Journal of Physics Communications

PAPER « OPEN ACCESS

Density-wave instability and collective modes in a bilayer system of
antiparallel dipoles

To cite this article: E Akaturk et al 2018 J. Phys. Commun. 2 015018

View the article online for updates and enhancements.

This content was downloaded from IP address 139.179.96.108 on 18/01/2018 at 10:25


https://doi.org/10.1088/2399-6528/aa9fc1

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
26July 2017

REVISED
20 November 2017

ACCEPTED FOR PUBLICATION
7 December 2017

PUBLISHED
18 January 2018

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

J. Phys. Commun. 2 (2018) 015018 https://doi.org/10.1088/2399-6528 /aa9fcl

Journal of Physics Communications

PAPER

Density-wave instability and collective modes in a bilayer system of
antiparallel dipoles

E Akaturk’, SH Abedinpour’ and B Tanatar'

! Department of Physics, Bilkent University, Bilkent, 06800 Ankara, Turkey
2 Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

E-mail: tanatar@fen.bilkent.edu.tr

Keywords: antiparallel dipolar bilayers, density-wave instability, collective modes

Abstract

We consider a bilayer of dipolar particles in which the polarization of dipoles is perpendicular to the
planes, in the antiparallel configuration. Using accurate static structure factor S(gq) data from
hypernetted-chain (HNC) and Fermi HNC calculations, respectively for an isolated layer of dipolar
bosons and dipolar fermions, we construct effective screened intralayer interactions. Adopting the
random-phase approximation for interlayer interactions, we investigate the instability of these
homogeneous bilayer systems towards the formation of density waves by studying the poles of the
density—density response function. We have also studied the collective modes of these systems and
find that the dispersion of their antisymmetric collective mode signals the emergence of the density
wave instability as well.

1. Introduction

Layered structures combine interesting physics of the low-dimensional systems with the additional tunability
coming from the interlayer interactions and tunneling. In condensed matter systems, several unique
phenomenon such as Coulomb-drag effect [ 1], formation of indirect excitons and their eventual condensation
[2], density wave instabilities (DWI) and Wigner crystallization [3] and fractional quantum Hall effect [4, 5] in
layered structures have been the subject of an immense interest in the past few decades. The isolation of
graphene and other layered van der Walls materials [6] in recent years have enormously raised this enthusiasm.

Ultracold atomic and molecular systems, on the other hand, with their impressive controllability have
become natural simulators of the condensed matter and many-body theories. In particular experimental
progress in trapping and cooling atoms with large magnetic moments and polar molecules, opened up a new and
interesting area of exploring quantum many-body systems with large and anisotropic dipole—dipole interactions
[7-9]. Both polar molecules [ 10—14] and atoms with large permanent magnetic moments [15—18] have been
trapped and cooled down. Very recently, the droplet crystal phase of atomic dysprosium Bose—Einstein
condensate (BEC) have been directly observed by Kadau et al [19].

In bulk geometries, the attractive part of the dipole—dipole interaction could in principle lead to instabilities,
as in Bose—FEinstein condensate collapse [20] or chemical reactions between particles [9]. Therefore, it is usually
favorable to confine the dipolar gases into quasi-two or one-dimensional geometries, and use an external electric
or magnetic field (depending on the nature of dipoles) to polarize all dipoles in the same direction. As might be
expected, layered structures are also a configuration of great interest which one can tune the attractive
interactions and pairing between different layers without the fear of having chemical reactions.

While the stripe or density-wave phase is naturally expected in an isolated two-dimensional (2D) system of
tilted dipolar bosons [21, 22] and fermions [23—29] due to the anisotropy of the dipole—dipole interaction, this
instability has been the subject of much dispute in the limit of perpendicular dipoles, where the inter-particle
interaction is isotropic. While mean-field approximation [23] as well as density-functional theory (DFT) [30]
and Singwi-Tosi-Land-Sjolander (STLS) [25] calculations all predict stripe phase formation at relatively low
interaction strength for 2D dipolar fermions, quantum Monte Carlo (QMC) simulations suggest that the stripe
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Figure 1. Schematic illustration of a bilayer system of dipoles with the antiparallel polarization of dipolar moments in two layers. d
refers to the layer spacing between two layers.

phase never becomes energetically favorable, up to the liquid-to-solid phase transition for perpendicular bosons
[22] and fermions [31].

In double-layer structures, both bosonic and fermionic systems have attracted alot of attention so far. The
ground state properties and instabilities of fermionic bilayers have been studied within the Hartree—Fock
[32—34] as well as STLS methods [35]. The QMC simulations [36], as well as DFT calculations [37], have been
employed to study the crossover from BEC to Bardeen—Cooper—Schrieffer state too. For bosonic bilayers, on the
other hand, Hufnagl and Zillich [38] have used the hypernetted-chain (HNC) approximation to calculate the
ground-state quantities of a bilayer system of tilted dipolar bosons. Then using the correlated basis function
(CBF) method they obtained its dynamical properties. It has been also suggested that a bilayer system of dipolar
bosons becomes a self-bound fluid when the polarization of dipoles in two layers is opposite [39]. More recently,
the competition between single-dipole and dimer condensation in a bilayer of perpendicular dipolar bosons
with parallel polarization, i.e. the same direction of polarization in both layers, have been investigated using
QMC method by Macia et al [40]. They have observed that the pair superfluidity dominates over the single-
particle superfluidity at very strong interlayer couplings, i.e. when the separation between two layers is much
smaller than the average intralayer distance between two dipoles. The dynamical properties of the dipolar
bosonic bilayer in the atomic and pair superfluid regimes have been looked at using QMC and CBF techniques
[41]. The correlation effects in a bosonic bilayer have been extensively studied using QMC simulation for the
ground state properties as well as the stochastic reconstruction method and method of moments for the
dynamical properties by Filinov [42].

Our aim in this work is to study symmetric bilayers with the equal number of identical dipoles in each layer,
whose moments are aligned perpendicular to the 2D-planes, over a wide range of the inter-layer and intra-layer
couplings. We investigate bosonic and fermionic dipolar systems on equal footing, but consider only antiparallel
polarization of dipoles in two layers (see, figure 1 for a schematic illustration). Perpendicular alignment of
dipoles makes both the intralayer and interlayer interactions isotropic. While the bare intralayer interaction is
purely repulsive, the bare interlayer interaction could be either repulsive or attractive, depending on the in-plane
separation of two dipoles. In our antiparallel configuration, the interlayer interaction is repulsive at small in-
plane separations and becomes weakly attractive at large separations (see, equations (1) and (2), below). We
should note that in bilayers with a parallel polarization of dipoles in two layers, the dominant interlayer
interaction is attractive. At small layer spacings, this in principle leads to the pairing between dipoles of two
adjacentlayers. This problem has been extensively studied for both bosonic [40, 41] and fermionic systems
[36,43]. In this work, instead, our focus is on bilayers with the antiparallel polarization of dipoles. In this
configuration the pairing is either absent or extremely weak [44, 45] and therefore is not expected to affect the
strong interlayer screening at small layer spacings [46]. We investigate the possibility of the instability of a
homogeneous fluid towards the formation of inhomogeneous densities, i.e. density waves. For this purpose, we
look at the poles of the static density—density response function. The effective intralayer interactions are
obtained from an accurate HNC and Fermi HNC (FHNC) results for the static structure factor of an isolated 2D
layer of bosons [47] and fermions [48], respectively, combined with the fluctuation-dissipation theorem. We
have treated the interlayer interactions within the random-phase approximation (RPA) [49]. A similar study of
the instability of a homogeneous liquid with respect to the inhomogeneous phase of charge density wave has
been studied in a variety of quantum charged systems ranging from single-layer electron gas [50] to electron—
electron and electron—-hole double-layers [51-54], charged Bose systems [55] and superlattices [56, 57].

We also find semi-analytic expressions for the full dispersions of in-phase and out-of-phase collective modes
(i.e. zero-sound modes) from the poles of the dynamical density—density response function. For both bosonic
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and fermionic bilayers, the signatures of the emergence of DWIshow up in the dispersions of these collective
modes.

The rest of this paper is organized as follows. In section 2, we introduce the density—density response
function of our system and explain how effective intralayer interaction could be obtained from the static
structure factor. In section 3, we look at the density wave instability for bilayer systems of dipolar bosons and
dipolar fermions. In section 4 we calculate the collective modes of these bilayer structures and investigate their
dispersions in the vicinity of the DWI. In section 5, we summarize and conclude our main findings. Finally, in
the appendix, we report some analytic results for bilayer of dipolar fermions using the so-called Hubbard local
field factor (LFF) for the effective intralayer potential.

2. Density—density response function and the effective interactions

We consider two identical 2D planes of dipoles, separated by the distance d. No tunneling is allowed between two
layers. Therefore, layers are coupled together only through the dipole—dipole interaction. All dipoles are
assumed to be polarized perpendicular to the planes, but the relative direction of this polarization is assumed to
be antiparallel in two layers (see, figure 1). The bare intralayer and interlayer interactions respectively read [39]
Caqa 1

= , 1
V) =2 M

and

Cyqa 1% — 242

Vi(r) = —=4 T — 2
(1) o 1 )

(@)

where Cyq is the dipole—dipole coupling constant, r is the in-plane distance between two dipoles. After Fourier
transformation one finds [33, 58]

Cad 8 2,2 qw)
Vi(g) = =< — 2ge?™/ 2erfc| 2= | |, 3
(@) 4[3Tww q (ﬁ] 3
and
C
Va(g) = %qe‘qd- )

Here erfc(x) is the complementary error function and w is the short distance cut-off introduced to heal the
divergence of Fourier transform of the intralayer interaction.

In this work we are interested in the density-wave instabilities and collective density modes of this double
layer structure. For this we begin with the following matrix equation for the density fluctuations [49]

ni(q, W) = Y x;(q, WV(g, W), 5)
j
where 6n;(q, w) is the density fluctuation inlayeri (i = 1, 2), VjeXt(q, w) is the external potential applied to
layerjand x;;(q, w) is the density—density response function, whose matrix form reads

g w) = (g, w) — W(q, w). (6)

Here IT;i(q, w) = 8;11;(q, w) is the non-interacting density—density response function, and Wijfff (q, w)isthe
dynamical effective potential. For symmetric bilayers we have I1;(q, w) = II(q, w) (same for both layers), and
W;ff (q, w) = 6 Wi(q, w) + (1 — &) Wi(q, w), where Wi(q, w) [W;(q, w)]is the effective interaction between
dipoles in the same (different) layers.

Eigenvalues of the density—density response matrix § (q, w) are

H(q’ w)
1 — II(q, w) Wi(q, w) ’

X+(q w) = ™)
where Wi(q, w) = Wi(q, w) = W;(q, w) are the symmetric and antisymmetric components of the effective
potentials.

The non-interacting density—density response function II(q, w) of a 2D system is analytically well known. In
the case of 2D bosons, it reads

2ne,

1T , W) = >
D= G oy 2

3

where nis the particle density in each layer and ¢, = h?q*/(2m) is the single-particle energy of dipoles of mass 1.
The full analytic form of I1(q, w) for fermions is slightly more complicated and could be found e.g., in [49].
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The exact form of the effective potentials are not known, and one has to resort to some approximations. In
the celebrated RPA [49], the effective potentials are replaced with their bare values. But as the effects of exchange
and correlation become more significant with increasing interaction strength, naturally the RPA which entirely
discards these effects needs to be improved at strong couplings. On top of this, as the bare intralayer potential in
g-space (3), has an artificial cut-off dependence, a simple application of RPA appears to be not very appropriate
for dipolar systems even at weak couplings [34]. In order to overcome both of these problems, we use the
fluctuation-dissipation theorem to find an approximate expression for the effective interlayer potential [48]. At
zero temperature the fluctuation-dissipation theorem reads [49]

hw o - I1(g, w)
S(g) = —— d . 9
== @ "m[l ~ W, w)1(q, w)] ®

Here, S(q) is the static structure factor of an isolated 2D dipolar liquid, which can be obtained very accurately
both for bosons and fermions e.g., from QMC simulations [31, 59-61] or HNC[47] and FHNC [48] calculations.
Therefore, the idea here would be to invert equation (9), and find an approximate expression for the static
effective interaction in terms of the static structure factor S(g). This is in principle possible if one ignores the
dynamical effects, i.e. replaces W, (g, w) with a static and real function W, (g). As the effects of exchange and
correlation are already included in the static structure factors, these effects will be transferred into the effective
intralayer potentials, at least at the static level.

For bosons the integral over w in equation (9) could be performed analytically, to result in

e 1
We(q) = | @ L. (10)

Whereas in the fermionic case, the complicated form of the exact I1(g, w) prevents an analytic solution to
equation (9), however resorting to the so called ‘mean-spherical approximation’ (MSA) for the density—density
response function

2nsq
(hw 4 1012 — [£,/So(@ P

where Sy (g) is the non-interacting static structure factor of a spin polarized 2D system of fermions [49], again an
analytic solution of the frequency integral in the fluctuation-dissipation relation gives

woisvg = ff Lo 1 | 2
a0 Zn[SZ(q) S @ (42

Note that, the MSA expressions for the non-interacting density—density response function (11), and the effective
interaction of the fermionic system (12), reduce to the corresponding ones of the bosonic system with
So(q) — 1, whichisindeed the correct static structure factor for non-interacting bosons.

As already mentioned, the effects of exchange and correlation, entirely ignored in the RPA, are partly
included in equations (10) and (12) through the interacting static structure factor S(q). In figure 2 the HNC and
FHNC results for the static structure factor of a single layer of dipolar bosons and fermions together with the
effective intralayer interactions obtained from equations (10) and (12) are illustrated for several interaction
strengths A = kory. Here, ry = mCyq /(41h?) is the characteristic length scale for dipoles, and ky = ~/47n. Note
that ko is indeed the Fermi wave vector kg of each layer for fermionic bilayers, but it is simply a measure of the
density for bosonic bilayers.

In the following, we set the interlayer part of the effective interaction to the bare interlayer interaction
W;(q) = V;(q), asan accurate knowledge of the interlayer static structure factors over a wide range of
parameters for both bosons and fermions, is not yet available in the literature. Such an approximation is
equivalent to RPA and we surmise it will be adequate for large enough layer separations. We should note that all
the properties of these bilayer systems are governed by two dimensionless parameters, namely the intralayer
coupling constant )\, and the dimensionless layer spacing kod.

MY (g, w) = (11)

3. Density-wave instabilities

Density-wave instabilities could be obtained from the poles of the density—density response function given in
equation (7) in the static limit, or equivalently from the solution of

1 — II(g) Wi(q) = 0. (13)

In fact, for a given system parameters such as the particle density n and layer spacing 4, if equation (13) satisfies a
solution with a specific wave vector g, then the homogenous fluid becomes unstable towards the spontaneous
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Figure 2. Top: static structure factor S(q) of a single layer of dipolar bosons (left) and fermions (right), calculated within the HNC and
FHNC formalisms, respectively. Bottom: the effective intralayer interaction of a single layer of dipolar bosons (left) and fermions
(right), obtained from static structure factors and equations (10) and (12), respectively.

formation of density modulations with the wavelength A\. = 27 /g.. In the following, we investigate such an
instability first for a bilayer system of dipolar bosons and then for a bilayer system of dipolar fermions.

3.1. Bosonic bilayers
In the static limit, the non-interacting density—density response of equation (8) reduces to
2n
g(q) = ——, (14)
&q
which together with equation (13), gives
2n
1+ —Ws(q) = 0. (15)

€q
Now, using the bare interlayer potential (4) and the effective intralayer potential of (10) in equation (15) we find
q &+ 8mnnS*(q)e 1 = 0. (16)

As the static structure factor is positive by definition, the above expression with positive sign will not have any
solution which means that no density-wave singularity in the in-phase channel (i.e., x, ) appears. On the other
hand, in the out-of-phase channel (i.e., x_) one can find instabilities for suitable values of the interaction strength
and layer spacing from the solutions of equation (16) with the negative sign. This means that the maxima and
minima of the modulated density in two layers would be shifted by A, /2 with respect to each other.

Numerical investigation of equation (16) reveals that (see, figure 3) for A\ 2> 1the density wave instability ata
finite wave vector develops below a critical layer spacing d,.. At smaller intralayer couplings, the homogenous
superfluid phase remains stable up to zero layer separations.

We note that for an isolated single layer, one has W;(q) = 0, and the criteria for the density wave instability
becomes

1 — Wgl(g) = 0, 17)

1 p—
$*(@)
which evidently has no solution at any finite g. Therefore, within the approximations we use here, no density
wave instability is expected to happen in an isolated 2D system with purely repulsive dipolar interaction. This is
in agreement with the QMC findings [22].
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Figure 3. The critical layer separation d, (in units of 1/k) versus the coupling constant A for bilayer dipolar bosons. The pink region
shows the homogeneous superfluid (SF) phase and the khaki one is the region with density-wave (DW) instability.
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Figure 4. Left: the antisymmetric component of the static density—density response function x_(g) ofabilayer system of dipolar
bosons, as a function of the dimensionless wave vector q/k at a fixed value of the coupling constant A = 10.03, and for several values
of the layer spacing d (in units of 1/k). As d approaches the critical spacing d,, a singularity at finite g emerges in the antisymmetric
component of the static density—density response function. Right: same as the left panel but for the symmetric component of the static
density—density response function x_ (q).

The behavior of static density—density response functions

2kg
0 q2/S*(q) £ 2 koge 1’
of dipolar bosons, where vy = m/(277) is the density of states per unit area of a single component 2D system,
are also illustrated in figure 4 for a fixed value of the coupling constant A and for several values of the layer

spacing d. As the layer separation is lowered to the critical distance, a singularity in x_(g) emerges, but the
symmetric component of the density—density response function x, (¢), remains finite.

(18)

Xj:(Q) = —V

3.2. Fermionic bilayers
The non-interacting density—density response function of a 2D system of fermions in the static limit is [49]

2
mwz—wl—@@—m01—ﬁf), (19)

where kg = kj is the Fermi wave vector of a single layer. Now the density-wave instabilities could be obtained
from the solutions of

(20)

%[1 l]iww—

1
| S S g
q 0 (@) F(q)
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Figure 5. The critical layer separation d. (in units of 1/kg) versus coupling constant A for a bilayer of dipolar fermions. The pink region
shows the homogeneous liquid (HL) phase and the khaki one is the region with density-wave (DW) instability.
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Figure 6. Left: the antisymmetric component of the static density—density response function x_(g) ofabilayer system of dipolar
fermions, as a function of the dimensionless wave vector q/kg for several values of the layer spacing d (in units of 1 /kg) and at a fixed
value of the coupling constant A = 8. As d approaches the critical spacing d,, a singularity at finite g emerges in the antisymmetric
density—density response function. Right: same as the left panel but for the symmetric component of the static density—density
response function x, (q).

The phase diagram in figure 5 illustrates our numerical solution of equation (20). Similar to the bosonic bilayer,
instability emerges only in the out-of-phase channel. The main observation here is that at a fixed density, the
critical layer spacing for the formation of density waves in fermionic bilayers is slightly larger than the bosonic
ones, and no DWIdevelopsat A < 0.5.

Figure 6 shows the static density—density response functions of a bilayer system of fermions

1

-~ . (21)
Iz (@) — Wes(g) F Va(g)

X+(q@) =

A similar behavior to the bosonic system is observed also here. The antisymmetric component signals the
emergence of DWI as the layer spacing approaches its critical value.

4. Collective modes

In this section, we turn to the discussion of the collective modes of dipolar bilayers. In symmetric bilayers and in
the absence of tunneling between two layers, two collective density modes are simply the in-phase and out-of-
phase oscillations of the particle density in two layers. The dispersion of these collective modes could be obtained
from the singularities of the density—density response functions x_ (g, w) at finite frequencies, or equivalently

from the zeros of
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Figure 7. Dispersion of symmetric w, and antisymmetric w_ modes of a bilayer of dipolar bosons [in units of Ey = h%kZ /(2m)], ata
fixed value of the coupling constant A = 10.03, and for different values of the layer separation: d = 1.6/k (left), d = 1.484/k,
(middle), and d = 1.4/k (right). The dashed line represents single-layer’s collective mode wy (). Note that dky = 1.484 is the
critical value of the layer separation for the formation of density-wave instability at A = 10.03.

1 — (g, w)Wi(g, w) = 0. (22)

4.1. Bosonic bilayers
Similar to what we did in the discussion of DWI, if we approximate the dynamical effective interaction with a
static and real function, and replace the expression (8) for IIz(g, w) in equation (22), we will find

Rwi(q) = € + 2neg Wy 2(q). (23)

Again, replacing the effective interlayer potential W, (q) with the bare interaction V;(q), and the effective
intralayer potential Wj ;(q) from equation (10), the dispersion of collective modes read

2 €q| &q ad
w = — + nCqqgqe™ 1 | 24
1(q) = [Sz(q) ddq ] (24)
Note that the first term on the right-hand-side of this equation is the Bijl-Feynman excitation spectrum of a
single layer dipolar Bose liquid [47]. In the long-wavelength limit, as the static structure factor vanishes linearly
[S(g — 0) x g],wefind

wi(qg — 0) = vg.q + O(g?), (25)

where vy s = h/[2 mS'(0)]is the sound velocity of bosonic system with §'(0) = dS(q) /dgl,—o. Unlike the
charged boson bilayer [62], both collective modes of a bilayer system of dipolar bosons have acoustic nature. The
reason we find same sound velocity for both collective modes relies on the fact that we are using the bare
interlayer potential which vanishes linearly at small g and hence does not contribute to the sound velocity (see
the second term inside the bracket in equation (24)). One would expect deviations from this simple picture at
small d, where the interlayer coupling is strong, but at larger layer spacings both sound velocities should
approach the same value. Indeed, this has been verified in [39] for a bilayer of dipolar bosons with antiparallel
polarization.

Using the numerical results for the static structure factor from [47] in equation (24), the full dispersions of
the collective modes could be readily obtained. The results for w, (g) and single-layer collective mode
ws(q) = &;/[hS(q)]are presented in figure 7 for a fixed value of the coupling constant A and for different values
of the layer separation d. We find that as the layer separation approaches the critical spacing for the density wave
instability, the antisymmetric mode w_(q) touches zero and becomes soft. This occurs at the same g-value that
the static density—density response function x_(g) diverges (see Figure 4). The energy of antisymmetric
collective mode at smaller layer separations becomes negative, which is an indication of homogenous liquid
phase becoming unstable.

4.2. Fermionic bilayers
In finding the collective modes of the fermionic system, one should solve the complex equation

Again considering static effective potentials, one should search for the solutions of
1 — Wi(q)Re[llz(q, w)] = 0, 27)

outside the particle-hole continuum (PHC) i.e., where Jm [IIz(q, w)] = 0. Using the analytic form of I1z(gq, w)
[49], this could be done analytically
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Figure 8. Dispersions of symmetric w; and antisymmetric w_ modes of a bilayer of dipolar fermions [in units of Eg = kg /(2m)] at
a fixed value of the coupling constant A = 8, and for different values of the layer separation: d = 3.0/k (left), d = 2.0/kg (middle),
and d = 1.5/k (right). The filled areas represent the single particle excitation continuum. Note that d = 1.82/kg is the critical value
of the layer separation for the formation of density-wave instability at A = 8.

1 q Y veWi(q)
= L+ —— | = T o W) %
w+(q) VFQ[ + VOWi(q)]\/(zkp) - 1 + 20y Wi(q) o

Here vg = hkg /m is the Fermi velocity, and this solution is valid as long as dispersions lie outside the PHC i.e,
wi(q) > hig?/(2m) + vpqor 0 < wi(q) < hg?/(2m) — veq. In the long wavelength limit, using the fact that
the fermionic static structure factors are also linear at long wavelength, and therefore the intralayer effective
interaction W,(q) is finiteatq = 0, we find

wi(q — 0) = vgq + O(g?), (29)
where
1 + vy Wg,(0)

VE,s = VF >
1+ 209 Wr(0)

is the fermionic sound velocity, and is related to the slopes of both interacting and noninteracting structure
factors at the origin through equation (12). As vg ; is always larger than the Fermi velocity v, the zero sound
waves are undamped at the long wavelength for any coupling constant and layer spacing. Interestingly, similar to
the dipolar bosonic bilayers, in-phase and out-of-phase collective modes are both linear at long wavelength.
Again, the degeneracy of both modes at small g should be valid only at large layer spacings. At smaller
separations, the exchange-correlation effects in the effective interlayer interaction will split these two modes.
Whether the lower branch will still survive the Landau damping at long wavelengths or not, requires further
investigations with a more careful treatment of both intralayer an interlayer correlations.

In figure 8 we show the behavior of collective modes of the fermionic bilayer system w.(q) at a fixed coupling
parameter A and for different values of the layer separation. The PHC is also shown in these figures. Collective
excitations are well defined only outside this continuum. Note that as the layer separation becomes smaller than
the critical value (see, the right panel in figure 8), an unphysical low energy branch at g > 2kg appears below
the PHC.

(30)

5. Summary and conclusions

In summary, we have investigated the instability of a homogenous bilayer system of perpendicular dipolar
bosons and dipolar fermions with the antiparallel polarization of two layers towards density waves. Accurate
HNC results for the intralayer static structure factor of bosons and FHNC results for the intralayer static
structure factor of fermions are used together with the fluctuation-dissipation theorem to extract the static
intralayer effective potentials and the RPA is employed for the interlayer interaction. We have observed that for
both fermionic and bosonic bilayers, below a threshold intralayer coupling strength A, no density wave
instability emerges. At higher couplings, DWI forms below a critical layer spacing d,. In a given A the DWIin
fermionic bilayers sets in at a larger layer spacing in comparison with the bosonic bilayers. We have predicted
that a homogenous bilayer with antiparallel polarization of dipoles in two layers is unstable towards the
formation of density waves when the layer separation d becomes comparable or smaller than the average in-
plane distance between particles 1 /kg, and both of these length scales are much smaller than the dipolar length
scale 5. We would expect this regime to be readily accessible experimentally with polar molecules whose dipolar
length could easily exceed several thousands of nanometers [9].

The full dispersions of the in-phase and out-of-phase zero-sound modes of the bilayer system have been
calculated too. We observed that both modes are linear at the long-wavelength limit, independent of the
statistics of the particles.
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Finally, we should note that in the limit of closely separated layers, improvements beyond the RPA in the
effective interlayer potential, like the inclusion of exchange-correlation effects might be necessary. Dynamical
effects and frequency dependence of the effective potentials would become important in the strongly correlated
regime too.

Acknowledgments

This work is supported in part by the Turkish Academy of Sciences TUBA. SHA thanks the hospitality and
support of Department of Physics at Bilkent University, during his visits.

Appendix. Hubbard LFF for fermionic dipolar bilayer

Although the semi-analytic expression (12) for the effective interaction of dipolar fermions is neat and carries
most information of the exchange-correlation hole through the static structure factor, but it requires an accurate
knowledge of the static structure factor in the first place. A systematic approach to go beyond the RPA in electron
liquid systems have been through the inclusion of the LFF [49]

Wi(g, w) = V(@I[l — G(g, W], (A.1)
where V (g) is the bare interaction, and the LFF G (g, w) itselfis defined thorough equation (A.1) to give the

exact dynamical effective potential W (g, w). In practice, one needs to approximate the LFF, and the first and
simplest approximation is suggested by Hubbard, which for spin-polarized fermions reads [49]

(ﬁw%:uw%+q%

(A.2)
Vi(q)
Now, using equations (3), we find
C
Wi(g) = Viq) — V(K + ¢*) = %( K+ — ), (A3)

where the vanishing cut-off (i.e., w — 0) is understood on the right-hand side. The interlayer effective
interaction is same as the bare one V;(q), as interlayer LFF vanishes within the Hubbard approximation, due to
the absence of exchange interaction between particles from different layers [49].

Now, the DWI could be obtained from the solution of

1

H _
Wi = T’ (A.4)
where
Wi (g) = Viu/l T3 - i+ geid) (A.5)
0

are the symmetric (4-) and antisymmetric (—) components of the effective interaction within the Hubbard
approximation, with § = g/ksand d = kgd. The critical layer spacing d. is the maximum value of d, which
satisfies equation (A.4) for a given ), irrespective of the g-value. And the critical wave vector g, could be obtained
from the solution of above equation for a given coupling constant )\, at layer spacings d < d,. An approximate
solution for the critical layer separation as a function of the coupling strength reads
1. (5 1
d.(\) o ln( 5 1+ 2/\ ) (A.6)

This expression, which is obtained after replacing g = 2kg in equation (A.4), is exact at small couplings (i.e.,
A < 4.1), and at strong couplings deviates less than 1% from the exact results. From a closer investigation of
equation (A.6), it is clear that there is no positive solution for dat A < 1/(4 — /5) ~ 0.58. This is pretty close
to the A-threshold obtained from the fluctuation-dissipation theorem in section 3.2 (see figure 5). In figure A1
we have compared the critical layer spacing for the DWI, obtained from the numerical solution of equation (A.4)
with the approximate expression (A.6).

The full dispersions of the collective modes within the Hubbard approximation are still given by the general
expressions (28), after replacing equation (A.5) for the effective intralayer interaction therein. As 1, W (0) = ),
for the sound velocity we obtain

- 1+ A

Vi = Vp———.
B T 2A

(A.7)
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0.6 | 4

d. kyp

02 | 4

Figure A1. The critical layer separation d, (in units of 1 /kg) versus coupling constant A for a bilayer of dipolar fermions within the
Hubbard approximation for the local field factor. Filled circles are calculated numerically from equation (A.4) and the solid line is the
approximate expression of equation (A.6).
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