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Optimal Stochastic Signaling Under Average Power
and Bit Rate Constraints
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Abstract— The optimal stochastic signaling based on the joint
design of prior distribution and signal constellation is investi-
gated under an average bit rate and power constraints. First,
an optimization problem is formulated to maximize the average
probability of correct decision over the set of joint distribution
functions for prior probabilities and the corresponding constella-
tion symbols. Next, an alternative problem formulation, for which
the optimal joint distribution is characterized by a randomization
among at most three mass points, is provided, and it is shown that
both formulations share the same solution. Three special cases
of the problem are investigated in detail. First, in the absence
of randomization, the optimal prior probability distribution is
analyzed for a given signal constellation and a closed-form
solution is provided. Second, the optimal deterministic pair
of prior probabilities and the corresponding signal levels are
considered. Third, a binary communication system with scalar
observations is investigated in the presence of a zero-mean addi-
tive white Gaussian noise, and the optimal solution is obtained
under practical assumptions. Finally, numerical examples are
presented to illustrate the theoretical results. It is observed that
the proposed approach can provide improvements in terms of
average symbol error rate over the classical scheme for certain
scenarios.

Index Terms— Stochastic signaling, probability of error, prior
probability, bit rate, power constraint.

I. INTRODUCTION AND MOTIVATION

IN THE LITERATURE, optimal signaling to minimize
the average probability of error under various forms of

power constraints has been studied extensively. For binary
communication systems that operate over zero-mean additive
white Gaussian noise (AWGN) channels subject to power
constraints in the form of E

{�Si�2
} ≤ A for i = 0, 1,

the optimal strategy is to employ deterministic antipodal
signaling at the power limit at the transmitter and the
maximum a posteriori probability (MAP) decision rule at the
receiver [2]. Alternatively, the average power constraint can
take the form of

∑2
i=1 πiE

{�Si�2
} ≤ A where πi represents
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prior probability of symbol i. In [3], the optimal deterministic
signaling with such a constraint is investigated in the presence
of additive zero-mean Gaussian noise when the optimal MAP
receiver is used at the receiver, and it is shown for coherent
systems that the optimum performance is achieved when the
Euclidean distance between the signals is maximized under
the given power constraint and nonequal prior probabilities.
In [4], the convexity properties of the average probability
of error in terms of signal and noise power are investigated
for binary-valued scalar signals over additive noise channels
under an average power constraint. In [5], similar convexity
analyses are performed for constellations with arbitrary shape,
order, and dimensionality for a maximum likelihood (ML)
detector in an AWGN channel. Based on the convexity results
in [4] and [5], the optimality of deterministic or stochastic
signaling can be determined in power constrained digital
communication systems.

The problem of optimal constellation design (signal shap-
ing) is also considered in various studies in the literature
such as [6]–[12]. In [6], optimal nonuniform constellations
to minimize the union bound on the uncoded symbol error
rate are investigated in a cooperative relaying scheme. In [7],
a nonuniform constellation design is performed to maximize
the bit interleaved coded modulation (BICM) capacity for
the ATSC 3.0 standard. The optimal two dimensional signal
constellation which minimizes the probability of error over a
circularly symmetric complex AWGN channel under average
power constraints is investigated for M -ary communication
systems in [8]. In [10], a nonequiprobable signaling scheme
is described to achieve the asymptotic shaping gain (1.53 dB)
in any fixed dimension.

In certain scenarios, employing randomization (i.e., sto-
chastic signaling) instead of deterministic signals/constellation
points can improve the average probability of error perfor-
mance [4], [13]–[20]. Stochastic signaling relies on the idea
of modeling signal Si corresponding to the ith information
symbol as a random variable instead of a deterministic quantity
for each i. In [17], the optimal stochastic signaling is inves-
tigated for a given detector under second and fourth moment
constraints, and it is shown that the optimal signal for each
information symbol can be represented by a discrete random
variable with at most three distinct signal levels. In [18],
the joint design of the signals and the detector is investigated,
and performance improvements over deterministic signaling
are illustrated for non-Gaussian channels. In [19], optimal sto-
chastic signaling is studied under an average power constraint
in the form of

∑2
i=1 πiE

{�Si�2
} ≤ A for i = 0, 1, and

sufficient conditions for improvability or non-improvability of
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the deterministic signaling scheme given in [3] via stochastic
signaling are derived. In [20], the stochastic signaling idea
is applied in a downlink multiuser communication system.
In particular, the optimal power control scheme is developed
such that each user is allowed to randomize among multi-
ple signal constellations instead of employing a fixed signal
constellation, and it is shown that randomization can improve
error performance in some scenarios.

Although the optimal signaling has been investigated for
a variety of power constraints and transmission scenarios
in the literature, the prior probabilities are considered as
fixed quantities, which can be either uniform or non-uniform.
In conventional memoryless digital modulation systems, a uni-
form Bernoulli binary sequence is parsed into blocks of fixed
length and each block is mapped to a symbol in a given
signal constellation. Resulting in equally likely symbols, this
procedure (i.e., uniform signaling) maximizes the entropy of
the transmitted symbols, and consequently the average bit
rate for a given constellation size [21]. In cases where the
power cost of the constellation points also needs to be taken
into account, a nonuniform signaling scheme that selects the
constellation points with lower power more frequently than
the points with higher power would result in power savings
in exchange for a reduced bit rate [22]. In addition, it is
known that for a given fixed signaling scheme, the minimum
Bayesian risk (probability of error) is concave over the space
of priors [2]. For example, for a binary communication system
employing antipodal signaling (S1 = −S0), uniform priors
result in the worst average symbol error rate. Therefore, non-
uniform signaling can provide improvements for average error
performance in addition to power savings even though it
reduces the average bit rate.

Motivated by these observations, we consider the optimal
signaling problem based on the joint design of prior probabil-
ities and the corresponding constellation symbols such that
the average symbol error rate is minimized under average
bit rate and power constraints. To maintain a general per-
spective/formulation, both the prior probability vector and the
signal constellation are assumed to be random (stochastic)
distributed according to a joint probability density function
(PDF), pΠ,S(π, s). In other words, the transmitter forms an
optimal constellation book in order to transmit each symbol
with the corresponding signal levels and the prior probabilities,
where each constellation can be used with a certain proba-
bility. This procedure can be regarded as a generalization of
constellation randomization. In the literature, there exist some
studies that utilize randomized signal constellations in various
communication scenarios [23]–[27]. For example, in [23], for
a spatial multiplexing scenario under block fading channels,
the signal constellation is rotated by using a pseudorandom
sequence for each transmitted vector. Performance gains via
randomized constellations can be obtained both in coded
frame-error rate [23] and outage probability [24]. In [25]–[27],
random rotations and phase shifts are employed to increase the
transmission diversity. Also, in [20], the optimal randomization
of constellations is investigated for each user in a multiuser
setting under power constraints. However, these studies do
not take into account the prior probability distribution in

their formulation (i.e., assume that it is fixed), and only
utilize randomization in signal levels to achieve improvement
according to a certain performance criterion.

In this paper, we consider an M -ary communication system
with n dimensional observations. Our goal is to obtain the
optimal joint distribution of the constellation symbols and
the corresponding prior probabilities to minimize the average
probability of symbol error under average bit rate and power
constraints. First, an optimization problem is formulated,
where the receiver utilizes the optimal MAP decision rule by
assuming that it knows the prior probability realization that
is currently being used by the transmitter and the constel-
lation distribution for that prior realization. As this generic
formulation involves optimization over a space of joint PDFs,
an alternative optimization problem, the optimal solution of
which can be expressed as a randomization among at most
three mass points, is derived, and it is proved that the original
and the alternative problems share the same optimal value.
Next, three special cases of the original formulation are
investigated. First, the optimal prior distribution for a given
constellation is derived. Second, the optimal pair of fixed
priors and signal levels is considered, and third, a binary com-
munication scenario with scalar observations under additive
zero-mean Gaussian noise is investigated. Finally, numerical
results are provided for the general formulation and the special
cases. The main contributions in this paper can be summarized
as follows:

• For the first time in the literature, the optimal signaling
problem is proposed by jointly optimizing the signal
constellation and the prior probabilities for transmitted
symbols in the presence of average bit rate and power
constraints.

• It is shown that the optimal performance is achieved by a
randomization among at most three signal constellations
with the corresponding associated deterministic prior
probability vectors.

• A closed form expression of the optimal deterministic
prior probability distribution for a given constellation is
derived.

• The optimal solution for the special case of binary com-
munications over an AWGN channel with scalar obser-
vations is obtained under certain practical assumptions.

The rest of the paper is organized as follows: The optimal
signaling problem is formulated and form of the solution is
provided in Section II. Special cases of the general formulation
are discussed in Section III. Numerical results are presented
in Section IV and concluding remarks are given in Section V.

II. FORMULATION AND OPTIMAL SIGNALING

Consider an M -ary communication system with n dimen-
sional observations collected at the receiver over an arbitrary
additive noise channel. The discrete-time baseband equivalent
signal after downconversion, matched filtering, and sampling
at the symbol rate can be represented as

Y = Si + N, i ∈ {0, 1, . . . , M − 1} (1)

where Si is the transmitted signal vector for ith constellation
symbol and N denotes the noise vector that is assumed to
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be independent of Si. Prior probabilities of the symbols are
denoted by Π := [Π0, Π1, . . . , ΠM−1], which belongs to
the standard (M − 1)−simplex denoted with ΔM−1 = {π :∑M−1

i=0 πi = 1 and πi ≥ 0 for all i}. We recall that the
standard simplex is a compact and convex set. Our goal is
to obtain the optimal distribution for the prior probabilities
and the transmitted symbols that maximize the probability of
correct decision at the receiver subject to constraints on the
average transmit power and the average bit rate. To this end,
the prior probability vector Π and the transmitted symbols Si’s
are assumed to be random with a joint distribution denoted
by pΠ,S(π, s) where S := [S0, S1, . . . , SM−1] ∈ R

Mn

represents the signal constellation. The average transmit power
constraint and the average bit rate per symbol constraint are
given by

E

{
M−1∑

i=0

Πi

∥
∥Si

∥
∥2

2

}

≤ A, (2)

and

E

{

−
M−1∑

i=0

Πi log Πi

}

≥ R, (3)

respectively. In (2) and (3), the expectations are taken with
respect to the joint PDF pΠ,S(π, s). It is noted that for a
given prior probability vector π and a signal constellation s,
the optimal detector at the receiver corresponds to the MAP
decision rule [2, Th. 2.7.3]. More specifically, for a given
observation y, the MAP decision rule selects symbol k such
that k = arg maxi∈{0,1,...,M−1}πipi(y), where pi(y) denotes
the conditional PDF of the observation when the ith symbol
is transmitted. The transmitter and the receiver are assumed
to be in coordination so that the receiver knows which prior
probability vector is currently being used by the transmitter.
Accordingly, the average probability of correct decision can
be expressed as

Pc := E

{∫

Rn

max
i∈{0,1,...,M−1}

{
Πi E

{
pN(y − Si) |Π

}}
dy

}
,

(4)

where the outer expectation is taken with respect to the
marginal PDF of Π, that is, pΠ(π), and the inner expectation
is taken with respect to the conditional PDF of S given Π,
i.e., pS|Π(s|π). Then, the following optimization problem is
proposed:

max
pΠ,S

E

{∫

Rn

max
i∈{0,1,...,M−1}

{
ΠiE

{
pN(y − Si) |Π

}}
dy

}

subject to E

{
M−1∑

i=0

Πi

∥∥Si

∥∥2

2

}

≤ A

E

{

−
M−1∑

i=0

Πi log Πi

}

≥ R (P1)

where the optimization is over the joint PDF pΠ,S(π, s). Note
that in (P1), focusing on the objective function, if Π is taken
to be a fixed deterministic probability vector, then the problem
reduces to the optimal stochastic signaling problem with the

corresponding MAP detector employed at the receiver [18].
On the other hand, if the constellation S is fixed, then the
problem simplifies to finding the optimal randomization over
multiple MAP detectors [16].

As (P1) involves optimization in the space of joint PDFs,
it is in general difficult to solve. In the following, an upper
bound on the objective function of (P1) is obtained by inter-
changing maximum and expectation operations, and the form
of the solution is characterized for the resulting problem. Then,
it is shown that the original problem has the same solution as
that of the one based on the upper bound. To this aim, consider
the following objective function:

Pc := E

{∫

Rn

max
i∈{0,1,...,M−1}

{
πi pN(y − Si)

}
dy

}
, (5)

where the expectation is taken with respect to the joint
PDF pΠ,S(π, s). Then, based on (P1) and (5), an alternative
optimization problem is formulated as

max
pΠ,S

E

{∫

Rn

max
i∈{0,1,...,M−1}

{
Πi pN(y − Si)

}
dy

}

subject to E

{
M−1∑

i=0

Πi

∥
∥Si

∥
∥2

2

}

≤ A

E

{

−
M−1∑

i=0

Πi log Πi

}

≥ R (P2)

Remark 1: The formulation in (P2) corresponds to the
scenario in which the receiver and the transmitter are fully
coordinated about the transmission policy. More specifically,
the receiver is informed of the constellation and the corre-
sponding prior probability vector employed at the transmitter
at any given instant. Hence, the optimal decision rule can
be implemented at the receiver. For example, in a slotted
communication scenario, this can be realized by assigning
each slot with a designated prior distribution and a signal
constellation, and allocating the number of slots corresponding
to that realization in proportion to its weight in the joint PDF.

The optimization problem in (P2) can be expressed in a
more compact form. To this end, define the random vector X
as follows:

X := [Π, S] = [Π0, Π1, . . . , ΠM−1, S0, S1, . . . ,SM−1]
(6)

where X ∈ ΔM−1 × R
Mn. Then, (P2) can equivalently be

expressed as

max
pX

E {F (X)}
subject to E {G(X)} ≤ A

E {H(X)} ≥ R (7)

with

F (X) :=
∫

Rn

max
i∈{0,1,...,M−1}

{
Πi pN(y − Si)

}
dy ,

G(X) :=
M−1∑

i=0

Πi

∥
∥Si

∥
∥2

2
,

H(X) := −
M−1∑

i=0

Πi log Πi ,
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where the expectations are taken with respect to the joint
PDF of the constellation points and prior probabilities denoted
by pX(x). Note that there are also implicit constraints
in (7), that is, pX(x) ≥ 0 ∀x ∈ ΔM−1 × R

Mn and∫
ΔM−1×RMn pX(x)dx = 1 must be satisfied. In (7), F (x)

with x = [π, s] can be viewed as the probability of correct
decision when a fixed deterministic constellation s is used
for the transmission of M symbols whose prior probabilities
are specified by π and the corresponding MAP detector is
employed at the receiver.

Optimization problems in the form of (7) have been studied
in the literature [14], [16]–[20]. If F (x) is continuous and the
components of x belong to finite closed intervals, then the opti-
mal solution of (7) can be expressed as a randomization among
at most three points, which follows from Carethéodory’s theo-
rem [13], [28]. Therefore, instead of searching over the space
of all PDFs, we can restrict the search for the optimal solution
to a family of PDFs in the form popt

X (x) =
∑3

j=1 λjδ(x−xj)
where δ denotes the Dirac delta function,

∑3
j=1 λj = 1 and

λj ≥ 0 ∀j. Based on this result, the optimization problem
in (7) can be simplified to

max
{λ1,λ2,λ3,x1,x2,x3}

3∑

j=1

λjF (xj)

subject to
3∑

j=1

λjG(xj) ≤ A,

3∑

j=1

λjH(xj) ≥ R,

3∑

j=1

λj = 1, λ1, λ2, λ3 ≥ 0 (8)

where F (.), G(.), and H(.) are as defined before, xj =
[πj,0, πj,1, . . . πj,M−1, sj,0, sj,1, . . . , sj,M−1] and sj,i is
the ith symbol in the jth signal constellation. Next, the fol-
lowing proposition is presented.

Proposition 1: Given the same average power constraint
A, bit rate constraint R, and the noise PDF pN(·), the opti-
mization problems in (P1) and (P2) have the same optimal
value.

Proof : Denote the optimal values of the optimization
problems in (P1) and (P2) as P ∗

c and the P †
c , respectively.

We first establish P ∗
c ≤ P †

c . For any given joint distribution
pΠ,S,

E

{∫

Rn

max
i∈{0,1,...,M−1}

{
Πi E

{
pN(y − Si) |Π

}}
dy

}

≤ E

{
E

{∫

Rn

max
i∈{0,1,...,M−1}

{
Πi pN(y − Si)

}
dy

∣∣
∣
∣Π

}}

= E

{∫

Rn

max
i∈{0,1,...,M−1}

{
Πi pN(y − Si)

}
dy

}
(9)

where the inequality follows by interchanging the order of
the inner maximization and expectation operators and the
equality is due to the law of total expectation. Hence,
under the same feasible set of joint PDFs, the optimal
values of the objective functions in problems (P1) and
(P2) satisfy P ∗

c ≤ P †
c . Next, we show that P ∗

c ≥
P †

c . Consider the joint PDF for the form of the optimal
solution of (P2), i.e., pΠ,S(π, s) =

∑3
j=1 λjp

(j)
Π,S(π, s) with

p
(j)
Π,S(π, s) = p

(j)
Π (π)p(j)

S|Π(s|π), where p
(j)
Π (π) = δ(π −πj),

πj = [πj,0, πj,1, . . . , πj,M−1], p
(j)
S|Π(s|π) = pS|Π(s|πj) =

δ(s− sj), and sj = [sj,0, sj,1, . . . , sj,M−1]. When this PDF
is employed, (P1) reduces to (P2). However, since this is just
a special case for the solution of (P1), one obtains P ∗

c ≥ P †
c .

Therefore, it is concluded that P ∗
c = P †

c . �
Remark 2: It should be noted that employing a signaling

scheme with nonuniform priors results in variable-rate data
transmission since the number of bits transmitted during a
signaling interval is a random variable. Hence, it is suscep-
tible to buffer over- or underflow for a fixed-rate source as
well as synchronization loss due to channel errors causing
insertion and deletion of bits in the decoded data. In practice,
near optimal nonuniform signaling schemes can be designed
by parsing a binary data stream into the codewords of the
variable-length prefix code designed using the Huffman algo-
rithm and then mapping them onto the points of the given
constellation.

Remark 3: By following the transmission protocol explained
in Remark 1, the randomization idea can be implemented
based on popt

X (x). It is interesting to note that if the transmitted
symbols are observed over a long duration, it would be as if the
transmission is performed over a larger deterministic constella-
tion x̂ = [λ1π1,0, . . . , λ1π1,M−1, . . . , λ3π3,0, . . . , λ3π3,M−1,
s1,0, . . . , s1,M−1, . . . , s3,0, . . . , s3,M−1]. By introducing cer-
tain protocols between the transmitter and the receiver to
implement the M -ary communication system based on x̂
(while satisfying the average bit rate (defined for the M -ary
system) and power constraints), the optimization problem can
be regarded as a search of the optimal deterministic vector
x̂. However, both the randomization idea formulated in this
paper or this alternative approach are actually equivalent and
would yield the same system performance.

III. SPECIAL CASES

A. Optimal Deterministic Prior Distribution for
Given Constellation

In this section, we provide a closed-form solution for the
optimal deterministic prior distribution for a given signal
constellation. Consider a communication system in which the
transmitter emits a sequence of symbols drawn independently
from a fixed constellation Ω = {s0, . . . , sM−1} ⊂ R

Mn.
The (deterministic) prior probability vector of the signals is
denoted by π. Under these assumptions, the optimization
problem can be formulated as (cf. (7))

max
π∈ΔM−1

F (π)

subject to H(π) ≥ R

G(π) ≤ A (10)

where F (π) =
∫

Rn

max
i∈{0,1,...,M−1}

{
πi pN(y − si)

}
dy,

G(π) =
∑M−1

i=0 πi||si||2, and H(π) = −∑M−1
i=0 πi log2(πi).

We recall that H(π) is a concave function of π and attains a
maximum value of log2 M in the case of uniform signaling,
i.e., when πi = 1/M for all i = 0, . . . , M − 1 [29, Th. 2.7.3].
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On the other hand, G(π) is a linear function of π and F (π)
is a convex function of π, which follows from the fact that
the minimum Bayes error is a concave function of π over
the standard simplex [2, Section II.C]. In (10), it is required
that the constellation Ω must be able to support the average
power A, i.e., A ≥ Amin, where Amin is the power of a
minimum-power point in Ω. Additionally, 0 ≤ R ≤ R̃(A) is
needed for feasibility, where R̃(A) is the maximum average
bit rate that can be attained under the average symbol power
constraint A [22].

1) Proposed Solution: The proposed approach for solving
the optimization problem in (10) is to first characterize the
form of the solution for an arbitrary detector at the receiver
and then to apply the optimal MAP decision rule. To that
aim, we consider a generic detector at the receiver specified
by the decision functions δ := (δ0, . . . , δM−1). Upon the
reception of an observation y, the receiver decides in favor
of the hypothesis that si is transmitted with probability δi(y),
where δi(y) ≥ 0 and

∑M−1
i=0 δi(y) = 1 for all y ∈ R

n. For
a given detector δ and signaling probabilities π, the aver-
age correct decision probability is expressed as Pc(π, δ) =∑M−1

i=0 πiPc,i(δi), where Pc,i(δi) denotes the average proba-
bility of correct decision given that si is transmitted, i.e.,

Pc,i(δi) = Ei {δi(Y )} =
∫

Rn

δi(y)pi(y)dy

=
∫

Rn

δi(y)pN(y − si)dy (11)

Next, we present the following lemma.
Lemma 1: For a given detector specified by the decision

functions {δi}M
i=1, the following signaling distribution

π∗
i = exp

(−λ1||si||2 + λ2Pc,i(δi)
)
/Z(λ1, λ2), (12)

for i = 0, . . . , M − 1, where λ1, λ2 ≥ 0 and Z(λ1, λ2) =∑M−1
i=0 exp

(−λ1||si||2 + λ2 Pc,i(δi)
)
, maximizes the aver-

age probability of correct decision under constraints on aver-
age bit rate and average symbol power.

Proof : For a given detector, the problem in (10) takes the
following form:

max
π

M−1∑

i=0

πiPc,i(δi)

subject to −
M−1∑

i=0

πi log2(πi) ≥ R (13a)

M−1∑

i=0

πi||si||2 ≤ A, (13b)

M−1∑

i=0

πi = 1, πi ≥ 0, i = 0, . . . , M − 1 (13c)

Notice that Slater’s conditions hold for the optimization prob-
lem in (13). More explicitly, the optimization in (13) is convex
and for R < log2 M , the non-affine inequality constraint
in (13a) is strictly satisfied with πi = 1/M, i = 0, . . . , M −1.
Hence, strong duality holds and Karush-Kuhn-Tucker (KKT)
conditions are necessary and sufficient [30]. The Lagrangian

function corresponding to the optimization problem in (13) is

L(π; γ1, γ2, ν)

=
M−1∑

i=0

πiPc,i(δi) − γ1

(
M−1∑

i=0

πi log2(πi) + R

)

+γ2

(

A −
M−1∑

i=0

πi||si||2
)

+ ν

(
M−1∑

i=0

πi − 1

)

. (14)

Taking the derivative with respect to πi and equating to zero
yields

π∗
i = 2− log2 e+(Pc,i(δi)−γ2||si||2+ν)/γ1 . (15)

Applying the condition
∑M−1

i=0 πi = 1 and reparameterizing
with λ1 = (γ2/γ1) ln 2 and λ2 = (ln 2)/γ1, we get

π∗
i = exp

(−λ1||si||2 + λ2Pc,i(δi)
)
/Z(λ1, λ2) (16)

where Z(λ1, λ2) =
∑M−1

i=0 exp
(−λ1||si||2 + λ2 Pc,i(δi)

)

and λ1, λ2 ≥ 0 follows from the dual feasibility condition,
i.e., γ1, γ2 ≥ 0. �

The parameters λ1 and λ2 govern the trade-off among the
average probability of correct decision, the average bit rate,
and the average symbol power. For fixed λ2, as λ1 is increased,
the inner constellation points (i..e, those with low power) are
selected more frequently than the outer constellation points
(i.e., those with high power). On the other hand, for fixed λ1,
as λ2 is increased, constellation points yielding lower symbol
error probability are selected more frequently than those with
higher error rates.1 In addition, constellation points that have
the same power and the same error probability are selected
equally likely. Lastly, we note that the signaling distribution
that maximizes the average bit rate under the average symbol
power constraint (equivalently, minimizes the average power
for a fixed bit rate) can be obtained by substituting λ2 = 0
and solving for λ1 from the power constraint [22]. In light of
the lemma, the following proposition characterizes the optimal
signaling distribution that solves the optimization in (10).

Proposition 2: For any given A as the upper bound on
the average symbol power that is supported by a given
constellation Ω and R ≤ R̃(A) as the lower bound on the
average bit rate, where R̃(A) is the maximum average bit rate
that can be attained under an average symbol power constraint
A, the solution π∗ = (π∗

0 , . . . , π∗
M−1) to (10) satisfies the

following equation (i.e., a fixed point):

π∗
i =

exp
(−λ∗

1||si||2 + λ∗
2Pc,i(δ∗i )

)

∑M
j=1 exp

(−λ∗
1||sj ||2 + λ∗

2Pc,j(δ∗j )
) (17)

for i = 0, . . . , M − 1, where δ∗ = {δ∗i }M−1
i=0 is the MAP

detector corresponding to the optimal signaling distribution
π∗, i.e.,

δ∗i (y) = 1, if i = arg max
k∈{0,...,M−1}

π∗
k pk(y) (18)

1In general, a lower symbol error probability can be achieved by selecting
a fewer number of constellation points that are farther apart from each other
(e.g., at the vertices of the constellation). In the limit as λ2 → ∞, this would
result in degenerate signaling (i.e., πi = 1 for some i ∈ {1, . . . , M} yielding
zero bit rate.)
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and δ∗i (y) = 0 otherwise, for i = 0, . . . , M − 1 and every
y ∈ R

n. The optimal parameters λ∗
1 and λ∗

2 are obtained as
follows:
Case 1: Let λ∗

1 = 0 and λ∗
2 ≥ 0 be a solution to

−
M−1∑

i=0

πi(λ2) log2(πi(λ2)) = R (19)

where π(λ2) = (π0(λ2), . . . , πM−1(λ2)) satisfies
πi(λ2) = exp(λ2 Pc,i(δi))

/( ∑M
j=1 exp(λ2 Pc,j(δj))

)
,

i = 0, . . . , M − 1 and δ = {δi}M−1
i=0 is the MAP detector

corresponding to π(λ2). Then, {π∗(λ∗
2), λ∗

2} together with
λ∗

1 = 0 is optimal if the constraint on the average symbol
power is satisfied, i.e.,

M−1∑

i=0

π∗
i (λ∗

2)||si||2 ≤ A , (20)

else if (20) fails, go to Case 2.
Case 2: Let λ∗

1 > 0 and λ∗
2 ≥ 0 be a solution to

−
M−1∑

i=0

πi(λ1, λ2) log2(πi(λ1, λ2)) = R,

M−1∑

i=0

πi(λ1, λ2)||si||2 = A (21)

where π(λ1, λ2) = (π0(λ1, λ2), . . . , πM−1(λ1, λ2)) satisfies

πi(λ1, λ2) =
exp

(−λ1||si||2 + λ2Pc,i(δi)
)

∑M
j=1 exp (−λ1||sj ||2 + λ2Pc,j(δj))

(22)

and δ = {δi}M−1
i=0 is the MAP detector corresponding to

π(λ1, λ2). Then, {π∗(λ∗
1, λ

∗
2), λ∗

1, λ
∗
2} is optimal.

Proof : Please see Appendix V.
Since the optimal signaling distribution π(λ1, λ2) is a

continuous function of λ1 and λ2, an iterative bisection search
algorithm can be employed to solve for the values of λ1 and
λ2 that satisfy the equality constraints in (19) and (21).

B. Joint Design of Optimal Deterministic Priors and
Constellation Points

In this section, we formulate the problem of jointly design-
ing optimal deterministic signal constellation and the cor-
responding prior probabilities of the constellation symbols.
Namely, instead of searching for the optimal PDF as specified
by the general problem in (8), we try to find the single point
x = [π, s0, . . . , sM−1] ∈ ΔM−1 ×R

Mn that maximizes the
average probability of correct decision under average trans-
mission power and bit rate per symbol constraints. Therefore,
the optimization problem can be formulated as (cf. (7))

max
x∈ΔM−1×RMn

F (x)

subject to H(x) ≥ R

G(x) ≤ A (23)

where F (x) =
∫

Rn

max
i∈{0,1,...,M−1}

{
πi pN(y − si)

}
dy,

G(x) =
∑M−1

i=0 πi||si||2, and H(x) = −∑M−1
i=0 πi log2(πi).

Notice that if the signal constellation s = {s0, . . . , sM−1} ⊂
R

Mn is fixed in x, then the problem in (23) reduces to that in
(10). As the solution is known for the prior distribution for a
given s, average power constraint A, and bit rate constraint R
based on Proposition 2, one can actually perform the optimiza-
tion over the signal constellation s only. Let π∗(s) denote the
optimal prior distribution for the signal constellation s, which
can be obtained according to Case 1 or Case 2 in Proposition 2.
Then, (23) becomes

max
s∈RMn

∫

Rn

max
i∈{0,1,...,M−1}

{
π∗

i (s) pN(y − si)
}
dy.

(24)

Note that for some s ∈ R
Mn, the reduced problem of

optimal prior distribution may not be feasible for given
A and R; hence, π∗(s) may not exist. In that case, one
can simply set the objective function in (24) to take the
value −∞.

Remark 4: Let xopt denote the optimal solution to (23).
Then, H(xopt) = R. This immediately follows from the form
of the solution to π∗ given in Proposition 2.

C. Binary Communication Over AWGN Channel

In this section, we investigate the special case of a binary
communication system with scalar observations, corrupted by
a zero-mean Gaussian noise with variance σ2. In this case,
we get X = [Π0, Π1, S0, S1], where Π0 = 1 − Π1. It is
assumed that for any given realization X = xi, G(xi) ≤
A holds; that is, an individual power constraint is imposed
for each pair of constellation set and the corresponding prior
probability vector.

In the absence of the bit rate constraint, it is well-known
that for given prior probabilities (π0, π1), the optimal constel-
lation symbols that minimize the probability of error, in the
presence of the MAP detector and average power constraint
A, are S0 = −√

A/α and S1 = α
√

A with α =
√

π0/π1

when the noise distribution is Gaussian [19]. To this end,
when there exist average power and bit rate constraints on
the signal, the optimization over the distribution of X, can
be reduced to an optimization over the distribution of Π1,
since the optimal signal constellation is well-defined for any
given prior realization. This implies that the average power
constraint can be omitted, as it always holds with equality.
Therefore, let pΠ1(π1) denote the PDF of prior Π1 corre-
sponding to symbol S1. Then, the problem can be expressed
in terms of minimization of the probability of error as
follows:

min
pΠ1

E (f(Π1)) subject to E (h(Π1)) ≥ R, (25)

with f(π1) �
∫ ∞

−∞
min

{
π1 pN(y − α

√
A), (1 − π1) pN (y +

√
A/α)

}
dy and h(π1) � −π1 log π1 − (1 − π1) log(1 − π1),

where the expectations are taken with respect to pΠ1(π1)
and pN (y) = (1/

√
2πσ2 ) e−y2/2ξ2

. For the Gaussian noise,
the optimal MAP detector is a single threshold detector. Then,
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f(π1) can be expressed as

f(π1) = π1

∫ ο(π1)

−∞
pN(y − α

√
A) dy

+ (1 − π1)
∫ ∞

ο(π1)

pN(y +
√

A/α) dy (26)

where τ(π1) = 0.5
√

A(α − 1/α) + 2ξ2 ln(α)√
A(α+1/α)

with α �
√

(1 − π1)/π1 [2]. Note that both f(π1) and h(π1) are
symmetric around π1 = 0.5; thus, we can restrict the values
of prior π1 to the interval [0, 0.5]. In this region, h(π1) is a
monotone concave function of π1; hence, its inverse function
exists. Let h−1 denote the inverse entropy function with
h−1 : [0, 1] → [0, 0.5] and h−1(r) = π1 when h(π1) = r for
r ∈ [0, 1] and π1 ∈ [0, 0.5]. Note that f(π1) can be rewritten as

f(π1)

= π1 Q

(
α
√

A − τ(π1)
σ

)

+ (1 − π1)Q

(√
A/α + τ(π1)

σ

)

= π1 Q

(
γ

α2 + 1
2α

− 2 lnα

γ (α+1/α)

)

+(1−π1)Q

(
γ

α2+1
2α

+
2 lnα

γ (α + 1/α)

)
(27)

where γ �
√

A/σ. Note that f depends only on γ and π1.
Based on the preceding definitions, the following results are
presented.

Property 1: g(r) is a strictly convex function on [0, 1] for
γ > γth ≈ 0.166.

Derivation: Please see Appendix V.
Lemma 2: Let g(r) = f o h−1(r). Then, g(r) is monotone

increasing on [0, 1] for γ > 0.
Proof : Please see Appendix V.

Property 2: Under individual power constraint A on each
pair of signal constellations and the corresponding prior prob-
ability vector, for a given average bit rate constraint R and
γ > γth ≈ 0.166, the optimal prior probability distribution
for a binary communication system with an additive Gaussian
noise channel does not involve randomization and can be
specified as popt

Π1
(π1) = δ(π1 − h−1(R)). The correspond-

ing optimal constellation can be specified as (S0, S1) =
(−√

A/α, α
√

A) with α �
√

π0/π1 and π1 = h−1(R).
Derivation: It is first noted that g(r) is monotone increas-

ing and strictly convex when γ > γth ≈ 0.166. Under the con-
straint that h(π1) ≥ R, we have h−1(R) = arg maxπ1 f(π1)
due to monotonicity. Assume that there exists a PDF popt

Π1
such

that E {h(Π1)} ≥ R and E {f(Π1)} < g(R) = f o h−1(R).
Let T = h(Π1) and Π1 = h−1(T ). Then, E

{
f o h−1(T )

}
=

E {g(T )} < g(R). Since g is a strictly convex function,
g(E {T }) < E {g(T )}. In addition, as g is a monotone
increasing function, E {T } < R must hold. However, E {T } =
E {h(Π1)} < R results in a contradiction, which implies
that the argument in the property holds, i.e., popt

Π1
(π1) =

δ(π1 − h−1(R)). �
Remark 5: Note that if γ < γth ≈ 0.166, g(r) is convex

except over a short interval of low bit rates. Hence, in most
of the practical scenarios, the result of Property 2 is expected
to still hold.

Fig. 1. Pe versus A/σ2 for M = 2 with A = 1.2 and R = 0.8812 for
different strategies.

IV. NUMERICAL RESULTS

In this section, numerical results are provided for the
proposed signal constellation and/or prior distribution design
problems. First, the optimal stochastic signaling is investigated
under average power and bit rate constraints based on the
generic formulation in (8) and performance comparisons are
conducted with respect to the alternative strategies proposed in
Section III. In the examples, binary (M = 2) and quaternary
(M = 4) communication systems with one dimensional obser-
vations (n = 1) are considered, and the following Gaussian
mixture noise is employed:

pN (y) =
1√

2π σL

L∑

l=1

e−
(y−μl)

2

2σ2 (28)

where L = 4, μ1 = −1.5, μ2 = −0.5, μ3 = 0.5, and
μ4 = 1.5.

The strategies evaluated in the examples are given below:
Optimal Prior (Deterministic): This strategy corresponds

to the solution of (10). In this case, it is assumed that the
constellation is fixed and the signals are specified as s0 =
−√

A and s1 =
√

A when M = 2. Note that for M = 2,
the optimal prior distribution should satisfy the average bit
rate constraint with equality according to Proposition 2. For
M = 4, the fixed constellation signal points are specified as
s =

[−3√
5
, −1√

5
, 1√

5
, 3√

5

]
with A = 1.

Optimal Joint (Deterministic): This strategy is obtained as
the solution of (23), which yields the optimal deterministic
prior probability and signal constellation vectors jointly.

Optimal Joint (Stochastic): This strategy corresponds to the
solution of (8), which provides the optimal distribution for the
prior probability and signal constellation vectors jointly.

In the first example, the binary signaling is used with
A = 1.2 and R = 0.8812 = h(0.3), and the average
probability of error is calculated for various values of A/σ2.
It is observed from Fig. 1 that the jointly optimal stochastic
design achieves the best performance, as expected, since it
covers the other strategies as special cases. On the other
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Fig. 2. Pe versus A/σ2 for M = 4 under Gaussian mixture noise with
A = 1.

hand, the optimal deterministic priors strategy yields the worst
performance as it does not optimize the signal constellation
vector together with the priors. The performance difference
between various strategies becomes less significant in the low
SNR regime. However, when A/σ2 > 12 dB, one can notice
the improvements over deterministic signaling via stochastic
signaling.

Next, performance of the proposed strategies is investigated
for M = 4. The power constraint is set as A = 1, and the
same Gaussian mixture noise is employed as in the previous
example. The average probabilities of error are calculated
for the proposed strategies when R = 1.9 and R = 2.
Recall that R = 2 corresponds to the use of equal priors
for the constellation points. From Fig. 2, it is seen that
employing a lower bit rate constraint improves the average
probability of error performance for all the strategies. The best
performance is again achieved via stochastic signaling, and the
performance gap between the optimal joint stochastic signaling
and the optimal joint deterministic signaling becomes larger
for R = 1.9.

In order to observe behaviors of different strategies for
varying bit rate constraints, SNR is fixed as A/σ2 = 24 dB
and the average probabilities of error are plotted versus R.
From Fig. 3, it is noted that the optimal joint stochastic and
deterministic approaches have the same solutions for low bit
rate constraints (R < 1.35) and stochastic signaling improves
the performance of deterministic signaling for medium and
high R values as it allows randomization among different
transmission policies (prior and signal constellation sets).
Also, the sharp increase in the average probability of error
around R = 1.35 and R = 1.85 is due to the fact that the
effective noise has a multi-modal PDF.

Next, performance of the proposed strategies is investigated
in the presence of zero-mean Gaussian noise for M = 4. From
Fig. 4, it is observed for R = 2 that the optimal joint deter-
ministic and stochastic solutions have the same performance
(with the fixed constellation of s =

[−3√
5
, −1√

5
, 1√

5
, 3√

5

]
), and

Fig. 3. Pe versus R for M = 4 under Gaussian mixture noise with A = 1
and A/σ2 = 24 dB.

Fig. 4. Pe versus A/σ2 for M = 4 under Gaussian noise with A = 1,
R = 2 and R = 1.9.

the performance of the optimal prior solution is slightly worse.
For R = 1.9, the optimal joint deterministic and stochastic
approaches still achieve equal error probabilities, which are
significantly lower than those in the case of R = 2. On the
other hand, the reductions in the error probabilities when R
is reduced from 2 to 1.9 are very small for the optimal prior
solution. This small performance difference reduces further as
A/σ2 increases.

Finally, we consider the 8-PAM modulation scheme to
further evaluate the performance of the optimal deterministic
prior design framework. The constellation is normalized to
have unit average symbol power with respect to uniform
signaling, i.e., Ω = {±1/

√
21,±3/

√
21, ±5/

√
21,±7/

√
21}.

It is assumed that the received symbols are subject to zero-
mean additive white Gaussian noise with variance σ2, and
consequently, the SNR is defined as SNR = −10 log10(σ

2).
In Fig. 5, we depict the correct decision performance of
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Fig. 5. Correct decision performance of the proposed method subject to
constraints on the average bit rate and the average symbol power for an 8-point
constellation Ω = {±1/

√
21,±3/

√
21,±5/

√
21,±7/

√
21}.

the proposed optimal signaling scheme as a function of
the constraint A on the average symbol power for different
values of the average bit rate constraint R ∈ {1, 1.5, 2, 2.5}
when SNR = 10 dB. The marker shown at the leftmost
end of each curve corresponds to the signal distribution
that yields the minimum average symbol power under the
specified constraint on the average bit rate. For each R ∈
{1, 1.5, 2, 2.5}, it is seen from the figure that the correct
decision probability increases towards a limiting value as the
constraint on the average symbol power is relaxed. Since
we employ a fixed constellation, the maximum value of the
correct decision probability is limited by the chosen value
of average bit rate constraint even if the constraint on the
average symbol power is large. Nevertheless, the proposed
solution yields the optimal signaling distribution that maxi-
mizes the correct decision probability under constraints on the
average bit rate and the average symbol power for the given
constellation.

In order to compare the performance of the proposed
scheme with that of the uniform signaling scheme, the correct
decision probability of the conventional quaternary (M = 4)
signaling with equally likely symbols is also depicted in Fig. 5
(see the solid black line). The conventional constellation for
M = 4 is constructed as Ω4(A) =

√
A×{±1/

√
5,±3/

√
5} to

yield an average symbol power value equal to A. It should be
noted that as A increases, the minimum distance between the
constellation points in Ω4(A) increases, and hence, the correct
decision probability improves steadily towards one. It is seen
from Fig. 5 that the proposed approach (see the dash-dot
black line corresponding to R = 2) yields higher correct
decision performance with respect to the uniform quaternary
signaling over the range A ∈ (0.18, 1.28) while delivering
an average bit rate of 2 bits per transmitted symbol. As an
example, for A = 0.51, nonuniform signaling over the
8-point constellation Ω according to the signaling distribution
π = (0.0588, 0.0084, 0.3043, 0.0186, 0.4272, 0.0143, 0.16424,

0.0041) attains a correct decision probability score approx-
imately equal to 0.832 whereas the conventional uniform
signaling over Ω4(0.51) delivers 0.766. Hence, another
advantage of the proposed scheme is that the correct
decision performance can be improved with nonuniform
signaling over a higher order constellation while satisfying
the same average bit rate and average symbol power with
those of a uniform signaling scheme over a lower order
constellation.

V. CONCLUSION

In this paper, we have jointly optimized for the distribution
of the signal constellation and the corresponding prior prob-
ability vector in order to minimize the average probability of
error subject to constraints on average bit rate and average
symbol power. Considering the prior probability vector as a
part of the design leads to an extra degree of freedom com-
pared to conventional stochastic signaling. Since the possible
use of nonequal priors can reduce the average bit rate, we have
imposed constraints on the average bit rate and power in
the proposed formulation. The original formulation requires
optimization over a space of joint PDFs, which is hard to solve
in general. For this reason, we have first derived an alternative
optimization problem, and proved that its solution achieves
the same optimal value as that of the original problem. The
advantage of the alternative formulation is that the optimal
solution can be represented as a randomization among at most
three different mass points; hence, it can be solved efficiently.
After the general formulation, we have investigated three
special cases focusing on the optimization of deterministic
prior probabilities for a given fixed constellation, the optimal
deterministic joint design of prior probabilities and constella-
tion points and, a classical binary communication system with
scalar observations under AWGN. Finally, numerical results
have been presented for both the general formulation and the
special cases.

A theoretical framework is presented in this paper for
enhanced digital modulation by optimizing the prior prob-
abilities and the corresponding signal constellation under
average power and bit rate constraints. The idea of utiliz-
ing a flexible average bit rate (nonequal priors) to improve
error performance can be applied to most digital commu-
nication systems, as the considered system model assumes
a generic M -ary communication system under an additive
noise channel, e.g., AWGN and flat fading channels with
perfect channel estimation. Furthermore, the stochastic signal-
ing approach can provide further improvements over deter-
ministic signaling especially under additive non-Gaussian
noise such as the Gaussian mixture. The effects of multi-
user or co-channel interference and impulsive noise in com-
munication systems can be modeled as Gaussian mixture
noise [17]. Therefore, randomization of digital modulation
can be an option to improve the average probability of
error under such conditions. As a future work, we aim to
extend this study to multi-user scenarios with varying average
bit rate constraints and reliability targets, and design the
modulation strategies in a non-orthogonal multiple access
setting.
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APPENDIX A
PROOF OF PROPOSITION 2

It is noted from (10) that the objective function is convex
with respect to π while the constraints specify a closed
bounded convex feasible set for π. We recall that the max-
imum of a convex function over a closed bounded convex
set is achieved at an extreme point, i.e., a point in the set
that is not a convex combination of any other points in the
set [28, Section 32]. Consequently, an interior maximum is
not possible. Furthermore, the maximum cannot occur on an
interior point of a flat face or straight edge if the boundary
of the feasible set contains such regions as may be the case
in this problem due to the presence of linear power and
(M − 1)−simplex constraints. Now, from (10), it is seen
that the feasible set is the intersection of the closed bounded
convex set defined by {π ∈ ΔM−1 : H(π) ≥ R} with the
half-space {π ∈ R

n : G(π) ≤ A}. Therefore, an extreme
point of the feasible set has to be on the boundary of the set
{π ∈ ΔM−1 : H(π) ≥ R}, i.e., the average bit rate constraint
must be satisfied with equality and we get {π ∈ ΔM−1 :
H(π) = R}. Then, the optimization problem in (10) can be
expressed as

max
π,δ

M−1∑

i=0

πiPc,i(δi)

s.t.
M−1∑

i=0

πi||si||2 ≤ A, (29a)

−
M−1∑

i=0

πi log2(πi) = R (29b)

π ∈ ΔM−1 and δ(y) ∈ ΔM−1 ∀ y ∈ R
n (29c)

where the optimal MAP detector is replaced with an optimiza-
tion over the set of all valid detectors for ease of analysis.
The Lagrangian function corresponding to the optimization
problem in (29) is given by

L(π, δ; γ, μ) =
M−1∑

i=0

πiPc,i(δi) + γ

(

A −
M−1∑

i=0

πi||si||2
)

−μ

(
M−1∑

i=0

πi log2(πi) + R

)

(30)

Recall the following KKT conditions:
• Stationarity:

(π, δ) = argmax
π∈ΔM−1,δ(y)∈ΔM−1

L(π, δ; γ, μ),

• Primal feasibility:
∑M−1

i=0 πi||si||2 ≤ A and
−∑M−1

i=0 πi log2(πi) = R,
• Dual feasibility: γ ≥ 0,
• Complementary slackness: γ(

∑M−1
i=0 πi||si||2 − A) = 0.

If there exist (π∗, δ∗, γ∗, μ∗) that satisfy the KKT conditions,
then the duality gap is zero (i.e., the upper bound is achieved),
and π∗, δ∗ and γ∗, μ∗ are primal and dual optimal, respec-
tively [30].

Lemma 1 gives the form of the optimal signaling distrib-
ution for a fixed detector δ. On the other hand, for a fixed
signaling distribution π, the optimal detector is given by the

MAP decision rule. Combining these results yields the relation
given in (17) of Proposition 2 after reparameterizing with
λ1 = (γ/μ) ln 2 and λ2 = (ln 2)/μ. It should be noted that
the functional relation in (17) is in the form of f(π) = π
since the MAP detector denoted by δ = {δi}M−1

i=0 in (17)
depends on the signaling distribution π. Noting that f(·) is
a continuous mapping from the (M − 1)−simplex to itself,
i.e., f : ΔM−1 → ΔM−1, it follows from Brouwer Fixed
Point Theorem that f (·) has a fixed point [31], i.e., there exists
π∗ ∈ ΔM−1 such that f(π∗) = π∗.

This result can be combined with the other KKT con-
ditions (i.e., primal feasibility, dual feasibility, and comple-
mentary slackness) to jointly solve for the optimal values
of {λ1, λ2} in (17). Consequently, we get the following
two cases stated in the Proposition 2: (Case 1) λ1 = 0
(corresponding to γ = 0) together with

∑M−1
i=0 πi||si||2 ≤

A and −∑M−1
i=0 πi log2(πi) = R; and (Case 2) λ1 > 0

(corresponding to γ > 0) together with
∑M−1

i=0 πi||si||2 = A

and −∑M−1
i=0 πi log2(πi) = R. From (17), it is seen that

π∗ is a continuous function of the parameters λ1 and λ2.
Consequently, H(π∗) and G(π∗) are continuous functions of
λ1 and λ2. Furthermore, we have limλ1→∞ G(π∗) = Amin

for fixed λ2.
In light of the observations above, we next show that the

optimal values {λ∗
1, λ

∗
2} can be obtained by considering the

two cases stated in Proposition 2. In Case 1, the optimal
π∗ needs to satisfy (17) with λ1 = 0. Note that if λ2 = 0
is selected, (17) results in uniform signaling, which yields
H(π∗) = log2(M). On the other hand, as λ2 tends to infinity,
it is seen that degenerate signaling with πi = 1 and πk = 0
for all k �= i is a solution of (17) and has zero bit rate. From
continuity of H(π∗) with respect to λ2, it follows that there
exists λ̂2 ≥ 0 such that H(π∗(λ̂2)) = R is satisfied for any
R ∈ [0, log2(M)] while we keep λ1 = 0. Hence, a solution
{π∗(λ̂2), λ̂2} in (19) is guaranteed. If the solution also satisfies
(20) (i.e., G(π∗(λ̂2)) ≤ A), then all the KKT conditions
are satisfied; hence, the solution characterized by Case 1 is
optimal. If (20) fails (i.e., G(π∗(λ̂2)) > A), we proceed with
Case 2. In this case, we first note that since limλ1→∞ G(π∗) =
Amin for any λ2 and G(π∗) is a continuous function of λ1,
there exists a corresponding λ1(λ2), i.e., λ1 as a function of
λ2, such that G(π∗) = A for A ≥ Amin. On the other hand,
we can always find a value of λ2 such that H(π∗) = R is
achieved by the pair {λ1(λ2), λ2} for R ≤ R̃(A). To see this,
assume H(π∗) < R and notice that letting λ2 = 0 in (17)
yields the signaling distribution that maximizes the average
bit rate under the power constraint, i.e., a bit rate of R̃(A)
is attained. Since both λ1(λ2) and H(π∗) are continuous
functions of λ2, there exists a pair {λ1(λ2), λ2} that gives
H(π∗) = R and G(π∗) = A. Hence, the optimization
problem given in (21) is feasible, i.e., a solution {π∗, λ∗

1, λ
∗
2}

in (21) exists. This implies that all the KKT conditions are
satisfied and the optimal signaling distribution is characterized
by Proposition 2.

APPENDIX B
DERIVATION OF PROPERTY 1

Let ĥ(r) = h−1(r) ∈ [0, 0.5]. Then, dg(r)
dr = f ′(ĥ(r))ĥ′(r).

Note that ĥ(r) is a monotone increasing and convex function
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Fig. 6. s(r) versus r for various values of γ.

of r. It is first noted that d2 g(r)
dr2 = f ′′(ĥ(r))(ĥ′(r))2 +

f ′(ĥ(r))(ĥ′′(r)). Since h(π1) is a one-to-one function on
π1 ∈ [0, 0.5], we have ĥ′(r) = 1/h′(ĥ(r)). Hence, we obtain
the following relation:

d2g(r)
dr2

=
f ′′(ĥ(r))h′(ĥ(r)) − f ′(ĥ(r))h′′(ĥ(r))

(h′(ĥ(r))3
(31)

� s(r)
(h′(ĥ(r))3

· (32)

Note that the denominator of (31) is always positive as the
binary entropy function is monotone increasing and concave
on [0, 0.5]. Let s(r) denote the numerator of (31). Then,
the aim is to determine when s(r) > 0 to explore the convexity
of g(r). Fig. 6 shows s(r) versus r for various γ settings.
The numerical investigation reveals that s(r) is positive for
large values of γ; however, when γ < γth, it is negative in
a certain interval of r values. This can be seen more clearly
in Fig. 7, where the dark (black) region indicates the area
in which s(r) ≤ 0. In addition, we provide Fig. 8 which
illustrates d2 g(r)

dr2 for various values of γ. It is interesting to
note that when γ < γth ≈ 0.166, g(r) is not convex for a
certain interval of bit rates with small values.

APPENDIX C
PROOF OF LEMMA 2

In order to prove monotonicity, we need to show that f ′(π1)
is positive for π1 ∈ [0, 0.5]. In the proof, p � π1 and α �√

(1 − p)/p are used for convenience. By defining u(p) �
γ
2 (α + 1

α ) − ln α
γ
2 (α+ 1

α )
and v(p) � γ

2 (α + 1
α ) + ln α

γ
2 (α+ 1

α )
, (27)

can be rewritten as f(p) = p Q(u(p))+(1−p)Q(v(p)). Then,

f ′(p) = Q(u(p)) + p Q′(u(p))u′(p) − Q(v(p))
+ (1 − p)Q′(v(p)) v′(p) . (33)

In (33), Q′(p) = − 1√
2π

e−p2/2 and explicit formulas are

required for u′(·) and v′(·). Note that u′(p) = du
dα

dα
dp =

ũ(α)α′(p) by the chain rule. Similarly, v′(p) = dv
dα

dα
dp =

ṽ(α)α′(p), where α′(p) = −1

2p
√

p(1−p)
. Hence,

ũ(α) =
γ

2

(
1 − 1

α2

)
− (1 + 1

α2 ) − ln α (1 − 1
α2 )

γ
2 (α + 1

α )2
(34)

Fig. 7. The dark area shows the region in which s(r) < 0. Outside this
region, g(r) is convex.

Fig. 8. g′′(r) =
d2 g(r)

dr2 versus r.

and

ṽ(α) =
γ

2

(
1 − 1

α2

)
+

(1 + 1
α2 ) − ln α (1 − 1

α2 )
γ
2 (α + 1

α )2
. (35)

For p ∈ [0, 0.5),2 we have α > 1. Then, u(p) < v(p) and
Q(u(p)) − Q(v(p)) > 0 for any given γ, and α > 1 as the
Q-function is monotone decreasing. Thus, f ′(p) in (33) can
be lower bounded as follows:

f ′(p) > p Q′(u(p))u′(p) + (1 − p)Q′(v(p)) v′(p)

=
1

√
8π p(1 − p)

(
e−u(p)2/2ũ(α) + e−v(p)2/2ṽ(α)α2

)
.

(36)

Thus, it suffices to show that e−u(p)2/2ũ(α) +
e−v(p)2/2ṽ(α)α2 > 0. Then,

γ

2

(
α +

1
α

)2 (
e−u(p)2/2ũ(α) + e−v(p)2/2ṽ(α)α2

)

= e
u(p)2

−2

(
γ2

4
(1− 1

α2
)(α+

1
α

)2+lnα(1− 1
α2

) − (1 +
1
α2

)
)

2Note that f ′(0.5) = 0 but it does not effect the monotonicity if f ′(p) > 0
for p ∈ [0, 0.5).
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+e
v(p)2

−2

(
γ2

4
(1 − 1

α2
)(α +

1
α

)2

− lnα(1 − 1
α2

) + (1 +
1
α2

)
)

α2 � c(α). (37)

Therefore, it is sufficient to determine if c(α) is positive. The
c(α) term can be decomposed as

c(α) =
(

e−
u(p)2

2 + α2e−
v(p)2

2

) (
1 − 1

α2

) (
γ2

4
(α +

1
α

)2
)

+
(
e−u(p)2/2−α2e−v(p)2/2

)(
ln α(1 − 1

α2
) − (1 +

1
α2

)
)

.

(38)

However, it can be shown that e−u(p)2/2 − α2 e−v(p)2/2 = 0
after inserting u(p) and v(p) into the expression. Furthermore,
all the terms in the first line of (38) are strictly positive for any
γ > 0 and α > 1. This shows that f ′(p) > 0 for p ∈ [0, 0.5);
hence it is a monotone increasing function.
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