
Journal of Physics Communications

PAPER • OPEN ACCESS

Density-wave instability and collective modes in a bilayer system of
antiparallel dipoles
To cite this article: E Akaturk et al 2018 J. Phys. Commun. 2 015018

 

View the article online for updates and enhancements.

This content was downloaded from IP address 139.179.96.108 on 18/01/2018 at 10:25

https://doi.org/10.1088/2399-6528/aa9fc1


J. Phys. Commun. 2 (2018) 015018 https://doi.org/10.1088/2399-6528/aa9fc1

PAPER

Density-wave instability and collective modes in a bilayer system of
antiparallel dipoles

EAkaturk1, SHAbedinpour2 andBTanatar1

1 Department of Physics, BilkentUniversity, Bilkent, 06800Ankara, Turkey
2 Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

E-mail: tanatar@fen.bilkent.edu.tr

Keywords: antiparallel dipolar bilayers, density-wave instability, collectivemodes

Abstract
Weconsider a bilayer of dipolar particles inwhich the polarization of dipoles is perpendicular to the
planes, in the antiparallel configuration. Using accurate static structure factor ( )S q data from
hypernetted-chain (HNC) and FermiHNCcalculations, respectively for an isolated layer of dipolar
bosons and dipolar fermions, we construct effective screened intralayer interactions. Adopting the
random-phase approximation for interlayer interactions, we investigate the instability of these
homogeneous bilayer systems towards the formation of density waves by studying the poles of the
density–density response function.We have also studied the collectivemodes of these systems and
find that the dispersion of their antisymmetric collectivemode signals the emergence of the density
wave instability as well.

1. Introduction

Layered structures combine interesting physics of the low-dimensional systemswith the additional tunability
coming from the interlayer interactions and tunneling. In condensedmatter systems, several unique
phenomenon such asCoulomb-drag effect [1], formation of indirect excitons and their eventual condensation
[2], density wave instabilities (DWI) andWigner crystallization [3] and fractional quantumHall effect [4, 5] in
layered structures have been the subject of an immense interest in the past few decades. The isolation of
graphene and other layered van derWallsmaterials [6] in recent years have enormously raised this enthusiasm.

Ultracold atomic andmolecular systems, on the other hand, with their impressive controllability have
become natural simulators of the condensedmatter andmany-body theories. In particular experimental
progress in trapping and cooling atomswith largemagneticmoments and polarmolecules, opened up a new and
interesting area of exploring quantummany-body systemswith large and anisotropic dipole–dipole interactions
[7–9]. Both polarmolecules [10–14] and atomswith large permanentmagneticmoments [15–18] have been
trapped and cooled down. Very recently, the droplet crystal phase of atomic dysprosiumBose–Einstein
condensate (BEC) have been directly observed byKadau et al [19].

In bulk geometries, the attractive part of the dipole–dipole interaction could in principle lead to instabilities,
as in Bose–Einstein condensate collapse [20] or chemical reactions between particles [9]. Therefore, it is usually
favorable to confine the dipolar gases into quasi-two or one-dimensional geometries, and use an external electric
ormagnetic field (depending on the nature of dipoles) to polarize all dipoles in the same direction. Asmight be
expected, layered structures are also a configuration of great interest which one can tune the attractive
interactions and pairing between different layers without the fear of having chemical reactions.

While the stripe or density-wave phase is naturally expected in an isolated two-dimensional (2D) systemof
tilted dipolar bosons [21, 22] and fermions [23–29] due to the anisotropy of the dipole–dipole interaction, this
instability has been the subject ofmuch dispute in the limit of perpendicular dipoles, where the inter-particle
interaction is isotropic.Whilemean-field approximation [23] as well as density-functional theory (DFT) [30]
and Singwi–Tosi–Land–Sjölander (STLS) [25] calculations all predict stripe phase formation at relatively low
interaction strength for 2Ddipolar fermions, quantumMonteCarlo (QMC) simulations suggest that the stripe
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phase never becomes energetically favorable, up to the liquid-to-solid phase transition for perpendicular bosons
[22] and fermions [31].

In double-layer structures, both bosonic and fermionic systems have attracted a lot of attention so far. The
ground state properties and instabilities of fermionic bilayers have been studiedwithin theHartree–Fock
[32–34] aswell as STLSmethods [35]. TheQMC simulations [36], as well as DFT calculations [37], have been
employed to study the crossover fromBEC to Bardeen–Cooper–Schrieffer state too. For bosonic bilayers, on the
other hand,Hufnagl andZillich [38] have used the hypernetted-chain (HNC) approximation to calculate the
ground-state quantities of a bilayer systemof tilted dipolar bosons. Then using the correlated basis function
(CBF)method they obtained its dynamical properties. It has been also suggested that a bilayer systemof dipolar
bosons becomes a self-bound fluidwhen the polarization of dipoles in two layers is opposite [39].More recently,
the competition between single-dipole and dimer condensation in a bilayer of perpendicular dipolar bosons
with parallel polarization, i.e. the same direction of polarization in both layers, have been investigated using
QMCmethod byMacia et al [40]. They have observed that the pair superfluidity dominates over the single-
particle superfluidity at very strong interlayer couplings, i.e. when the separation between two layers ismuch
smaller than the average intralayer distance between two dipoles. The dynamical properties of the dipolar
bosonic bilayer in the atomic and pair superfluid regimes have been looked at usingQMCandCBF techniques
[41]. The correlation effects in a bosonic bilayer have been extensively studied usingQMC simulation for the
ground state properties as well as the stochastic reconstructionmethod andmethod ofmoments for the
dynamical properties by Filinov [42].

Our aim in this work is to study symmetric bilayers with the equal number of identical dipoles in each layer,
whosemoments are aligned perpendicular to the 2D-planes, over awide range of the inter-layer and intra-layer
couplings.We investigate bosonic and fermionic dipolar systems on equal footing, but consider only antiparallel
polarization of dipoles in two layers (see, figure 1 for a schematic illustration). Perpendicular alignment of
dipolesmakes both the intralayer and interlayer interactions isotropic.While the bare intralayer interaction is
purely repulsive, the bare interlayer interaction could be either repulsive or attractive, depending on the in-plane
separation of two dipoles. In our antiparallel configuration, the interlayer interaction is repulsive at small in-
plane separations and becomesweakly attractive at large separations (see, equations (1) and (2), below).We
should note that in bilayers with a parallel polarization of dipoles in two layers, the dominant interlayer
interaction is attractive. At small layer spacings, this in principle leads to the pairing between dipoles of two
adjacent layers. This problemhas been extensively studied for both bosonic [40, 41] and fermionic systems
[36, 43]. In this work, instead, our focus is on bilayers with the antiparallel polarization of dipoles. In this
configuration the pairing is either absent or extremely weak [44, 45] and therefore is not expected to affect the
strong interlayer screening at small layer spacings [46].We investigate the possibility of the instability of a
homogeneous fluid towards the formation of inhomogeneous densities, i.e. density waves. For this purpose, we
look at the poles of the static density–density response function. The effective intralayer interactions are
obtained from an accurateHNCand FermiHNC (FHNC) results for the static structure factor of an isolated 2D
layer of bosons [47] and fermions [48], respectively, combinedwith the fluctuation-dissipation theorem.We
have treated the interlayer interactions within the random-phase approximation (RPA) [49]. A similar study of
the instability of a homogeneous liquidwith respect to the inhomogeneous phase of charge density wave has
been studied in a variety of quantum charged systems ranging from single-layer electron gas [50] to electron–
electron and electron–hole double-layers [51–54], charged Bose systems [55] and superlattices [56, 57].

We alsofind semi-analytic expressions for the full dispersions of in-phase and out-of-phase collectivemodes
(i.e. zero-soundmodes) from the poles of the dynamical density–density response function. For both bosonic

Figure 1. Schematic illustration of a bilayer systemof dipoles with the antiparallel polarization of dipolarmoments in two layers. d
refers to the layer spacing between two layers.
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and fermionic bilayers, the signatures of the emergence ofDWI showup in the dispersions of these collective
modes.

The rest of this paper is organized as follows. In section 2, we introduce the density–density response
function of our system and explain how effective intralayer interaction could be obtained from the static
structure factor. In section 3, we look at the density wave instability for bilayer systems of dipolar bosons and
dipolar fermions. In section 4we calculate the collectivemodes of these bilayer structures and investigate their
dispersions in the vicinity of theDWI. In section 5, we summarize and conclude ourmain findings. Finally, in
the appendix, we report some analytic results for bilayer of dipolar fermions using the so-calledHubbard local
field factor (LFF) for the effective intralayer potential.

2.Density–density response function and the effective interactions

Weconsider two identical 2Dplanes of dipoles, separated by the distance d. No tunneling is allowed between two
layers. Therefore, layers are coupled together only through the dipole–dipole interaction. All dipoles are
assumed to be polarized perpendicular to the planes, but the relative direction of this polarization is assumed to
be antiparallel in two layers (see, figure 1). The bare intralayer and interlayer interactions respectively read [39]

p
=( ) ( )V r

C
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1
, 1s

dd
3
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where Cdd is the dipole–dipole coupling constant, r is the in-plane distance between two dipoles. After Fourier
transformation onefinds [33, 58]

p
= -

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ( )V q

C

w
q

qw

4

8

3 2
2 e erfc

2
, 3s

q wdd 22 2

and

= -( ) ( )V q
C

q
2

e . 4d
qddd

Here erfc(x) is the complementary error function andw is the short distance cut-off introduced to heal the
divergence of Fourier transformof the intralayer interaction.

In this workwe are interested in the density-wave instabilities and collective densitymodes of this double
layer structure. For this we beginwith the followingmatrix equation for the density fluctuations [49]

åd w c w w=( ) ( ) ( ) ( )n Vq q q, , , , 5i
j

ij j
ext

where d w( )n q,i is the density fluctuation in layer i ( =i 1, 2), w( )V q,j
ext is the external potential applied to

layer j and c w( )q,ij is the density–density response function, whosematrix form reads

c w w w= P -- -ˆ ( ) ˆ ( ) ˆ ( ) ( )Wq q q, , , . 61 1 eff

Here w d wP = P( ) ( )q q, ,ij ij i is the non-interacting density–density response function, and w( )W q,ij
eff is the

dynamical effective potential. For symmetric bilayers we have w wP = P( ) ( )q q, ,i (same for both layers), and
w d w d w= + -( ) ( ) ( ) ( )W W Wq q q, , 1 ,ij ij s ij d

eff , where w( )W q,s w[ ( )]W q,d is the effective interaction between
dipoles in the same (different) layers.

Eigenvalues of the density–density responsematrix c wˆ ( )q, are
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where w w w= ( ) ( ) ( )W W Wq q q, , ,s d are the symmetric and antisymmetric components of the effective
potentials.

The non-interacting density–density response function wP( )q, of a 2D system is analytically well known. In
the case of 2D bosons, it reads


w

e

w e
P =

+ -+
( )

( )
( )q

n
,

2

i0
, 8

q

q
B 2 2

where n is the particle density in each layer and e = ( )q m2q
2 2 is the single-particle energy of dipoles ofmassm.

The full analytic formof wP( )q, for fermions is slightlymore complicated and could be found e.g., in [49].
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The exact formof the effective potentials are not known, and one has to resort to some approximations. In
the celebrated RPA [49], the effective potentials are replacedwith their bare values. But as the effects of exchange
and correlation becomemore significant with increasing interaction strength, naturally the RPAwhich entirely
discards these effects needs to be improved at strong couplings. On top of this, as the bare intralayer potential in
q-space(3), has an artificial cut-off dependence, a simple application of RPA appears to be not very appropriate
for dipolar systems even at weak couplings [34]. In order to overcome both of these problems, we use the
fluctuation-dissipation theorem tofind an approximate expression for the effective interlayer potential [48]. At
zero temperature the fluctuation-dissipation theorem reads [49]


ò

p
w

w
w w

= -
P

- P

¥ ⎡
⎣⎢

⎤
⎦⎥( ) ( )

( ) ( )
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,

1 , ,
. 9
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Here, ( )S q is the static structure factor of an isolated 2Ddipolar liquid, which can be obtained very accurately
both for bosons and fermions e.g., fromQMCsimulations [31, 59–61] orHNC [47] and FHNC [48] calculations.
Therefore, the idea herewould be to invert equation (9), andfind an approximate expression for the static
effective interaction in terms of the static structure factor ( )S q . This is in principle possible if one ignores the
dynamical effects, i.e. replaces w( )W q,s with a static and real function ( )W qs . As the effects of exchange and
correlation are already included in the static structure factors, these effects will be transferred into the effective
intralayer potentials, at least at the static level.

For bosons the integral overω in equation (9) could be performed analytically, to result in
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Whereas in the fermionic case, the complicated formof the exact wP( )q, prevents an analytic solution to
equation (9), however resorting to the so called ‘mean-spherical approximation’ (MSA) for the density–density
response function


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where ( )S q0 is the non-interacting static structure factor of a spin polarized 2D systemof fermions [49], again an
analytic solution of the frequency integral in the fluctuation-dissipation relation gives
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Note that, theMSA expressions for the non-interacting density–density response function(11), and the effective
interaction of the fermionic system(12), reduce to the corresponding ones of the bosonic systemwith

( )S q 10 , which is indeed the correct static structure factor for non-interacting bosons.
As alreadymentioned, the effects of exchange and correlation, entirely ignored in theRPA, are partly

included in equations (10) and(12) through the interacting static structure factor ( )S q . Infigure 2 theHNCand
FHNC results for the static structure factor of a single layer of dipolar bosons and fermions togetherwith the
effective intralayer interactions obtained from equations (10) and(12) are illustrated for several interaction
strengths l = k r0 0. Here, p= ( )r mC 40 dd

2 is the characteristic length scale for dipoles, and p=k n40 . Note
that k0 is indeed the Fermiwave vector kF of each layer for fermionic bilayers, but it is simply ameasure of the
density for bosonic bilayers.

In the following, we set the interlayer part of the effective interaction to the bare interlayer interaction
=( ) ( )W q V qd d , as an accurate knowledge of the interlayer static structure factors over awide range of

parameters for both bosons and fermions, is not yet available in the literature. Such an approximation is
equivalent to RPA andwe surmise it will be adequate for large enough layer separations.We should note that all
the properties of these bilayer systems are governed by two dimensionless parameters, namely the intralayer
coupling constantλ, and the dimensionless layer spacing k d0 .

3.Density-wave instabilities

Density-wave instabilities could be obtained from the poles of the density–density response function given in
equation (7) in the static limit, or equivalently from the solution of

- P =( ) ( ) ( )q W q1 0. 13

In fact, for a given systemparameters such as the particle density n and layer spacing d, if equation (13) satisfies a
solutionwith a specific wave vector qc, then the homogenous fluid becomes unstable towards the spontaneous
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formation of densitymodulations with thewavelength l p= q2c c. In the following, we investigate such an
instabilityfirst for a bilayer systemof dipolar bosons and then for a bilayer systemof dipolar fermions.

3.1. Bosonic bilayers
In the static limit, the non-interacting density–density response of equation (8) reduces to

e
P = -( ) ( )q

n2
, 14

q
B

which togetherwith equation (13), gives

e
+ =( ) ( )n

W q1
2

0. 15
q

B,

Now, using the bare interlayer potential(4) and the effective intralayer potential of (10) in equation (15)wefind

p =-( ) ( )q nr S q8 e 0. 16qd
0

2

As the static structure factor is positive by definition, the above expressionwith positive signwill not have any
solutionwhichmeans that no density-wave singularity in the in-phase channel (i.e., c+) appears. On the other
hand, in the out-of-phase channel (i.e., c-) one can find instabilities for suitable values of the interaction strength
and layer spacing from the solutions of equation (16)with the negative sign. Thismeans that themaxima and
minima of themodulated density in two layers would be shifted by l 2c with respect to each other.

Numerical investigation of equation (16) reveals that (see, figure 3) for l 1 the density wave instability at a
finite wave vector develops below a critical layer spacing dc. At smaller intralayer couplings, the homogenous
superfluid phase remains stable up to zero layer separations.

We note that for an isolated single layer, one has =( )W q 0d , and the criteria for the density wave instability
becomes

- P = =( ) ( )
( )

( )W q q
S q

1
1

0, 17s 2

which evidently has no solution at anyfinite q. Therefore, within the approximations we use here, no density
wave instability is expected to happen in an isolated 2D systemwith purely repulsive dipolar interaction. This is
in agreementwith theQMCfindings [22].

Figure 2.Top: static structure factor ( )S q of a single layer of dipolar bosons (left) and fermions (right), calculatedwithin theHNCand
FHNC formalisms, respectively. Bottom: the effective intralayer interaction of a single layer of dipolar bosons (left) and fermions
(right), obtained from static structure factors and equations (10) and(12), respectively.
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The behavior of static density–density response functions

c n
l

= -
 -

( )
( )

( )q
k

q S q k q

2

2 e
, 18

qd0
0
2

2 2
0

of dipolar bosons, where n p= ( )m 20
2 is the density of states per unit area of a single component 2D system,

are also illustrated infigure 4 for afixed value of the coupling constantλ and for several values of the layer
spacing d. As the layer separation is lowered to the critical distance, a singularity in c-( )q emerges, but the
symmetric component of the density–density response function c+( )q , remains finite.

3.2. Fermionic bilayers
The non-interacting density–density response function of a 2D systemof fermions in the static limit is [49]

nP = - - Q - -
⎡
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where =k kF 0 is the Fermiwave vector of a single layer. Now the density-wave instabilities could be obtained
from the solutions of

e
-  -

P
=

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
( )

( )
n S q S q

V q
q2

1 1 1
0. 20

q
d2

0
2

F

Figure 3.The critical layer separation dc (in units of k1 0) versus the coupling constantλ for bilayer dipolar bosons. The pink region
shows the homogeneous superfluid (SF) phase and the khaki one is the regionwith density-wave (DW) instability.

Figure 4. Left: the antisymmetric component of the static density–density response function c-( )q of a bilayer systemof dipolar
bosons, as a function of the dimensionless wave vector q k0 at a fixed value of the coupling constant l = 10.03, and for several values
of the layer spacing d (in units of k1 0). As d approaches the critical spacing dc, a singularity atfinite q emerges in the antisymmetric
component of the static density–density response function. Right: same as the left panel but for the symmetric component of the static
density–density response function c+( )q .
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The phase diagram infigure 5 illustrates our numerical solution of equation (20). Similar to the bosonic bilayer,
instability emerges only in the out-of-phase channel. Themain observation here is that at a fixed density, the
critical layer spacing for the formation of density waves in fermionic bilayers is slightly larger than the bosonic
ones, and noDWI develops at l 0.5.

Figure 6 shows the static density–density response functions of a bilayer systemof fermions

c =
P - - 

( )
( ) ( ) ( )

( )q
q W q V q

1
. 21

s dF
1

F,

A similar behavior to the bosonic system is observed also here. The antisymmetric component signals the
emergence ofDWI as the layer spacing approaches its critical value.

4. Collectivemodes

In this section, we turn to the discussion of the collectivemodes of dipolar bilayers. In symmetric bilayers and in
the absence of tunneling between two layers, two collective densitymodes are simply the in-phase and out-of-
phase oscillations of the particle density in two layers. The dispersion of these collectivemodes could be obtained
from the singularities of the density–density response functions c w( )q, atfinite frequencies, or equivalently
from the zeros of

Figure 5.The critical layer separation dc (in units of k1 F) versus coupling constantλ for a bilayer of dipolar fermions. The pink region
shows the homogeneous liquid (HL) phase and the khaki one is the regionwith density-wave (DW) instability.

Figure 6. Left: the antisymmetric component of the static density–density response function c-( )q of a bilayer systemof dipolar
fermions, as a function of the dimensionless wave vector q kF for several values of the layer spacing d (in units of k1 F) and at a fixed
value of the coupling constant l = 8. As d approaches the critical spacing dc, a singularity atfinite q emerges in the antisymmetric
density–density response function. Right: same as the left panel but for the symmetric component of the static density–density
response function c+( )q .
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w w- P =( ) ( ) ( )q W q1 , , 0. 22

4.1. Bosonic bilayers
Similar towhat we did in the discussion ofDWI, if we approximate the dynamical effective interactionwith a
static and real function, and replace the expression (8) for wP ( )q,B in equation (22), wewillfind

 w e e= + ( ) ( ) ( )q n W q2 . 23q q
2 2 2

B,

Again, replacing the effective interlayer potential ( )W qd with the bare interaction ( )V qd , and the effective
intralayer potential ( )W qsB, from equation (10), the dispersion of collectivemodes read


w

e e
= 

-
⎡
⎣⎢

⎤
⎦⎥( )

( )
( )q

S q
nC qe . 24

q q qd2
2 2 dd

Note that thefirst termon the right-hand-side of this equation is the Bijl–Feynman excitation spectrumof a
single layer dipolar Bose liquid [47]. In the long-wavelength limit, as the static structure factor vanishes linearly

 µ[ ( )S q q0 ], we find

w  » +( ) ( ) ( )q v q q0 , 25sB,
2

where = ¢[ ( )]v mS2 0sB, is the sound velocity of bosonic systemwith ¢ = =( ) ( ) ∣S S q q0 d d q 0. Unlike the
charged boson bilayer [62], both collectivemodes of a bilayer systemof dipolar bosons have acoustic nature. The
reasonwe find same sound velocity for both collectivemodes relies on the fact that we are using the bare
interlayer potential which vanishes linearly at small q and hence does not contribute to the sound velocity (see
the second term inside the bracket in equation (24)). Onewould expect deviations from this simple picture at
small d, where the interlayer coupling is strong, but at larger layer spacings both sound velocities should
approach the same value. Indeed, this has been verified in [39] for a bilayer of dipolar bosonswith antiparallel
polarization.

Using the numerical results for the static structure factor from [47] in equation (24), the full dispersions of
the collectivemodes could be readily obtained. The results for w( )q and single-layer collectivemode

w e=( ) [ ( )]q S qqsl are presented infigure 7 for afixed value of the coupling constantλ and for different values
of the layer separation d.Wefind that as the layer separation approaches the critical spacing for the density wave
instability, the antisymmetricmode w-( )q touches zero and becomes soft. This occurs at the same q-value that
the static density–density response function c-( )q diverges (see Figure 4). The energy of antisymmetric
collectivemode at smaller layer separations becomes negative, which is an indication of homogenous liquid
phase becoming unstable.

4.2. Fermionic bilayers
Infinding the collectivemodes of the fermionic system, one should solve the complex equation

w w- P =( ) ( ) ( )W q q1 , , 0. 26F

Again considering static effective potentials, one should search for the solutions of

w- P =( ) [ ( )] ( )RW q e q1 , 0, 27F

outside the particle-hole continuum (PHC) i.e., where wP =[ ( )]Im q, 0F . Using the analytic formof wP ( )q,F

[49], this could be done analytically

Figure 7.Dispersion of symmetric w+ and antisymmetric w-modes of a bilayer of dipolar bosons [in units of = ( )E k m20
2

0
2 ], at a

fixed value of the coupling constant l = 10.03, and for different values of the layer separation: =d k1.6 0 (left), =d k1.484 0

(middle), and =d k1.4 0 (right). The dashed line represents single-layerʼs collectivemode w ( )qsl . Note that =dk 1.4840 is the
critical value of the layer separation for the formation of density-wave instability at l = 10.03.
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Here =v k mF F is the Fermi velocity, and this solution is valid as long as dispersions lie outside the PHC i.e,
w > +( ) ( )q q m v q22

F or w< < -( ) ( )q q m v q0 22
F . In the longwavelength limit, using the fact that

the fermionic static structure factors are also linear at longwavelength, and therefore the intralayer effective
interaction ( )W qs isfinite at q=0, we find

w  = +( ) ( ) ( )q v q q0 , 29sF,
2

where

n
n

=
+

+

( )
( )

( )v v
W

W

1 0

1 2 0
, 30s

s

s
F, F

0 F,

0 F,

is the fermionic sound velocity, and is related to the slopes of both interacting and noninteracting structure
factors at the origin through equation (12). As v sF, is always larger than the Fermi velocity vF, the zero sound
waves are undamped at the longwavelength for any coupling constant and layer spacing. Interestingly, similar to
the dipolar bosonic bilayers, in-phase and out-of-phase collectivemodes are both linear at longwavelength.
Again, the degeneracy of bothmodes at small q should be valid only at large layer spacings. At smaller
separations, the exchange-correlation effects in the effective interlayer interactionwill split these twomodes.
Whether the lower branchwill still survive the Landau damping at longwavelengths or not, requires further
investigations with amore careful treatment of both intralayer an interlayer correlations.

Infigure 8we show the behavior of collectivemodes of the fermionic bilayer system w( )q at afixed coupling
parameterλ and for different values of the layer separation. The PHC is also shown in thesefigures. Collective
excitations arewell defined only outside this continuum.Note that as the layer separation becomes smaller than
the critical value (see, the right panel infigure 8), an unphysical low energy branch at >q k2 F appears below
the PHC.

5. Summary and conclusions

In summary, we have investigated the instability of a homogenous bilayer systemof perpendicular dipolar
bosons and dipolar fermionswith the antiparallel polarization of two layers towards density waves. Accurate
HNC results for the intralayer static structure factor of bosons and FHNC results for the intralayer static
structure factor of fermions are used together with the fluctuation-dissipation theorem to extract the static
intralayer effective potentials and the RPA is employed for the interlayer interaction.We have observed that for
both fermionic and bosonic bilayers, below a threshold intralayer coupling strengthλ, no density wave
instability emerges. At higher couplings, DWI forms below a critical layer spacing dc. In a givenλ theDWI in
fermionic bilayers sets in at a larger layer spacing in comparisonwith the bosonic bilayers.We have predicted
that a homogenous bilayer with antiparallel polarization of dipoles in two layers is unstable towards the
formation of density waves when the layer separation d becomes comparable or smaller than the average in-
plane distance between particles k1 0, and both of these length scales aremuch smaller than the dipolar length
scale r0.Wewould expect this regime to be readily accessible experimentally with polarmolecules whose dipolar
length could easily exceed several thousands of nanometers [9].

The full dispersions of the in-phase and out-of-phase zero-soundmodes of the bilayer systemhave been
calculated too.We observed that bothmodes are linear at the long-wavelength limit, independent of the
statistics of the particles.

Figure 8.Dispersions of symmetric w+ and antisymmetric w-modes of a bilayer of dipolar fermions [in units of = ( )]E k m20
2

F
2 at

a fixed value of the coupling constant l = 8, and for different values of the layer separation: =d k3.0 F (left), =d k2.0 F (middle),
and =d k1.5 F (right). The filled areas represent the single particle excitation continuum.Note that =d k1.82 F is the critical value
of the layer separation for the formation of density-wave instability at l = 8.
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Finally, we should note that in the limit of closely separated layers, improvements beyond the RPA in the
effective interlayer potential, like the inclusion of exchange-correlation effectsmight be necessary. Dynamical
effects and frequency dependence of the effective potentials would become important in the strongly correlated
regime too.
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Appendix.Hubbard LFF for fermionic dipolar bilayer

Although the semi-analytic expression(12) for the effective interaction of dipolar fermions is neat and carries
most information of the exchange-correlation hole through the static structure factor, but it requires an accurate
knowledge of the static structure factor in the first place. A systematic approach to go beyond the RPA in electron
liquid systems have been through the inclusion of the LFF [49]

w w= -( ) ( )[ ( )] ( )W q V q G q, 1 , , A.1

where ( )V q is the bare interaction, and the LFF w( )G q, itself is defined thorough equation (A.1) to give the
exact dynamical effective potential w( )W q, . In practice, one needs to approximate the LFF, and the first and
simplest approximation is suggested byHubbard, which for spin-polarized fermions reads [49]

=
+

( )
( )

( )
( )G q

V k q

V q
. A.2s

s

s

H F
2 2

Now, using equations (3), we find

= - + = + -( ) ( ) ( ) ( ) ( )W q V q V k q
C

k q q
2

, A.3s s s
H

F
2 2 dd

F
2 2

where the vanishing cut-off (i.e., w 0) is understood on the right-hand side. The interlayer effective
interaction is same as the bare one ( )V qd , as interlayer LFF vanisheswithin theHubbard approximation, due to
the absence of exchange interaction between particles fromdifferent layers [49].

Now, theDWI could be obtained from the solution of

=
P ( )

( )
( )W q

q

1
, A.4H

F

where

l
n

= + - 
-( ) ( ˜ ˜ ˜ ) ( )˜ ˜W q q q q1 e A.5qdH

0

2

are the symmetric (+) and antisymmetric (−) components of the effective interactionwithin theHubbard
approximation, with =q̃ q kF and =d̃ k dF . The critical layer spacing dc is themaximumvalue of d, which
satisfies equation (A.4) for a givenλ, irrespective of the q-value. And the critical wave vector qc could be obtained
from the solution of above equation for a given coupling constantλ, at layer spacings d dc. An approximate
solution for the critical layer separation as a function of the coupling strength reads

l
l

= - - +
⎛
⎝⎜

⎞
⎠⎟( ) ( )d

k

1

2
ln

5

2
1

1

2
. A.6c

F

This expression, which is obtained after replacing =q k2 F in equation (A.4), is exact at small couplings (i.e.,
l 4.1), and at strong couplings deviates less than1% from the exact results. From a closer investigation of

equation (A.6), it is clear that there is no positive solution for d at l - »( )1 4 5 0.58. This is pretty close
to theλ-threshold obtained from the fluctuation-dissipation theorem in section 3.2 (see figure 5). Infigure A1
we have compared the critical layer spacing for theDWI, obtained from the numerical solution of equation (A.4)
with the approximate expression(A.6).

The full dispersions of the collectivemodes within theHubbard approximation are still given by the general
expressions(28), after replacing equation (A.5) for the effective intralayer interaction therein. As n l= ( )W 00

H ,
for the sound velocity we obtain

l
l

=
+
+

( )v v
1

1 2
. A.7sF,

H
F
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