↑ |ψtot| ↓ L∗

p ↓. In the subsequent
Spm4+ density range where the like-charge polymer-pore
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attraction is activated (ψtot < 0), Spm4+ addition enhances the
trapping potential depth and rises the critical polymer length,
ρb4+ ↑ |ψtot| ↑ L∗

p ↑. Beyond the density value ρb4+ ≈ 1 mM,
added Spm4+ molecules screen the attractive polymer-pore
interactions. This reduces the depth of the potential trap and
drops the critical length. To conclude, polymer trapping by
like-charge attraction occurs if the polymer length satisfies the
condition Lp < L∗

p. The upper polymer length (87) can be,
however, tuned by controlling the mangitude of the potential
ψtot via the alteration of the ion density.

V. CONCLUSIONS

The optimization of polymer translocation techniques re-
quires the accurate characterization of the electrohydrody-
namic forces governing driven polymer transport. In this
article, we characterized the collective effect of the EP drift,
the drag force induced by the streaming flow, and elec-
trostatic polymer-pore interactions on polymer translocation
through solid-state pores. Our main results are summarized
below.

In the first part, we investigated the polymer conductivity
of pressure-voltage traps in monovalent salt solutions. By
direct comparison with experimental data, we showed that
our theory can accurately reproduce and explain the pressure
dependence of the polymer translocation velocity and time.
Then, we characterized the effect of salt density variation. In
translocation events driven by streaming flow (�P > 0) and
limited by voltage (�V < 0), added salt screens the negative
EP mobility and favors polymer capture. In the opposite case
of voltage-driven (�V > 0) and pressure-limited translocation
(�P < 0), the polymer mobility exhibits a nonmonotonical
salt dependence; dilute salt screens electrostatic polymer-
pore interactions and favors polymer capture but strong salt
reduces the EP mobility and blocks polymer transport. This
nonuniform behavior results in the trapping of the poly-
mer at two distinct salt density values given by Eqs. (39)
and (42).

We also found that during polymer capture, the repulsive
polymer-pore coupling can reduce or even invert the direction
of the streaming current. Due to the amplification of the barrier
effect, the reduction of the liquid velocity becomes stronger
with decreasing polymer length. This suggests that electro-
static polymer-pore interactions can be probed by stream-
ing current measurements carried-out at different polymer
lengths.

The precision of polymer sequencing by translocation is
known to depend on the fast capture of the polymer by
a like-charged pore followed by a slow translocation. In
the second part of our work, we identified an electrostatic
polymer trapping mechanism that allows us to achieve this
condition by the simple addition of polyvalent cations to the
KCl solution. Enhanced electrostatic correlations on Spm4+

addition turn the polymer-pore interactions from repulsive
to attractive. This like-charge polymer-pore attraction results
in a faster polymer capture from the cis side but traps the
molecule at the pore exit on the trans side of the mem-

brane. As a result, the increment of the Spm4+ density from
ρb4+ = 10−5 M to 10−3 M reduces the capture time and
extends the escape time (ρb4+ ↑ τc ↓ τe ↑) by five orders of
magnitude.

Provided that the monovalent salt density is lowered to-
gether with the valency of the polyvalent counterions, trivalent
Spd3+ and divalent Mg2+ cations can trap the polymer as
efficiently as quadrivalent Spm4+ molecules. Equation (86)
indicates that the polyvalent ion density ρ∗

bm+ minimizing the
capture time and maximizing the trapping time rises with
the monovalent salt concentration ρb+ ↑ ρ∗

bm+ ↑ and drops
with the ionic valency m ↑ ρ∗

bm+ ↓. Finally, we showed that
solvation-induced polymer trapping can be achieved only if
the molecular length is below the critical length L∗

p given by
Eq. (87). It should be noted that the maximum length L∗

p can
be tuned by the alteration of the ion density.

Our formalism neglects some features of these highly
complex systems, such as conformational polymer fluctua-
tions [55], entropic barriers limiting polymer capture [15],
the discrete charge distribution on the membrane surface,
and the helicoidal charge partition on the polymer [56]. Our
translocation model does not include either the interaction of
the membrane with the polymer portion outside the pore, as
well as hydrodynamic and electrostatic edge effects occurring
at the pore ends [57]. Although the consequence of these
approximations cannot be estimated quantitatively without the
explicit inclusion of the corresponding effects, the agreement
with experimental data indicates that in the experimental
configuration considered herein, these complications play a
secondary role. For example, as discussed in Sec. II, the
accuracy of the stiff polymer approximation is due to the short
length of the DNA sequences involved in the translocation
experiments of Ref. [13]. It should be also noted that in
the low-pressure regime of Fig. 2 where the net drift force
on DNA becomes rather weak, entropic effects expected to
become relevant may be responsible for the slight deviation
of our theoretical curves from the experimental trend. In order
to understand the electrohydrodynamics of translocation for
long polymer sequences, at the first step, we plan to include
to our model the interaction of the membrane matrix with
the polymer portion outside the pore. At the next step, the
inclusion of conformational polymer fluctuations will allow
us to take into account the tension propagation mechanism
introduced by Sakaue [18–20]. We finally note that our results
and conclusions can be corroborated by current polymer trans-
port experiments. In particular, the polyvalent cation-induced
trapping can be easily verified by standard pressure-driven
translocation experiments carried out with anionic nanopores.
Our numerious predictions can also guide the optimized
conception of new generation biosensing tools.
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APPENDIX: COEFFICIENTS OF THE AVERAGE POLYMER VELOCITY FORMULA (29)

We list here the coefficients of the average velocity formula (29) of the main text,

J1 = 1

(λd − λb)2
{(λd − λb)L− + e−(λd−λb)L− − 1} + 1

λd − λb

[1 − e−(λd−λb)L−]

{
1

λd

[1 − e−λd (L+−L−)]

+ 1

λd + λb

e−λd (L+−L−)[1 − e−(λd+λb)L−]

}
, (A1)

J2 = 1

λ2
d

{λd (L+ − L−) + e−λd (L+−L−) − 1} + 1 − e−(λd+λb)L−

λd (λd + λb)
[1 − e−λd (L+−L−)], (A2)

J3 = 1

(λd + λb)2 {(λd + λb)L− + e−(λd+λb)L− − 1}. (A3)
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