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Abstract
When a thin film adhered to a compliant substrate is growing, it will eventually buckle in order to release the compressive
stresses accumulated within the film due to growth. Such geometric instabilities caused by compressive stresses prevail
among all living systems in nature and their outcomes range from highly beneficial to destructive. Therefore, understand-
ing compression induced instabilities is of crucial importance. Note that the origin of the ‘‘compression’’ need not neces-
sarily be differential growth, as it may be due to pre-stretch or thermal expansion. A commonly accepted solution
strategy for instabilities in bilayer structures dates back to the seminal work of Allen and employs the Airy stress func-
tions. Owing to its reliance on a stress-based approach, the Allen solution is limited to linear two-dimensional problems
and its success depends entirely on choosing an appropriate Airy function. The main objective of this contribution is to
circumvent these limitations via a displacement-based approach formally suitable for three-dimensional problems, aniso-
tropic materials, and even applicable to finite deformations. Furthermore, the Allen solution in its original form is valid
for the plane-stress condition but often it is mistakenly compared with the numerical simulations corresponding to the
plane-strain condition. We analyze the subtle difference between the solutions associated with the plane-strain and
plane-stress conditions. Next, the analytical solution is compared against the computational results using the finite ele-
ment method via eigenvalue analysis. Finally, it is briefly explained how the current approach can be utilized beyond the
classical bilayer systems.
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1. Introduction

The instabilities that occur in bilayers due to compressive stresses have been the subject of special inter-
est in the past few decades due to their pervasiveness in nature and the wide array of applications of the
topic in material design. Of particular interest to this contribution is wrinkling in bilayer systems con-
sisting of a growing thin film adhered to a deep compliant substrate. Following the pioneering works of
Allen [1] and Biot [2], such structures have been investigated extensively to understand the behavior of
living tissues before and beyond the onset of wrinkling. The literature on the instabilities due to com-
pressive stresses can be categorized into two classes: bilayer wrinkling and extended bilayer wrinkling.
Furthermore, it is also necessary to briefly go over some recent works on growth modeling and mechanics
of growth. The remainder of this section provides a brief account of the literature on these topics.
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Bilayer wrinkling occurs when a thin stiff film attached to the surface of a compliant substrate under-
goes a critical amount of compressive stress and, thus, forms sinusoidal patterns in order to release
energy. What is deemed as the critical stress and strain is the minimum amount of stress and strain at
the onset of wrinkling. Following the thorough expositions of Allen [1] and Biot [2] on the mechanics of
bilayer wrinkling, many aspects of this concept have been investigated in depth. In particular, the wrink-
ling of deposited thin films on compliant substrates has been studied extensively and utilized in various
applications [3–7] using both platinum and gold films on polydimethylsiloxane (PDMS) or other elasto-
mers. In addition, several contributions [8–12] have detailed on the geometry of bilayer structures or
loading conditions as well as stiffness ratios. Recently, Holland et al. [13] have considered a large range
of stiffness ratios in bilayers with various loading conditions. They have revealed that the different load-
ing conditions are only distinguishable in the low stiffness regime, and that these differences disappear
when measures of effective strain, stiffness, and wavelength are used, see also [14–21] for more compli-
cated scenarios as well as large deformations. Post-buckling analysis show further types of instabilities
apart from the initial wrinkling of the bilayer structure. Examining the range beyond the critical stress
for the onset of wrinkling, the morphology and amplitude of geometric instabilities have been studied in
[22–33] among others. A detailed review on wrinkling, creasing, and folding that occur in soft materials
with various geometries and under loading can be found in the work of Li et al. [34].

Extended bilayer wrinkling is an extension of bilayer wrinkling where the stiff film is embedded in a
medium and has been actively investigated very recently. For instance, Xie et al. [35] have derived an
analytical solution for the critical compressive strain and critical wavelength for the wrinkling of a film
embedded between two different soft layers, also conducting post-buckling analysis of the structure. The
variation of these critical values with changing stiffness ratio has been investigated in [36]. Brau et al.
[37, 38] have considered the development of wrinkles and further instabilities with an elastomer or liquid
substrate, looking into the symmetry breaking of the system and its effect on post-buckling behavior. In
another example, Li et al. [39] have examined the instability patterns formed when periodic fibers are
embedded in a soft matrix, showing the softening of the structure after buckling by constructing stress–
strain curves, also relating fiber diameter to critical wavelength and amplitude of formed waves. Colin
and Holland [40] have studied critical strains in the case where the stiffness of the matrix above and
below the embedded layer have different shear moduli, also identifying different modes of wrinkling in a
homogeneous matrix. For further extensions of bilayer wrinkling and related studies, see [41–46] among
others. The instabilities of an immersed film has also been studied in [47–49] with different geometries
and from both theoretical and experimental viewpoints.

Growth modeling and mechanics of growth explains the driving force behind the formation of various
biological tissues as a result of constrained or differential growth, see the review by Kuhl [50]. A com-
monly accepted strategy to model the growth in the context of continuum mechanics is to multiplica-
tively decompose the deformation into its growth and elastic parts as proposed by Rodriguez et al. [51].
The mechanism of growth and its modeling has been a compelling area of study with a focus on the
kinematics, continuum mechanics treatment [51–57], and thermodynamics [58], or explaining growth
using mixture theory [59–61]. In addition, the growth of biological structures such as horns, tusks, rods,
or cells have been modeled and studied in [62–64] while growth models at sub-cellular scales, plant
growth, and bone remodeling have been addressed in [65] among others. Hosseini et al. [66, 67] have
elaborated on how mechanical forces shape the developing eye, through experiments and computational
3D models, focusing on differential growth in layers of the eye, see also [68, 69]. More specifically,
growth-induced instabilities in the bilayers have been used in explaining the formation of skin wrinkles
[70], investigating the instabilities formed in artificial elastomeric skins [71], understanding the develop-
ment and mechanics of brain folding [72–75], and in exploring the development of patterns in growing
tubular tissues [76–79]. The buckling behavior of cylindrical geometries due to differential growth has
been studied extensively by Moulton and Goriely [80] among others. Eskandari et al. [81] have studied
mucosal folding in the post-buckling range, with the airway wall having temporally evolving material
properties leading to elastosis. Skin growth [82] has also been investigated in several contributions, for
example finding applications in tissue expansion [83] as a novel technique to allow for the growth of
extra skin for reconstruction. Apart from these cases found in nature, applications of bilayer wrinkling
in other fields include optical sensors [84], pressure sensors [85], microfluidic devices [85, 86], stretchable
electronics [87-90], dielectric plates [91, 92], and material behavior [93]. From a mathematical
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perspective, Yavari [55] have eliminated the use of an intermediary configuration in the approach of
Rodriguez et al. [51] by constructing a geometry theory of growing solids, where the growing body
remains stress-free in the material manifold, see also [94-96]. Taber [97] provides an extensive review of
some of the works done on biomechanics of growth, along with remodeling and morphogenesis follow-
ing the multiplicative decomposition approach.

2. Equivalent stiffness of an infinite half-space

The objective of this section is to compute the resistance (equivalent stiffness) of an infinite half-space
(substrate) against prescribing a sinusoidal deformation on its surface. A commonly accepted strategy
to compute the substrate equivalent stiffness dates back to the seminal work of Allen [1] and employs
the Airy stress functions to solve the problem briefly explained in Section 2.2. While the Allen solution
is correct, owing to its reliance on Airy functions, it is limited to two-dimensional linear isotropic prob-
lems and its success depends entirely on choosing an appropriate Airy function. A key feature of this
contribution is to propose a displacement-based approach, elaborated on in Section 2.3, to compute the
equivalent stiffness of the substrate without recourse to Airy stress functions and, hence, suitable for
three-dimensional as well as anisotropic problems. The current approach can even be formally applied
to finite deformations, unlike Allen’s solution.

2.1. Governing equations

Let u denote the displacement field in the substrate and e be the associated strain field. The Cauchy
stress s is related to the strain e via a linear mapping c where c is referred to as the constitutive tensor.
General field equations of elasticity are

e =rsymu ,r× e×r= 0, divs = 0, s = c : e: ð1Þ

in which (1)2 ensures the compatibility of the strain field and (1)3 is the linear momentum balance in the
absence of body forces. The angular momentum balance requires the symmetry of the stress field s,
which is satisfied a priori via the symmetry properties of the constitutive tensor c and, thus, is omitted
from the equations. The fourth-order constitutive tensor c for the case of isotropic linear elasticity

1

of
interest here reads

c = 2m s i
sym + 2ls i

vol with isym = 1
2 ½i$ i+ i$ i% and i vol = 1

2 i$ i, ð2Þ

where m s and ls are the Lamé parameters and the non-standard tensor products are defined as

½i$ i%abcd= ½i%ac ½i%bd, ½i$ i%abcd= ½i%ad½i%bc, i : second&order identity tensor:

Note, the strain e can be computed from the stress s via the inverse of the constitutive tensor as

e = c&1 : s with c&1 =
1

2m s

isym & ls

2m s½m s + ls%
ivol: ð3Þ

While it may not be possible to obtain a closed-form solution for an arbitrary boundary value prob-
lem, there exist analytical solutions for various simplified scenarios. The general field equations of elas-
ticity (1) can be reformulated depending on the nature of the problem of interest. Such reformulations
fall into two categories of Stress formulation and Displacement formulation briefly addressed below.

Stress formulation also referred to as the Beltrami–Michell equation is obtained through imposing the
strain compatibility (1)2 in terms of stresses using the constitutive relation (1)4 and then imposing the lin-
ear momentum balance (1)3 as

r× e×r= 0 with e = c&1 s ) r× c&1 s×r= 0,

r× c&1 s ×r= 0 with divs = 0 ) Beltrami&Michell equation,
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which for the two-dimensional plane-strain problem of interest here reads

D(s : i) = 0 with Df'g= div(rf'g) = ∂2f'g
∂j2 + ∂2f'g

∂h2 , ð4Þ

where Df'g denotes the Laplacian operator. Note, the stress formulation is more appropriate to use
with traction-type boundary condition problems. The governing equation for the stress formulation
even in two-dimensional problems is still rather complex and analytical solutions are commonly deter-
mined through an Airy stress function f satisfying the biharmonic equation

DDf = 0 with DDf'g= D(Df'g) =
∂4f'g
∂j4

+ 2
∂4f'g
∂j2∂h2

+
∂4f'g
∂h4

, ð5Þ

whereby DDf'g denotes the biharmonic operator. For the Airy stress function f, the stresses

sjj =
∂2f

∂h2
, sjh = & 2

∂2f

∂x∂y
, shh =

∂2f

∂j2
, ð6Þ

satisfy the Beltrami–Michell equation (4) a priori. Once the stresses are calculated, the strains can be
obtained via the constitutive relation (1)4 and, eventually, integrating the strains renders the displace-
ment field in the domain.

Displacement formulation also referred to as Navier–Lamé equation is obtained via replacing the stress
from the constitutive relation (1)4 in the linear momentum balance (1)3 and then imposing the strain def-
inition (1)1 as

divs = 0 with s = c : e ) div (c : e) = 0,

div (c : e) = 0 with e =rsymu ) Navier&Lamé equation:

Inserting the constitutive tensor (2) into the general format of the Navier–Lamé equation and using the
identities

e : i= div u , div(rtu ) =r(div u ), div(e : i i) =r(div u ),

renders a simplified format of the Navier–Lamé equation as

½ls + m s%r(div u ) + m s Du = 0: ð7Þ

The derivations in Sections 2.2 and 2.3 correspond to the stress formulation and displacement formula-
tion, respectively. More precisely, the well-established Allen [1] solution elaborated on in Section 2.2 is
based on the stress formulation while the current proposition in Section 2.3 is based on the displacement
formulation. We emphasize that the surface instability of an infinite half-space is intrinsically suited for
the displacement formulation.

2.2. Allen stress-based approach

Let the infinite half-space be identified by the two coordinates j and h along its width and height, respec-
tively, such that the medium is extended to infinity in the negative direction of h. Stresses in the elastic
medium can be described via a biharmonic function f(j,h) of the form

f(j,h) = A ½1 + gh% sin(kj) exp(kh), ð8Þ

satisfying the biharmonic equation (5). The parameters A and g can be identified from the boundary
conditions and k . 0 denotes the wavenumber k = 2p =‘ with ‘ being the wavelength.

2

The stresses asso-
ciated with the biharmonic function (8) read
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sjj = ∂2f
∂h2 = A ½k2 ½1 + gh%+ 2kg% sin (kj) exp (kh),

shh = ∂2f
∂j2 = & Ak2 ½1 + gh% sin (kj) exp (kh)

sjh = & 2 ∂2f
∂j∂h = & 2A ½k2 ½1 + gh%+ kg% cos (kj) exp (kh),

ð9Þ

from which the strains can be obtained via the constitutive relation (3). The parameter g is next identi-
fied via imposing the vanishing ejj on the surface of the infinite half-space as

ejjjh = 0 = 0 ) g = & m s + ls

2m s + ls
k: ð10Þ

Finally, the displacement field u is obtained via integrating the strain field as

u j =
m s + ls

2m s½2m s + ls%
k2 hA cos (kj) exp (kh) ) u jjh = 0 = 0,

u h =
m s + ls

2m s½2m s + ls%
kh& 3m s + ls

2m s½2m s + ls%

! "
kA sin (kj) exp (kh)) u hjh = 0 = & 3m s + ls

2m s½2m s + ls%
kA sin (kj):

ð11Þ

The detailed derivations are omitted for the sake of space, however, the essential intermediate steps are
given in Appendix A. The effective stiffness of the medium is obtained via dividing the traction in the h
direction by the vertical displacement on the surface as

Keff
s =

fhjh = 0

u hjh = 0

=
shhjh = 0

u hjh = 0

=
&Ak2 sin (kj)

& 3m s + ls

2m s½2m s + ls% k A sin (kj)
) Keff

s =
2m s ½2m s + ls%

3m s + ls
k: ð12Þ

2.3. Current displacement-based approach

Let u denote a hypothetical stationary wave on the surface of the substrate (infinite half-space) as illu-
strated in Figure 1. The stationary wave lies on the plane spanned by the orthogonal basis ft,n,mg
where m= t×nis the outward direction along which the wave function remains constant corresponding
to the associated plane-strain condition. The wave function u is constructed such that it decays through
the substrate meaning that its amplitude vanishes asymptotically when the depth approaches infinity.
Let j = x ( t and h = x (ndenote the components of an arbitrary position vector x. The stationary wave
u can be prescribed as the product of a decay part w(h) and a waviness term exp (ikj) in which k . 0 is
the wavenumber and is related to the wavelength ‘ via k = 2p =‘. The decay part itself can be decom-
posed into the amplitude a and decay exponent exp (th) thereby only t . 0 is valid since h ł 0 and,
therefore, the wave function u reads

u =w(h) exp (ikj) with w(h) =a exp (th): ð13Þ

,

material properties reference configuration deformed configuration

Figure 1. Illustration of a decaying surface wave through the infinite half-space representing the substrate here. The stationary
wave u can be prescribed as the product of a decay part w(h) and a waviness term exp (ikj) in which k . 0 is the wavenumber.
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To proceed, the wave function u is imposed as the deformation of the substrate and its admissible for-
mat satisfying the linear momentum balance is derived. The balance of linear momentum in the substrate
reads divs = 0 with the stress–strain relation s = c : e. Inserting the strain e in terms of the wave func-
tion u and using the symmetry properties of the constitutive tensor c yields

divs = div(c : e) = div(c : ru ) = ½r(c : ru )% : i= ½c : rru % : i= 0: ð14Þ

Using the chain rule

rf'g=
∂f'g
∂j
$ t+

∂f'g
∂h
$n,

the second gradient of the wave function u is obtained as

u =w(h) exp (ikj),
ru = ½w0 $n+ ikw$ t% exp (ikj),
rru = ½w00 $n$n+ ik½w0 $ t$n+w0 $n$ t% & k2w$ t$ t% exp (ikj):

ð15Þ

Inserting rru into the linear momentum balance (14) yields the ordinary differential equation

A ( w00+ ikB ( w0 & k2C ( w= 0, ð16Þ

in which the second-order (localization) tensors A, B, and C are defined as

A ( f'g : = c : f'g$n½ %½ % (n,
B ( f'g : = c : f'g$n½ %½ % ( t+ c : f'g$ t½ %½ % (n,
C ( f'g : = c : f'g$ t½ %½ % ( t:

ð17Þ

Inserting c from (2) and rru from (15)3 into the linear momentum balance (14) yields

½m s i+ ½ls + m s%n$n% ( w00+ ik ½½m s + ls% ½n$ t+ t$n%% ( w0 & k2 ½m s i+ ½ls + m s% t$ t% ( w= 0: ð18Þ

Comparing the linear momentum balance (18) and (16), renders the localization tensors as

A := m s i+ ½ls + m s%n$n,
B := ½m s + ls% ½n$ t+ t$n%,
C := m s i+ ½ls + m s% t$ t:

ð19Þ

Next, the differential equation (16) is solved in order to obtain the admissible forms of the wave func-
tion u . In doing so, it proves convenient to rewrite the differential equation (16) as

w00+ ikA&1 ( B ( w0 & k2A&1 ( C ( w= 0, ð20Þ

in which A&1 is obtained via applying the Sherman–Morrison formula as

A&1 =
1

m s

i& ls + m s

m s½ls + 2m s%
n$n:

To proceed, the second-order differential equation (20) is decomposed into a system of two first-order
differential equations as W0=M (W with

W=
w
w0

! "
) W0=

w0

w00

! "
=

w0

k2A&1 ( C ( w& ikA&1 ( B ( w0
! "

=
0 i

k2A&1 ( C &ikA&1 ( B

! "

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

( w
w0

! "

|fflffl{zfflffl}
W

:

ð21Þ
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Replacing the decay part w in W in terms of the amplitude a and the decay part as w=aexp (th)
yields

W=
w
w0

! "
=

a
ta

! "
exp (th) ) W0=

w0

w00

! "
=

ta
t2a

! "
exp (th) = tW: ð22Þ

Comparing (21) and (22), renders the eigenproblem M (W= tW or alternatively ½M& t1% (W= 0
whose non-trivial solutions correspond to the condition det(M& t1) = 0, which can be represented in
the matrix format as

M& t1½ %=

&t 0 1 0
0 &t 0 1

k2½1 + as% 0 &t &ikas

0 k2½1& bs% &ikas½1& bs% &t

2

664

3

775 and as =
ls + m s

m s

, bs =
ls + m s

ls + 2m s

,

which eventually yields

det (M& t1) = 0 ) ½k2 & t2%2 = 0 ) t = 6k ===)
t . 0

t = k: ð23Þ

The generic bounded solution of the differential equation (20) obtained by solving for the eigenvectors
corresponding to t . 0, see Appendix B, reads

w(h) = 1
k

Ci& D
2m si

k½m s + ls% & Dih
h i

t+ C + D 1
k
& Dh

$ %
n

h i
exp (kh), ð24Þ

in which the constants C and D can be specified via imposing the boundary conditions. Inserting the
decay function w into the wave function u reads

u =w(h) exp (ikj) = 1
k

Ci& D
2m si

k½m s + ls% & Dih
h i

t+ C + D 1
k
& Dh

$ %
n

h i
exp (k ½ij + h%): ð25Þ

The relation t = k is significant since it indicates that the decay coefficient t must be identical to the
wavenumber k in order to have an admissible wave function (13). Therefore, the surface waves with
larger wavenumbers decay faster along the depth of the substrate. In other words, the waves with larger
wavelength decay slower and, thus, their effect vanishes at large depth h, as shown in Figure 2. This
observation is particularly remarkable from a computational perspective. In finite element simulations,
the infinite half-space must be approximated as a domain with a prescribed depth. The finding (23) indi-
cates that the finite depth of the substrate in numerical simulations can have a considerable influence on
the results depending on the wavelength itself. Based on the relation t = k, from a computational per-
spective, one can adjust the depth of the substrate according to the wavelength so as to obtain compara-
ble solutions.

Figure 2. Illustration of the stationary wave u for various wavenumbers k and at different depths h. According to the relation t = k
the decay coefficient t must be identical to the wavenumber k in order to have an admissible wave function (13). Therefore, a
surface wave with a larger wavelength decays slower compared with a wave with a smaller wavelength.
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At the surface of the substrate corresponding to h = 0, the displacement is identical to that of the
wrinkling film. Note, the wrinkling of the film is associated with its internal growth and the compressive
residual stress thereof but no actual geometrical compression is applied. Exactly on the onset of instabil-
ities of the film, the substrate displacement in the j-direction is zero and in the h-direction is a sinusoi-
dal wave. The displacement in the j-direction and h-direction correspond to the t-component and n-
component of u , respectively. The hypothetical wave u on the surface reads

ujh = 0 = 1
k

Ci& D
2m si

k½m s + ls%

h i
t+ C + D 1

k

$ %
n

h i
exp (ikj), ð26Þ

or, more specifically,

Figure 3. Numerical illustrations of uj , uh, sjj , shh, and sjh for a sample set of parameters m s = 10, ls = 100, and C = 0:15.
Analytical solution of the fields correspond to our displacement-based approach but can be related to Allen’s solutions according to
Table 1.

Table 1. Analytical solution of the main fields obtained from both Allen and current approaches. Note, Allen’s solution relies on two-
dimensional isotropic behavior of the domain. However, the current approach is displacement-based and can be extended to three-
dimensional and anisotropic cases. Obviously, the current approach recovers the solution of Allen by setting C = i k2A=½2m s + ls%.

Allen Current

uj k2 A ½m s + ls%
2m s½2m s + ls% h cos (kj) exp (kh) &iC ½m s + ls%

2m s
h cos (kj) exp (kh)

uh kA ½m s + ls%
2m s½2m s + ls% kh& 3m s + ls

2m s½2m s + ls%

h i
sin (kj) exp (kh) &iC ½m s + ls%

2m s
h& 3m s + ls

2m sk

h i
sin (kj) exp (kh)

ejj &k2 A ½m s + ls%
2m s½2m s + ls% kh
h i

sin (kj) exp (kh) iC ½m s + ls%
2m s

kh
h i

sin (kj) exp (kh)

ehh k2 A ½m s + ls%
2m s½2m s + ls% kh& 1

2m s + ls

h i
sin (kj) exp (kh) &iC ½m s + ls%

2m s
kh& 1

h i
sin (kj) exp (kh)

sjj &k2 A ½m s + ls%
2m s + ls

kh + ls
2m s + ls

h i
sin (kj) exp (kh) iC m s + ls½ %kh + ls½ % sin (kj) exp (kh)

shh k2 A ½m s + ls%
2m s + ls

kh& 1
h i

sin (kj) exp (kh) &iC m s + ls½ %kh& 2m s + ls½ %½ % sin (kj) exp (kh)
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vj : = ujh = 0

h i

j
[ 1

k
&C + D

2m s

k½m s + ls%

h i
sin (kj) and vh : = ujh = 0

h i

h
[ 1

k
C + D 1

k

$ %
cos (kj): ð27Þ

Imposing the boundary condition vj = 0, yields the key relation

D

C
= k

m s + ls

2m s

,

between the constants C and D rendering the wave function on the surface as

ujh = 0 = C
1

k

3m s + ls

2m s

! "
nexp (ikj), ð28Þ

or more specifically

vj = ujh = 0

h i

j
[ 0 and vh = ujh = 0

h i

h
[ C

3m s + ls

2m sk
cos (kj): ð29Þ

Hence, the wave function u reads

u =w(h) exp (ikj) =
1

k
Ci& D

2m si

k½m s + ls%
& Dih

! "
t+ C + D

1

k
& Dh

! "
n

! "
exp (k ½ij + h%)

= C
1

k
i& D

C

2m si

k½m s + ls%
& D

C
ih

! "
t+ 1 +

D

C

1

k
& D

C
h

! "
n

! "
exp (k ½ij + h%)

= C
1

k
& m s + ls

2m s

ikh

! "
t+

3m s + ls

2m s

& m s + ls

2m s

kh

! "
n

! "
exp (k ½ij + h%),

ð30Þ

or, alternatively,

u = C & m s + ls

2m s

ih

! "
t+

3m s + ls

2m sk
& m s + ls

2m s

h

! "
n

! "
exp (k ½ij + h%): ð31Þ

Equipped with the admissible wave function (31), the next step is to compute the traction on the sur-
face of the substrate. The traction f on the surface h = 0 is obtained via the Cauchy relation f= s (n
whereby s is the Cauchy stress on the surface as

f= s (n= sjh = 0 (n= c : ejh = 0

h i
(n= c : ½ru %jh = 0

h i
(n: ð32Þ

Therefore, to proceed, we compute the displacement gradient on the surface. The gradient of the admis-
sible wave function (31) reads

ru =
∂u

∂j
$ t+

∂u

∂h
$n= ik u $ t+ k u $n+ C & m s + ls

2m s

i t$n& m s + ls

2m s

n$n

! "
exp (k ½ij + h%), ð33Þ

and reduces on the surface to

ru½ %jh = 0 = C
3m s + ls

2m s

in$ t& m s + ls

2m s

it$n+n$n

! "
exp (ikj): ð34Þ

The surface stress is then calculated as

sjh = 0 = c : ½ru %jh = 0 = C ½m s i ½n$ t+ t$n%+ ½2m s + ls%n$n+ ls t$ t% exp (ikj), ð35Þ

which is notably symmetric, as expected. Finally, the surface traction f reads

f= sjh = 0 (n= C m s i t+ 2m s + ls½ %n½ % exp (ikj), ð36Þ
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or, more specifically,

fj : = ½f%j [ & C m s sin (kj) and fh : = ½f%h [ C ½2m s + ls% cos (kj): ð37Þ

The effective stiffness of the substrate can be understood as the ratio fh=vh indicating the resistance of
the substrate against prescribing the wave function vh on its surface. Inserting the vertical surface wave
vh from (29)2 and the vertical surface traction fh from (37)2 yields

K eff
s =

fh

vh
=

C ½2m s + ls% cos (kj)

C
3m s + ls

2m sk
cos (kj)

) Keff
s =

2m s ½2m s + ls%
3m s + ls

k: ð38Þ

Note, the equivalent stiffness of an infinite half-space (38) using out displacement-based approach
here is identical to (12) obtained from the stress-based approach of Allen employing the Airy stress
functions. This conclusion is especially remarkable since the displacement fields (11) and (31) from the
two approaches are different, but the equivalent stiffnesses thereof are not. Table 1 gathers the key
quantities obtained from the two approaches and highlights the similarities and dissimilarities of the
two formulations, see also Figure 3 for a graphical representation.

2.4. Effective stiffness under plane-strain and plane-stress condition

All the derivations so far correspond to the plane-strain condition. Nevertheless, we can adopt the cur-
rent results for plane-stress instead of plane-strain, however, the detailed derivations are omitted for
brevity. In particular, the effective stiffnesses of the substrate Keff

s against a sinusoidal wave with the
wavenumber k = 2p =‘ on its surface for the two cases read

Plane Strain: Keff
s = 2m s ½2m s + ls%

3m s + ls
k, Plane Stress: Keff

s = 8m s ½m s + ls%
6m s + 5ls

k, ð39Þ

in terms of the Lamé parameters m s and ls. It is particularly notable that in the fully compressible limit
associated with ls = 0, the effective stiffnesses Keff

s for both cases coincide as

ls = 0 ) Plane Strain: Keff
s = 4

3 m s k, Plane Stress: Keff
s = 4

3 m s k: ð40Þ

On the other hand, in the incompressible limit associated with ls ! ‘, the effective stiffnesses Keff
s for

the two cases reach their maximum difference as

ls ! ‘ ) Plane Strain: Keff
s = 2m s k, Plane Stress: Keff

s = 8
5 m s k: ð41Þ

Figure 4. Illustration of the effective stiffness of the substrate Keff
s versus Lamé parameters against prescribing a sinusoidal wave

with the wavenumber k = 2p =‘ on its surface. The effective stiffness (39) is demonstrated and compared for plane-strain and plane-
stress cases. In the fully compressible limit both cases coincide but assume their maximum difference at the incompressible limit.
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In the incompressible limit, the effective stiffness associated with the plane-stress case underestimates
its counterpart in the plane-strain case by 20%. This observation is particularly important and relevant
to the applications of the current study since such instabilities usually occur in soft materials and biolo-
gical tissues that are often nearly incompressible. Nevertheless, this subtle and yet important nuance is
repeatedly overlooked in the literature to date. Figure 4 illustrates the profile of the effective stiffness
versus Lamé parameters. It can be seen that the effective stiffness under plane-stress condition is consis-
tently less than its counterpart under the plane-strain condition. This can be explained due to the
decreased resistance of the substrate in plane-stress condition due to its additional flexibility in the lat-
eral direction. Exactly for the same reason, in the fully compressible limit both plane-strain and plane-
stress formulations render identical results.

The problem formulation so far has been in terms of the Lamé parameters m s and ls. Nonetheless, it
is possible to carry out the derivations in terms of other pairs of parameters such as the elastic modulus
Es and Poisson’s ratio ns. A remarkable outcome is that while Keff

s in terms of the Lamé parameters dif-
fers for plane-strain and plane-stress, translating Keff

s in terms of Es and ns renders identical forms for
both cases as

Keff
s (Es, ns) = 2Es

½3&ns%½1 + ns% k: ð42Þ

This finding is significant since it provides a unified formulation for both the plane-strain and plane-
stress conditions. Consequently, we formulate the remainder of this manuscript in terms of the elastic
modulus and Poisson’s ratio instead of the Lamé parameters. Note, the use of the Lamé parameters until
this point was advantageous since otherwise the format of the localization tensors (19) would have been
more complicated.

We mention in passing that care should be taken when calculating the material parameters in two
dimensions since the relations between the material parameters are not necessarily identical to those in
three dimensions and even the physical bounds for the same parameter could be different. For instance,
the Poisson’s ratio could reach 1 in the incompressibility limit for the plane-strain case unlike 0.5 for the
three-dimensional case. Table 2 gathers the relations between different material parameters for both the
plane-strain as well as plane-stress scenarios and provides further insight. The conventional three-
dimensional elastic modulus and Poisson’s ratio are denoted 3DEs and 3Dns, respectively, so as to clearly
distinguish them from their two-dimensional counterparts.

3. Wrinkling of a growing layer

This section details on growth-induced instabilities of a thin growing film. To begin with, the thin film
is assumed to be on top of a deep (infinite half-space) compliant substrate, as illustrated in Figure 5.
The analytical solution of this problem is derived in Section 3.1 based on the equivalent stiffness of the
substrate (42). The analytical solution is illustrated next using numerical examples in Section 3.2 and its
key features are discussed. Section 3.3 compares the analytical solution with computational simulations

Table 2. Effective stiffness of the substrate Keff
s against a sinusoidal wave with the wavenumber k = 2p =‘ on its surface. The two

different formats of Keff
s in terms of the Lamé material parameters m s and ls coincide in terms of Es and ns. The elastic modulus and

Poisson’s ratio associated with conventional three-dimensional tests are denoted 3DEs and 3Dns, respectively.

Plane-strain Plane-stress

Keff
s (m s, ls) = 2m s ½2m s + ls%

3m s + ls
k Keff

s (m s, ls) = 8m s ½m s + ls%
6m s + 5ls

k

Es = 4m s ½m s + ls%
2m s + ls

ns = ls
2m s + ls

Es = m s ½2m s + 3ls%
m s + ls

ns = ls
2½m s + ls%

Es =
3DEs

1&3Dn2
s

ns =
3Dns

1&3Dns
Es = 3DEs ns = 3Dns

m s = Es
2½1 + ns% ls = Esns

½1&ns%½1 + ns% m s = Es
2½1 + ns% ls = Esns

½1&2ns%½1 + ns%
Keff

s (Es, ns) = 2Es
½3&ns%½1 + ns% k Keff

s (Es, ns) = 2Es
½3&ns%½1 + ns% k
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using the finite element method. Finally, Section 3.4 investigates the extended bilayer wrinkling and ela-
borates on how to generalize the proposed analytical solution to more complicated scenarios.

Note that the origin of the compressive stresses leading to instabilities of the film need not necessarily
be differential growth. For instance, pre-stretch or thermal expansion could also result in such geometric
instabilities. In fact, the nature of the compressive stresses could influence geometric instabilities in
bilayers and this issue has been carefully analyzed in [13, 14, 98] very recently. Based on these studies,
the origin of the compressive stresses has more significant effects on post-buckling behavior and second-
ary instabilities but it has very little influence on the primary buckling modes that are of particular inter-
est here. More precisely, one underlying assumption of this manuscript is that at the onset of wrinkling
the substrate is stress-free, which shall be revisited if other scenarios are to be considered. Various exten-
sions of the proposed approach to more complicated cases and to introduce pre-stretch as well as nonli-
nearities into the picture are possible, but shall be pursued in separate contributions.

In the subsequent derivations, the thickness of the domain in the out-of-plane direction is assumed to
be uniform and denoted by b. The problem can be modeled as being plane-strain or plane-stress in two
dimensions. Based on the discussion in Section 2.4 both formulations would formally coincide if the
substrate parameters Es and ns are defined according to Table 2 and used instead of the Lamé para-
meters m s and ls. Therefore, in what follows, the derivations are carried out in terms of the elastic mod-
ulus and Poisson’s ratio instead of the Lamé parameters. The boundary conditions are illustrated in
Figure 5 (right) indicating that the horizontal displacements along the length of the domain are prohib-
ited but the vertical displacements remain free.

3.1. Analytical solution

In order to derive the analytical solution for wrinkling of a growing thin film on an infinite half-
space, we decompose the domain into two subdomains, namely, the film and the substrate, as shown

,

,

material properties reference configuration deformed configuration

Figure 6. Decomposition of the domain into the film and substrate. The film is perfectly bonded to the substrate at all times. The
amplitude of the sinusoidal wave on the substrate and its decay versus depth h is schematically illustrated on the graph.

Figure 5. Growing thin film on a compliant deep substrate. If the three-dimensional domain is constrained in the out-of-plane
direction, it corresponds to a two-dimensional plane-strain problem and otherwise could be a two-dimensional plane-stress
problem. Boundary conditions are illustrated on the right.
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in Figure 6. Then each subdomain is treated separately and their corresponding deformations are
superimposed according to the geometrical constraint of perfect bonding between the film and the
substrate. That is, the film is constantly adhered to the substrate and cannot detach from it and,
thus, the deformation of the film must be identical to that of the substrate. The elastic modulus and
Poisson’s ratio of the film are denoted by Ef and nf , respectively. The growing elastic film fixed at
both ends resembles a thin beam under compression wherein the compression results from the accu-
mulation of the residual stresses due to growth. Furthermore, the interaction of the film with the
substrate manifests itself as a distributed force on the film. If v denotes the deflection of a thin beam,
the classical governing equation of the beam reads

Ef I v0000+ sbhv00= f , ð43Þ

in which Ef and I are the elastic modulus and the moment of inertia of the beam, respectively. The com-
pressive stress along the film due to growth is denoted by s and f on the right-hand side denotes the dis-
tributed force on the beam in the orthogonal direction. Note, positive values for s correspond to
compression based on our definition. The fundamental solution of the film equation (43) for the deflec-
tion v is of sinusoidal form. On the other hand, for a sinusoidal deflection function on the surface of the
substrate, the force distribution reads

f = & bKeff
s v with Keff

s = 2Es

½3&ns%½1 + ns% k, ð44Þ

where k = 2p =‘ is the wavenumber of the deflection v. Clearly, the relation (44) establishes link between
the findings of Section 2 and the derivations in this section. Furthermore, the minus sign in front of f is
due to the fact that the force f in (44) is the (reaction) force exerted from the substrate on the film hence,
negative of the force on the surface of the substrate.

Next, we insert the distributed force (44)1 into the governing equation of the film (43). Also, the
moment of inertia for a film with a rectangular cross-section of the width b and height h is I = bh3=12.
Finally, considering the sinusoidal nature of the deflection, the relation v00= & k2 v holds and yields

1
12 Ef h3 k4 v& shk2 v = & 2Es

½3&ns%½1 + ns% k v ) s = 1
12 Ef h2 k2 + 2Es

½3&ns%½1 + ns%
1
hk
, ð45Þ

for the compressive stress s in the film due to growth. In order to calculate the critical wavenumber k cr

at the onset of the growth-induced instability, we set the derivative of the stress s with respect to k to zero
and after some manipulation k cr reads

∂s
∂k

= 0 ) k cr = 1
h

12Es

Ef ½3&ns%½1 + ns%

h i1
3
, ð46Þ

from which the critical induced stress in the film s cr and the associated critical strain ecr = s cr=Ef can
be obtained by inserting k cr into (45) as

s cr = Ef
3Es

2Ef ½3&ns%½1 + ns%

h i2
3
, e cr = 3Es

2Ef ½3&ns%½1 + ns%

h i2
3
: ð47Þ

Table 3. Critical wavelength ‘ cr and critical stress s cr in the film to initiate growth-induced instabilities at the critical growth g cr .
The elastic modulus and Poisson’s ratio associated with conventional three-dimensional tests are denoted by 3DEs and 3Dns,
respectively.

‘ cr = 2p h Ef ½3&ns%½1 + ns%
12Es

h i1
3, e cr = 3Es

2Ef ½3&ns%½1 + ns%

h i2
3, g cr = e cr

1&e cr

plane-strain plane-stress

Es =
3DEs

1&3Dn2
s
, ns =

3Dns

1&3Dns
Es = 3DEs, ns = 3Dns

Ef =
3DEf

1&3Dn2
f

Ef = 3DEf
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Eventually, the critical wavelength ‘ cr and the critical growth g cr can be computed as ‘ cr = 2p =k cr

and g cr = e cr=½1& e cr % thereby a positive strain is assumed to be compressive. Note, the final results
here are formally identical to those given by Allen [1]. Nonetheless, the material parameters in (46) and
(47) must be related to the conventional three-dimensional material parameters according to Table 3.
Thus, the pioneering Allen’s relations in their original form are valid only for the plane-stress case, but
not for the plane-strain case unless the transformations according to Table 3 are taken into account.
This is particularly remarkable since the associated computational simulations using the finite element
method to date are often based on the plane-strain condition but are mistakenly compared with the
Allen’s solution.

We emphasize that the relation between the compressive strain in the film and the film growth reads
g = e=½1& e%, or alternatively e= g =½1 + g %, in which g is the (anisotropic) film growth coefficient along
the film itself with g . 0 indicating growth and g \0 corresponding to shrinkage. In addition, through-
out the previous derivations it is assumed that a positive strain is compressive, which complies with our
sign convention for growth g . In other words, shrinkage of the film results in negative (tensile) strain
and growth of the film leads to positive (compressive) strain in the film. In view of a finite deformation
setting, the growth tensor can be constructed via Fg = ½1 + g %I in which I= I&N$N is the identity ten-
sor along the film with N being the unit normal vector to the film.

3.2. Numerical illustrations

The analytical expressions obtained in Section 3.1 are illustrated here numerically to better interpret
them and use them to their fullest extent in numerous applications. Figure 7 gathers the graphs for the
critical growth g cr and the critical wavelength ‘ cr at the incompressibility limit and provides a thorough
comparison between the plane-stress and plane-strain conditions. The critical growth is plotted against
the film to substrate stiffness ratio Ef =Es as well as the film thickness h. Note that throughout the deriva-
tions in the previous section, it was assumed that the growing thin film is considerably stiffer than the
substrate and, therefore, our results are more accurate for Ef =Es . 10. In other words, the validity of our
approach for the stiffness ratios less than 10 is debatable since the compressive strain e can no longer be
regarded as infinitesimal, see [13, 99] for further details and discussions. However, for the sake of com-
pleteness, we provide the graphs for stiffness ratios as low as Ef =Es = 1. As is illustrated in Figure 9, even
for such small stiffness ratios, we observe a very good agreement between the analytical solution and the
numerical results using the finite element method. This surprising agreement between the numerical and

Figure 7. Illustration of the critical growth g cr and critical wavelength ‘ cr plotted against film thickness h and stiffness ratio Ef =Es

for plane-stress and plane-strain at the incompressibility limit.
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analytical results can be justified since the compressive stresses within the film result from growth only
and not compression on the whole domain. This in turn corresponds to a stress-free substrate at the
onset of wrinkling behaving according to small-strain linear elasticity. See [99] for a thorough and sys-
tematic study on instabilities of (soft) films on (compliant) substrates.

The surface plots clearly illustrate that the critical growth g cr is independent of the film thickness and
is only a nonlinear function of the stiffness ratio. While the difference between plane-stress and plane-
strain for the effective stiffness of the substrate could reach up to 20%, see Figure 4, this difference
reduces to less than 2% for the critical growth g cr , especially for higher stiffness ratios. Nonetheless, it
is crucial to recognize the difference between the two approaches even though for this specific problem
they happen to render nearly identical results. This difference is subtle yet noteworthy since the discre-
pancies encountered when comparing analytical and computational results are generally due to inconsis-
tent plane-stress or plane-strain assumptions. However, such mismatches are to date frequently
dismissed as being numerical errors. The same discussion holds for the critical wavelength ‘ cr , as well.

The critical wavelength ‘ cr is plotted against film thickness h and the third root of the stiffness ratio
Ef =Es. The linear relationship between the critical wavelength ‘ cr and the third root of the stiffness ratio
is portrayed clearly by the plots. The subtle difference in the critical wavelength arising from plane-stress
or plane-strain assumption is highlighted in the center panel by plotting the critical wavelength ‘ cr nor-
malized by thickness h against the third root of the stiffness ratio for both conditions. As the film thick-
ness h increases for a fixed stiffness ratio, the number of waves at the onset of wrinkling decreases or,
more precisely, the critical wavelength varies proportionally to the film thickness, as expected. In addi-
tion, the correlation between the critical wavelength ‘ cr and the stiffness ratio is observed by moving
down the stiffness ratio axis at a certain thickness. Such thorough representations are extremely helpful
in determining the design parameters to fulfill the requirements in various applications and to better
understand the interplay between the growth rate and the associated instability patterns.

3.3. Comparison with finite element method

The objective of this section is to compare briefly the analytical solution gathered in Table 3 with the
numerical results obtained from computational simulations using the finite element method via an eigen-
value analysis. The comparisons given here are associated with the plane-strain condition. Nonetheless,
we have performed a similar set of examples for the plane-stress condition in accordance with Section
3.2 but omitted them here since they mainly lead to the same observations and conclusions without pro-
viding any further insight. In the analytical approach, the geometrical instabilities are implicitly
accounted for via buckling analysis of the film. However, the computational simulations are based on
the nonlinear finite strain theory of continuum mechanics where the geometrical nonlinearity is abso-
lutely crucial to capture geometric instabilities.

Figure 8 illustrates the kinematics of growth and the associated instabilities within the framework of
nonlinear continuum mechanics. In this framework, the material (reference) configuration B0 is mapped

Figure 8. Kinematics of growth with multiplicative decomposition of the deformation gradient F into it elastic part Fe and growth
part Fg . The material configuration B0 is mapped to the spatial configuration Bt. The deformation gradient F maps the line elements
dX from B0 to dx in Bt according to dx = F ( dX. The intermediate ‘‘configuration’’Bg is, in general, incompatible.
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onto the spatial (current) configuration Bt via the nonlinear deformation map u. That is, the placement
of the spatial points x are related to their material counterparts X via x= u(X). The corresponding lin-
ear deformation map F := Gradu relates the line element dx in the spatial configuration to its material
counterpart dX via the relation dx=F ( dX.

To account for growth, we employ the commonly accepted concept of the multiplicative decomposi-
tion of the deformation gradient into its elastic and growth part as F=Fe ( Fg , see [51, 97, 100, 101]
among others. Clearly, the grown (intermediate) configuration Bg need not be necessarily compatible.
The stored energy in the material is not altered due to morphogenetic nature of the growth and, thus,
the free energy of a growing continuum would only be a function of the elastic part of the deformation
as c = c(F) = ce(Fe) where c and ce denote the total free energy density and the elastic free energy den-
sity, respectively. Thus, the total Piola stress P= ∂c=∂F can be calculated from the elastic Piola stress
Pe = ∂ce=∂Fe via the relation P=Pe ( Fg

&t. Next, similar to conventional finite deformation elasticity
and upon prescribing an elastic free energy density ce, the Piola stress field satisfying the momentum
balance and subsequently the associated deformation field is calculated. Obviously, additional care
should be taken due to the geometrical instabilities inherent in this problem. For the details of the finite
element implementation for growth-induced instabilities, see [102] and references therein.

Figure 9 gathers an exhaustive comparison between the numerical results using the finite element
method and the analytical solution for a broad range of film to substrate stiffness ratios denoted Ef =Es.
The comparative studies are carried out for different film thicknesses and also for three different
Poisson’s ratios. For all the examples, it is assumed that the Poisson’s ratio of the film and substrate are
identical and, therefore, the stiffness ratio Ef =Es remains independent of the Poisson’s ratio. To ensure

Figure 9. Comparison between analytical solution and computational simulations using the finite element method for growth-
induced instabilities of a thin film on a compliant substrate. Thickness indicates the film thickness h and Poisson’s ratio correspond to
the three-dimensional Poisson’s ratio. For each case, both the critical growth g cr and the critical wavelength ‘ cr are shown in the
graphs. Unlike for the critical growth g cr , the numerical results for the critical wavelength ‘ cr exhibit a step-wise behavior due to
the fact that the underlying finite element discretization can only comply with multiples of half-wavelength but cannot be infinitely
refined to continuously conform with the larger wavelengths corresponding to larger stiffness ratios.
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a meaningful comparison, identical three-dimensional parameters are chosen for both the analytical
solution as well as the computational simulations, see Table 3. For each Poisson’s ratio and film thick-
ness, both the critical growth g cr and the critical wavelength ‘ cr are plotted. Motivated from the analy-
tical solution, the horizontal axis for the critical wavelength ‘ cr is chosen as the third root of the
stiffness ratio so as to recover the linear dependence. The solid lines indicate the analytical solution
while the points are the results of the computational simulations using the finite element method in
accordance with [102], see also [103]. Unlike for the critical growth g cr , the numerical results for the
critical wavelength ‘ cr exhibit a step-wise behavior due to the fact that the underlying finite element dis-
cretization can only comply with multiples of half-wavelength but cannot be infinitely refined to con-
tinuously conform with the larger wavelengths corresponding to larger stiffness ratios. Overall, the
analytical solution and computational results are in excellent agreement and notably so for larger
Poisson’s ratio. This is particularly important since most of the applications of the current study deal
with biological soft tissues that are usually nearly incompressible.

3.4. Extended bilayer wrinkling

A key feature of this contribution is to decompose a bilayer structure into a substrate and a film and sub-
sequently derive the equivalent stiffness of the substrate against the displacement of the film and, there-
fore, regard the substrate as a nonlinear spring with the effective stiffness Keff

s . Introducing the notion of
effective stiffness for the substrate does not fundamentally change the derivations for a simple bilayer
structure, however, it unravels the nature of the problem and paves the way to extend the analytical solu-
tion to more complicated scenarios such as extended bilayer wrinkling [40, 41], trilayer wrinkling [21], or

Figure 10. Schematic illustration of how the current displacement-based approach to bilayer wrinkling can be adopted to more
complicated scenarios such as extended bilayer wrinkling, trilayer wrinkling, or multilayer wrinkling.

,

,

reference configuration deformed configuration

Figure 11. Growing thin film in an infinite medium and its decomposition into the film, substrate, and superstrate. The amplitude
of the sinusoidal wave on the substrate and its decay versus h is schematically illustrated on the graph (right).
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multilayer wrinkling [46], as schematically illustrated in Figure 10. See also the extended reference list in
the introduction for further details.

For instance, the extended bilayer wrinkling shown in Figure 10 (left) is composed of a substrate and
superstrate with the material properties and geometries shown in Figure 11 for which a similar analysis
to that in Section 2.3 can be carried out. However, employing the notion of equivalent stiffness allows
us to readily interpret the extended bilayer system as a combination of two springs with the stiffnesses
Keff

s and Keff
u replacing the substrate and superstrate, respectively. In this case, the displacements for

both springs are identical but their effective forces on the film are added leading to a spring combina-
tion in parallel. Thus, the total stiffness of the system against a sinusoidal displacement of the film reads
Keff
tot = Keff

s + Keff
u . On the other hand, the trilayer wrinkling depicted in Figure 10 (center) is different in

that the intermediate layer with the effective stiffnesses Keff
i lies between the film and the substrate corre-

sponding to a spring combination in series that yields 1=Keff
tot = 1=Keff

s + 1=Keff
i . Obviously, this approach

can be applied to multilayer wrinkling of Figure 10 (right) or other combinations of multiple layers.

4. Concluding remarks

Growth often plays a crucial role in the behavior of living systems. Here we have presented our first
attempt to provide a displacement-based approach to analyze geometric instabilities in bilayer struc-
tures. The most commonly accepted solution strategy to identify the critical conditions to initiate such
instabilities dates back to the seminal work of Allen [1] and is based on Airy stress functions. The Allen
solution is limited to two-dimensional linear isotropic problems and its success depends entirely on
choosing an appropriate Airy function. This contribution circumvents the limitations associated with
the Allen solution via a displacement-based approach that is intrinsically suitable for this problem.
Moreover, the subtle and yet frequently overlooked difference between the solutions corresponding to
the plane-strain and plane-stress conditions has been carefully analyzed. Through a series of numerical
examples, the analytical solution has been compared against computational simulations using the finite
element method via eigenvalue analysis and, overall, an excellent agreement has been observed. Finally,
it has been briefly explained how the current approach can be utilized in various scenarios such as
extended bilayer wrinkling and trilayer wrinkling. In particular, introducing the notion of effective stiff-
ness here provides a great insight into instabilities of bilayer systems and equips us with a powerful
methodology to deal with more complicated cases beyond the classical bilayer structures. Our next
immediate plan is to extend the proposed strategy to study geometric instabilities accounting for nonli-
nearities and secondary patterns. In summary, this manuscript presents our first attempt to shed light
on geometric instabilities in bilayers via a displacement-based approach inherently suited for this prob-
lem, instead of the stress-based approach of Allen. We believe that this framework can significantly
enhance our understanding of geometric instabilities greatly pertinent to soft bio-materials and living
systems.
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Notes

1. The specific format of c = 2m s isym + 2ls ivol corresponds to the plane-strain case, but it can be readily adapted to the plane-
stress condition by replacing ls with.m sls=½2m s + ls%. The subsequent derivations are carried out for the plane-strain condi-
tion, however, it is straightforward to formulate the problem under plane-stress condition. At the end of this section, the
results pertaining to the plane-stress condition are given without proof. Obviously, for the general three-dimensional case,
the constitutive tensor reads c = 2m s isym + 3ls ivol, as usual.

2. Note that in the seminal work of Allen [1] the quantity ‘ indicates half-wavelength, in contrast to the definition here.
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Appendix A. Derivations of stress formulation

This section provides detailed derivations and steps regarding the approach presented in Section 2.2.
While the main goal here is to include the intermediate steps in the derivations, only the crucial steps
are listed and the trivial ones are omitted for the sake of brevity. The derivatives of the stress function

f(j,h) = A ½1 + gh% sin (kj) exp (kh),

read

∂f

∂h
= A ½k ½1 + gh%+ g% sin (kj) exp (kh),

∂2f

∂h2
= A ½k2 ½1 + gh%+ 2kg% sin (kj) exp (kh),

∂f

∂j
= Ak ½1 + gh% cos (kj) exp (kh),

∂2f

∂j2
= & Ak2 ½1 + gh% sin (kj) exp (kh),

∂2f

∂j∂h
= A ½k2 ½1 + gh%+ kg% cos (kj) exp (kh),

ð48Þ

from which the stresses (6) can be obtained. Next, the strains are computed from the stress field and,
eventually, the displacement field u is derived via integrating the strain field as

u j =
R

ejj dj and u h =
R

ehh dh, ð49Þ

subjected to the boundary conditions. The strains are related to the stresses according to the relations

ejj =
2m s + ls

4m s½m s + ls%
sjj &

ls

4m s½m s + ls%
shh,

ehh =
2m s + ls

4m s½m s + ls%
shh &

ls

4m s½m s + ls%
sjj,

ð50Þ

in which the stresses are

sjj = A ½k2 ½1 + gh%+ 2kg% sin (kj) exp (kh),
shh = & Ak2 ½1 + gh% sin (kj) exp (kh):

ð51Þ

After several mathematical steps, the displacement field u reads

u j = & 1

2m s

k 1 + gh½ %+ 2m s + ls

2m s½m s + ls%
g

! "
A cos (kj) exp (kh),

u h = & 1

2m s

k 1 + gh½ % & 1

2½m s + ls%
g

! "
A sin (kj) exp (kh):

ð52Þ

The restriction of the displacement field to the surface of the infinite half-space h = 0 yields
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u j =& 1

2m s

k +
2m s + ls

2m s½m s + ls%
g

! "
A cos (kj),

u h =& 1

2m s

k & 1

2½m s + ls%
g

! "
A sin (kj):

ð53Þ

On the other hand, the stresses on the surface h = 0 read

sjjjh = 0 = A ½k2 + 2kg% sin (kj),

shhjh = 0 = & Ak2 sin (kj),

sjhjh = 0 = & 2A ½k2 + kg% cos (kj),

ð54Þ

resulting in the surface strain along the surface

ejjjh = 0 = 2m s + ls

4m s½m s + ls% sjjjh = 0 &
ls

4m s½m s + ls% shhjh = 0 = k
2m s½m s + ls% ½½m s + ls%k + g ½2m s + ls%%A sin (kj), ð55Þ

which must vanish identically and, thus, furnishing the parameter g as

ejjjh = 0 = 0 ) g = & m s + ls

2m s + ls
k: ð56Þ

Using g from (56), the stresses read

sjj =& m s + ls

2m s + ls
kh +

ls

2m s + ls

! "
Ak2 sin (kj) exp (kh),

shh =
m s + ls

2m s + ls
kh& 1

! "
Ak2 sin (kj) exp (kh),

sjh = 2
m s + ls

2m s + ls
kh& m s

2m s + ls

! "
Ak2 cos (kj) exp (kh):

ð57Þ

Furthermore, it is possible to compute the surface strain normal to the surface as well as the surface
shear strain as

ehhjh = 0 =
2m s + ls

4m s½m s + ls%
shhjh = 0 &

ls

4m s½m s + ls%
sjjjh = 0 = & 1

2m s + ls
k2 A sin (kj),

ejhjh = 0 =
1

2m s

sjhjh = 0 =
1

½2m s + ls%
k2 A cos (kj):

ð58Þ

Finally, the parameter g from (56) is replaced in the displacement field (52) resulting in

u j =
m s + ls

2m s½2m s + ls%
k2 hA cos (kj) exp (kh),

u h = ½ m s + ls

2m s½2m s + ls%
k h& 3m s + ls

2m s½2m s + ls%
%k A sin (kj) exp (kh),

ð59Þ

whose restriction on the surface reads

u jjh = 0 = 0 and u hjh = 0 = & 3m s + ls

2m s½2m s + ls% k A sin (kj): ð60Þ

Appendix B. Derivation of the general solution

The general solution to (16) may be obtained by solving for the eigenvectors corresponding to the eigen-
value obtained in (23). Solving for w in the following system renders the eigenvector corresponding to
the eigenvalue k
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M& k 1½ %= 0 )

&k 0 1 0
0 &k 0 1

k2½1 + as% 0 &k &ikas

0 k2½1& bs% &ikas½1& bs% &k

2

664

3

775

v1

v2

v3

v4

2

664

3

775= 0:

This system can be solved using three of the four equations. All the possible solutions to this system are
linearly dependent, resulting in the relation v1 = iv2 = v3=k = iv4=k for which setting v1 = 1 renders the
eigenvector

v)= 1 &i k &ik½ %t:

This gives the first fundamental solution W1 = v exp (kh) of the differential equation W0=M (W. Since
the multiplicity of the eigenvalue k is 2, but only one corresponding eigenvector is obtained (i.e. the geo-
metric and algebraic multiplicities of the eigenvalue are different), another vector is needed for the sec-
ond fundamental solution. This second fundamental solution is of the form
W2 = vh exp (kh) + v) exp (kh). Combined with the first fundamental solution, the general solution for
the system W0=M (W can, hence, be written as

W=W1 +W2 = v exp (kh) + vh exp (kh) + v) exp (kh): ð61Þ

Placing the proposed W from (61) into W0=M (W, after some manipulations, yields the relations
M& k 1½ %v= 0 and M& k 1½ %v)= v. The first equation has already been solved for when computing the
eigenvector corresponding to the eigenvalue of k. The second equation presents the system

&k 0 1 0
0 &k 0 1

k2½1 + as% 0 &k &ikas

0 k2½1& bs% &ikas½1& bs% &k

2

664

3

775

v)1
v)2
v)3
v)4

2

664

3

775=

1
&i
k
&ik

2

664

3

775:

Solving for v) in this system results in a new eigenvector, with v)1 set to 1, as

v)= 1 kas&2&as

ikas
1 + k kas&2&as

ias
& i

h it
:

The solution to the system (61) can, thus, be written as

W= D1W1 + D2W2 = D1v exp (kh) + D2½vh exp (kh) + v) exp (kh)%: ð62Þ

Referring to (22), the solution for the differential equation (16) can be written as the first two compo-
nents of the general solution tensor W, which reads

w= D1
1
&i

! "
exp (kh) + D2h

1
&i

! "
exp (kh) + D2

1
kas&2&as

ikas

! "
exp (kh), ð63Þ

expressed in terms of the basis t and nas

w= D1 + D2 + hD2½ % t+ &iD1 + ½kas&2&as%
i k as

D2 & ihD2

h i
n

h i
exp (kh): ð64Þ

Finally, the constants D1 and D2 can be expressed in terms of two other constants C and D defined as

D1 = i
k

C + k as&2
k as

h i
i
k

D and D2 = & i
k

D, ð65Þ

or

C = k
i

D1 + k as&2
as i

h i
D2 and D = & k

i
D2, ð66Þ
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leading to an alternative expression

w= 1
k

iC & 2
k as

iD& ihD
h i

t+ C + 1
k

D& hD
$ %

n
h i

exp (kh), ð67Þ

which using the definition as = ½ls + m s%=m s eventually reads

w(h) = 1
k

iC & 2m s

k½m s + ls% iD& ihD
h i

t+ C + 1
k

D& hD
$ %

n
h i

exp (kh): ð68Þ
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