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Abstract – We construct a topological one-dimensional ladder model following the steps which
lead to the Kane-Mele model in two dimensions. Starting with a Creutz ladder we modify it so
that the gap closure points can occur at either k = π/2 or −π/2. We then couple two such models,
one for each spin channel, in such a way that time-reversal invariance is restored. We also add
a Rashba spin-orbit coupling term. The model falls in the CII symmetry class. We derive the
relevant 2Z topological index, calculate the phase diagram and demonstrate the existence of edge
states. We also give the thermodynamic derivation (Středa-Widom) of the quantum spin Hall
conductance. Approximate implementation of this result indicates that this quantity is sensitive
to the topological behavior of the model.

Copyright c© EPLA, 2018

Introduction. – Topological systems [1] are one of the
most active current research areas in condensed-matter
physics. A crucial advance in this field was the Haldane
model (HM) [2], a hexagonal model in which time-reversal
symmetry and inversion symmetry are simultaneously bro-
ken. The model is engineered so that a gap can be closed
at one of the Dirac points. The gap closure occurs at
a phase line, which encloses a topological phase with fi-
nite Hall conductance, whose sign depends on which gap
is closed at the phase line. An extension of the HM, the
Kane-Mele model (KMM) [3,4], was another important
step in the development of topological insulators. In this
model two Haldane models are taken, one for each spin
channel, each one tuned so that time-reversal symmetry is
restored. A Rashba coupling term, which mixes different
spins, is also added. The KMM model exhibits quantized
quantum spin Hall (QSH) response, and sustains spin cur-
rents at its edges.

Topological models in one dimension [5–14] are also ac-
tively studied. Of the many such models, most relevant
to our study is the Creutz model [7,8] which exhibits a
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topological interference effect which can be probed when
open boundary conditions are applied (edge states). Re-
cent studies [15–18] of this model revealed several inter-
esting phenomena. The Uhlmann phase was used [17] as a
measure of topological behavior at finite temperature. It
was also shown [18] that defect production across a crit-
ical point obeys non-universal scaling depending on the
topological features. We also emphasize that a number
of different one-dimensional topological models [10,14] ex-
hibit the same phase diagram as the HM.

Topological ladder models [19,20] are one-dimensional
systems which, however, often exhibit effects usually
associated with two dimensions. Strinati et al. [19] re-
cently showed that ladder models can support Laughlin-
like states with chiral current flowing along the legs of the
ladder. Since a ladder consists of two legs separated by a
finite distance, and enclosing a definite area, it is possible
to apply a magnetic field perpendicular to this area and
observe a quantum Hall response. Another way to think
about this is to realize that to demonstrate the existence
of chiral edge currents, one needs a strip, which is also
an effective one-dimensional system, with a finite width
(a ladder is a strip with width of one, or a small number
of, lattice constants). Recently [14] we demonstrated that
a ladder model can be constructed to exhibit topological
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Fig. 1: (Colour online) Graphic representation of our model.
tx (ty) denotes hoppings along horizontal (vertical) bonds. txy

denotes diagonal bonds. We apply Peierls phases along the
diagonal bonds along the directions indicated.

effects similar to the HM. Our interest here is whether it
is possible to also construct a ladder in the spirit of KMM.

In this paper we construct a ladder model, step by step,
which can be viewed as the one-dimensional analog of the
KMM. First, we modify the original Creutz model so that
gap closures are shifted in k-space, breaking time-reversal
invariance. We then couple two such shifted Creutz mod-
els, one for each spin channel, so that time-reversal invari-
ance is restored. We also add a Rashba term to allow for
the mixing of spins. We then derive a topological winding
number for the model, and calculate its phase diagram.
We also use the Widom derivation of the QSH formula,
which gives a quantized response in the topological re-
gion. The possible experimental signature is spin currents
flowing along the legs of the ladder.

Models. – The Creutz model is a quasi-1D ladder
model which exhibits a quantum phase transition sepa-
rating a trivial phase from a symmetry-protected topo-
logical phase. The topological phase is characterized by
a winding number, and if open boundary conditions are
applied, localized edge states are found. Let tx denote
hoppings along the legs, ty the hoppings perpendicular to
the legs, and txy the diagonal hoppings along unit cells. In
the original Creutz model a magnetic field perpendicular
to the plane of the system is applied, resulting in Peierls
phases along the legs of the ladder, pointing in opposite
directions on different legs of the ladder. For a Peierls
phase of π/2 the resulting Hamiltonian is

HC = −
∑

k

[(2tx sin(k))σ̂z + (ty + 2txy cos(k)σ̂x)]. (1)

Gap closure occurs at the points k = 0, π, depending on
whether ty = 2txy or ty = −2txy. Our first step is to
set the bonds on the upper (lower) leg to tx (−tx) and
introduce Peierls phases of π/2 on the diagonal bonds as
indicated in fig. 1. The Hamiltonian is now

H1 = −
∑

k

[(2tx cos(k))σ̂z +(ty +2txy cos(k+Φ)σ̂x)]. (2)

The first term alone corresponds to a band stucture with
one-dimensional Dirac points at k = ±π/2, which are
time-reversal invariant pairs. The second term opens gaps

Fig. 2: (Colour online) Phase diagram of the system where
gap closure occurs. The numbers in the figures denote the
topological winding number.

in general with masses of opposite signs at opposite Dirac
points. The phase diagram (determined by the gap closure
condition) is the same as that of the HM,

ty
2txy

= ± sin(Φ). (3)

The sign in eq. (3) determines which of the two gaps in the
Brillouin zone closes. The phase diagram of this model is
shown in fig. 2. We note that a similar model was treated
recently [21]

Given that the gap closures occur at time-reversal
invariant points, we can proceed to construct the one-
dimensional analog of the Kane-Mele model, by first in-
troducing spin,

H2 =
∑

k

d1(k)Γ(1) + d2(k)Γ(2) + d25(k)Γ(25), (4)

where we have used the following Γ-matrices:

Γ(a) = {σx ⊗ I2, σz ⊗ I2, σy ⊗ σx, σy ⊗ σy, σy ⊗ σz}, (5)

with a = 1, . . . , 5, and

Γ(ab) =
1
2i

[Γ(a), Γ(b)], (6)

H2 can be viewed as the “square” of the H1 Hamiltonian.
We can now add the Rashba spin-orbit coupling term re-
sulting in

H = H2 + d3(k)Γ(3) + d35(k)Γ(35). (7)

The coefficients in eqs. (4) and (7) are given by

d1(k) = −ty, d2(k) = −2tx cos(k), d3(k) = λR

d25(k) = 2txy sin(k), d35(k) = 2λR sin(k).
(8)

Symmetry analysis and topological indices. – Us-
ing the appropriate time-reversal, particle-hole and chi-
ral symmetry operators, one-dimensional models can be
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placed [22,23] into topological classes. For the shifted
Creutz model (eq. (1)), the operator T = iσxK(C = iσzK,
with K denoting complex conjugation) can be taken to be
the time-reversal (particle hole) operator, and the time-
reversal (T †H(k)T = H(−k)), partile-hole (C†H(k)C =
−H(−k)) and chiral symmetries (S†H(k)S = −H(k),
where S = TC is the chiral symmetry operator). This im-
plies that the band-structure comes in pairs of ±εk. T 2 =
C2 = S2 = 1, placing the Creutz model in the BDI class.
For the shifted Creutz model for Φ = π/2 (eq. (2)) the
time-reversal and particle-hole symmetries are destroyed,
but the chiral symmetry remains (S†H(k)S = −H(k)),
implying that the band structure again comes in pairs of
±εk. The model falls in the symmetry class AIII.

For the spinful model we study, eqs. (4) and (7), the
time-reversal and particle-hole operators take the form
T = i(I2⊗σy)K, C = i(σy ⊗σx)K. In this case the square
of the operators is T 2 = C2 = −1, and S2 = 1, placing
these models in the CII symmetry class. One can refine
the symmetry characterization further by also consider-
ing the reflection operator [24,25], which sends k to −k
without altering the spin. This operator is R = (I2 ⊗ σx),
which anti-commutes with T , but commutes with C. In
terms of mirror symmetry class [24,25] the model falls in
class C, with a topological index of 2Z.

For the a chiral symmetric Hamiltonian (eq. (2)) we
apply a unitary transformation [26], constructed from
spinors of spin in the y-direction,

U =
1√
2

(
1 1
i −i

)
, (9)

to our Hamiltonian. This leaves us with the off-diagonal
form,

HT = U †HU =

2tx cos(k)σx + [ty − 2txy sin(k)]σy =
(

0 q
q† 0

)
, (10)

where q = 2tx cos(k) − i[ty − 2txy sin(k)]. The winding
number density is given by

w(k) = iq−1(k)∂kq(k), (11)

from which the winding number can be obtained by in-
tegrating across the full Brillouin zone after setting tx =
txy = 1, resulting in

W =
∫ π

−π

dk

2π
w(k), (12)

which can be turned into a contour integral around the
unit circle via z = eik. If the point (0, ity/2) is within the
ellipse defined by (2tx cos(k), 2txy sin(k)) with 0 ≤ k < 2π,
the winding number is minus one. Otherwise it is zero.

We proceed to extend this result to eq. (4). In this case
we have a 4-by-4 block-diagonal Hamiltonian,

H(k) = 2tx cos(k)σ0 ⊗ σz − 2txy sin(k)σz ⊗ σx

+ tyσ0 ⊗ σx =
(

h↑ 0
0 h↓

)
, (13)

where

h↑,↓ =
(

2tx cos(k) ty ∓ 2txy sin(k)
ty ∓ 2txy sin(k) −2tx cos(k)

)
.

After transforming Hamiltonian under (σ0 ⊗ U), where U
is given by eq. (9),

HT (k) = (σ0 ⊗ U)† H(k) (σ0 ⊗ U) =
(

h↑
T 0
0 h↓

T

)
, (14)

where h↑
T =

( 0 q1

q†
1 0

)
and h↓

T =
( 0 q2

q†
2 0

)
, while

q1 = 2tx cos(k) − i(ty − 2txy sin(k)),
q2 = 2tx cos(k) − i(ty + 2txy sin(k)). (15)

Notice that our 4 × 4 Hamiltonian is simply two inde-
pendent Creutz models. The overall winding number will
be the sum of the winding number of each Creutz model,
the two possible values therefore are minus two or zero,
depending on whether the point z = −ity/2 falls in-
side or outside the ellipse defined by the Brillouin zone,
respectively.

The fundamental group corresponding to the topologi-
cal index of the Hamiltonian of each spin channel is Z. The
space of HT is decomposed into direct sum of subspaces
of h↑ and h↓:

HT = h↑ ⊕ h↓, (16)

hence, the fundamental group representation of the topo-
logical index can be written as sum of fundamental groups
of two subspaces,

2Z = Z + Z (17)

which is consistent with the symmetry analysis outcome.

Středa-Widom formula for quantum spin Hall
systems. – In the case of the QH effect, a very
useful [14,27] formula was derived by Středa [28] via quan-
tum transport equations, and also by Widom [29] via ther-
modynamic Maxwell relations. The generalization to the
QSH effect, similar to the Středa approach, was done by
Yang and Chang [30]. Here we attempt to derive this via
Widom’s thermodynamic considerations.

As a starting point, we take the view that a topolog-
ical insulator consists of two magnets of opposite polar-
ization for each spin. We also invoke a spin-dependent
magnetic field, and a corresponding spin-dependent vec-
tor potential, Bσ and Aσ, respectively. Such a procedure
was recently applied by Dyrdal et al. [31] to calculate the
properties of a two-dimensional electron gas with Rashba
spin-orbit coupling. Under the first assumption the spin
current can be written as

JSH = c∇ × [M↑ − M↓]. (18)
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We can derive the electric field from the chemical potential
as E = ∇(μ/e), we can write the spin current as

JSH = (ec)E × ∂

∂μ
[M↑ − M↓]. (19)

We can apply the Maxwell relation and arrive at

JSH = E ×
[
∂(nec)
∂B↑

− ∂(nec)
∂B↓

,

]
. (20)

resulting in a QSH conductivity of

σSH = ec

[
∂n

∂B↑
− ∂n

∂B↓

]
μ

, (21)

where we took the magnetic fields for both spins to be
pointing perpendicular to the plane (justifying the neglect
of tensor notation). We can rewrite this expression in
terms of particle number and magnetic flux as

σSH =
[

∂ν

∂Φ↑
− ∂ν

∂Φ↓

]
μ

. (22)

This expression points to a definite procedure to calcu-
late σSH ; calculate the Fermi level in the absence of flux,
then introduce a spin-dependent flux quantum, and count
the number of particles which cross the Fermi level. In
our approximate implementation, we use equal and oppo-
site flux for the different spin channels on the txy bonds.
Following Dyrdal et al. [31] we neglect the effect of the
spin-dependent vector potentials on the Rashba spin-orbit
coupling term.

Results. – The gap in the band structure of the shifted
Creutz model closes at k = −π/2 and π/2 depending on
whether ty = 2txy or ty = −2txy. When the boundary
conditions are open, edge states are found as shown in
the shifted Creutz model (fig. 3). The combination of two
shifted Creutz models, one for each spin, restores time-
reversal invariance with gap closures at k = ±π

2 . Obvi-
ously, this system will also exhibit edge states.

Turning on the Rashba coupling term gives rise to a
phase diagram shown in fig. 4 for three cases. The plots
are based on a calculation in which tx = 1, txy = 0.03, 0.18
and 0.30. The phase diagram in the λR/txy vs. ty/txy is
shown for these three cases. The topological phase is the
one which includes the origin, outside of this region the
phase is trivial. The lines indicate where the gap closure
occurs. Along the phase boundary the system becomes
an ideal conductor with a finite Drude weight. The inset
shows the absolute value of the k-points at which the gap
closure occurs as a function of ty/txy.

We also studied the quantized transport properties of
the models, based on the approximate implementation
of the result in eq. (21). For no Rashba coupling we find
that the trivial phase exhibits no σSH response, in other
words, turning on the spin-dependent flux on the diagonal
bonds leads to no change in the number of particles
below the Fermi level. In the topological phase, the flux

-2 -2 0 1 2t
xy

-2

-1

0

1

2

E
ne

rg
y/

t x

1 100 200
Position

0

0.2

0.4

|Ψ
|2 Edge State

0

0.2

0.4

|Ψ
|2 Edge State

Edge States

Fig. 3: (Colour online) Energy spectrum of the shifted Creutz
model with 200 sites, open boundary conditions as a function
of txy. The parameters are tx = 1 and ty = 1. The blue lines
indicate states which are not present when periodic boundary
conditions are applied. The square magnitudes of these states
are shown in the upper panels. They are localized near the
edges of the chain.

Fig. 4: (Colour online) Main panel: phase diagram for systems
with tx = 1, txy = 0.06, 0.12, 0.18 in the ty- vs.-λR plane. The
inset indicates the k vector at which gap closure occurs as
a function of ty/txy . The black filled circles and red filled
diamonds on the left side of the phase diagram indicate systems
for which we have tested our Středa-Widom formula. For the
black filled circles we found a quantized quantum spin Hall
response, while we found no response for the red diamonds.

decreases the number of particles under the Fermi level by
two. For small values of the Rashba coupling λR ≈ 0.5txy

we find the same. In fig. 4 we indicate the points at which
we made calculations (black filled circles and red filled
diamonds). At larger values of λR our approximations
appear to break down. However, we emphasize that the
topological region is adiabatically connected to the λR = 0
region and is therefore the same quantum phase (also
characterized by the 2Z winding number derived above).
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Conclusion. – In conclusion we have assembled a one-
dimensional ladder analog of the Kane-Mele model, step
by step, first by “shifting” the Creutz model in the Bril-
louin zone, then by introducing spin and spin-orbit cou-
pling. Our model falls in the CII symmetry class. We
also derived a formula for the quantum spin Hall response
and made an approximate implementation. For small val-
ues of the Rashba coupling, where our approximation is
expected to be valid, we find a quantized spin Hall re-
sponse in the topological phase indicating that QSH cur-
rents flowing along the legs of the ladder are a unique
feature exhibited by our model.

The experimental realization of our model can most
likely be done with cold atoms in optical lattices. Standard
one-dimensional models [32] already have some history in
this setting, but even more complex ones, such as the
multi-orbital ladder model with topologically non-trivial
behavior can be realized [20]. There are several interesting
routes, for example, it is possible to construct [19] opti-
cal lattices with cold atoms in which the atomic states
play the role of spatial indices, a technique known as
synthetic dimension. A more difficult aspect is the pres-
ence of spin-orbit couplings. In two dimensions this was
only done recently [33], via a combination of microwave
driving and lattice shaking. A key development in this
experiment is that the different spin-orbit couplings can
be varied independently, therefore Kane-Mele–like models
can be built. A broad set of topological one-dimensional
models and their experimental realisations was discussed
in ref. [34].
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