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Abstract
The paper presents a new spatio-temporal learning-based descriptor called binarised statistical dynamic features (BSDF) for
representation and classification of dynamic texture. The BSDF descriptor operates by applying three-dimensional spatio-
temporal filters on local voxels of an image sequence where the filters are learned via an independent component analysis,
maximising independence over spatial and temporal domains concurrently. The BSDF representation is formed by binarising
filter responses which are then converted into codewords and summarised using histograms. A robust representation of the
BSDFdescriptor is finally obtained via a sparse representation approach yielding very discriminative features for classification.
The effects of different hyper-parameters on performance including the number of filters, the number of scales, temporal depth,
number of samples drawn are also investigated. The proposed approach is evaluated on the most commonly used dynamic
texture databases and shown to perform very well compared to the existing methods.

Keywords Dynamic texture · Spatio-temporal filtering · Independent component analysis · Sparse representation

1 Introduction

Dynamic or spatio-temporal texture refers to spatial pat-
terns exhibiting motion over time. Recognition of dynamic
texture (DT) has been an active research area finding appli-
cations in a wide variety of different tasks including video
indexing and retrieval [25], visual speech recognition [51],
dynamic scene classification [38], activity recognition [18],
traffic monitoring [15], environmental monitoring [2], track-
ing [9]. Despite decades of research in this direction, the
problem still remains challenging partly due to variations in
image sequence content caused by environmental changes in
addition to the inherent variations in shape and appearance
of a dynamic texture as a function of time.

The existing approaches for recognition of dynamic tex-
ture may be coarsely categorised into generative and non-
generative approaches. The generative approaches are typi-
cally based on some hypothesised model whose parameters
are used for recognition purposes, while the non-generative
methods avoid the challenges of modelling and inferring
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system parameters and typically use aggregate statistics in
local neighbourhoods of DT sequences for recognition. A
drawback of the generative model-based approaches is their
inability to generalise to DT sequences which are generated
by some irregular physical process with complexities beyond
those which can be accommodated by the hypothesisedmod-
els. On the other hand, the success of non-generative local
statistical methods is partly determined by the discrimi-
natory properties of the features capturing local statistics
which very often cannot be determined a priori. Neverthe-
less, as the non-generative methods focus on the underlying
classification problem rather than modelling the generative
process, they tend to yield better performance in practical
applications. A successful group of non-generative statis-
tical methods among others is the family of LBP-based
approaches [5,34,36,52] which consider an image sequence
as three orthogonal planes. While computationally attrac-
tive, characterising an image sequence as three orthogonal
planes partly compromises the discriminatory capability of
the representation. Moreover, the use of hand-crafted feature
extraction procedures such as those in [36,52] may lead to a
suboptimal performance.

In this work, a new descriptor called binarised statistical
dynamic features (BSDF) for characterisation of dynamic
texture is presented which addresses the aforementioned
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shortcomings of some of the previous methods as follows.
First, instead of characterising an image sequence via three
orthogonal planes, the spatial and temporal information
content of an image sequence is jointly encoded via three-
dimensional spatio-temporal filters. Next, instead of using
hand-crafted feature extraction procedures, the 3D filters
used in the proposed BSDF representation are learned via
an ICA analysis on local space–time data. The use of ICA is
motivated by the observations confirming that applying ICA
on video sequences of natural scenes produces results with
qualitatively similar spatio-temporal properties as those of
simple cells in primary visual cortex [26]. The use of ICA is
alsomotivated by its success in learning 2Dfilters for charac-
terisation of static/dynamic texture [5,31]. As a consequence
of using ICA for filter learning, the proposed approach jointly
maximises statistical independence over both space and time
which contrasts with some alternative methods, maximis-
ing independence either over time or over space only [5].
In order to form the final BSDF representation, the filter
responses are binarised and converted into codewords which
are then summarised using histograms. For improved robust-
ness of the BSDF representation to unwanted degradations
and inconsistencies in imaging conditions, a sparse represen-
tation of the BSDF features for characterisation of dynamic
textures is proposed. An analysis of the effects of various
hyper-parameters associated with the design of BSDF repre-
sentation including the numbers of filters (and consequently
different lengths for codewords), a multi-scale extension of
the representation as well as the effects of temporal depths of
filters on system performance is also carried out. Moreover,
a random sampling approach is examined and shown to be
instrumental in reducing the computational complexity of the
proposed approach to a large extent without much compro-
mising system performance. The main contributions of this
work can be summarised as: (1) a new descriptor (BSDF) for
characterisation of a DT sequence based on spatio-temporal
filtering. In contrast to some earlier approaches, the new
descriptor uses ICA in the filter design procedure to jointly
maximise independence over both space and time concur-
rently which leads to more informative features for recogni-
tion purposes; (2) an analysis of the effect of the number of
BSDFfilters on performance; (3) amulti-scale analysis of the
proposedBSDF representation; (4) an analysis of the effect of
filter depths in the time dimension on performance; (5) a ran-
dom sampling approach for reduced computational complex-
ity of the proposed representation; (6) a sparse representation
of the multi-scale BSDF features for robust representation
and classification of an image sequence and (7) extensive
evaluation of the proposed approach on different databases
along with a comparison to the state-of-the-art methods.

The rest of the paper is organised as follows: In Sect. 2,
we review the relevant literature. In Sect. 3, the proposed
spatio-temporal BSDF approach is presented. In Sect. 4, the

results of an extensive experimental evaluation of the pro-
posed approach, analysing different aspects of the proposed
representation alongwith a comparison to the state-of-the-art
methods on different databases is presented. Finally, conclu-
sions are drawn in Sect. 5.

2 Related work

As noted earlier, the existing methods for dynamic texture
recognition may be classified into generative and non-
generative methods. As examples of the former group,
one may consider [10,20,22–24,32,33,39–42,46,48]. In con-
trast to the generative methods, there exist non-generative
methods using statistical properties of local descriptors.
As instances, one may consider the LBP-based methods
[5,36,52]. Other approach [34] presented a variant of the
LBP-TOP approach for action recognition. In [49], a collab-
orative representation dynamic texture classification method
is presented where the dynamic texture sequence is divided
into sub-sequences along the temporal axis for each of which
an LBP histogram is extracted. Other work in [47] presents a
semantic decomposition of spatio-temporal information. In
[29], a texture descriptor for both static and dynamic textures
is built using the wavelet-based spatial-frequency analysis.
Other work in [21] proposes the use of the 2D+T curvelet
transform for characterisation of dynamic textures in image
sequences. In [30], the one-class SVM is proposed for DT
recognition purposes resulting in relatively robust features.
Other work in [11] proposes a local ternary pattern for back-
ground modelling for saliency detection in video sequences.
In [7], the authors address the face presentation attack detec-
tion from a dynamic texture point of view and use aggregated
localweightedgradient orientation. In [43], a dynamicmicro-
texture descriptor capturing the spatial structure and motion
of a local neighbourhood is proposed. The work in [6] pro-
posed a method for explicitly separating the parts shared
among all videos from those specific to individual videos.
Other work in [45] proposed to represent videos using unsu-
pervised learning of motion features. The authors in [13]
proposed a DT segmentation method based on appearance
and motion. In addition to the methods mentioned above,
there exists a further category of methods using deep net-
works [8], examples of which include [3,4,12,14,38].

3 Methodology

3.1 Linear filtering

Linear filtering in the spatial domain is an effective and
widely employed approach in characterising static image
content. When dealing with an image sequence, the oper-
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Fig. 1 Sample spatio-temporal filters obtained for 25 fps sampling rate.
Each column represents spatial slices of a spatio-temporal filter of depth
3 in time and sizes of 11 × 11 in the spatial domain

ation would be linear spatio-temporal filtering, which can
be considered as the direct extension of the linear spatial
filtering. In order to analyse the dynamic statistics of data
beyond covariances, independent component analysis (ICA)
has been successfully employed in earlier studies [28]. This
is in fact the approach followed in the BSIF representation
[31] for static images, and the proposed BSDF approach can
be considered as a spatio-temporal extension of the method
in [31].

3.2 Binarised statistical dynamic features (BSDF)

The proposed BSDF approach uses spatio-temporal volumes
as data in the ICA model. For a more detailed analysis, let
f denote the voxel values of a local volume arranged into
a vector. The order in which the voxels are arranged in f is
arbitrary but otherwise fixed.Using ICA, f can be represented
as

f = Gh (1)

where the elements of the vector h are random variables
which are unknown and statistically as independent of each
other as possible.G is a featurematrixwith constant elements.
Using a training set of local volumes, the featurematrixG can
be approximated without explicitly knowing the latent vector
h [28]. Equivalently, one may infer matrix G which repre-
sents h as the output of a number of linear spatio-temporal
filters as

h = Gf (2)

where each row of G now represents a spatio-temporal fil-
ter. In practice, a whitening transformation is commonly
applied to the data before an ICA analysis. Following such
an approach and multiplying both sides of Eq. 1 by matrix
M (which performs whitening) yields

Mf = y = MGh = T h (3)

where y is whitened data while matrix T is obtained by pre-
multiplying matrix G by the pre-processing transformation
matrix,M. In practice, onewould like to obtainh as a function
of y. In this case, the relation y = T h needs to be inverted
for which the number of independent components is required
to match the number of components of y. If this condition is
satisfied, the system y = T h would be invertible in a unique
way, producing the vector h as a linear function of y as

h = Ty (4)

where T = T −1. As a result, the independent components
(hi ’s) of vector h are explicitly derived from voxel values as

h = TMf (5)

Comparing Eqs. 2 and 5, it can be easily verified that the filter
matrix G in Eq. 2 can be obtained as

G = TM (6)

Once a spatio-temporal feature detector has been learned
from the data, it can be visualised as an image sequence.
Sample filters learned using the aforementioned procedure
are depicted in Fig. 1. Once BSDF filters are inferred, given
a local volume f , one applies N filters to the elements of f
and obtains N responses, stacked into the vector h. The fil-
ter responses are binarised next by thresholding at zero to
produce the binarised features bi ’s as

bi =
{
1 hi > 0,
0 otherwise.

(7)

The binarised features bi ’s are then converted to codewords
and summarised using histograms. If N BSDF spatio-
temporal filters are inferred, an N-bit binary code would be
obtained. The BSDF histogram representation (H) is then
derived as below.

H = [H0, H1, . . . , HL−1]
Hi =

∑
ν

1{BSDF(ν) = i}

L = 2N (8)

where ν is a voxel of the DT sequence, 1{.} is the indicator
function, equal to one when its argument is true and zero oth-
erwise. L is the number of histogram bins, and N represents
number of BSDF filters. When the dynamic textures to be
compared are of different sizes, H is normalised to yield a
coherent description:

H̃ = H∑L−1
i=0 Hi

(9)
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3.3 Multi-scale extension

TheBSDF representation can be easily extended into amulti-
scale framework by varying the sizes of spatio-temporal
filters. For this purpose, in thiswork,BSDFfilters are inferred
at six different spatial scales of 3×3, . . . , 13×13 and in dif-
ferent temporal scales. By concatenating all the histograms
estimated at different scales into a single vector, the multi-
resolution BSDF descriptor for Z scales is obtained as

Hms = [H̃1, H̃2, . . . , H̃Z ] (10)

where H̃i denotes the normalised histogram obtained for the
scale of i .

3.4 Sparse representation

In the context of linear modelling where an unknown sample
is represented as a linear combination of available atoms, the
sparse representation (SR) method can be considered as one
of the most representative methodologies [50]. In the context
of the current work, a BSDF descriptor derived from a test
sequence is first approximated as a sparse linear combination
of all training samples:

α̂ = argmin
α

‖α‖p s.t. ‖ y − Xα‖22 ≤ ε (11)

where X is the set of training samples, y represents the probe
sample, α is the sparse coefficients vector, and ε is a small
threshold. For the l1-minimisation problem (p = 1 in Eq.
11), efficient methods exist when the solution is known to
be very sparse. The homotopy algorithms [19,35] are used
in this work due to the fact that they tend to be faster than
some alternative solvers. For classification, the reconstruc-
tion residual of a test sample using the sparse coefficients of
each class is used as a dissimilarity criterion for hypothesis
selection:

min
i

ri (y) = ‖y − Xδi (α̂)‖22 (12)

In Eq. 12, ri (y) estimates the residual for probe y recon-
structed as a linear combination of samples of class i and
δi (.) is a characteristic function that selects the coefficients
associated with the i th class.

4 Experimental evaluation

In this section, an experimental evaluation of the proposed
BSDF representation is provided. The implementation is per-
formed in the Matlab R2017a environment. For the ICA
analysis, the FastICA algorithm [27] is used, while for the

homotopy-based sparse representation approach the software
provided in [1] is utilised.

4.1 The Dyntex database

The DynTex database [37] is one of the most widely used
dynamic texture data sets, which is comprised of 656 videos.
Image sequences in this database are divided into three sub-
sets of alpha, beta and gamma corresponding to 60 ,162 and
264 image sequences, respectively.

4.2 The UCLA database

The UCLA data set is comprised of 50 scenes, each rep-
resented by four image sequences. A second version of this
database where each sequence is clipped to a 48×48window
containing the key statistical and dynamical features is used
in this work [44]. We have evaluated the proposed approach
in the 50-class breakdown scenario and similar to [5,16,44]
and followed a leave-one-out classification procedure where
the true decision for a test sequence is defined as having one
of the three remaining samples of the same class as its nearest
neighbour.

4.3 Multi-scale BSDF

In this experiment, the effect of a multi-scale extension
of the BSDF approach is investigated where six scales of
3 × 3, . . . , 13 × 13 for the spatial dimensions of the fil-
ters are considered. The temporal widths of filter are fixed
at T = 3, and N = 8 filters are used. The multi-scale
representation is constructed in two alternative ways. First,
one may start with smaller filters and incrementally add
larger filters. Alternatively, a reverse approach may be pur-
sued where one starts with larger filters and gradually adds
smaller filters to form the multi-scale representation. The
results of this experiment on the Dyntex and UCLA data sets
are reported in Table 1. In the table, scale 1 corresponds to
the smallest filters (i.e. filters of size 3 × 3 × 3) and scale
6 represents the largest ones. The [a b] notation indicates
that all the scales in the range between a and b, including
the scales of a and b, are used to form the representation.
From Table 1, one observes that regardless of the approach
taken to form the multi-scale representation (direct/reverse)
the multi-scale approach improves performance. However,
pursuing a reverse approach, a lower number of filters are
required to obtain a similar performance as that of a direct
approach. It may be concluded that it is beneficial to start
with larger filters and incrementally include smaller filters to
form a multi-scale BSDF representation.
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Table 1 The effect of using a multi-scale representation (T = 3 and
N = 8)

Scales used Alpha (%) Beta (%) Gamma (%) UCLA (%)

1 95.00 87.65 90.53 97.50

[1 2] 98.33 91.36 91.29 99.00

[1 3] 96.67 93.21 89.77 99.50

[1 4] 96.67 92.59 89.39 99.50

[1 5] 98.33 91.98 90.53 99.50

[1 6] 100.00 93.21 90.91 99.50

6 98.33 92.59 89.02 98.00

[5 6] 100.00 90.74 89.39 99.00

[4 6] 100.00 90.74 90.53 99.50

[3 6] 100.00 91.98 91.67 99.00

[2 6] 100.00 92.59 92.05 99.50

[1 6] 100.00 93.21 90.91 99.50

Table 2 Performance of the 16-bit BSDF (N = 16 and T = 3)

Scales used Alpha (%) Beta (%) Gamma (%) UCLA (%)

1 88.33 85.80 84.47 97.00

[1 2] 88.33 88.89 85.98 97.50

[1 3] 91.67 86.42 86.36 99.00

[1 4] 93.33 88.27 88.26 99.00

[1 5] 95.00 90.12 89.77 99.00

[1 6] 95.00 90.12 90.15 99.50

6 100.00 94.44 91.29 99.50

[5 6] 100.00 91.98 92.80 99.50

[4 6] 100.00 93.21 93.56 100.00

[3 6] 100.00 92.59 92.42 100.00

[2 6] 98.33 93.21 92.05 100.00

[1 6] 95.00 90.12 90.15 100.00

4.4 The effect of codeword lengths

By using only N = 8 leading eigenvectors for filter design,
one may lose a lot of variance. In this respect, using more
filters might be beneficial in forming the representation. In
this section, this aspect of the BSDF representation is investi-
gated where sixteen filters (N = 16) are inferred. resulting in
a 216-bin histogram representation. The results of this anal-
ysis on the Dyntex and UCLA data sets are reported in Table
2. From Table 2, it is observed that on all data sets, using
a 16-bit representation results in improved performance. A
further observation from the tables is that as one uses a longer
codeword, the number of scales to achieve the peak perfor-
mance reduces. It can be concluded that a 16-bit variant of
the proposed BSDF is superior in terms of both performance
and the number of scales required to form an effective rep-
resentation.

Table 3 Performance of the 16-bit BSDF representation when T =
X = Y

Scales used Alpha (%) Beta (%) Gamma (%) UCLA (%)

1 88.33 85.19 86.36 88.00

[1 2] 91.67 87.65 86.36 97.50

[1 3] 91.67 86.42 89.77 99.50

[1 4] 93.33 88.27 88.64 99.50

[1 5] 93.33 87.04 89.77 100.00

[1 6] 93.33 87.04 89.39 100.00

6 98.33 89.51 89.77 98.00

[6 5] 98.33 91.36 92.42 99.50

[6 4] 98.33 91.36 92.80 99.50

[6 3] 96.67 91.36 93.18 99.50

[6 2] 95.00 91.36 91.29 99.50

[6 1] 93.33 87.04 89.39 100.00

Table 4 Performance of the 16-bit BSDF representation when T = 13

Scales used Alpha (%) Beta (%) Gamma (%) UCLA (%)

1 93.33 87.65 90.53 88.00

[1 2] 93.33 88.27 91.29 97.50

[1 3] 93.33 89.51 91.67 99.50

[1 4] 93.33 90.12 92.42 99.50

[1 5] 93.33 89.51 92.42 100.00

[1 6] 93.33 90.74 92.05 100.00

6 98.33 90.12 92.42 98.00

[6 5] 98.33 91.98 92.05 99.50

[6 4] 98.33 91.36 92.80 99.50

[6 2] 96.67 90.12 92.42 99.50

[6 1] 93.33 90.74 92.05 100.00

4.5 The effect of temporal depth

In this section, in order to examine the effect of using different
temporal depths, two experiments are conducted. First, the
temporal width of filters is fixed at 13 irrespective of their
spatial dimensions. Next, the temporal width of a filter is
varied in accordance with its spatial size, resulting in filters
of sizes d×d×d. The results of this experiment are reported
in Tables 3 and 4.

As the results reported in the corresponding tables for
the case when T = 3 are typically better than or equal to
those obtained with larger filters, it can be concluded that a
temporal width of three (T = 3) is the optimal choice for
constructing the BSDF representation.
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Fig. 2 The effect of number of random samples on recognition perfor-
mance on the three subsets of the Dyntex database
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Fig. 3 The effect of number of random samples on recognition perfor-
mance on the UCLA database

4.6 Random sampling

In this experiment, samples are drawn uniformly from an
image sequence and the final BSDF representation is con-
structed using only the samples drawn to moderate the
computational cost of the proposed approach. The results
obtained are depicted in Figs. 2 and 3 for the Dyntex and
UCLA data sets using the best performing parameters of the
proposed representation, i.e. N = 16 and T = 3. From
Figure 2, it is observed that the recognition performance of
theBSDF representation on theDyntex data set is quite stable
over a wide range of sampling rates. For the UCLA data set,
from Figure 3, it is again evident that the system performance
is stable with respect to the number of samples drawn.

Table 5 Comparison of the performance of the proposed method to
some other methods on the UCLA data set in the 50-class breakdown
scenario

Method UCLA (50-class scenario) (%)

The proposed approach 100.0

BSIF-TOP [5] 99.5

Martin Distance [44] 89.5

L2 Bhattacharyya [16] 81.0

PCANet-TOP [3] 99.5

Best performance indicated in bold

Table 6 Comparison of the performance of the proposed method to
some othermethods on the alpha, beta and gamma subsets of theDyntex
data set

Method Alpha (%) Beta (%) Gamma (%)

The proposed approach 100 93.21 93.56

PCANet-TOP [3] 96.67 90.74 89.39

BSIF-TOP [5] 90 90.74 91.3

The method of [21] 88.3 69.8 68.3

LBP-TOP [52] 96.67 87.65 87.12

Best performances are indicated in bold

4.7 Comparison to the state-of-the-art methods

In this experiment, the proposed BSDF representation is con-
structed using a multi-scale 16-bit approach with a temporal
width of T = 3.Themulti-scale representation is constructed
using filters of dimensions 13 × 13 × 3, 11 × 11 × 3 and
9× 9× 3. A comparison of the proposed BSDF approach to
other methods on the UCLA data set is provided in Table 5.
As can be seen from the table, the proposed method obtains
perfect recognition rate, ranking first among other methods.
It is interesting to note that the proposed approach performs
better than some other multi-layer convolutional networks
such as [3]. The results of a comparison on the Dyntex data
set are provided in Table 6. Table 7 reports the results of
a statistical analysis for the significance of the results using
the Friedman Test [17]. From the tables, one can observe that
the proposed approach achieves the best performance among
other competitors.

The PCANet-TOPmethod of [3] is a an example of multi-
layer networks for DT recognition which is outperformed
by the BSD approach presented in this work. In addition
to the methods in Table 6, the deep convolutional network-
based method proposed in [38] has been evaluated on the
Dyntex database, obtaining 100%, 100% and 98.11% recog-
nition performances on the alpha, beta and gamma subsets
of the Dyntex database, respectively. The advantages of the
proposed approach in this work over very deep approaches
such as that of [38] are being faster in the application phase
due to the lower number of parameters, being unsupervised,

123



Signal, Image and Video Processing

Table 7 Average rankings of the algorithms (Friedman). Friedman
statistic (distributed according to chi-square with 4 degrees of freedom:
10.066666666666663

Algorithm Ranking

The proposed approach 1.0

PCANet-TOP [3] 2.67

BSIF-TOP [5] 2.83

The method of [21] 5.0

LBP-TOP [52] 3.5

P value computed by Friedman Test: 0.039319539964143835

requiring less training samples and computationally less
intensive training procedure. Nevertheless, the price paid for
the aforementioned advantages is a slightly lower recognition
performance compared to very deep networks.

5 Conclusion and future work

Thepaper presented anewspatio-temporal descriptor (BSDF)
for representation and classification of dynamic texture.
The proposed descriptor operates by applying linear spatio-
temporal filters on local voxels of a video sequence. Con-
structing the BSDF representation entails binarising filter
responses and forming codes which are then summarised
using histograms. Several aspects of the design procedure
were analysed, and for reduced computational complexity, a
random sampling approachwas examined. For classification,
a robust representation of the BSDF feature was obtained
via a sparse representation approach. The proposed approach
was evaluated on the most commonly used dynamic texture
databases and was shown to perform very well compared to
the existing methods.

As a future research direction, onemay consider extending
the proposed approach to benefit from colour information.
In addition, one may consider the possibility of using a
nonlinear ICA-based filter learning paradigm for improved
performance.
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