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Strong particle-plasmon interaction in electronic systems can lead to composite hole-plasmon
excitations. We investigate the emergence of similar composite quasiparticles in ultracold dipolar
Fermi liquids originating from the long-range dipole-dipole interaction. We use the G0W technique
with an effective interaction obtained from the static structure factor to calculate the quasiparticle
properties and single-particle spectral function. We first demonstrate that within this formalism a
very good agreement with the quantum Monte Carlo results could be achieved over a wide range of
coupling strengths for the renormalization constant and effective mass. The composite quasiparticle-
zero sound excitations which are undamped at long wavelengths emerge at intermediate and strong
couplings in the spectral function and should be detectable through the radio frequency spectroscopy
of nonreactive polar molecules at high densities.

I. INTRODUCTION

Ultracold dipolar gases thanks to their long-range and
anisotropic dipole-dipole interactions are excellent candi-
dates for exploring quantum many-body behavior [1–3].
The ground state properties of the two dimensional (2D)
dipolar Fermi liquids (DFL) have been widely explored
by means of different techniques, namely the quantum
Monte Carlo (QMC) simulation [4], modified Singwi-
Tosi-Land-Sjölander (STLS) method [5], and Fermi-
Hypernetted-Chain (FHNC) approximation [6]. The in-
stability of a homogenous 2D liquid towards density mod-
ified phases have been investigated using different for-
malisms [7–9]. The Landau-Fermi liquid properties of a
2D DFL have been addressed by Lu and Shlyapnikov [10]
and it has been shown that its collective density ex-
citation has an acoustic nature whose survival at long
wavelengths originates mainly from the many-body ef-
fects beyond the mean-field level [6, 10, 11]. Invaluable
information regarding the excitation spectrum of a corre-
lated many-body system could be obtained from the self-
energy and in particular from the single-particle spectral
function. Dynamics of quantum fluids, and mainly elec-
tron liquids have been studied extensively over the past
decades.

Quasiparticle (QP) spectral properties of a 2D electron
liquid [12] and a single layer of doped graphene [13, 14]
have been investigated within the so-called G0W ap-
proximation and the composite hole-plasmon excitations
have been predicted for both systems. These compos-
ite quasiparticles are named plasmarons and have been
experimentally verified in doped graphene via angle-
resolved photoemission spectroscopy (ARPES) measure-
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ments [15]. In addition, inelastic neutron scattering mea-
surements of a monolayer of liquid 3He has been reported
to observe a roton-like excitation as an unexpected col-
lective behavior of a Fermi many-body system [16].

Although the dynamical properties of 2D dipolar Bose
liquids have been theoretically explored [17–19], to the
best of our knowledge such studies for fermionic systems
are restricted to perturbative approaches at weak cou-
plings [11]. In this work, we use the G0W approximation
with an effective interaction obtained from the interact-
ing static structure factor to calculate the self-energy. We
use an accurate interacting static structure factor data
extracted from FHNC approximation [6] to obtain the
effective particle-particle interaction. Below, we will first
illustrate how an excellent agreement with the QMC data
for effective mass and renormalization constant could be
achieved with such a formulation of the G0W approxima-
tion. The quasiparticle properties and in particular the
effective mass obtained from the G0W is usually very
sensitive to the approximations employed for the effec-
tive interaction [20]. The level of agreement with QMC
data we have obtained with this modified G0W formu-
lation provides a simple but accurate recipe for the in-
vestigation of other strongly interacting Fermi liquids.
Then, we move to investigate the single-particle spectral
function of a 2D DFL. Alongside the usual quasiparti-
cle excitation dispersion below the Fermi energy, a sec-
ondary heavy mode at intermediate and strong couplings
emerges originating from the coupling between QP and
zero-sound excitations. The high-density limit necessary
for the observation of this composite mode requires non-
reactive fermionic polar molecules and radio frequency
(RF) spectroscopy [21, 22] could be employed to probe
these features.
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II. THEORY

We consider a single layer of spin-polarized (i.e., single
component) 2D gas of dipolar fermions with their dipole
moments aligned in the perpendicular direction to the 2D
plane at zero-temperature. The isotropic dipole-dipole
interaction between particles is v(r) = D/r3, where D is
the dipole-dipole interaction strength [6]. At zero tem-
perature all properties of this dipolar system will depend
on a single dimensionless coupling constant λ = kFr0,
where kF =

√
4πn is the Fermi wave vector at density n

and r0 = mD/~2 is the characteristic length of dipolar
interaction, m being the bare (i.e., noninteracting) mass
of dipoles. We assume low-lying excitations and resort to
the G0W approximation [23] to calculate the self-energy,
Σ(k,E),

Σ(k,E) = i

∫
d2q d(~ω)

(2π)3
G0(k−q, E−~ω)W (q, ω). (1)

Here, G0(k, E) = 1/[E − ε0(k)] is the noninteracting
Green’s function with the noninteracting dispersion of
single particle given by ε0(k) = ~2k2/(2m). In order
to account for the effects of exchange and correlations,
we have replaced W (q, ω) by the Kukkonen-Overhauser
(KO) effective interaction [23]

WKO(q, ω) = v(q) + w2(q)χ(q, ω), (2)

where v(q) is the Fourier transform of bare interaction
and w(q) is effective particle-particle interaction and ac-
counts for the exchange and correlation effects [23]. The
w(q) is indeed the screened interaction usually defined
in terms of the many-body local field factors, but here,
using the fluctuation-dissipation theorem, we obtain an
approximate expression for it in terms of the interacting
static structure factor S(q), as [6]

w(q) =
ε0(q)

2n

[
S−2(q)− S−2

0 (q)
]
. (3)

Here, S0(q) is the static structure factor of an ideal
2D Fermi system [23] and for the interacting structure
factor we have used the accurate numerical data from
FHNC method reported in Ref. [6]. The interacting
linear density-density response function χ(q, ω) is writ-
ten in terms of the screened interaction w(q) in a gen-
eralized random-phase approximation (RPA) form [23]
χ(q, ω) = χ0(q, ω)/ [1− w(q)χ0(q, ω)], where χ0(q, ω) is
the noninteracting linear density-density response func-
tion of a 2D Fermi system [23]. The self-energy is conve-
niently split into two terms, namely the “Hartree-Fock”
(HF) term ΣHF(k), and the remaining dynamic term
Σρ(k,E), which originates from the density-fluctuations.
The HF contribution could be written as

ΣHF(k) =

∫
d2q

(2π)2
[v(0)− v(k− q)]nFD[ε0(q)], (4)

where nFD(ε) is the noninteracting Fermi-Dirac distribu-
tion function. The dynamical contribution to the self-
energy

Σρ(k,E) = i

∫
d2q d(~ω)

(2π)3
G0(k−q, E−~ω)w2(q)χ(q, ω),

(5)
itself, for numerical conveniences, is usually further split
into two contributions, a smooth line-term

Σ
(ρ)
line(k,E) = −

∫
d2q d(~ω)

(2π)3
w2(q)χ(q, iω)

× E − ξ0(k− q)

[E − ξ0(k− q)]2 + (~ω)2
,

(6)

with an integral along the imaginary frequency axis, and
a pole-term

Σ
(ρ)
pole(k,E) =

∫
d2q

(2π)2
w2(q)χ(q, E − ξ0(k− q))

× [Θ(E − ξ0(k− q))−Θ(−ξ0(k− q))] ,

(7)

originating from the residue of the single-particle Green’s
function. Here, ξ0(k) = ε0(k) − εF, where εF =
~2k2

F/(2m) is the noninteracting Fermi energy and
χ(q, z), with z = ω (iω) is the linear density-density
response function along the real (imaginary) frequency
axis, which could be obtained from

χ(q, z) =
χ0(q, z)

1− w(q)χ0(q, z)
, (8)

in terms of the noninteracting density-density response
function χ0(q, z), whose analytic form is given in Ap-
pendix A.

III. QUASIPARTICLE ENERGY AND
LIFETIME

The interaction between particles has two main effects
on the energy of quasiparticles. First, the energy disper-
sion relation and the effective mass of QPs are renormal-
ized which are determined by the real part of the self-
energy. Second, owing to the inelastic scatterings, the
quasiparticles acquire a finite decay rate proportional to
the imaginary part of the self-energy.

The excitation spectrum of quasiparticles, measured
with respect to the interacting chemical potential, could
be written as εQP(k) = ξ0(k) + <e Σ̃(k,E)|E=εQP(k),

where <e Σ̃(k,E) = <eΣ(k,E) − <eΣ(kF, 0). In prin-
ciple, the equation of the excitation spectrum should be
solved self-consistently. However, if the interaction is not
too strong one can resort to the “on-shell approximation”
(OSA), replacing εQP(k)→ ξ0(k) in the argument of self-
energy [20, 23, 24] and thus find

εOSA
QP (k) ≈ ξ0(k) + <e Σ̃(k, ξ0(k)). (9)
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FIG. 1. Top panel: The quasiparticle energy (in units of
εF) as a function of k at various coupling strengths. The
inset compares the quasiparticle energy of strongly coupled
dipolar Fermi liquid at λ = 16 with the energy dispersion of
a noninteracting system. Bottom panel: The quasiparticle
decay rate ~/τ (in units of εF) as a function of k for λ = 4
and λ = 8. The quasiparticle decay rate, =mΣ(k, ξ0(k)),
vanishes at the Fermi level as |k − kF|2 which is one of the
main features of the Landau theory of Fermi liquid [23]. The
inset of bottom panel shows the decay rate at weak couplings
(i.e., λ = 1), where the jump at kc is absent.

Figure 1 shows the wave vector dependance of quasi-
particle energy and the inverse of its lifetime ~/τ =
2|=mΣ(k, ξ0(k))|, obtained within the on-shell approx-
imation for self-energy at different values of the coupling
strength λ. Generally, two intrinsic mechanisms con-
tribute to the scattering of quasiparticles: i) the exci-
tation of particle-hole pairs which is dominated at long
wavelengths, and ii) the excitation of zero-sound col-
lective mode that turns on at a threshold wave vector
kc [12, 25]. At weak couplings, the system behaves qual-
itatively similar to an ideal Fermi gas thanks to the can-
cellation between static HF and dynamical contributions
to the self-energy. At intermediate and strong coupling
strengths, for k < kF the QP is only moderately affected
by the many-body effects, but for k > kF and especially
around kc, the QP spectrum is strongly affected as the
quasiparticle energy loses most of its energy through in-

elastic scattering with collective modes. A strong dip
in the QP spectrum is the zero-sound dip and its po-
sition moves to higher wave vectors increasing the cou-
pling strength. This zero-sound dip, which resembles the
maxon-like dip reported in 2D 3He [26] and the plasmon
dip in 2D electron liquids [20, 24], originates from the de-
cay of particle-hole pairs into collective modes with con-
served momentum and energy [12, 23]. At intermediate
and strong couplings a finite jump in the decay rate takes
place at kc, as the scattering rate is drastically increased
at the zero-sound dip. A similar jump has been reported
in a 2D electron liquid [20] in which it was associated
with the non-zero oscillator strength of the plasmon-pole
at the wave vector of plasmon dip. The quasiparticle de-
cay rate vanishes as ≈ (E − µ)β for E → µ at k → kF .
From our numerical results, we find that at weak and in-
termediate couplings β . 2, while at strong couplings β
is slightly smaller than 2, but we still get 1 < β ≤ 2 (see,
Appendix B for more details). This is one of the main
features of the Landau theory for the Fermi liquid [23].

IV. RENORMALIZATION CONSTANT AND
EFFECTIVE MASS

In the presence of interactions, discontinuity of the mo-
mentum distribution at k = kF, that is measured by the
renormalization constant

Z = 1/ [1− ∂E<eΣ(k,E)|k=kF,E=0] , (10)

is less than unity [23]. The many-body effective mass
at the Fermi level could be obtained from the slope
of interacting excitation spectrum [23] ~2kF/m

∗ =
dεQP(k)/dk|k→kF . Depending on whether the quasipar-
ticle energy is calculated by solving the self-consistent
Dyson equation or by using the OSA, we would find dif-
ferent results for the effective mass. The effective mass
within the Dyson approximation m∗D is given by

m

m∗D
= Z

[
1 + (m/~2kF)∂k<eΣ(k,E)|k=kF,E=0

]
, (11)

and the OSA for the QP energy for the many-body ef-
fective mass gives

m

m∗OSA

= 1+(m/~2kF)∂k<eΣ(k,E)|k=kF,E=0

+ ∂E<eΣ(k,E)|k=kF,E=0.
(12)

In Fig. 2 we compare our numerical results for the renor-
malization constant Z and the effective mass m∗ with the
QMC results of Matveeva and Giorgini [4] over a wide
range of coupling strengths. In the weak coupling regime,
the self-energy is dominated by the direct and exchange
effects. As the Hartree-Fock self-energy is static the
renormalization constant remains close to one at λ < 1.
As the coupling constant increases, the effects of cor-
relation become important which causes the reduction
of the renormalization constant. A strong suppression
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FIG. 2. Top panel: The renormalization constant Z of a
2D dipolar Fermi liquid as a function of the dimensionless
coupling constant λ, calculated within the G0W approxima-
tion and compared with QMC results of Ref. [4]. Bottom
panel: The relative effective mass of a 2D dipolar Fermi liq-
uid m∗/m as a function of the dimensionless coupling con-
stant λ, calculated within the G0W approximation and with
Dyson and on-shell approximations for the self-energy, ob-
tained from Eqs. (11) and (12), respectively. The results are
compared with the QMC data of Ref. [4]. The inset com-
pares our Dyson results for the relative effective mass with
the QMC data of Ref. [4] and the analytic second-order per-
turbation theory results of Ref. [10] at weak couplings.

of the renormalization constant is visible at strong cou-
pling strengths, but Z never reaches zero. As the Landau
Fermi liquid theory implies 0 < Z ≤ 1 [23], this could
be taken as an indication of the Fermi liquid picture re-
maining valid for dipolar Fermi system up to very strong
couplings. Interestingly, our G0W results agree very well
with the QMC data of Matveeva and Giorgini [4] over
the whole range of coupling strengths where the homo-
geneous liquid phase is predicted to be stable. We should
note that from the QMC simulation [4] phase transition
to Wigner crystal is expected at λ = 25± 3.

Both OSA and Dyson methods predict a strong reduc-
tion of effective mass with respect to its bare value at
strong couplings, but the Dyson results are in a much
better agreement with the QMC data [4]. In the inset
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FIG. 3. Density plots of the dynamical structure factor of a
2D dipolar Fermi liquid [in units of ~/(πεF)] as a functional of
energy E and wave vector k calculated for different values of
the coupling constant λ. Note that the Dirac delta-function
form of the structure factor along the dispersion of zero-sound
mode outside the single particle continuum has been broad-
ened by 10−4 εF for better visibility.

of the bottom panel in Fig. 2 we compare our Dyson re-
sults for the effective mass at weak couplings, with the
second order perturbative expansion results of Liu and
Shlyapnikov [10] m/m∗ = 1 + 4λ/(3π) + λ2 ln(0.65λ)/4.
Note that the second term on the right-hand side of this
expression is the HF contribution to the renormalization
of effective mass and the third term is the leading order
contribution beyond the HF approximation.

The Hartree-Fock contribution to the self-energy
ΣHF(k) has a positive slope at the Fermi wave vector and
hence decreases the effective mass, whereas the dynamic
contribution to the self-energy Σρ(k) has a negative slope
and tends to enhance m∗ [27]. But the Hartree-Fock con-
tribution dominates over the dynamical term over the
whole range of coupling strengths and the effective mass
is suppressed with respect to its noninteracting value.
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V. DYNAMICAL STRUCTURE FACTOR AND
SPECTRAL FUNCTION

The dynamical structure factor at the zero temper-
ature is related to the imaginary part of the density-
density response function as [23]

S(k, ω) = − ~
nπ
=mχ(k, ω), (13)

where the interacting density-density response function
χ(k, ω) is approximated by Eq. (8). The behavior of
S(k, ω) for different coupling constants have been illus-
trated in Fig. 3 as the density plots in the energy-wave
vector plane. The regions of particle-hole continuum
together with the dispersions of zero-sound modes are
clearly visible. Note that as the dynamical behavior of
the effective interaction w(q, ω) is not included in our
formalism, the imaginary part of the density-density re-
sponse function remains zero outside the particle-hole
continuum, except on top of the zero-sound dispersion
where it acquires a Dirac delta function form [23]. The
dispersion of collective mode enters the particle-hole con-
tinuum at a characteristic wave vector kzs (e.g., kzs ≈
0.8 kF for λ = 4 and kzs ≈ kF for λ = 8) after which the
Landau damping of the collective mode begins.

The spectral function A(k,E) which is a measure of
having a particle with momentum k and energy E, can be
obtained from the imaginary part of the retarded Green’s
function. For a noninteracting system, the spectral func-
tion has a delta-function form. In the presence of inter-
actions, the modification of single particle Green’s func-
tion G−1(k,E) = G−1

0 (k,E) − Σ(k,E) usually broadens
the spectral function A(k,E) = −=mG(k,E)/π. The
interacting spectral function in terms of the self-energy
and the noninteracting energy dispersion ξ0(k) is written
as [23, 28]

A(k,E) =
−=mΣ(k,E)/π

[E − ξ0(k)−<eΣ̃(k,E)]2 + [=mΣ(k,E)]2
.

(14)
The spectral function is a positive-definite quantity
and its exact expression should satisfy the sum-rule∫∞
−∞ dEA(k,E) = 1. A fraction Z of the total spec-

tral weight is absorbed by the quasiparticle peak at
E = εQP(k), and the remaining 1 − Z weight is dis-
tributed over the background [23].

Vanishing of the expression inside the first square
bracket in the denominator of Eq. (14) manifests itself as
a resonance in the spectral function. These resonances
represent quasiparticles with specific energies and possi-
ble finite lifetimes. The position of peaks in the single-
particle spectral function could be obtained from the so-
lution of Dyson’s equation for quasiparticle energy. Fig-
ure 4 illustrates the typical behavior of the imaginary and
real parts of the self-energy as well as the spectral func-
tion A(k,E) of the dipolar Fermi gas for λ = 8. The
solutions of the Dyson equation are obtained from the
intersections of the real part of the self-energy <e Σ̃(k,E)

and the straight line E− ξ0(k). Three peaks in the spec-
tral function correspond to three distinct solutions of the
Dyson equation for λ = 8. If we account for these peaks
according to decreasing energy, the first peak is associ-
ated with the quasiparticle solution which is shifted from
the noninteracting energy and has a finite width corre-
sponding to the non-zero damping rate. The second and
third peaks result from the coupling of quasiparticles and
collective (i.e., zero-sound) modes. As it is evident from
the behavior of the imaginary part of the self-energy, the
composite quasiparticles are undamped in the long wave-
length limit. Approximately for k & 0.45kF, the third
peak acquires a finite width and becomes damped and
for k & 0.7kF only the quasiparticle excitation peak sur-
vives in the spectral function.

It is convenient to look at the behavior of =mΣ(k,E) at
k = 0. In this limit, the initial QP energy is Ei = E+ εF

and the final energy is Ef = ξ0(q) + εF. When the dif-
ference is equal to the mode energy, ~ω the initial QP
can decay by emitting a composite particle-zero sound
excitation. Since ~ω ≥ ξ0(q) and Ef −Ei ≤ ξ0(q), there-
fore an initial QP with Ei < 0 can decay into a final
state through a resonance process in which Ef > 0 when
dω/dq = ~−1dξ0/dq = ~q/2m. When these conditions
are met, =mΣ(k = 0, E) peaks at a specific E and its
Kramers-Kronig transformation <eΣ(0, E) changes sign
rapidly around that energy. In Fig. 5, we illustrate the
behavior of spectral function at k = 0 and for differ-
ent values of the coupling constant. As it is seen the
composite quasiparticle peak emerges at λ ≈ 2. Increas-
ing the coupling strength the composite peak moves to-
wards lower energies and becomes well separated from
the quasiparticle excitation peak.

In Fig. 6 we show the density plot of the spectral func-
tion at three different values of the coupling constant
λ = 1, 4, and 8. In the weak coupling regime (cf., the
left panel in Fig. 6) only the particle-hole excitation dis-
persion is visible in the spectral function. In addition
to the QP peak, the composite quasiparticle-zero sound
excitation peak emerges around λ ≈ 2 by illustrating a
peak in the =mΣ(k = 0, E) around E ≈ −2.7εF. This
new peak corresponds to the bound states of quasiparti-
cles with the zero-sound mode in the 2D dipolar Fermi
liquid. Owing to the repulsion between QP and com-
posite QP resonances, a gap-like feature between these
two bands are visible at long wavelengths. The com-
posite quasiparticles are undamped at small k and their
dispersion eventually merges with the dispersion of QPs
at a characteristic λ-dependent wave vector. This corre-
sponds to the wave vector where the dispersion of zero-
sound mode enters the particle-hole continuum and gets
Landau-damped. The emergence of a similar feature in
electron liquids which is called plasmaron has been first
proposed by Lundqvist [29]. The plasmaron peak has
been predicted in 2D electron liquid [12] and graphene
[13, 14] as well and has been experimentally verified in
doped graphene [15] through the angle-resolved photoe-
mission spectroscopy. But a similar feature has never
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been observed in neutral Fermi liquids.

VI. SUMMARY AND CONCLUSION

We explore the quasiparticle properties of a spin-
polarized 2D DFL. We employ the G0W approximation
with an effective interaction extracted from the very ac-
curate FHNC data for the interacting static structure
factor. With such an effective interaction, we are able
to achieve a very good agreement with the QMC data
for effective mass and renormalization constant up to
very strong coupling regimes. We should here note that
based on the existing experiences with the electronic sys-
tems [20, 24] results of the G0W method for the effective
mass is very sensitive to the approximations one adopts
for the effective interaction and it is generally very dif-
ficult to obtain a very good agreement with QMC data
over a large range of coupling strengths. Our findings
suggest that a modified G0W approach armed with an
effective particle-particle interaction extracted from ac-
curate static structure factor data might perform equally
well for other strongly interacting quantum fluids too. A
similar procedure could be also implemented in ab-initio

electronic structure packages to improve the GW -DFT
results for the quasiparticle spectrum. Then, we switch
to the investigation of the spectral function below the
Fermi energy. Apart from the conventional quasipar-
ticle dispersion, we observe a novel composite particle-
zero sound dispersion at intermediate and strong cou-
plings which is a bound state of a dipolar hole below
the Fermi level and the collective density oscillation.
This massive mode is undamped at long wavelengths
and we would expect it to be observable through RF
spectroscopy of ultracold dipolar systems consisting of
non-reactive fermionic polar molecules at intermediate
and high densities. With polar molecules whose dipo-
lar length r0 could easily reach thousands of nanometers,
an average planar density of 106 − 107 cm−2 would suf-
fice to observe the novel features in the spectral function
predicted here.
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values of the coupling constant. The undamped peaks have
been broadened by 0.005 εF for better visibility.

Appendix A: Density-density response function of a
noninteracting 2D system

The density-density response function of a noninteract-
ing spin-polarized two-dimensional Fermi system, along
the real frequency axis is the famous Stern-Lindhard
function [23]

χ0(q, ω) =
1

S

∑
k

nFD[ε0(k)]− nFD[ε0(k + q)]

~ω + ε0(k)− ε0(k + q) + iη
, (A1)

where S is the sample area and η is an infinitesimal pos-
itive quantity. After performing the sum over k, the real
and the imaginary parts of the response function read

<e χ0(q, ω) = −ν0

{
1 +

1

q̃

[
sgn(ν−)Θ(ν2

− − 1)
√
ν2
− − 1− sgn(ν+)Θ(ν2

+ − 1)
√
ν2

+ − 1

]}
, (A2)

and

=mχ0(q, ω) = −ν0

q̃

[
Θ(ν2

− − 1)
√
ν2
− − 1−Θ(ν2

+ − 1)
√
ν2

+ − 1

]
. (A3)

Here, ν0 = m/(2π~2) is the density of states per unit
area of a spin-polarized 2D system and ν± = ω̃/(2q̃) ±
q̃/2 with q̃ = q/kF, and ω̃ = ~ω/(2εF). The Lindhard
function along the imaginary frequency axis, after some
straightforward algebra reads

χ0(q, iω) = −ν0

(
1−
√

2

q̃

√
a+

√
a2 + ω̃2

)
, (A4)

where we have defined a = q̃2/4− ω̃2/q̃2 − 1.

Appendix B: The imaginary part of the self-energy

The only contribution to the imaginary part of the self-
energy arises from the imaginary part of the pole term

=mΣ(k,E) =

∫
d2q

(2π)2
w2(q)=mχ(q, E − ξ0(k− q)) [Θ(E − ξ0(k− q))−Θ(−ξ0(k− q)] , (B1)

where

=mχ(q, ω) =
=mχ0(q, ω)

[1− w(q)<e χ0(q, ω)]
2

+ [w(q)=m χ0(q, ω)]
2 −

πδ(ω − ΩZS(q))<e χ0(q,ΩZS(q))

w(q)|∂ω<e χ0(q, ω)|ω=ΩZS(q)
. (B2)

The second term on the right-hand-side of this expres-
sion is the collective mode contribution to the imagi-

nary part of the response function, with ΩZS(q) being
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FIG. 6. (Color online) Density plot of the spectral function A(k,E) (in units of 1/εF) as a function of energy E and wave
vector k, obtained from Eq. (14) for three different values of the coupling constants λ = 1 (left), λ = 4 (middle), and λ = 8
(right). The spectral function has been broadened by 0.005 εF for a better visibility of the undamped delta-like peaks.

the frequency of zero sound at wave-vector q. By defin-
ing the dimensionless parameters k̃ = k/kF, q̃ = q/kF,

Ẽ = E/εF, and y = Ẽ − k̃2 − q̃2 + 2k̃q̃ cosφ+ 1, we find

=mΣ(k,E) = −2εF

∫ ∞
0

dq̃q̃w(q̃)

∫ y2

y1

dy
δ(y − Ω̃ZS)<e χ0(q̃, Ω̃ZS)

w(q̃)|∂y<e χ0(q̃, y)|y=Ω̃ZS

[
Θ(y)−Θ(y − Ẽ)

]
+

2

π
εF

∫ ∞
0

dq̃q̃w2(q̃)

∫ y2

y1

dy√
(2k̃q̃)2 − (y − Ẽ − 1 + k̃2 + q̃2)2

=m χ(q̃, y)[Θ(y)−Θ(y − Ẽ)]

[1− w(q̃)<e χ0(q̃, y)]
2

+ [w(q̃)=m χ0(q̃, y)]
2 .

(B3)

where y1 = Ẽ − (k̃ + q̃)2 + 1, y2 = Ẽ − (k̃ − q̃)2 + 1 and

Ω̃ZS = ~ΩZS/εF .

1. The behavior of =mΣ(k = kF, E) in the vicinity of
Fermi energy

The numerical solution of the imaginary part of self-
energy for k = kF and E → µ has been illustrated in

Fig. 7. This figure shows that the quasiparticle decay
rate vanishes as ∝ (E − µ)β for E → µ at k → kF .
We have fitted our data into a parabolic function. It
appears that at weak and intermediate couplings the β =
2 power provide an adequate fit to the numerical data.
At strong couplings, a slightly smaller β would provide
even a better fit but still, we would find 1 < β ≤ 2.
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