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Recent cold atom experiments have realized models where each hyperfine state at an optical lattice site can be
regarded as a separate site in a synthetic dimension. In such synthetic ribbon configurations, manipulation of the
transitions between the hyperfine levels provide direct control of the hopping in the synthetic dimension. This
effect was used to simulate a magnetic field through the ribbon. Precise control over the hopping matrix elements
in the synthetic dimension makes it possible to change this artificial magnetic field much faster than the time scales
associated with atomic motion in the lattice. In this paper, we consider such a magnetic-flux quench scenario
in synthetic dimensions. Sudden changes have not been considered for real magnetic fields as such changes in
a conducting system would result in large induced currents. Hence we first study the difference between a time
varying real magnetic field and an artificial magnetic field using a minimal six-site model. This minimal model
clearly shows the connection between gauge dependence and the lack of on-site induced scalar potential terms.
We then investigate the dynamics of a wave packet in an infinite two- or three-leg ladder following a flux quench
and find that the gauge choice has a dramatic effect on the packet dynamics. Specifically, a wave packet splits
into a number of smaller packets moving with different velocities. Both the weights and the number of packets
depend on the implemented gauge. If an initial packet, prepared under zero flux in an n-leg ladder, is quenched
to Hamiltonian with a vector potential parallel to the ladder, it splits into at most n smaller wave packets. The
same initial wave packet splits into up to n2 packets if the vector potential is implemented to be along the rungs.
Even a trivial difference in the gauge choice such as the addition of a constant to the vector potential produces
observable effects. We also calculate the packet weights for arbitrary initial and final fluxes. Finally, we show that
edge states in a thick ribbon are robust under the quench only when the same gap supports an edge state for the
final Hamiltonian.
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I. INTRODUCTION

Cold atom experiments provide a clean and controlled
environment for investigating many-body systems. The ability
to change the Hamiltonian of a system at much shorter time
scales compared to dynamics of the atoms in the experiment,
combined with the long lifetime of the excitations in clean sys-
tems, have allowed the exploration of nonequilibrium physics
in interacting many-body models. Both sudden and periodic
changes in system parameters, i.e., quench [1,2] and Floquet
[3–5] experiments, have revealed nontrivial phenomena such
as many-body localization [6,7], prethermalized states [8], and
new topological invariants [9].

In a parallel development, creation of artificial gauge fields
in continuum [10] and in the lattice [11,12] paved the way
for the study of effectively charged particles with neutral
atoms. The physics of particles interacting with Abelian and
non-Abelian artificial gauge fields is rich. Recent experiments
have probed the topological properties [13–16], quantum Hall
states [17], Hofstadter’s fractal energy spectrum [11,12], and
supersolidlike states in non-Abelian fields [18,19]. Generally
artificial magnetic fields are created by utilizing a combination
of light-atom interaction to provide a momentum space shift
in a spatially varying parameter to create spatially dependent
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vector potentials [20]. The combination of a momentum-space
technique with real-space manipulation, especially in lattices,
makes these experiments highly nontrivial, and puts technical
limitations on the homogeneity and the value of the artificial
magnetic field, as well as the lifetime of the system [12,13].

Our main interest in this paper is to investigate the effects of
a sudden change in the artificial magnetic field in a cold atom
system. Until recently, it would not be realistic to expect the
artificial magnetic field in a lattice system to be controlled at
fast time scales. However, a new method of simulating lattice
systems which is based on the identification of hyperfine levels
of each atom with a lattice in a “synthetic dimension” enables
perhaps the simplest method for creation of artificial magnetic
fields [21]. The hyperfine levels are coupled by Raman lasers
such that the Peierls phase is introduced by the detuning.
Since a typical Raman transition frequency (∼300 THz) is
much larger than typical frequencies of motion (∼100 Hz)
in the system, a nonadiabatic change in the artificial field can
be studied, unlike its real-space two-dimensional counterparts
discussed above. The dynamics of both bosons and fermions
have been investigated in a static artificial magnetic field
[22,23]; quench experiments as considered in this paper are
within the reach of current capabilities of several research
groups.

Apart from current experimental relevance, the investi-
gation of such time-dependent artificial magnetic fields is
interesting for two main reasons. First, artificial magnetic

2469-9926/2018/97(2)/023612(17) 023612-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.023612&domain=pdf&date_stamp=2018-02-07
https://doi.org/10.1103/PhysRevA.97.023612


F. YıLMAZ AND M. Ö. OKTEL PHYSICAL REVIEW A 97, 023612 (2018)

fields, as implemented in the current experiments, rely on
mimicking the effect of the vector potential �A but do not
create the effect of the scalar potential �. In static fields, two
vector potentials �A1 and �A2 which have the same curl �B =
�∇ × �A1 = �∇ × �A2 create entirely equivalent Hamiltonians
up to a gauge transformation; hence no observable depends
on whether the first or the second choice was implemented
experimentally. In a dynamical situation, even if two vector
potentials have the same curl at all times, �B(t) = �∇ × �A1(t) =
�∇ × �A2(t), the Hamiltonians cannot be connected by a gauge
transformation in the absence of the scalar potential. This
simple “gauge dependence,” has nontrivial consequences as
evidenced by the expansion image in a recent experiment
which measures the gauge-dependent canonical momentum
distribution [24]. It is important to notice that in contrast to the
gaugelike effect of the micromotion in a Floquet system [25]
the gauge dependence in a quench experiment is essentially an
infinite frequency effect. Two systems which are connected by
a gauge transformation before and after the quench moment can
yield different physical results. The second qualitative question
that can be investigated is the robustness of edge states under
nonadiabatic quench scenarios. Edge states which arise due to
topological reasons are robust with respect to perturbations;
however, such robustness is not guaranteed by any topological
argument after a quench.

To answer the above questions, we analyze the quench
dynamics of wave packets under sudden changes in the artifi-
cial magnetic field. We use the tight-binding model for lattice
systems and the effect of the magnetic field is introduced by
Peierls substitution [26]. Initially, the role of the gauge choice is
considered for a minimal model, a six-site lattice forming two
squares. An arbitrary initial wave function is time evolved for
two different vector potential choices. The probability distribu-
tions of the wave functions are compared as a function of time
and are found to depend on the particular gauge choice and how
fast the artificial magnetic field is ramped from zero to its final
value. We show that a time-dependent on-site potential can be
used to make the two vector field choices equivalent, restoring
gauge invariance. These results are presented in Sec. II.

In Sec. III, we consider the magnetic-flux quench of wave
packets in two- and three-leg ladders. A wave packet peaked
around an eigenstate of the ladder at zero magnetic field splits
into smaller wave packets which move with different velocities
after the quench. We find that the gauge choice is highly
decisive in the number and the weights of the smaller packets.
In a gauge choice with vector potential parallel to the ladder, an
initial wave packet in an n-leg ladder splits into at most n wave
packets, no matter what the magnetic-flux value is, whereas a
quench to a vector potential parallel to the rungs of the ladder
yields up to n2 smaller packets for the same initial wave packet.
The number of wave packets, as well as their weights and
velocities, are found by calculating the overlaps of the wave
function before the quench with the postquench bands. For the
two-leg ladder, we also consider a quench between two arbi-
trary magnetic fluxes for the vector potential along the ladder
and provide analytical expressions for the packet weights. In
addition, we investigate a special case in the three-leg ladder
where an initial wave packet at nonzero flux is quenched to
Hamiltonian with zero flux but a constant vector potential. We
find that the final value of the vector potential does not change

the number or the weights of the split wave packets but modifies
the internal hyperfine composition of the packets.

We present our results on the behavior of an edge state after
an artificial magnetic-field quench in Sec. IV. We investigate
both a thick ribbon, which we take to have 15 legs, and also
the continuum problem. For the lattice system the topologically
protected edge state survives the quench only if there is another
edge state in the same gap after the quench. Otherwise, for
example, when the final magnetic flux is zero, the edge state
disperses into the bulk. In the continuum, the existence of edge
modes is guaranteed by the termination of the Landau levels
at the edge and the edge modes survive as skipping orbits after
a quench. We calculate the trajectories of the center-of-mass
coordinate of a wave packet to validate that an initial edge state
wave packet is replaced by a skipping trajectory and remains
bound to the edge.

Section V contains a summary of our conclusions and their
experimental relevance.

II. MINIMAL MODEL

Physics is gauge invariant. How a gauge choice is related
to the wave function is clearly understood for real scalar
and vector potentials. In the case of artificial gauge fields
in cold atom experiments, two difficulties complicate the
interpretation. First, if the artificial fields change with time,
there is no set of equations they have to follow such as
Maxwell’s equations which dictates their dynamics [27]. As
such, a changing artificial magnetic flux does not necessarily
amount to an artificial electric field. The second difficulty is
that the presence of these fields is only measured through their
action on the atoms. For example, the expansion images in the
MIT experiment [24] show a density which is proportional
to the canonical momentum, which is a manifestly gauge
dependent quantity. This measurement can be interpreted in
two distinct ways. One can say that the experiment implements
the vector potential, but not the scalar potential; hence the
simulated artificial fields do not have gauge symmetry. The
second, and equally valid, explanation would be to say that a
turn off of the optical lattice is not simply magnetic flux being
shut down, but it involves a momentary artificial electric field
breaking the C4 rotational symmetry of the lattice.

In this section, we study a model which can be used to
probe the validity of the above interpretations, particularly for
time-dependent situations, in a simple way. We consider a six-
site tight-binding model, formed by two adjacent squares as
shown in Fig. 1. Such an arrangement can be experimentally
realized by isolating two sites of the optical lattice in a spin-1
synthetic dimension [21]. The hopping between neighboring
sites is taken as J , the left bottom site is the origin, and the
long side of the rectangle is taken as the x axis. We simulate
the situation where the fluxes through both squares are linearly
ramped from zero to a final value φ (in units of flux quantum
h/e), in a time scale τ . The magnetic field in this system is
�B(t) = B0fτ (t)ẑ, where the ramp function is

fτ (t) =
⎧⎨
⎩

0 : t � 0,
t
τ

: 0 < t < τ,

1 : t � τ

(1)
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FIG. 1. Minimal model, a six-site tight-binding lattice formed by
two adjacent squares. Two different gauge choices �A1(�r,t), �1(�r,t)
and �A2(�r,t), �2(�r,t) create Hamiltonians [Eq. (4) and Eq. (7)] with
Peierls phases as shown. Note that the origin is chosen as the bottom
left site.

and φ = B0a
2

h/e
for lattice constant a.

One set of potentials that create this time-dependent flux is

�A1(�r,t) = fτ (t)B0xŷ, (2)

�1(�r,t) = 0, (3)

which creates the following lattice Hamiltonian:

H1(t) = −J (a†
1a2 + a

†
2a3 + a

†
4a5 + a

†
5a6 + a

†
6a1 + H.c.)

− J (e−i2πφfτ (t)a
†
2a5 + e−i4πφfτ (t)a

†
3a4 + H.c.), (4)

utilizing the Peierls substitution J → J exp(−i e/h̄
∫ �Rf

�Ri�A · dl). The line integral is evaluated along the classical path
from the initial to the final lattice points.

The same time-dependent flux can also be generated by

�A2(�r,t) = −fτ (t)B0yx̂, (5)

�2(�r,t) = 0. (6)

The corresponding lattice Hamiltonian is

H2(t) = −J (a†
1a2 + a

†
2a3 + a

†
2a5 + a

†
3a4 + a

†
6a1 + H.c.)

− J (e−i2πφfτ (t)a
†
4a5 + e−i2πφfτ (t)a

†
5a6 + H.c.). (7)

When the flux is static, i.e., t < 0 and t > τ , these two
Hamiltonians are related by a gauge transformation. However,
they are not equivalent during the ramp up interval, as can be
seen by considering a third set of potentials

�A3(�r,t) = −fτ (t)B0yx̂, (8)

�3(�r,t) = B0

τ
xy[θ (t) − θ (t − τ )], (9)

where θ is the step function. The lattice Hamiltonian for this
set of potentials has on-site terms

H3(t) = H2(t) + J [2πφγ a
†
5a5 + 4πφγ a

†
4a4]

× [θ (t) − θ (t − τ )]. (10)

FIG. 2. Total difference between the site densities of the wave
functions evolved with H1 and H2 as a function of time. The magnetic
flux is ramped up from φ = 0 to φ = 1/3 between 0 � t � τ with two
different ramping parameters, γ ∈ {0.01,2}. For γ = 0.01, blue (dark
gray) solid curve, the ramp of magnetic flux is slow and adiabatic; the
difference in total site densities is less than 0.01%, which is within
our numerical accuracy. For γ = 2, orange (light gray) dotted curve,
the ramping is nonadiabatic and results in distinct time evolution for
|ψ1|2 and |ψ2|2.

Here γ = h̄
J τ

is a dimensionless parameter measuring the
adiabaticity of the ramp up, with γ = 0 corresponding to the
adiabatic limit.

To investigate the gauge dependence, we prepare the
same initial site distribution under zero magnetic field. Then,
each system is numerically time evolved, where the on-
set and the full turn on of the flux occur at t = 0 and
t = τ . The time evolution is done by Cayley’s form, with
the time evolution operatorT exp (− i

h̄

∫ t+	t

t
Ĥ (τ )dτ ) ≈ (1 −

iH	t/2)/(1 + iH	t/2). This form provides an accurate evo-
lution of the wave function as long as the time step is much
smaller than the typical time scale for the system. We compare
the density at each site 〈a†

i ai〉 as a function of normalized
dimensionless time. Note that all three Hamiltonians are related
by a static gauge transformation for t � 0 and t � τ , whereas
only the first and the third Hamiltonian are related by a
dynamical gauge transform also in the interval 0 � t � τ .

For close to adiabatic evolution γ 
 1, the difference
between total density of each site with reference to results
of H1 are negligibly small (see blue solid line in Fig. 2).
This is expected because at each moment of time the first
two Hamiltonians can be related by a unitary transformation
U (t)†H2(t)U (t) = H1(t), and adiabatic evolution means that
time dependence of that unitary transformation is negligible.
The on-site terms in the third Hamiltonian are zero in the truly
adiabatic limit as they scale with γ . For γ � 1 the evolution
is nonadiabatic and the results of H2 are clearly distinct from
H1 and H3. (See Fig. 3 for results with γ = 2.) As the terms
generated by the time derivative of the unitary transformation
relating H1 and H2 are no longer negligible, the equivalence
between the Hamiltonian based on static gauge invariance is
not correct any more. In the third Hamiltonian, these terms
are canceled exactly by the added on-site potentials, and the
equivalence between the first and the third Hamiltonians is a
result of dynamical gauge invariance (see Fig. 3).

In a sudden quench, with γ → ∞, the first and second
Hamiltonians are related by a static gauge transformation, at all

023612-3



F. YıLMAZ AND M. Ö. OKTEL PHYSICAL REVIEW A 97, 023612 (2018)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2 j = 1
j = 2
j = 3
j = 4
j = 5
j = 6

(a) (b) (c)

FIG. 3. Minimal model time evolution of each site density 〈a†
i ai〉 in the nonadiabatic region, γ = 2, where time is in units of τ . The magnetic

flux is ramped from 0 to 1/3 and the same initial wave function is time evolved for three Hamiltonians, H1 (a), H2 (b), and H3 (c). H1 [Eq. (4)]
and H3 [Eq. (10)] are connected by a dynamic gauge transformation and give identical time evolution for an arbitrary ramping rate, whereas
the second Hamiltonian, H2 [Eq. (7)], lacks the induced scalar potential and the density of each site is clearly different from two other gauges.

times except at t = 0. The results of evolution after the quench
clearly show that the evolution of site densities are different
[see plots (a) and (b) in Fig. 3] for γ = 2. This difference,
which can be called static gauge dependence, is because the
two Hamiltonians are not connected by a gauge transformation
exactly at the moment of the quench. The third Hamiltonian,
which is related to the first by a proper dynamical gauge
transformation, has on-site terms which act for an infinitesimal
amount of time τ , but their strength is as high as γ ∼ 1/τ .
As a result these on-site terms can generate the necessary
phases creating the gauge independence. Hence, in a quench
experiment, as long as the Hamiltonians are related only by a
static gauge transformation, one can interpret the results to be
gauge dependent because gauge equivalence is broken at the
moment of quench. Throughout the rest of the paper, we will
mention gauge dependent results in this sense.

Another, equally valid, interpretation is to say that a quench
with first Hamiltonian and with second Hamiltonian corre-
sponds to two different physical scenarios. While both have the
same magnetic field jumping from zero to B0, the generated
electric fields in the two cases are different. The difference
between the momentary artificial electric fields is clearly seen
as the δ function on-site potentials in the third Hamiltonian.
In a cold atom experiment such (δ function in time) on-site
potentials would be extremely hard to generate. Thus quenches
in experiments will in general be gauge dependent in the static
gauge equivalence sense as discussed above.

III. TWO-LEG AND THREE-LEG LADDERS

In this section, we investigate the dynamics after the arti-
ficial magnetic-field quench for two-leg and three-leg infinite
ladders. The two-leg system with a magnetic flux through each
plaquette has been realized in real space [28]. Although it
seems quite hard for a sudden artificial magnetic-field change
to be implemented in that particular configuration, the two-
leg system is simple enough to allow for analytical results
amenable to interpretation. The three-leg ladder is formed as a
synthetic dimension experiment [21], by treating the hyperfine
F = 1 manifold as the synthetic dimension. Our investigation

will focus on the dynamics of a single wave packet, which is an
eigenstate before the quench, as this method is used commonly
with bosonic systems. A similar analysis can be carried out for
fermions by a suitable sum over the Brillouin zone.

We first start with the two-leg ladder, where the gauge is
chosen so that hopping phases are equal and opposite on the
two legs (see Fig. 4),

Ĥ
(1)
2L = −J

∞∑
m=−∞

(eiπφa
†
m+1am + e−iπφb

†
m+1bm

+ b†mam + H.c.). (11)

Defining Fourier-transformed operators,

(a†
k,b

†
k) = 1√

N

N∑
m=1

eikm(a†
m,b†m), (12)

reduces the Hamiltonian to the 2 × 2 matrix at each k point,

Ĥ
(1)
2L (k) = −2J cos (k) cos (πφ)Î + ĥ(k) · σ, (13)

where ĥ(k) · σ/J = −2 sin (k) sin (πφ)σ̂z − σ̂x . Diagonaliz-
ing the matrix results in two bands, for the eigenvalue equation,

Ĥ
(1)
2L (k)|k,n; φ〉 = E|k,n; φ〉, (14)

and n ∈ {1,2} yields energies

E1,2(k)

J
= −2 cos k cos (πφ) ±

√
4 sin2 k sin2 (πφ) + 1

(15)

and the corresponding creation operators are(
α̂k

β̂k

)
=

(
cos θ

φ

k /2 sin θ
φ

k /2
− sin θ

φ

k /2 cos θ
φ

k /2

)(
âk

b̂k

)
,

with tan θ
φ

k = 1
2 sin k sin (πφ) .

We now consider an initial state which is a wave packet
made up of a superposition of states in one band near quasi-
momentum k0, at an initial flux value φ1. We then abruptly
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FIG. 4. Schematic representation of the two-leg tight-binding ladder for two different gauge choices in Eq. (11) and Eq. (20).

change the value of the flux to φ2 and investigate the dynamics
of the wave packet. If the prequench wave function is a wave
packet of the lower band, its center of mass will be moving
with the group velocity vg ∝ ∂E1/∂k. After the quench this
packet will be a superposition of the new upper and lower band
states, which will in general have different group velocities. As
the system evolves, the components in the upper and lower
bands will separate into two wave packets in a time scale
determined by the spatial extent of the original wave packet
divided by the group-velocity difference between the upper
and lower bands in the new Hamiltonian. The density in each
packet will be proportional to the overlaps of before quench
and after quench bands C

φ1,φ2
n1,n2 (k) = 〈k,n1; φ1|k,n2; φ2〉, where

n1,n2 ∈ {1,2} are the band indices. Hence any in situ method
which probes density can directly measure these coefficients.
These coefficients are found as

Cφ1,φ2 (k) =
⎛
⎝ cos

(
θ

φ2
k −θ

φ1
k

2

)
sin

(
θ

φ2
k −θ

φ1
k

2

)
− sin

(
θ

φ2
k −θ

φ1
k

2

)
cos

(
θ

φ2
k −θ

φ1
k

2

)
⎞
⎠. (16)

cos

(
θ

φ2
k − θ

φ1
k

2

)
= 1

2

(√
1 + b2

h2

√
1 + b1

h1

+
√

1 − b2

h2

√
1 − b1

h1

)
, (17)

sin

(
θ

φ2
k − θ

φ1
k

2

)
= 1

2

(√
1 − b2

h2

√
1 + b1

h1

−
√

1 + b2

h2

√
1 − b1

h1

)
, (18)

where bi = −2 sin(k) sin(πφi) and hi =√
4 sin2 k sin2 (πφi) + 1.
For example, |Cφ1,φ2

1,1 |2 is the probability that the initial state
in the lower band of Hamiltonian with φ1 will stay in the new
lower band of φ2, etc. Let’s assume that at t = 0 we have the
Hamiltonian with flux φ1 and a particle is in an eigenstate at
quasimomentum k and band index 1 or 2. A sudden change in
the flux to φ2 will not immediately change the wave function;
however, its subsequent evolution will be governed by the new
Hamiltonian at φ2. As both Hamiltonians before and after the
quench have discrete translation symmetry along the ladder,
quasimomentum will be a conserved quantity.

We simulate such a scenario using a Gaussian wave function
[Eq. (19)] with a width of 60 lattice sites along x̂ axis, 	 =
60, and the total system has N = 1200 sites in each leg. This
function is localized in the lowest band at k = k0 in momentum

space and centered in the middle of finite spatial coordinates
φ1 = 0,

ψ0(m) = 1

(π	2)1/4
e
− (m−m0)2

2	2 eik0m. (19)

We evolve the wave function in Eq. (19) with k0 = π/4 in
the quenched Hamiltonian φ2 = 1/6. As the group velocities
of the upper and lower bands are slightly different from the
prequenched bands for small values of difference in φ, the wave
packet splits into two packets going in the same direction. The
total weight of the two packets from the simulation P1 = 0.91
and P2 = 0.09 are in excellent agreement with the overlap
coefficients |C0,1/6

11 |2 = 0.91 and |C0,1/6
12 |2 = 0.09 with an error

�0.2%.
The separation of the wave packet can be dramatic if the

group velocities of the two bands have opposite signs. As
seen in the upper two plots of Fig. 5, a right-moving wave
packet at k = π/5 as φ1 = 0, blue (dark gray) circle on dashed
lower energy band, splits into a left-moving wave packet and
a right-moving wave packet, which are denoted with two
red (gray) circles on energy bands. The weights of the two
packets once again follow the simple overlap formulas, and
for this case the wave packet which reverses the direction
is considerably more prominent. While quasimomentum is a
conserved quantity during the quench, the same cannot be said
of momentum. This can either be interpreted as the effect of the
change in the definition of canonical momentum or the effect
of the induced electric field during the quench, as discussed in
the previous section.

In Fig. 6, we calculate the distribution of a wave packet
prepared in the lowest band of the Hamiltonian with initial
magnetic flux φ1 at k = π/2 onto the eigenstates of the
arbitrary final flux φ2 as calculated in Eq. (16). The coefficients,
|Cφ1,φ2

11 (k)|2 and |Cφ1,φ2
12 (k)|2, determine the weights of the two

wave packets after the quench. The packet transfers significant
weight into the other band only if the initial or the final
magnetic flux is close to zero or one. The initial packet mostly
preserves its band index unless the direction of the magnetic
field is reversed.

While the dynamics of the wave packet in a quench made
with H

(1)
2L is easy to understand, this Hamiltonian is not unique

in describing a magnetic-flux quench. We investigate the effect
of the gauge choice by considering the two-leg ladder for which
the Peierls phases are defined on the rungs of the ladder, rather
than on the legs (see Fig. 4),

Ĥ
(2)
2L = −J

∞∑
m=−∞

(a†
m+1am + b

†
m+1bm + ei2πφmb†mam + H.c.).

(20)
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FIG. 5. Splitting of the same initial wave packet after the quench for the two gauge choices in Eq. (11) and Eq. (20). Initial wave packet at
zero magnetic flux prepared at k = 0.2π and the artificial magnetic flux is quenched as φ = 0 → 1/3. In the first gauge choice (upper plot), the
wave packet splits into two packets moving in opposite directions while it splits into four packets in the second gauge choice (lower plot). The
pre- (dashed lines) and the postquench (solid lines) band structures are shown on the left plots. The initial and the final weights of the packet
in each band are shown with blue (dark gray) and red (light gray) filled circles on the energy bands.

The most important difference between two Hamiltonians
for the gauges is that H

(1)
2L preserves the full translational

invariance of the ladder, while the second choice H
(2)
2L ex-

FIG. 6. Probability of the initial wave packet prepared in the
lowest band to maintain its band, which is calculated in Eq. (16) as
|Cφ1,φ2

11 (k)|2 after the quench between two arbitrary magnetic fluxes,
φ1 and φ2. The initial packet is prepared around k = π/2. Note that
|Cφ1,φ2

11 (k)|2 + |Cφ1,φ2
12 (k)|2 = 1 and |Cφ1,φ2

11 (k)|2 = |Cφ1,φ2
22 (k)|2.

plicitly breaks it. For a rational value of flux φ = p/q, the
first Hamiltonian has two bands, defined throughout the first
Brillouin zone −π < k < π , while the second has 2q bands,
defined in the magnetic Brillouin zone, −π/q < k < π/q. As
we have seen in the previous section that measurable quantities
depend on the choice of gauge, it is necessary to ask whether
the number of packets which an initial Gaussian packet splits
into can be changed. If the initial wave packet is localized in
a single band around an eigenstate of the two-leg ladder with
zero flux, it is quite clear that it will split into two upon a
quench to H

(1)
2L . In such a quench, the translational symmetry

along the ladder is not broken and the final Hamiltonian has
only two bands at a given quasimomentum. If the number of
the final wave packets were only controlled by the number
of bands in the final Hamiltonian, a quench to H

(2)
2L would be

expected to generate 2q wave packets. Such an expectation is
not reasonable, as it would predict an infinite number of wave
packets for an irrational φ.

The number of wave packets after the quench is not
controlled by the number of bands in the final Hamiltonian,
as the way the translational symmetry is broken in H

(2)
2L is not

arbitrary. Irrespective of the value of the flux, H
(2)
2L is unitarily

connected to a translational symmetric system H
(1)
2L ,

H
(2)
2L = UH

(1)
2L U †, (21)
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which implies a relation between the bands of H
(2)
2L . The unitary

operator connecting the two static gauge choices is

U = eiπφ
∑

m m(b†mbm−a
†
mam). (22)

If we start with an eigenstate of the ladder at zero field |ψk0 (0)〉,
and investigate the evolution after quenches to H

(1)
2L and H

(2)
2L ,

the resulting state at time t ,

|ψk0 (t)〉1 = e−iH
(1)
2L t/h̄|ψk0 (0)〉,

|ψk0 (t)〉2 = e−iH
(2)
2L t/h̄|ψk0 (0)〉, = U e−iH

(1)
2L t/h̄U †|ψk0 (0)〉.

(23)

We obtain the last expression by using the static gauge
equivalence in Eq. (22). For the case of |ψk(t)〉1, we have two
components which correspond to the two bands which are at
the same k vector.

We need to calculate how many components the same
initial wave function will develop if the time evolution is done
with H

(2)
2L . The unitary operator in Eq. (23), U †, attaches a

different phase to each lattice site which does not change the
density in real space; hence it cannot change the number of
components after a flux quench. The remaining part excluding
the time evolution operator of H

(1)
2L , the state U †|ψk0 (0)〉, can

be expanded as the eigenstates of H
(1)
2L . Without a loss of

generality (see Appendix), assume that the initial state is in
the lowest band of the zero-field ladder at lattice momentum
k0, |ψk0 (0)〉 = |k0,1; φ = 0〉. Then,

U †|k,1; φ = 0〉 = + 1√
2

cos
θ

φ

k+πφ

2
|k + πφ,1; φ〉

− 1√
2

sin
θ

φ

k+πφ

2
|k + πφ,2; φ〉

− 1√
2

sin
θ

φ

k−πφ

2
|k − πφ,1; φ〉

− 1√
2

cos
θ

φ

k−πφ

2
|k − πφ,2; φ〉. (24)

The effect of U † on the wave packet is to displace the wave-
function components in the upper and lower legs by equal and
opposite momentum shifts. Hence this packet has two packets
in each band of two momentum components at k + πφ and
k − πφ, and quench to H

(2)
2L can generate at most four split

packets after the quench. As an example consider again the
quench scenario of the initial state in Fig. 5; it generates two
wave packets after evolution with H

(1)
2L and four wave packets

after evolution with H
(2)
2L .

While two-leg ladders can be realized with real-space
optical lattices [28] a sudden change in the artificial magnetic
fluxes generated by methods modifying the real-space hopping
between sites would not be easy to implement. For three-leg
ladders, real-space implementation would have to become
even more involved. However, Raman coupling between the
hyperfine levels of the atoms which constitutes hopping in the
synthetic dimension provides the means to not only implement
wider ladders, but to modify the effective gauge fields at a fast
time scale. We study the effect of an artificial magnetic-field

quench for a three-leg ladder as can be obtained by using the
spin-1 hyperfine manifold as the synthetic dimension.

As in the two-leg case, we choose two Hamiltonians for
three-leg ladder both with flux φ through every plaquette albeit
with different gauge choices. For the first gauge, the phases are
added to the hopping along the real dimension, in the first and
third legs:

Ĥ
(1)
3L = −J

∞∑
m=−∞

(ei2πφa
†
m+1am + b

†
m+1bm + e−i2πφc

†
m+1cm

+ b†mam + c†mbm + H.c.), (25)

while the second gauge choice modifies hopping along the
synthetic dimension

Ĥ
(2)
3L = −J

∞∑
m=−∞

(a†
m+1am + b

†
m+1bm + c

†
m+1cm

+ ei2πφmb†mam + ei2πφmc†mbm + H.c.). (26)

As these Hamiltonians are equivalent up to a static gauge
transformation,

U = ei2πφ
∑

m m(c†mcm−a
†
mam ), (27)

and their energy spectra are the same, plotted with blue (dark
gray) dashed and orange (light gray) solid curves for φ = 0
and φ = 1/4 in Fig. 7.

We consider each of all initial states prepared at the lowest
band of the zero field spanning the Brillouin zone. We quench
these initial states into two Hamiltonians in Eq. (25) and
Eq. (26), and calculate their distribution at each quasimomen-
tum onto new bands (see Fig. 7). The initial states are denoted
with blue (dark gray) filled circles and their distribution is
denoted with orange (light gray) circles. The size of a circle
represents its weight. For both gauge choices, notice that the
energy bands are equivalent, where the energy bands in the
second gauge are folded into the reduced Brillouin zone.

The dramatic change in the number of packets with the
gauge choice cannot be simply explained by an increase in the
number of bands upon folding to the reduced Brillouin zone.
The unitary transformation between the two Hamiltonians
restricts the final number of wave packets acting similar to
a selection rule. As discussed in the two-leg ladder case, the
Hamiltonian Ĥ

(2)
3L for φ2 = 1/4 is not periodic with a single site

translation along the real dimension. Full symmetry is restored
only after a translation by four lattice sites. Hence, as viewed
in the reduced magnetic Brillouin zone, this Hamiltonian
has not three but 3 × 4 = 12 bands. In that respect, it may
seem surprising that the quench results in the splitting of the
wave packet into at most nine packets instead of twelve. The
connection to Ĥ

(1)
3L actually reflects the fact that a single site

translation in real space for Ĥ
(2)
3L can be combined with a gauge

transformation [Eq. (27)] to restore the symmetry. As a result,
a quench to Ĥ

(2)
3L can result in at most 3 × 3 = 9 wave packets.

For example, we take one sample from Fig. 7 as an initial
packet centered around a lattice momentum eigenstate for
an initial flux φ1 = 0, which is narrow in momentum space.
After the change in the flux to φ2 = 1/4, we expect the packet
to split into at most three packets moving with different
velocities as this is a system with three bands. Indeed, as
can be seen in Fig. 8, an initial wave function (dotted, blue
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FIG. 7. Pre- (dashed lines) and postquench (solid lines) band structures of the three-leg ladder for two gauge choices are plotted in the first
graphs of plots (a) and (b). The magnetic flux is quenched as φ = 0 → 1/4. The second figure in plot (a) [(b)] shows the redistribution of the
initial packet prepared in the lowest band of zero-field Hamiltonian. The blue (dark gray) filled circles are the weight of the initial packet at
separate lattice momentum quench and the orange (light gray) circles with varying size give the weights after the quench for the gauge choice 1
(2). In the second gauge choice, the initial packet at each momentum splits into nine bands within the reduced Brillouin zone. The static gauge
transformation connecting the two Hamiltonians constrains the maximum number of packets that an initial packet can split into as the square
of the number of legs 3 × 3 = 9.

curve) at k = 0.15π of the lowest band of φ1 = 0 with a width
of 60 lattice sites is split into two wave packets (solid, red
curve) upon a quench into Ĥ

(1)
3L , with φ = 1/4. The weight

of each wave packet is again determined by the overlap
between the initial band and final bands at the same k value.
The same initial wave function splits into eight smaller wave
packets if the quench is carried out to Ĥ

(2)
3L (see Fig. 8). The

same argument is extended to a general N -leg ladder in the
Appendix, showing that the maximum number of packets
after the quench to a parallel gauge is N2.

One of the most appealing features of synthetic dimen-
sion experiments is the ease with which hoppings along the
synthetic dimension can be manipulated. In other words,
among the two Hamiltonians considered above, H

(1)
3L and H

(2)
3L

which are connected by a static gauge transformation, H
(2)
3L

is more readily implementable compared to H
(1)
3L which has

hopping phases along the real-space dimension. In that regard,
it is useful to consider scenarios where gauge dependence of
the quench process can be explored through a manipulation
of phases solely in the synthetic dimension. To this end,
we introduce another Hamiltonian, which has zero flux per
plaquette but has a built-in phase angle � along the synthetic
dimension:

Ĥ�
3L = −J

∞∑
m=−∞

(a†
m+1am + b

†
m+1bm + c

†
m+1cm

+ ei2π�b†mam + ei2π�c†mbm + H.c.). (28)

Hamiltonians for different values of � are equivalent up to an
almost trivial gauge transformation, which is equivalent to a
coordinate shift by �/2π times the lattice constant along the
synthetic dimension.

We start with an initial state which is an eigenstate of
Ĥ

(2)
3L with φ1 = 1/2 at k = 0.15π in the lowest band. We

consider a quench to Ĥ�
3L with two different values of the

gauge angle � = 0 and � = π/3. In both cases the initial
wave packet splits into three, as expected for a three-leg
ladder with full translational symmetry. Furthermore, the total
weights of the three packets are the same for both angles. The
weights of the packets remain the same for not only two gauge
angles but they are independent of the gauge angle. While
this measurable property is independent of the gauge choice,
another measurable property, namely the distribution of each
split wave packet along the synthetic dimension, depends on
it. In Fig. 9 one can see that, while the total weight summed
over the three hyperfine states is the same in both cases, the
hyperfine makeup of each packet is different.

The independence of the packet weight from the gauge
angle � is clearly seen when one considers the missing scalar
potential that would have acted during the quench to make
all the H�

3L equivalent. As the static gauge transformation
linking different values of � is equivalent to a shift only
along the synthetic dimension, the missing (δ function in time)
electric field would have also acted only along the synthetic
dimension. The quench to different values of gauge angle �

correspond to different physical experiments in which all of
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FIG. 8. Time evolution of one wave packet taken from Fig. 7. The initial packet is prepared under zero field and a quasimomentum at
k = 0.15π . (a) Flux quench φ = 0 → 1/4 in the first gauge choice results in two packets independent of the denominator of magnetic flux
q = 4. (b) The same flux quench in the second gauge choice splits the initial packet into eight packets. The number of split packets are less
than or equal to the square of the number of legs, 3 × 3 = 9, as expected.

the magnetic field is shut off but different electric fields are
applied along the synthetic dimension. Hence the distribution
in real space is not affected by the gauge angle choice. In Fig. 9,
we give the hyperfine distribution of the lowest band under
the flux quench, φ = 1/2 → 0, for two different gauge angles,
� ∈ {0,π/3}. The total density of each leg is clearly dependent
on the gauge angle or the missing scalar potential as a
function of �.

IV. WIDE LADDERS AND THE ROBUSTNESS OF THE
EDGE STATES

It is not possible for synthetic dimension experiments to
simulate systems with a fully extended synthetic dimension.
However, if a large number of internal states are utilized,
the resulting simulation would be a good approximation to
a higher-dimensional system. The recent experiments carried
out on atoms with high nuclear spins, such as with I =
7/2, 9/2 [22], allow the creation of wide ladders which
closely resemble two-dimensional systems. In this section,
we investigate the effects of a flux quench in a 15-leg
ladder and contrast the behavior with a continuum finite
strip.

The behavior of a general wave packet in a lattice with flux,
formed around a momentum eigenstate with sufficient width
in real space to allow for semiclassical motion, has two main
features. The center-of-mass motion in real space (momentum

space) will be modified by the Lorentz force due to the flux
(Berry curvature) and the wave packet will broaden as it is made
up of a superposition of states with neighboring momenta. The
center-of-mass motion can be used as a direct probe of the
underlying artificial magnetic field [29]. A sudden quench has a
moderate effect on the center-of-mass motion of a wave packet;
it evolves with the Lorentz force of the magnetic field after the
quench. The effect of the quench on the packet shape is much
more dramatic. After the quench the wave function ceases to
be centered around a single momentum state in a single band
but now is a superposition of many bands. As in the case of
narrow ladders, the wave packet splits into multiple packets,
with different rates of dispersion.

As an example, we consider the 15-leg ladder. The energy
spectrum for this ladder as a function of the flux per plaque-
tte clearly shows how well this system resembles the two-
dimensional infinite lattice which has the Hofstadter butterfly
spectrum (see Fig. 10). We first consider quench from φ1 = 0
to the final flux φ2 = 1/3, with an initial wave packet centered
in the middle with a width of five sites across the legs and
15 sites along the infinite direction with momentum along the
infinite direction. After the quenches the splitting of the wave
packet is complicated by reflections from the edges and the
wave packet quickly broadens. This quick broadening upon
the quench for bulk states was observed for different quench
parameters and gauge choices, and we have not been able to
discern any other universal behavior.
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FIG. 9. Time evolved density at each leg for the quench φ = 1/2 → 0. The initial packet is prepared around an eigenstate of H
(2)
3L under

φ = 1/2 at k0 = 0.15π and is quenched to H�
3L for the gauge angles � = 0 and � = π/3. The difference in each leg is because of the absent

electric field �

a
δ(t) needed for the dynamical gauge equivalence. Notice, in the fourth row, the total density is the same for both gauge angles.

If the bulk system has a topological invariant the edge states
become robust due to the bulk edge correspondence. It is natu-
ral to ask if any of this robustness can be retained in a quench.
A general argument should not be expected for topological

protection in a quench; however, recent work has shown that,
at least in two-band systems, equilibrium topological invariants
can be measured from dynamics after the quench [30,31].
Here, we ask a simpler question and want to understand if

FIG. 10. Energies of the fifteen-leg ladder sampled in 51 equally spaced points in k space as a function of the magnetic flux, φ. The energy
spectrum is similar to the Hofstadter butterfly. We take three slices in this spectrum at φ = 1/5 (dashed curve), 1/3 (dotted curve), and 5/12
(solid curve) and investigate the quench scenarios for wave packets made of edge states. The edge states reside within the energy gaps of the
Hofstadter butterfly.
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FIG. 11. Time evolved wave packet of the edge state before and after the quench. The initial packet is prepared for φ = 1/3 and the system
is quenched into two magnetic-flux values, φ = 1/5 and φ = 5/12, where the survival and the decay of the edge state is present. The upper
(lower) plot on the left shows the weight of the initial packet (blue dot) on the final bands (red dots). The upper (lower) two stacked contour
plots on the right are the time evolution of the wave packet before and after the quench. The edge state is prepared at k0 = 0.07π and quenched
as φ = 1/3 → 1/5. The same edge state is quenched as φ = 1/3 → 5/12. The sudden change in the flux redistributes the packet into the bulk.

the edge state remains bound to the edge or disperses into
the bulk after the quench. Clearly both kinds of behavior are
possible; a quench of an edge state from a finite flux to the
zero magnetic-field lattice where no edge modes exist results in
decay into the bulk. Similarly, a small change in the flux carried
out as a quench would not be expected to disturb the edge state.

We first take two quench scenarios for a right-moving edge
state packet prepared at k = 0.07π in magnetic flux φ1 = 1/3.
The magnetic flux is quenched as φ = 1/3 → 1/5 and φ =
1/3 → 5/12. The energy band diagrams for three flux values
are shown in Fig. 10. The condition for the survival of the edge
state under a flux quench is the existence of an edge state in one
of the gaps at the same momentum of the final Hamiltonian.
For example, the edge state at k = 0.07π in magnetic flux
φ1 = 1/3 transfers 88% of its weight for the case φ : 1/3 →
1/5. The form of the edge states before and after the quench is
shown in Fig. 11. However, the edge state totally decays into
the bulk states for the case φ : 1/3 → 5/12 as seen in Fig. 11,
because there is no edge state mode at this momentum for the
quenched Hamiltonian (see Fig. 10).

We obtain a quantitative measure for the survival of the
edge state following the quench by investigating the long-time
average of the density near the edge. After the quench the

initial state (prepared at φ = 1/5 and the lattice momentum
k = 0.01π ) is expanded in terms of the new eigenmodes;
however, any cross terms in the density will oscillate with the
frequency difference between the modes. As these oscillations
(off-diagonal terms in the density matrix) average out to zero
in the long-time limit, we can calculate the residual density
simply from the overlaps. In Fig. 12 we give the postquench
edge density, defined as the total density in the first three
sites in a 15-leg ladder, as a function of the final flux. The
crowded peak structure seen in the figure follows the existence
of well-defined gaps and corresponding edge states in this
finite system. Thus final fluxes close to rationales with small
denominators are more prominent. In the zero flux and 1/2 flux
limits the spectrum does not have a well-defined gap; hence
the density at the edge falls to the uniform distribution limit of
3/15 = 0.2.

As a natural extension of the wide ladders, we consider a
continuum system and discuss the dynamics of a wave packet
in such a setting. We choose a strip of width L in the x̂ direction,
infinite in the ŷ direction,

Hstrip = 1
2 ( �p − �A)2 + V (x,y), (29)

023612-11



F. YıLMAZ AND M. Ö. OKTEL PHYSICAL REVIEW A 97, 023612 (2018)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

FIG. 12. Edge density of an initial 15-leg ladder edge state prepared around φ = 1/5 and the lattice momentum k = 0.01π (blue line) after
magnetic-flux quench as φ : 1/5 → φf , where φf ∈ [0,1]. The edge density is calculated as the total density of the three legs at the edge.

where

V (x) =
{

0 : 0 < x � L,

∞ : x < 0, x > L.
(30)

All parameters and functions are nondimensionalized by the
length scale �0 = √

h̄/mωc and by the energy scale E = h̄ωc,
where ωc = eB0/m. Choosing the vector potential in the
Landau gauge preserves the translational invariance in the y

direction,

�A1 = xŷ, (31)

and we only consider high magnetic fields where the magnetic
oscillator length �0 is much smaller than the strip width L.
The canonical momentum in the y direction ky is a conserved

quantity which can be used to define the guiding center
coordinate xg = ky . The energy spectrum as a function of the
guiding coordinate is numerically calculated in Fig. 13, which
shows two distinct types of eigenstates. If the guiding center
coordinate is in the bulk of the strip, i.e., a distance of more than
a few magnetic lengths away from the edges, the spectrum is
flat forming the degenerate Landau levels. If the guiding center
is outside the bulk region the corresponding eigenfunctions
are edge states, with energies strongly depending on the
momentum in the y direction.

We first demonstrate that the gauge choice is also relevant
in the continuum by considering a wave packet in the bulk.
Let us consider a wave packet in the bulk which is made up of
eigenstates of this Hamiltonian all of which are in the lowest

-2 0 2 4 6 8 10 12
0

1

2

3

4

5
E0(ky)

E1(ky)

E2(ky)

E3(ky)

E4(ky)

FIG. 13. Energy spectrum of a particle under a uniform magnetic field confined to 0 < x < L = 10�0 is numerically calculated. If the
guiding center coordinate, k0, is away from the edges, 0 < k0 < 10, the energy has a flat spectrum and is made of degenerate Landau levels. If
the guiding center is outside the bulk, the energy spectrum depends highly on the guiding center, ky , and the eigenfunctions become edge states.
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FIG. 14. Magnetic-field quench response of an initial edge packet in the continuum limit. The initial packet is prepared as a slightly shifted
version of the lowest eigenstate for the guiding center k0 = −2 in the x direction and Gaussian in y direction. Hence the initial packet has
enough number of edge states to have a skipping orbit even before the quench. The system is quenched as B1/B0 = 90 → 35, where B0 is the
magnetic field determining the length scale �0 = √

h̄/eB0 and B1 is the quenched magnetic field and energy scale E0 = h̄eB0/m of the system.
The center-of-mass position is plotted as a function of time. The pre- and postquench packets clearly show skipping orbits. Depending on the
magnitude of the final field, the skipping orbit has a different radius. The edge state is always robust as there are infinite number of available
edge states in the continuum.

Landau level:

ψ(x,y) = 1√
	

√
π

∫ ∞

−∞
dkye

− (ky−k0)2

2	2 �0,ky
(x,y), (32)

�0,ky
(x,y) = eikyy

√
2π

e−(x−ky )2/2

π1/4
, E0,ky

= 1/2, (33)

where the center of the wave packet is controlled by the average
canonical momentum in the y direction, 〈�x〉 = (k0,0). The
width in both directions is scaled with 〈x2〉 = 1 + 	2 and
〈y2〉 = (1 + 	2)/	2. This packet is static, as it is formed by
degenerate states all of which are in the lowest Landau level. If
the Hamiltonian is suddenly changed so that the new artificial
vector potential is

�A2 = (x − d)ŷ, (34)

where d is a constant, this wave packet will no longer be static.
Although both vector potentials define the same magnetic
field, making the Hamiltonians before and after the quench
equivalent up to a static gauge transformation, once again the
missing scalar potential at the moment of the quench results
in a momentum kick given to the wave packet. Time evolution
of the wave packet is easy to calculate as the initial state is

essentially a coherent state of the new Hamiltonian,

ψ(x,y,t) = e−iωct/2e− d2

4 (1−e−2iωc t ) 1√
π

√
	

1 + 	2

× e
i[[x−d(1−e−iωc t )]y+ y

1+	2 [k0−x+d(1−e−iωc t )]] (35)

× e
− 	2

1+	2
y2

2 e
− 1

2(1+	2)
[x−[k0+d(1−e−iωc t )]]2

. (36)

The absolute square of this function has a simpler form,

|ψ(x,y,t)|2 = 1

π

	

1 + 	2
e
− 	2

1+	2 [y−d sin ωct]2

× e
− 1

1+	2 [x−(d+k0)+d cos ωct]2

. (37)

The wave packet oscillates with the cyclotron frequency and
is no longer in the lowest Landau level. The excitation to
higher Landau levels is a direct consequence of the energy
imparted on the particle by the momentary electric field during
the quench, �E = d

τ
ŷ, for the time-dependent vector potential

�A(�r,t) = (x − d t
τ

)ŷ. The center of mass follows the classical
trajectory,

〈�xc.m.(t)〉 = (k0 + d(1 − cos ωct),d sin ωct). (38)
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As expected the gauge dependence during the quench is not
fundamentally different from the lattice scenarios considered
in the previous sections.

For the edge states, the guiding center coordinate lies
outside the strip. If the guiding center is more than a few
magnetic oscillator lengths outside the strip, the effective
one-dimensional potential near the edge can be approximated
by a linear potential. In this case, the wave function of an edge
state is approximately

ψn,ky
(x,y) = A0Ai

[[
2k2

y

]1/3
(

x − En

ky

+ ky

2

)]
eikyy

√
2π

, (39)

En,ky
= k2

y

2
−

(
k2
y

2

)1/3

zn. (40)

A0 is the normalization constant and zn are the zeros of the
Airy function [32].

Now consider a sudden change in the vector potential to

�A2 = B1

B0
xŷ, (41)

which represents a change to a new magnetic field. The
evolution of the state will be controlled by the overlaps of the
initial wave function with the new eigenstates. If the significant
overlaps are only with the bulk wave functions, then the packet
will disperse into the bulk; otherwise, the wave packet will
remain bound to the edge. As the initial edge state is confined
to within one magnetic length of the edge the overlaps can be
estimated by the local density of states in the new Hamiltonian.
Unlike the lattice problem there are infinitely many edge states
in the continuum problem, and the local density of states near
the edge are dominated by the new edge states. Thus, in almost
all cases, excluding the total turn off of the magnetic field, the
edge state is robust and remains bound to the edge. In Fig. 14,
we plot the density of such a wave packet after the quench
and observe that an edge state before the quench becomes
a skipping orbit, but remains bound to the edge [33]. This
behavior supports our finding in the lattice that the edge state
is robust if there are protected edge states after the quench.

V. CONCLUSION

Throughout the paper we considered scenarios where the
artificial magnetic field in a lattice system is abruptly changed.
The most important conclusion that can be reached from our
calculations is that the gauge choice in the implementation of
the artificial magnetic field can have observable consequences
in a quench. To be more specific, quenching into two Hamil-
tonians which can be related by a static gauge transformation
gives physically different results for the same initial state.

We explored this gauge dependence first by considering
a six-site lattice model and calculating the dynamics during
the magnetic-field change. We have observed that if the
magnetic-flux change is carried out adiabatically, the dynamics
is independent of the gauge choice. However, for nonadiabatic
changes, including quenches, physical observables depend on
specifically how the vector potential is implemented in the
experiment. It is possible to recover full gauge symmetry only
by implementing a time-dependent scalar potential, which
corresponds to time-dependent on-site energies. We believe

both gauge choices we consider in Sec. II can be implemented
in a synthetic dimension experiment. One gauge choice cor-
responds to isolating two sites in real space by a superlattice
potential and using spin-1 hyperfine levels as the synthetic
dimension, while the other gauge choice would need three real-
space lattice sites with two sites along the synthetic dimension.

We then investigated the effect of a sudden quench on a wave
packet in a two- or three-leg ladder. The wave packet splits into
smaller wave packets moving with different velocities after the
quench, but the number, the weights, and and the velocities of
these wave packets depend on the gauge choice. In particular,
we considered quenches from a zero magnetic-field ladder to
two different implementations of the vector potential giving
the same magnetic flux φ. For vector potentials parallel to the
n-leg ladder, the wave packet splits into at most n smaller
wave packets. For the more experimentally relevant case, a
vector potential parallel to the synthetic dimension the zero
field packet splits into at most n2 wave packets, regardless of
the value of the flux φ. In both cases the weights and the number
of wave packets are found from the overlaps of the initial state
with the states at different bands at the same quasimomentum
value. We also considered quenches from a finite magnetic
flux to zero flux and investigated the effect of a trivial gauge
choice corresponding to a constant vector potential parallel to
the synthetic dimension. We find that such a constant vector
potential does not affect the number of split packets, or their
total weight, but it modifies the hyperfine state composition
within the packet. We believe both kinds of experiments are
within the reach of current experimental capabilities.

Finally, we considered the fate of topologically protected
edge states upon a quench. In a wide ladder, the edge state might
disperse quickly or remain mostly bound to the edge after the
quench. The edge state remains bound only if most of its weight
is transferred to an edge state in the new Hamiltonian. We find
that the robustness of the edge state is controlled by the exis-
tence of an edge state at the same gap in the postquench Hamil-
tonian. In the continuum the existence of edge states is guaran-
teed by the termination of Landau levels at the edge and an edge
state becomes a skipping orbit wave packet after the quench.

We hope that our results stimulate further experimental
interest in dynamics following artificial gauge-field quenches.
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APPENDIX: N-LEG LADDER PACKET SPLITTING AFTER
A FLUX QUENCH

We consider an N -leg ladder with the gauge choice,
�A||(�x) = B0yx̂; the Hamiltonian is

Ĥ
||
NL = −J

∞∑
m=−∞

[
n−1∑
r=0

(e−i2πφra
†
m+1,ram,r + H.c.)

+
n−2∑
r=0

(a†
m,r+1am,r + H.c.)

]
(A1)
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and the magnetic flux is φ = a2B0. We define the Fourier
transform operators in the parallel direction,

a
†
k,r = 1√

2π

∞∑
m=−∞

a†
m,re

−ikm, − π � k � π,

a†
m,r =

∫ π

−π

dk√
2π

a
†
k,re

ikm. (A2)

The operators, a
†
m,r and a

†
k,r , are the creation operators in

the position and the momentum space. The Hamiltonian in
Eq. (A1) in the momentum space is

Ĥ
||
nL =

∫ π

−π

dk

N−1∑
r1,r2=0

a
†
k,r1

Ar1,r2 (k)ak,r2 (A3)

and the matrix elements are

Ar1,r2 (k) = −J

⎛
⎜⎜⎝

2 cos (2πφ0 − k) 1 0 . . . 0
1 2 cos (2πφ1 − k) 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2 cos [2πφ(N − 1) − k]

⎞
⎟⎟⎠

N×N

.

In the diagonal basis,

ak,r =
N−1∑
s=0

Ur,s(k)bk,s, (A4)

bk,r =
N−1∑
s=0

U ∗
s,r (k)ak,s, (A5)

where U †U = I , the matrix Ar1,r2 (k) is diagonalized as
∑

r1,r2
U ∗

n1,r2
(k)Ar1,r2 (k)Ur2,n(k) = εn1 (k)δn1,n. The Hamiltonian in the

parallel gauge is

Ĥ
||
nL = −J

∫ π

−π

dk

N−1∑
n=0

εn(k)b†k,nbk,n. (A6)

Our only requirement for the initial state is that it is an eigenstate of the translation operator in the absence of the magnetic
flux,

|ψk0 (0)〉 =
N−1∑
r=0

ψr (k0)a†
k0,r

|vac〉. (A7)

The coefficients ψr (k0) are chosen arbitrarily ensuring the normalization. Using Eq. (A4), the initial is expanded in the new
basis with magnetic flux φ,

|ψk0 (0)〉 =
N−1∑
n=0

(
N−1∑
r=0

U ∗
n,r (k0)ψr (k0)

)
b
†
k0,n

|vac〉 =
N−1∑
n=0

Wn(k0)b†k0,n
|vac〉. (A8)

Note that Wn(k0) can also be written as Wn(k0) = 〈k,n; φ|ψk0 (0)〉, where |k,n; φ〉 = b
†
k0,n

|vac〉. The time evolved form of this
arbitrary wave function is

|ψ ||
k0

(t)〉 = e−i t
h̄
Ĥ

||
NL

N−1∑
n=0

Wn(k0)b†n,k0
|vac〉, (A9)

=
N−1∑
n=0

Wn(k0)ei J t
h̄

εn(k0)b
†
n,k0

|vac〉. (A10)

Hence an arbitrary wave function at lattice momentum k0 splits into N packets when it is quenched to Ĥ
||
NL, where each packet

n has weight |Wn(k0)|2.
We choose another set of gauge fields which leads to the same observables in the static case; this perpendicular gauge is

�A⊥(�r) = −B0xŷ. The relation between the two vector potentials is

�A⊥(�x) = �A||(�x) − �∇�(�x), �(�x) = B0xy = φmr. (A11)

The gauge transformation, therefore, is

U = ei2πφ
∑

m,r mra
†
m,r am,r , U †U = I. (A12)
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The corresponding form of H
||
NL in the perpendicular static gauge is

H⊥
NL = UH

||
NLU †, = −J

∞∑
m=−∞

[
n−1∑
r=0

(a†
m+1,ram,r + H.c.) +

n−2∑
r=0

(ei2πφma
†
m,r+1am,r + H.c.)

]
. (A13)

The same initial wave function in Eq. (A7) is time evolved with Ĥ⊥
NL as follows:

|ψ⊥
k0

(t)〉 = e−i t
h̄
Ĥ⊥

NL |ψk0 (0)〉, = Ue−i t
h̄
H

||
NLU †|ψk0 (0)〉. (A14)

The first U term in Eq. (A14) does not change the density; this modified phase on each lattice site is canceled out. In addition,
the number of wave packets is N times the number of lattice momentum states in U †|ψk0 (0)〉. Note that interpretation is in parallel
with Eq. (A9) but this time U †|ψk0 (0)〉 is not restricted to single lattice momentum value. Investigating the term U †|ψk0 (0)〉,

U †|ψk0 (0)〉 = e−i2πφ
∑

m,r mra
†
m,r am,r

N−1∑
r
′=0

ψr
′ (k0)a†

k0,r
′ |vac〉, = e−i2πφ

∑
m,r mra

†
m,r am,r

N−1∑
r
′ =0

∞∑
m

′=−∞
ψr

′ (k0)e−ik0m
′
a
†
m

′
,r

′ |vac〉,

=
N−1∑
r=0

∞∑
m

′ =−∞
ψr (k0)e−ik0m

′
e−i2πφm

′
ra

†
m

′
,r
|vac〉, =

N−1∑
r=0

ψr (k0)a†
k0+2πφr,r |vac〉. (A15)

We can expand each a
†
k,r operator in b

†
k,r basis using Eq. (A4) as

U †|ψk0 (0)〉 =
N−1∑
r=0

ψr (k0)

(
N−1∑
s=0

U ∗
s,r (k0 + 2πφr)b†k0+2πφr,s

)
|vac〉, =

N−1∑
r=0

N−1∑
s=0

cr,s(k0 + 2πφr)b†k0+2πφr,s |vac〉, (A16)

and cr,s(k) = ψr (k)U ∗
s,r (k).

Therefore, after the time evolution e−i t
h̄
H

||
NL , there are at most N2 packets with the amplitude |cr,s(k)|2 and velocity

vs,r = ∂εs (k)
∂k

|
k0+2πφr

at sth band and the lattice momentum k0 + 2πφr . There are no further restrictions other than the total

number of bands, Nq. If N2 > Nq, the maximum number of packets are naturally restricted by Nq.
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