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The classical double copy idea relates some solutions of Einstein’s theory with those of gauge and scalar
field theories. We study the Kerr-Schild-Kundt (KSK) class of metrics in d dimensions in the context of
possible new examples of this idea. We first show that it is possible to solve the Einstein-Yang-Mills system
exactly using the solutions of a Klein-Gordon-type scalar equation when the metric is the pp-wave metric,
which is the simplest member of the KSK class. In the more general KSK class, the solutions of a scalar
equation also solve the Yang-Mills, Maxwell, and Einstein-Yang-Mills-Maxwell equations exactly, albeit
with a null fluid source. Hence, in the general KSK class, the double copy correspondence is not as clear-
cut as in the case of the pp wave. In our treatment, all the gauge fields couple to dynamical gravity and are
not treated as test fields. We also briefly study Gödel-type metrics along the same lines.
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I. INTRODUCTION

Constructing solutions of Einstein field equations, with a
source or in a vacuum, is so difficult that anytime a new
method is suggested, one should embrace it with enthusi-
asm. The recent “classical double copy” correspondence
[1] is such a new idea, which we shall pursue here for some
exact gravity waves in the hope of extending the earlier
examples [2]. The basic essence of the classical double
copy method is this: one can find some classical solutions
of general relativity from the classical solutions of Yang-
Mills or Maxwell field equations or even from those of a
simpler scalar field equation. This construction, gravity
being a double copy of the YM theory—which itself is a
single copy—and a scalar field (usually a biadjoint real
scalar field)—which is the zeroth copy—is an extension of
a powerful idea and observation that goes beyond the
classical level: the scattering amplitudes in general rela-
tivity and those of two copies of Yang-Mills theories are
related. This is known as the Bern-Carrasco-Johansson
(BCJ) double copy [3] and works perturbatively, granted
that the color and kinematic factors are identified accord-
ingly. For more details and the references, see Refs. [4,5].
The classical double copy correspondence has been

mostly studied in the Kerr-Schild class of metrics. This
class has remarkable properties and includes a large
number of physical metrics, including the Kerr black hole.
In this work, to extend the set of examples and to under-
stand the possible limitations to the classical double copy
correspondence, we study a class of spacetime, the so-

called Kerr-Schild-Kundt (KSK) class, which turned out to
be universal, in the sense that KSK metrics solve all metric-
based theories [6–11]. The classical double copy arguments
make use of the metric in the Kerr-Schild form:

gμν ¼ ḡμν þ 2Vlμlν; ð1Þ

where ḡμν is the background (or the seed) metric; lμ is a
null vector with respect to both metrics; and V, at this stage,
is an arbitrary function. The fact that lμ is null is a crucial
point in what follows. In fact, to see this explicitly, for the
moment let us assume that it is not null. Then the inverse
metric reads

gμν ¼ ḡμν −
2V

1þ 2Vl2
lμlν; ð2Þ

where l2 ≡ ḡμνlμlν. It is clear that only for the null case,
the inverse metric is linear in the metric profile function V,
a fact that dramatically simplifies all the ensuing discus-
sion. (Note that in the last part of this work, we briefly
consider the metrics that are defined with a non-null
vector field.)
In the works on classical double copies, one usually

encounters the following construction: the seed metric is
taken to be flat, namely gμν ¼ ημν þ 2Vlμlν; the Maxwell
and Yang-Mills fields are taken as Aμ ¼ Vlμ; and the
Yang-Mills field Aa

μ ¼ caVlμ, where ca’s are constants. In
this case, one can only treat the Maxwell and the Yang-
Mills as test fields. If the metric satisfies the vacuum field
equations (Gμν ¼ 0), then the spacetime becomes station-
ary, i.e., ∂0V ¼ 0 [1,2], and the metric function satisfies
Laplace’s equation ∇2V ¼ 0. Any solution of this equation
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also solves the Maxwell and Yang-Mills equations iden-
tically. This construction was extended to the maximally
symmetric nonflat backgrounds in Ref. [2]. If one relaxes
the stationarity assumption, i.e., ∂0V ≠ 0, but instead
imposes the constraint lμ∂μ ¼ 0, one obtains a nice exact
result which supports the classical double copy approach.
The layout of this work is as follows: we first start with

the pp waves and give a solution of the coupled Einstein-
Yang-Mills-Maxwell system that is in the double copy
spirit. We then discuss a possible extension to the general
KSK class and show that a null fluid is needed for that case
for the correspondence to work. Our results are summarized
in two theorems. In the conclusion and further discussions
part, we also discuss a possible extension of these ideas to
the Gödel-type metrics with non-null vector fields. The
motivation is to extend the double copy correspondence
possibly to the massive gauge field case.

II. KSK METRICS AND DOUBLE COPY

Our first main result is on the exact solutions of the
Einstein-Yang-Mills-Maxwell field equations, where the
spacetime is the d-dimensional pp-wave geometry. We first
state our main results for the pp waves as a theorem and
provide the proof later as a subclass of the KSK case.
Setting all relevant coupling constants to unity, the

coupled Einstein, Maxwell, and Yang-Mills equations are

Gμν ¼ γabF a α
μF b

αν −
1

4
F 2gμν

þ
XN

k¼1

�
Fkα

μFk
αν −

1

4
Fk2gμν

�
;

∇μFk μν ¼ 0; ðDμF μνÞa ¼ 0; ð3Þ

where the gauge-covariant derivative isDμ ≡ I∇μ − iTaAa
μ,

with the generators satisfying ½Ta; Tb� ¼ ifabcTc and the
inner product taken as tr ðTaTbÞ ¼ 1

2
γab.1 We assume that

there areN number ofMaxwell’s fieldsFk
μν; k ¼ 1; 2;…; N.

Let us take the spacetime to be the d-dimensional pp-
wave geometry with the metric given in the Kerr-Schild
form as gμν ¼ ημν þ 2Vlμlν, where lμ is a covariantly
constant null vector, and let Ak

μ ¼ ϕklμ; k ¼ 1; 2;…; N be
Abelian and Aa

μ ¼ Φalμ be non-Abelian vector potentials
satisfying the properties

lμ∂μϕ
k ¼ lμ∂μΦa ¼ 0: ð4Þ

Then, one can show that the Einstein tensor reduces to

Gμν ¼ −lμlν□̄V; ð5Þ

while theMaxwell and Yang-Mills field equations reduce to

□̄ϕk ¼ □̄Φa ¼ 0; ð6Þ

where □̄≡ ημν∂μ∂ν. We can now state the first theorem.
Theorem 1: Under the assumptions made above, the

field equations (3) reduce to

□̄V ¼ −ḡμν
�
γab∂μΦa∂νΦb þ

XN

k¼1

∂μϕ
k∂νϕ

k

�
; ð7Þ

whose most general solution is

V ¼ V0 þ ckϕk þ βaΦa −
1

2
γabΦaΦb −

1

2

XN

k¼1

ϕkϕk; ð8Þ

where V0 is the vacuum solution satisfying □̄V0 ¼ 0; ck,
βa are arbitrary constants; and ϕk and Φa satisfy Eq. (6).
Given any solution of Eq. (6), and there are many, one

can find the corresponding metric via the profile function
(8). Observe that if one further takes Φa ¼ taϕ and
ϕk ¼ pkϕ, where ta and pk are constants, then one only
needs to solve a single scalar equation □̄ϕ ¼ 0 for ϕ. Let us
note that this solution generalizes the solutions of
Refs. [1,2], where V0 ¼ 0 and the gauge fields are treated
as test fields that do not change the background geometry,
but here we have given the solution of the full coupled
system. In the rest of the paper, we do not explicitly
consider the Maxwell fields, but we embed them the Yang-
Mills fields by enlarging the gauge group. For this purpose,
we let the Maxwell fields vanish without losing any
generality.
Our next task is to try to generalize this result for the

general KSK class, which has been studied in some detail
recently in Refs. [6–11]. In generalized Kerr-Schild coor-
dinates, the metric is taken to be2

gμν ¼ ḡμν þ 2Vλμλν; ð9Þ

where the seed ḡμν metrics are maximally symmetric. One
can show that the following relations hold for the metrics
belonging to the KSK class:

λμλμ ¼ 0; ∇μλν ≡ ξðμλνÞ;

ξμλ
μ ¼ 0; λμ∂μV ¼ 0: ð10Þ

The first property is the usual nullity condition of the
vector, while the second and the third ones guarantee that
the λ vector is geodesic, λμ∇μλν ¼ 0. These three con-
ditions define the KSK class of metrics. The last property is

1We do not specify the underlying Lie algebra of the non-
Abelian theory, but it can be taken to be any non-Abelian Lie
algebra.

2We use the vector λμ for this case instead of the previous lμ, as
we shall reserve l for the AdS radius.

METIN GÜRSES and BAYRAM TEKIN PHYS. REV. D 98, 126017 (2018)

126017-2



required for further simplifications, such as the linear
dependence of the mixed Einstein tensor on V. For more
on this point in the context of Kerr-Schild metrics, see
Ref. [12] for the flat seed and Ref. [13] for the generalized
cases. For this class of metrics, the traceless Ricci tensor,
Sμν ≡ Rμν − R

d gμν, can be computed to yield

Sμν ¼ ρλμλν; ð11Þ

where the scalar function ρ is found to be linear in V, which
reads explicitly

ρ¼−
�
□̄þ2ξμ∂μþ

1

2
ξμξμ−

2ðd−2Þ
l2

�
V≡−Q1V: ð12Þ

We define the operatorQ1 in the second equality. The Weyl
tensor, Cμανβ, can be found to be [8]

Cμανβ ¼ 4λ½μΩα�½βλν�; ð13Þ

where the square brackets denote antisymmetrization with a
1=2 factor and the symmetric tensor Ωαβ is a rather
nontrivial object, but it is still linear in V and can be
compactly written as

Ωαβ ≡ −
�
∇α∂β þ ξðα∂βÞ þ

1

2
ξαξβ

−
1

d − 2
gαβ

�
Q1 þ

2ðd − 2Þ
l2

��
V: ð14Þ

From the Weyl tensor and the traceless Ricci tensor given
here, one can compute the needed curvature invariants for
these metrics. As two examples of the KSK class, let us
give the AdS plane and the AdS spherical wave metrics,
which read as follows:
AdS plane wave metrics:

ds2 ¼ l2

z2

�
2dudvþ

Xd−3

m¼1

ðdxmÞ2 þ dz2
�

þ 2Vðu; xm; zÞdu2; ð15Þ

where z ¼ xd−1, λμdxμ ¼ du, and ξμdxμ ¼ 2
z dz.

AdS spherical wave metrics:

ds2 ¼ l2

z2

�
−dt2 þ

Xd−1

m¼1

ðdxmÞ2
�
þ 2Vðt; xm; zÞdu2; ð16Þ

where

λμdxμ ¼ dtþ 1

r
x⃗ · dx⃗;

ξμdxμ ¼ −
1

r
λμdxμ þ

2

r
dtþ 2

z
dz: ð17Þ

Here r2 ¼ P
d−1
m¼1ðxmÞ2. The function V satisfies the con-

straint λμ∂μV ¼ 0. In Ref. [8], we showed that the AdS
plane wave and the pp-wave metrics, and more generally
all KSK metrics, are universal in the sense that they solve
all metric-based gravity equations with only slight changes
in the parameters, such as the cosmological constant.
Different seed metrics (ḡμν) lead to different spacetimes:
it is the flat Minkowski metric for the pp waves, it is the
AdS spacetime for the AdS plane and the AdS spherical
waves, and it is the de Sitter spacetime for the dS hyper-
bolic wave. After this brief recap of the KSK metrics, we
can state our second theorem.
Theorem 2: Let the spacetime be the d-dimensional

KSK geometry with the metric gμν ¼ ḡμν þ 2Vλμλν, and let
Aa

μ ¼ Φaλμ be a non-Abelian vector potential, satisfying
the property

λμ∂μΦa ¼ 0: ð18Þ

Then the Einstein Maxwell, Yang-Mills, null dust field
equations with cosmological constant

Gμν ¼ γabF a α
μF b

αν −
1

4
F 2gμν − Λgμν þ εuμuν;

ðDμF μνÞa ¼ 0; ∇μðεuμuνÞ ¼ 0 ð19Þ

have the solution

V ¼ βaΦa −
1

2
γabΦaΦb;

ε ¼
�
ξμ∂μ þ

1

2
ξμξμ −

2ðd − 2Þ
l2

��
1

2
γabΦaΦb þ βaΦa

�
;

Λ ¼ −
ðd − 1Þðd − 2Þ

2l2
;

uμ ¼ λμ: ð20Þ

The Einstein tensor takes the form

Gμν ¼ −λμλνQ1V þ ðd − 1Þðd − 2Þ
2l2

gμν; ð21Þ

while the Yang-Mills equation reduces to

Q2Φa ¼ 0; ð22Þ

where Q2 ≡ □̄þ ξμ∂μ.
The proof of this theorem is as follows: the field strength

of the Yang-Mills fields can be computed to be

F a
μν ¼ ∂μΦaλν − ∂νΦaλμ; ð23Þ

whose nonlinear part vanishes. Using the assumption in
Eq. (18), one finds
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∇μF a
μν ¼ ð□̄þ ξα∂αÞΦaλν ¼ 0; ð24Þ

which then leads to

Q2Φa ¼ 0: ð25Þ

The energy-momentum tensor of the gauge field becomes

TYM
μν ¼ ḡαβγab∂αΦa∂βΦbλμλν: ð26Þ

Then the field equations (19) reduce to

−Q1V ¼ ḡαβγab∂αΦa∂βΦb þ ε;

Λ ¼ −
ðd − 1Þðd − 2Þ

2l2
: ð27Þ

Moreover, one can show that

Q2

�
1

2
γabΦaΦb

�
¼ ḡαβγab∂αΦa∂βΦb: ð28Þ

Hence, one obtains

−Q2

�
Vþ1

2
γabΦaΦb

�
¼
�
ξμ∂μþ

1

2
ξμξμ−

2ðd−2Þ
l2

�
Vþε:

ð29Þ

Assuming that both sides of Eq. (29) vanish, one then
obtains Eq. (20). Note that the solution of a single equation
Q2Φa ¼ 0 solves all the Einstein-Yang-Mills and null dust
field equations identically. Ignoring the quadratic terms in
V, we obtain solutions of the Einstein field equations where
the Yang-Mills field is a test field. The vanishing of the
vector ξμ means that the vector λμ becomes a covariantly
constant vector field. In a spacetime with such a vector
field, the cosmological constant vanishes identically, and
the metric reduces to the pp-wave metric. Then, for
vanishing ξ, the null dust also vanishes, i.e., ε ¼ 0, then
Theorem 2 reduces to Theorem 1, and hence the proof of
Theorem 1 also follows.
For this brief part, let us assume that we have a single

Maxwell field and a non-Abelian gauge field. Then, in
Theorem 1, it is possible to introduce coupled equations
between ϕ and Φa. Let the field equations be

DμF a
μν ¼ J a

ν ; ∇μFμν ¼ jν: ð30Þ

Then, the covariant conservation yields

∇μGμν ¼ γabJ aα F b
αν þ jαFαν ¼ 0: ð31Þ

The right-hand side vanishes identically, since J a
ν ¼

λν□̄Φa and jν ¼ λν□̄ϕ. Hence, the Einstein equations in
Eq. (3) reduce to

−□̄V ¼ ḡαβγab∂αΦa∂βΦb þ ḡαβ∂αϕ∂βϕ; ð32Þ

which is equivalent to the following:

−□̄
�
V þ 1

2
γabΦaΦb þ 1

2
ϕ2

�
¼ −γabΦa

□̄Φb − ϕ□̄ϕ:

ð33Þ

Hence, we can let

V ¼ cϕþ βaΦa −
1

2
γabΦaΦb −

1

2
ϕ2 ð34Þ

and

□̄Φa ¼ ϕfaðϕ;Φa; ∂ϕ; ∂ΦaÞ;
□̄ϕ ¼ −γabΦbfaðϕ;Φa; ∂ϕ; ∂ΦaÞ; ð35Þ

where faðϕ;Φa; ∂ϕ; ∂ΦaÞ is an arbitrary function of its
arguments. Hence, we obtain a coupled system of nonlinear
equations for ϕ and Φa. We get a rather simple example by
letting Φa ¼ caψ and fa ¼ κca; then

□̄ϕ ¼ −κc2ψ ; □̄ψ ¼ −κϕ; ð36Þ

where c2 ¼ cacbγab. These equations can decoupled as

□̄
2ϕ ¼ −m2ϕ; □̄

2ψ ¼ −m2ψ ; ð37Þ

where m2 ¼ κ2c2. Similar extension can be made in
Theorem 2 as well.

III. CONCLUSIONS AND
FURTHER DISCUSSIONS

We have studied the pp-wave and Kerr-Schild-Kundt
geometries as examples of the classical double copy
correspondence in the coupled Einstein-Yang-Mills system.
For the pp-wave case, the metric profile function (V) is
given as a quadratic and linear function of the scalar fields
defining the Yang-Mills fields as (taking V0 ¼ 0)

V ¼ βaΦa −
1

2
γabΦaΦb; ð38Þ

which nicely fits in the double copy notion, as gravity is
basically the “square of the gauge theory.” In the general
KSK case, for the double copy correspondence to work, we
have shown that one also needs a null dust, a fact which
somewhat complicates the correspondence. As a further
extension, one might wonder how far one can go if the
condition on the nullity of the Kerr-Schild vector field is
relaxed. For this purpose, below is a a brief account of an
attempt in such metrics.
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Let ðgμν;MÞ be a d-dimensional spacetime geometry
with the metric

gμν ¼ hμν − uμuν; ð39Þ
where uμ is a unit timelike vector field and hμν is a
degenerate matrix of rank d − 1. We let uμ ¼ − 1

u0
δμ0 and

uμhμν ¼ 0. The determinant of the metric is g ¼ −u20. We
call such a spacetime metric a “Gödel-type metric” [14,15].
Here, for a simple construction, we will assume that u0 is a
nonzero constant and uμ is a Killing vector field. We
assume also that ∂0uα ¼ 0. With this information, one can
find the field strength

fμν ≡∇μuν −∇νuμ ¼ 2∇μuν; f2 ≡ fαβfαβ; ð40Þ
and the Einstein equations as

Gμν ¼
1

2
Tμν þ

1

4
f2uμuν; ð41Þ

where Tμν is the Maxwell energy-momentum tensor. We
have constructed a metric which satisfies the Einstein-
Maxwell dust field equations identically provided that the
vector field uμ satisfies the source-free Maxwell equation

∂αfαμ ¼ 0: ð42Þ
Observe that the partial derivative appears in this expres-
sion, but, under the assumptions made so far, one can show

that the last equation is equivalent to the following
equation:

∇αfαμ ¼
1

2
f2uμ; ð43Þ

or

�
□ −

1

4
f2
�
uμ ¼ 0: ð44Þ

A simpler version of this equation is ∂ifij ¼ 0. All the
above equations on the vector uα can be simplified further.
Since u0 is assumed to be constant, then u⃗ satisfies the
linear equation

∇2u⃗ − ∇⃗ð∇⃗ · u⃗Þ ¼ 0: ð45Þ

Hence, any solution of the last equation also solves
Einstein-Yang-Mills field equations identically where Aa

μ ¼
cauμ and gμν ¼ hμν − uμuν. When u0 is not a constant, then
the metric can be extended further to a scalar (dilaton) field.
Gödel-type metrics can be used in solving the Einsten-
Yang-Mills dilaton 3-form field equations [15] from a
single vector equation. These metrics deserve a separate
discussion, which we shall give elsewhere.
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