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a b s t r a c t 

This paper introduces the Green Location-Routing Problem (GLRP), a combination of the classical 

Location-Routing Problem (LRP) and the Pollution-Routing Problem (PRP). The GLRP consists of (i) lo- 

cating depots on a subset of a discrete set of points, from where vehicles of limited capacity will be 

dispatched to serve a number of customers with service requirements, (ii) routing the vehicles by de- 

termining the order of customers served by each vehicle and (iii) setting the speed on each leg of the 

journey such that customers are served within their respective time windows. The objective of the GLRP 

is to minimize a cost function comprising the fixed cost of operating depots, as well as the costs of 

the fuel and CO 2 emissions. The amount of fuel consumption and emissions is measured by a widely 

used comprehensive modal emission model. The paper presents a mixed integer programming formula- 

tion and a set of preprocessing rules and valid inequalities to strengthen the formulation. Two solution 

approaches; an integer programming based algorithm and an iterated local search algorithm are also pre- 

sented. Computational analyses are carried out using adaptations of literature instances to the GLRP in 

order to analyze the effects of a number parameters on location and routing decisions in terms of cost, 

fuel consumption and emission. The performance of the heuristic algorithms are also evaluated. 

© 2019 Elsevier Ltd. All rights reserved. 

1

 

t  

o  

b  

a  

c  

f  

t  

t  

L  

a  

l  

s  

(  

2  

a  

g  

D  

E  

F  

s

 

i  

t  

t  

(  

w  

w  

n

 

v  

t  

o  

s  

R  

a  

t  

i  

f

 

h

0

. Introduction and background 

Recent decades have seen a growing interest in green logis-

ics, which can broadly be defined as planning and execution

f logistics activities in a more environmentally friendly way

y considering external factors such as waste, noise, energy us-

ge and Greenhouse Gas (GHG) emissions. “Green routing” is a

oncept first introduced by Kara et al. (2007) by observing the

act that “cost” is not usually directly proportional to distance

raveled but also the load of the vehicle. Palmer (2007) study

he integration of vehicle routing and CO 2 emissions. Bekta ̧s and

aporte (2011) introduce the Pollution-Routing Problem (PRP) with

 more accurate fuel consumption model that considers speed and

oad as decisions. Variants of the PRP have since been studied,

uch as time-dependency ( Jabali et al., 2012 ), with backhauling

 Ubeda et al., 2011 ), with pickup and delivery ( Oberscheider et al.,

013 ) and with inventory considerations ( Mirzapour Al-e hashem

nd Rekik, 2014 ). For comprehensive surveys on green routing and

reen logistics, we refer the reader to Sbihi and Eglese (2010) ,

ekker et al. (2012) , Lin et al. (2014) , Demir et al. (2014b) and

skandarpour et al. (2015) , and to Ubeda et al. (2011) ,
∗ Corresponding author. 
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igliozzi (2011) and Varsei and Polyakovskiy (2017) for case

tudies. 

Table 1 summarizes the relevant literature of “green rout-

ng” problems and compares them with our study based on

he following seven factors: (i) the number of objective func-

ions (single or multiple), (ii) type of emission model used,

iii) the proposed solution approaches (exact or heuristic), (iv)

hether these studies consider time windows or not, and (v,vi,vii)

hether speed, location and routing are considered as decisions or

ot. 

The Location-Routing Problem (LRP) is a generalization of the

ehicle routing problem that exploits the interdependency be-

ween the location decisions of facilities and routing decisions

f vehicles, as it has been shown that making the two deci-

ions independently can result in suboptimal solutions ( Salhi and

and, 1989 ). The basic LRP involves locating facilities and routing

 fleet of vehicles from the facilities to serve a given set of cus-

omers, with the aim of minimizing the cost of location and rout-

ng (see, e.g., Drexl and Schneider, 2015; Prodhon and Prins, 2014 ,

or comprehensive surveys). 

To the best of our knowledge, there are only a few studies

hat consider environmental impacts within the LRP literature. The

rst one is by Govindan et al. (2014) , who describe a bi-objective

wo echelon LRP with time windows which arises in a perish-

ble food supply chain network with manufacturers, distribution

https://doi.org/10.1016/j.cor.2019.01.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
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Table 1 

Features of “green routing” problems. 

Reference Objective Emission model Solution method Time windows Speed Location Routing 

Kara et al. (2007) Single Factor Exact � 

Palmer (2007) Single IFCM Heuristic � � � 

Figliozzi (2010) Multi MEET Exact and heuristic � � 

Figliozzi (2011) Multi MEET Exact and heuristic � � � 

Bekta ̧s and Laporte (2011) Single CMEM Exact � � � 

Demir et al. (2012) Single CMEM Exact and heuristic � � � 

Jabali et al. (2012) Single MEET Heuristic � � 

Demir et al. (2014a) Multi CMEM Heuristic � � � 

Qian and Eglese (2014) Single NAEI Heuristic � � � 

Our Study Single CMEM Exact and heuristic � � � � 

IFCM: Instantaneous fuel consumption model. 

MEET: Methodology for calculation transportation emissions and energy consumption. 

NAEI: National atmospheric emissions inventory. 

(see Demir et al., 2014b , for a detailed description of these models). 

Table 2 

Features of “green location-routing and green location” problems. 

Reference Objective Emission model Solution method Time windows Speed Location Routing 

Govindan et al. (2014) Multi Factor Heuristic � � � 

Koç et al. (2016) Single CMEM Exact and heuristic � � 

Toro et al. (2017) Multi Macroscopic Exact � � 

Tricoire and Parragh (2017) Multi Factor Exact and heuristic � � 

Khoei et al. (2017) Single CMEM Exact � � � 

Our Study Single CMEM Exact and heuristic � � � � 
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centers and retailers. The two objectives are to minimize the to-

tal cost and to minimize the environmental impact. They pro-

pose a multiobjective hybrid approach by combining multiobjec-

tive particle swarm optimization and an adaptation of a multiob-

jective variable neighborhood search. The second study is by Koç

et al. (2016) in which the authors analyze the impact of location,

fleet composition and routing on emissions in urban freight trans-

portation. The authors present a location-routing problem with

heterogeneous fleet of vehicles in a city logistics concept, which

use the comprehensive modal emission model (CMEM) proposed

by Scora and Barth (2006) , Barth et al. (2005) , Barth and Bori-

boonsomsin (2008) to calculate emission. Based on city logistics

concepts, cities are divided into three different speed zones and

vehicle speed is considered to be fixed in each speed zone. The

objective is to minimize the total cost which includes those of

depots, operating vehicles, fuel consumption and CO 2 emissions.

The authors utilize an adaptive large neighborhood search algo-

rithm to solve the problem and to conduct sensitivity analyses.

Toro et al. (2017) study a bi-objective green capacitated location-

routing problem with two objective functions that minimize the

operational cost and fuel consumption and CO 2 emission. The au-

thors use the ε-constraint method to solve the corresponding bi-

objective mathematical model. Tricoire and Parragh (2017) present

a green city hub location routing problem with heterogeneous fleet

and with two objectives; to minimize the total cost and minimize

CO 2 emissions. The authors develop a decomposition approach that

first generates vehicle routes which are used for a set covering

model. The authors test their algorithm on instances obtained from

industrial partners in Austria that include 22 hubs, 898 or 1635

customers, and two or seven vehicle types. The authors explore the

trade-offs between the amount of pollution and the cost in invest-

ing in facilities. 

In a recent study, Khoei et al. (2017) propose a green Weber

problem and its time-dependent version, where the authors com-

bine the location decision of a single facility and the speed de-

cisions of the vehicles sent to customers to minimize the total

amount of CO 2 emissions. This is the first study that integrates ve-

hicle speeds and time windows in a location problem, although it
does not consider vehicle routes. g  
Table 2 presents features of the existing “green location-routing

nd green location” problems and provides a comparison between

hem and our study. 

Similar to other related studies ( Bekta ̧s and Laporte (2011) ;

emir et al. (2012, 2014a) ) that use CMEM as the emission model,

e also treat speed and load as decision variables in order to es-

imate the emissions more accurately. This makes our contribution

ifferent to others that study a location-routing problem with en-

ironmental concerns. 

Although not many scientific studies yet exist on the LRP

ith an explicit consideration of fuel consumption and emissions,

ecent developments in practice suggest that this is a growing area

f attention, particularly in cargo and fast-moving consumer goods

FMCG) industries. Unilever, for example, who operates in the

MCG industry, has adopted a new Transport Management System

ince 2012, which optimizes transport flows between suppliers,

actories, warehouses and retailers, using a new network structure.

ncreasing transport and fuel efficiency and reducing emissions

re the main drivers behind this system ( Unilever, 2017 ). Similar

nitiatives have been put in place by other companies, such as

PS who achieved a reduction of 25,0 0 0 metric tonnes of CO 2 

hrough optimizing their network in 2015 ( UPS, 2015 ), and FedEx

ho invested in an EarthSmart program since 2010 to reduce

ransportation related emissions by optimizing vehicle loads and

outes ( FedEx, 2011 ). FedEx also ask their drivers to apply idle

eduction and speed control techniques to reduce fuel consump-

ion ( FedEx, 2016 ). DHL opened a new logistics center in Milan to

educe emissions as part of network design in a GoGreen environ-

ental protection program. This new center, which is located in

 strategic region of Milan that can be combined with air and sea

ransportation, uses 120 trucks to deliver 810,0 0 0 tons of goods

er year. A recent press release indicates that the new DHL center

as resulted in an “estimated reduction of facility and transport

O 2 emissions of 18% at the new site. 13% of which can be traced

ack to an improved road network and a reduction of both transit

ime and the average fuel consumption” ( DHL, 2012 ). Recently,

HL has made another significant investment by opening a logis-

ics hub in Milan Malpensa Airport which transports 60% of Italian

oods and is the sixth largest cargo airport in Europe. One of the
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ompany executives emphasizes that the company will focus on

he environmental sustainability for this new hub, which requires

n investment of €350m over the next five years ( DHL, 2016 ).

hese recent initiatives serve to illustrate the growing importance

f the need to optimize the network structure to be able to reduce

nvironmental externalities, which include decisions concerning

outing and location. 

Another application area of the GLRP has emerged due to recent

evelopments in on-road vehicle technologies. One example where

his is being put in practice is a European Commission research

roject known as Sartre - Safe Road Trains for the Environment.

n this application, a lead vehicle (usually a truck) travels ahead

f a platoon formed by other semi-autonomous vehicles, which

ll follow and travel at the same speed as the lead vehicle. The

bility to maintain a constant speed allows to achieve reductions

n congestion, fuel consumption and accidents. Trials of the road

rain technology were successfully held in Sweden ( Ward, 2011 )

nd Spain ( Volvo, 2012 ). Another more recent practice is the use

f autonomous vehicles. These type of vehicles also maintain a rel-

tively constant speed on the road compared to conventional ve-

icles. Recently, Daimler AG, an automotive corporation that owns

ercedes-Benz, launched two autonomous trucks; Mercedes–Benz

uture Truck 2025 ( Wysocky, 2014 ) and Freightliner Inspiration

ruck ( Linshi, 2015 ). Although these vehicles are still being trialled,

hey are expected to be driven on the roads in the near future

 Dougherty, 2017 ). Consequently, most of the leading cargo compa-

ies have started to consider using such new technologies in their

elivery operations; DHL published a report on self-driving vehi-

les in logistics based on its benefits and applications ( DHL, 2014 ),

S Postal Service is planning to make deliveries using self-driving

ail trucks within seven years ( Marshall, 2017 ), FedEx is also inter-

sted in autonomous vehicles and is collaborating with the manu-

acturers, Daimler and Volvo ( Woyke, 2017 ), and Amazon formed a

eam to study self-driving vehicles ( Stevens and Higgins, 2017 ). 

In this study, we introduce the Green Location-Routing Problem

GLRP), an extension of the LRP that explicitly accounts for fuel

onsumption and CO 2 emissions, the amount of which is measured

y a widely used comprehensive modal emission model (CMEM).

he GLRP consists of locating depots on a subset of a discrete set of

oints, from where vehicles of limited capacity will be dispatched

o serve a number of customers with service requirements, and

outing the vehicles by determining the order of customers served

y each vehicle and the speeds on each leg of the journey, such

hat customers are served within their respective time windows

nd vehicle capacities are respected. The objective is to minimize

 total cost function comprising depot, fuel and emission costs. As

or the network, we assume a single echelon structure including

he depot(s) and the customers. 

The contributions of this paper along its structure are as fol-

ows: (i) we formally define the GLRP, (ii) we propose a mixed

nteger linear programming formulation for the GLRP, (iii) we

trengthen the formulation by a set of preprocessing rules and

alid inequalities, all of which are detailed in Section 2 , (iv) we

resent two solution algorithms; one is to solve small-sized GLRP

nstances in reasonable times to near-optimality, and the other to

fficiently solve large-sized GLRP instances, both of which are ex-

lained in Section 3 , and (v) we conduct extensive computational

nalyses on the GLRP to quantify the benefit of the location deci-

ions on internal (operational) and external (environmental) costs,

nd to evaluate the performance of the heuristic algorithms de-

ailed in Section 4 . Conclusions are given in Section 5 . 

. Problem description and formulation 

The GLRP is defined on a complete directed graph G = ( N, A )

here N = {1, ..., n } denotes the set of nodes representing both the
et of customers and the potential sites for a total of p depots to be

ocated, and A = {( i, j ) : i, j ∈ N, i � = j } is the set of arcs. The fixed

ost of operating a depot at node i ∈ N is denoted by c i . A fleet

f m identical vehicles, each with capacity C serves the customers

cross the p depot(s). The distance on arc ( i, j ) ∈ A is denoted by

 ij . Each customer i has a nonnegative demand q i . The service time

nd time windows at node i ∈ N are denoted by s i and [ l i , u i ],

espectively. If a vehicle arrives at customer i before l i , it waits un-

il l i and then service starts. The minimum and maximum speed

imits for vehicles are denoted by v l and v u , respectively. The unit

ombined fuel consumption and emission cost is denoted by e . 

.1. Calculating fuel consumption and emissions 

The CMEM was proposed by Scora and Barth (2006) ,

arth et al. (2005) , Barth and Boriboonsomsin (2008) in order to

stimate fuel consumption for heavy-goods vehicles. Since emis-

ions are directly related to fuel consumption, one can easily calcu-

ate the amount of emissions when the fuel consumption is known.

ompared to other microscopic emission models in the literature,

t requires more detailed vehicle specific parameters such as the

ngine friction coefficient and the vehicle engine speed. 

Based on the CMEM, the fuel consumption rate can be calcu-

ated as F r = ξ (KϒV + P/η) /κ in liters/second (L/s) where ξ is the

uel-to-air mass ratio, K is the engine friction factor, ϒ is the en-

ine speed, V is the engine displacement (in L), η is the efficiency

arameter for diesel engines and κ is the heating value of a typ-

cal diesel fuel. Furthermore, P = P tract /n t f + P acc is the second-by-

econd engine power output (in kW), where n tf is the vehicle drive

rain efficiency that relates to the overall efficiency of all compo-

ents transmitting the engine power to the wheels, and P acc is the

ngine power demand associated with running losses of the engine

nd the operation of vehicle accessories such as air conditioning

sage. P tract is the total tractive power requirement (in kW) and it

an be calculated as follows: 

 tract = (Ma + Mg sin θ + 0 . 5 C d ρSv 2 + MgC r cos θ ) v / 10 0 0 , 

here M is the total weight of the vehicle (in kg) including the

mpty vehicle weight ω and weight of the goods carried, a is the

nstantaneous acceleration (in m/s 2 ), g is the gravitational constant

in m/s 2 ), θ is the road angle, C d is the coefficient of aerodynamic

rag, ρ is the air density (in kg/m 

3 ), S is the frontal surface area

in m 

2 ), v is the vehicle speed (in m/s) and C r is the coefficient of

olling resistance. 

To simplify the above formulation, some new parameters are

sed as follows: λ = ξ / κψ where ψ is the conversion factor of

uel, γ = 1/10 0 0 n tf η, α = a + g sin θ + gC r cos θ is a vehicle-arc spe-

ific constant and β = 0.5 C d ρS is a vehicle-specific constant. With

hese new parameters, the total fuel consumption F (in L) for a

ehicle traversing a road segment of d units (in m) at a constant

peed v (in m/s) can be given as follows: 

 = αλγ dM + λγ dβv 2 + λKϒV d/ v . 

As it can be seen from the expression above, the CMEM consists

f three modules, namely the weight module (shown by αλγ dM ),

he speed module (defined by λγ d βv 2 ) and the engine module

expressed by λK ϒVd / v ). These three modules are explicitly in-

luded in the objective function of the mathematical model in the

ollowing section. 

.2. An integrated model of location, routing, fuel consumption and 

missions 

In this section, we propose a mixed integer programming for-

ulation for the GLRP which is based on the model developed by

ekta ̧s and Laporte (2011) . The decision variables are defined as
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follows: A binary variable x k 
i j 

equals 1 if a vehicle that is assigned

to depot k ∈ N travels on arc ( i, j ) ∈ A , and 0 otherwise. If the cus-

tomer at node i ∈ N is assigned to a depot at node k ∈ N , then a

binary variable y ik equals 1, and 0 otherwise. The service start time

at node j ∈ N is denoted by a continuous nonnegative variable t j .

Similarly, a continuous nonnegative variable f ij represents the total

amount of flow on arc ( i, j ) ∈ A . 

As the vehicle speed is a decision variable, some of the objec-

tive function components and constraints of the formulation will

have non-linear terms due to the emission function used. To lin-

earize these terms, we adapt the discretization technique applied

for the PRP by Bekta ̧s and Laporte (2011) . To that end, a finite set

R = {1, ..., r , ... } of speed levels is defined where r ∈ R corresponds

to a fixed speed v r . In order to include the speed decision into the

model, a new binary variable, w 

kr 
i j 

, is introduced which takes the

value of 1, if a vehicle allocated to depot k ∈ N travels with a speed

level r ∈ R on arc ( i, j ) ∈ A , and 0 otherwise. A mathematical model

of the GLRP is as follows: 

Minimize ∑ 

k ∈ N 
c k y kk (1)

+ e 
∑ 

(i, j) ∈ A 

[ 

(αγ λd i j ω 

∑ 

k ∈ N 
x k i j ) (2.1)

+ (αγ λd i j f i j ) (2.2)

+ 

( 

βγλd i j 

∑ 

k ∈ N 

∑ 

r∈ R 
(v r ) 2 w 

kr 
i j 

) 

(2.3)

+ (KϒV λd i j 

∑ 

k ∈ N 

∑ 

r∈ R 

w 

kr 
i j 

v r 
) 

] 

(2.4)

subject to ∑ 

k ∈ N 
y ik = 1 ∀ i ∈ N (3)

y ik ≤ y kk ∀ i, k ∈ N (4)

∑ 

k ∈ N 
y kk = p (5)

∑ 

k ∈ N 

∑ 

j∈ N\{ k } 
x k k j ≤ m (6)

∑ 

j∈ N\{ i } 
x k i j = y ik ∀ i, k ∈ N : k � = i (7)

∑ 

j∈ N\{ i } 
x k ji = y ik ∀ i, k ∈ N : k � = i (8)

∑ 

j∈ N\{ k } 
x k jk = 

∑ 

j∈ N\{ k } 
x k k j ∀ k ∈ N (9)

∑ 

r∈ R 
( 

d k j 

v r 
) w 

kr 
k j ≤ t j ∀ j, k ∈ N : k � = j (10)
t  
 i + s i + 

∑ 

r∈ R 

(
d i j 

v r 

)
w 

kr 
i j − (u i + s i )(1 − x k i j ) ≤ t j 

∀ (i, j) ∈ A, k ∈ N : k � = i, j (11)

 

r∈ R 
w 

kr 
i j = x k i j ∀ (i, j) ∈ A, k ∈ N (12)

 j (1 − y j j ) ≤ t j ∀ j ∈ N (13)

 j ≤ u j (1 − y j j ) ∀ j ∈ N (14)

∑ 

j∈ N\{ i } 
f ji ≤

∑ 

j∈ N\{ i } 
f i j − q i (1 − y ii ) + 

∑ 

k ∈ N 
q k y ii 

∀ i ∈ N (15)

∑ 

j∈ N\{ i } 
f i j ≤ C(1 − y ii ) ∀ i ∈ N (16)

f i j ≤ C 
∑ 

k ∈ N 
x k i j ∀ (i, j) ∈ A (17)

 

k 
i j ∈ { 0 , 1 } ∀ (i, j) ∈ A, k ∈ N (18)

 ik ∈ { 0 , 1 } ∀ i, k ∈ N (19)

 

kr 
i j ∈ { 0 , 1 } ∀ (i, j) ∈ A, k ∈ N, r ∈ R (20)

 j ≥ 0 ∀ j ∈ N (21)

f i j ≥ 0 ∀ (i, j) ∈ A. (22)

The objective function consists of two components. The first,

hown by (1) , minimizes the fixed cost of operating depots. The

econd part shown collectively by (2.1) –(2.4) minimizes the to-

al cost of fuel consumption and emissions estimated by CMEM

escribed in Section 2.1 . In particular, the first two components

2.1) and (2.2) represent the weight module of the emission model

n which (i) the empty vehicle weight ω is represented by the

oad-independent component (2.1) , and (ii) the weight of the load

arried associated to the load-dependent component (2.2) is rep-

esented by the flow variable f . Components (2.3) and (2.4) cal-

ulate the fuel consumption and emissions due to the speed and

ngine modules of the CMEM, respectively. Constraint (3) ensures

hat every customer is assigned to exactly one depot. Constraint

4) stipulates that if a depot is not opened at a node, then none

f the customers can be assigned to the depot at that node. Con-

traint (5) sets the number of depots to be opened equal to p .

onstraint (6) guarantees that at most m vehicles can be used to

erve the customers. With constraints (7) and (8) , it is ensured that

f a customer is assigned to a specific depot, then a vehicle vis-

ts this customer before and after two other customers which are

lso assigned to this depot. Constraint (9) ensures that the num-

er of vehicles that leave and that arrive at the depot is the same.

onstraints (10) –(14) are related to time and speed. Constraint

10) calculates the arrival time of a vehicle at the first customer

isited after leaving the depot. Constraint (11) calculates the arrival

imes of a vehicle at customers assigned to the same depot as the
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ehicle. Constraint (11) is an adaptation of the well known subtour

limination constraints proposed by Miller et al. (1960) and pro-

ibit the formation of tours solely within customer nodes. With

onstraint (12) , vehicles can use only one of the specified speed

evels over an arc. Constraints (13) and (14) model the time win-

ow constraints for customers. These constraints also stipulate

hat, if a depot is located at a node j (i.e., y j j = 1 ), then t j =
 , indicating that the customer at node j is served immediately.

onstraint (15) provides flow conservation between nodes except

here a depot is opened. In particular, f ij is the total amount of

emand in the route until, but excluding, customer j , and where

 customer at node k is not taken into account if k is selected as

 depot. Constraints (16) and (17) collectively enforce the vehicle

apacity constraints on the flow on each arc. Finally, constraints

18) –(22) are the domain constraints on the variables. 

.3. Preprocessing and valid inequalities 

This section describes some preprocessing rules and valid in-

qualities to strengthen the formulation presented in the previous

ection, and to potentially reduce solution times to optimality. 

We first present a couple of variable fixing rules for w 

kr 
i j 

vari-

bles, which we implement prior to solving the formulation: 

• If l i + s i + 

d i j 

v r > u j , then w 

kr 
i j 

= 0 

• If 
d k j 

v r > u j , then w 

kr 
k j 

= 0 . 

The first rule dictates that if the sum of the lower time limit l i 

t node i , the travel time 
d i j 

v r between nodes i and j and the service

ime s i at node i is greater than the upper time limit u j at node

 , then w 

kr 
i j 

is set equal to zero. The second preprocessing rule is a

pecial case of the first one where j is the first customer after the

epot. 

Next, we describe several valid inequalities in order to

trengthen the linear programming (LP) relaxation of the mathe-

atical formulation in the expectation of reducing the CPU times.

hese inequalities narrow the solution space by eliminating some

ractional solutions and can provide stronger lower bounds for the

roblem. 

First, we consider two-node subtour breaking constraint pro-

osed by Dantzig et al. (1954) in order to eliminate cycles be-

ween two customers and develop two different valid inequalities

s shown below: 

x k ij + x k ji ≤ y ik ∀ ( i, j ) ∈ A, k ∈ N : k � = i, j ( VI 1 . 1 )∑ 

k ∈ N\ { i, j } 

(
x k ij + x k ji 

)
≤

∑ 

k ∈ N\ { i, j } 
y ik ∀ ( i, j ) ∈ A. ( VI 1 . 2 )

VI (1.1) and VI (1.2) ensure that if a customer is assigned to a

pecific depot, then this customer and any other customer assigned

o the same depot can have a link between them in only one di-

ection. 

Second, we develop a flow based valid inequality, which en-

ures that the amount of flow on arc ( i, j ) ∈ A is larger than the

emand q i of node i ∈ N , unless node i is selected as a depot. 

q i 

( ∑ 

k ∈ N 
x k ij − y ii 

) 

≤ f ij ∀ ( i, j ) ∈ A. ( VI 2 )

The valid inequality we propose next provides a lower bound

n the number of vehicles required, which is derived from the ratio

f the demand of all customers (excluding depots) to the vehicle

apacity. ∑ 

k ∈ N q k (1 − y kk ) 

C 

)
≤

∑ 

k ∈ N 

∑ 

j∈ N\{ k } 
x k k j . (VI 3)
Similar inequalities to VI (3) were first proposed by

chuthan et al. (2003) for a vehicle routing problem, and later

dapted for a location-routing problem by Karaoglan et al. (2012) .

he last sets of inequalities are stronger versions of the time win-

ow constraints (13) and (14). These inequalities are the adapted

ersions of Bekta ̧s and Laporte (2011) proposed for the PRP. 

l j 
(
1 − y jj 

)
+ 

∑ 

i ∈ N\ { j } 

∑ 

k ∈ N\ { i, j } 

∑ 

r∈ R 
max 

(
0 , l i − l j + s i + 

d ij 

v r 

)
w 

kr 
ij ≤ t j 

∀ j ∈ N ( VI 4 . 1 ) 

t j ≤ u j 

(
1 − y jj 

)
−

∑ 

i ∈ N\ { j } 

∑ 

k ∈ N\ { i, j } 

∑ 

r∈ R 
max 

(
0 , u j − u i + s j + 

d ji 

v r 

)
w 

kr
ji 

∀ j ∈ N. ( VI 4 . 2 )

VI (4.1) implies that service of a customer at node j ∈ N starts

fter either the customer’s lower time limit ( l j ) or the sum of the

ower time limit ( l i ) and service time ( s i ) of a customer at node i

 N that proceeds it, and the travel time ( 
d i j 

v r ) between these two

ustomers. Similarly, VI (4.2) guarantees that service of a customer

t node j ∈ N starts before either the customer’s upper time limit

 u j ) or the time that ensures that the next customer’s i ∈ N service

tarts before its upper time limit ( u i ) at worst. 

. Heuristic algorithms for the GLRP 

In this section, we present two heuristic algorithms to solve

he GLRP. Both algorithms first divide the GLRP into subproblems;

amely, the Cumulative Location Routing Problem (CumLRP) and

he Speed Optimization Problem (SOP), and solve each in a hierar-

hical manner. In particular, once the CumLRP is solved, the loca-

ion of the depots and the routes of the vehicles are determined.

he SOP is then solved using the routes of the vehicles in order to

dentify the optimum speeds for the vehicles. The solutions found

y the algorithms are feasible for the GLRP since it satisfies all the

onstraints imposed by the GLRP formulation. We describe the two

euristic algorithms in more detail below. 

.1. Cumulative location-routing and speed optimization algorithm 

CLRSOA) 

The Cumulative location-routing and speed optimization algo-

ithm (CLRSOA) works as follows; first, one of the CumLRP for-

ulations that will be introduced in Section 3.1.1 is solved to op-

imality. During the optimization process, some feasible solutions

re stored in the “solution pool”. Based on the depot locations and

ehicle routes, the SOP is solved by the Speed Optimization Algo-

ithm (SOA) explained in Section 3.1.2 for each of the solutions in

he pool. Then, a feasible solution with the lowest objective func-

ion value is selected as the solution of the CLRSOA. 

Next, we will present the mathematical formulations and solu-

ion techniques for the two subproblems. 

.1.1. Cumulative location-routing problem 

The CumLRP is a special case of the GLRP where the time win-

ow constraints are relaxed and where the speed-induced fuel

onsumption cost is not included in the objective function. In other

ords, the objective function only minimizes the weight-induced

uel consumption cost. Singh and Gaur (2017) introduce the Cumu-

ative Vehicle Routing Problem, where only routing decisions are

ade and where a factor model is used to estimate fuel consump-

ion instead of a microscopic emission model as in the CumLRP. To

he best of our knowledge, the Cumulative Location-Routing Prob-

em (CumLRP) has not yet been defined in the literature. The main



192 O. Dukkanci, B.Y. Kara and T. Bekta ̧s / Computers and Operations Research 105 (2019) 187–202 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

o  

a  

p  

m  

b  

w  

l

 

t  

p  

m  

u  

c  

p  

t

 

o  

a  

f  

f

3

 

f  

L  

t  

r  

e

 

A

A

 

i  

t  

a  

c  

s  

t  

n  

e  

i  

1  

a  
difference between the CumLRP and the classical LRP is the objec-

tive function. The classical LRP minimizes the operational cost that

is a function of the total distance traveled. In the CLRP, the opera-

tional cost depends on both the distance traveled and the load of

the vehicle. 

An integer programming formulation of the CumLRP can be de-

rived by removing the speed related objective function compo-

nents (2.3–2.4), as well as the speed and time related decision

variables and constraints from the GLRP formulation (Constraints

10–14). The mathematical model of the CumLRP is as follows: 

Minimize (1) + (2 . 1) + (2 . 2) 

subject to 

(3) − (9) , (15) − (19) , (22) . 

In addition to the above CumLRP formulation, we also propose

a different version of the CumLRP formulation CumLRP ′ to diversify

the solutions in the “solution pool”. In the CumLRP ′ , we assume

that the vehicles travel at the optimal speed v ∗ on each arc of the

network, calculated as follows. The fuel consumption function F ( v,

f ), which depends on speed v and load f , can be written as 

F (v , f ) = (αγ λdw ) + (αγ λdf ) + (βγ λdv 2 ) + (KϒV λd/ v ) , 

from which v ∗ = 

3 

√ 

KϒV 
2 βγ

is obtained as the global minimizer. The

objective function of the CumLRP ′ formulation is the same as that

of GLRP when v r = v ∗ for all r ∈ R . 

The main difference between the CumLRP and the CumLRP ′ for-

mulations is that in the latter, we add the cost components (2.3)–

(2.4) in the objective function with the assumption that the ve-

hicles travel at the optimal speed v ∗, which makes the optimal

value of the CumLRP ′ formulation a valid lower bound for the cor-

responding GLRP. 

To solve the CumLRP or CumLRP ′ formulations within the CLR-

SOA, we use three different solution strategies of the solver CPLEX

to diversify the solutions in the “solution pool”. The first one is

the default “dynamic search”, the second is “traditional branch and

cut” without the cuts (pure branch and bound algorithm), and

third, a cut-and-branch method using the second technique, but

with some of the valid inequalities added at the root node. 

3.1.2. Speed optimization problem 

Once the location of depots and route of vehicles are known,

the only remaining decision is the speed to be used over each arc

so that time windows will be obeyed and the total ‘cost’, which is

composed of speed-induced fuel consumption will be optimized.

This second subproblem is the speed optimization problem intro-

duced by Demir et al. (2012) for road transportation. Given a route

and time windows for each customer, the problem decides the ve-

hicle speed on each arc of the route while minimizing the total

cost including fuel consumption and driver cost. As the estimation

of fuel consumption is non-linear, the authors presented a non-

linear formulation. 

Since we do not consider driver cost in the GLRP, we only min-

imize the fuel consumption in our version of the speed optimiza-

tion problem. In addition, we do not need to decide on the vehicle

speed for the arc between the last customer visited before the de-

pot and the depot itself since the vehicles travel at the optimal

speed v ∗ on this arc because there is no time related constraint

for returning the depot. Based on these differences between the

formulation proposed by Demir et al. (2012) and our version, we

reformulate the corresponding speed optimization problem. 

Speed optimization algorithm : In order to solve the SOP, we

use the speed optimization algorithm (SOA) which was first pro-

posed by Norstad et al. (2011) and Hvattum et al. (2013) for

maritime transportation. The algorithm was first adapted by

Demir et al. (2012) for ground transportation. The authors stated
hat the algorithm finds the optimal solution due to convexity

f the objective function ( Hvattum et al., 2013 ). We adapt the

lgorithm proposed by Demir et al. (2012) to our problem. The

seudo-code of the algorithm is presented in Appendix A . The

ain difference of our algorithm compared to the one proposed

y Hvattum et al. (2013) is while calculating the vehicle speeds

e consider the time windows, the minimum and maximum speed

imits and the optimal speed ( v ∗). 

Kramer et al. (2015) developed a speed and departure time op-

imization algorithm, which is very similar to the algorithm pro-

osed by Demir et al. (2012) . They reformulated the speed opti-

ization problem and proved the optimality of their algorithm by

sing the necessary and sufficient Karush–Kuhn–Tucker optimality

onditions of the reformulated version of the speed optimization

roblem. Their proof can easily be adapted to prove our version of

he speed optimization algorithm. 

We note here that the proposed algorithm gives the exact value

f vehicle speed that minimizes the fuel consumption, rather than

 discretized speed level as in the green location routing problem

ormulation. Therefore, it provides a more accurate estimation for

uel consumption. 

.2. Iterated local search algorithm 

We also develop an Iterated Local Search (ILS) algorithm

or the problem. The ILS approach was first proposed by

ourenço et al. (2003) . The ILS algorithm has already been applied

o several vehicle routing problems along with some location-

outing problems in the literature ( Derbel et al., 2012; Nguyen

t al., 2012 ). 

The main structure of the proposed algorithm is shown in

lgorithm 1 . 

lgorithm 1 Iterated local search. 

1: Iter ← 1 , f (s ∗) ← ∞ 

2: for Iter ← 1 to MaxIter do 

3: Generate an initial solution s 

4: s̄ ← s , Iter NI ← 0 

5: while I ter NI < MaxI ter NI do 

6: s ′ ← Local Search (s ) 

7: if f (s ′ ) < f ( ̄s ) then 

8: s̄ ← s ′ 
9: Iter NI ← 0 

10: end if 

11: s ← Per tur bation ( ̄s ) 

12: I ter NI ← I ter NI + 1 

13: end while 

14: if f ( ̄s ) < f (s ∗) then 

15: s ∗ ← s̄ 

16: end if 

17: end for 

18: return s ∗ and f (s ∗) 

The proposed ILS algorithm consists of three main components;

nitial solution, local search and perturbation. At each iteration Iter ,

he algorithm first generates an initial feasible solution s , which is

lso assigned as the incumbent solution s̄ (lines 3 to 4). Then, a lo-

al search procedure is applied to this initial solution to find a new

olution s ′ (line 6). If the objective function value of this new solu-

ion f ( s ′ ) is less than that of the incumbent solution f ( ̄s ) , then this

ew solution s ′ becomes the incumbent solution s̄ (lines 7–8). To

scape from a local optimum solution, the algorithm perturbs the

ncumbent solution s̄ and generates a new starting solution s (line

1). These local search and perturbation procedures repeat until

 certain number MaxIter of iterations without improvement is
NI 
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eached (lines 5–13). Finally, if the objective function of the incum-

ent solution f ( ̄s ) is less than the that of the global best solution

 ( s ∗), then the incumbent solution s̄ replaces the global best solu-

ion s ∗ (lines 14–15). The algorithm continues until a certain num-

er MaxIter of iterations is reached (lines 2–17). 

.2.1. Initial solution 

Initial feasible solutions to the GLRP are generated by first lo-

ating the depots and then assigning the customers to the located

epots. The depot decisions are made in two different ways. In

he first iteration of the algorithm ( Iter = 1 ), we select the first p

epots that have the lowest average distances to the customers.

n the subsequent iterations ( Iter > 1), we identify a larger set of

p + k candidate depot locations that have the lowest average dis-

ances to the customers, where k > 1 is an integer, and randomly

ocate p depots from within this set. Once the depot locations are

xed, customers are assigned to their nearest depots in the first δ%

f the total number MaxIter of iterations of the algorithm. In the

est of the algorithm, the assignments of customers to depots are

one randomly. The effect of such random assignments on the al-

orithm’s performance is numerically investigated in later sections.

To construct the routes, we use the savings algorithm

 Clarke and Wright, 1964 ). At the beginning of the algorithm, ve-

icles serve only one customer, which means after visiting a cus-

omer, the vehicle returns the depot directly without visiting any

ther customers. After constructing the tours in this manner, the

lgorithm calculates the potential savings to be gained if two dif-

erent tours are combined. Then, starting from the maximum sav-

ngs combination, the algorithm combines tours until there is no

avings combinations left. While combining the tours, our version

f this algorithm also respects vehicle capacity and customer time

indow constraints. After constructing the tours, the SOA is ap-

lied to find the optimal vehicle speeds. 

.2.2. Local search 

For the local search procedure, initially, the algorithm uses re-

oval and insertion operations between the tours. Initially, two

ours are selected; one from which a customer will be removed

nd the other to which the removed customer will be inserted. The

election of tours are random except for single-customer tours. In

his case, a customer from the tour with the highest number of

ustomers is removed and inserted into single-customer tour. 

The selection of the customer that will be removed and the se-

ection of the position into which that customer will be inserted

re decided as follows. First, the cost of a customer is calculated as

he difference of total distance of the tour with and without that

ustomer. The customer with the highest cost on tour is selected

o be removed from the former tour. Then, the position that re-

oved customer will be inserted is selected based on its impact

n the latter tour. The algorithm selects the position with the low-

st impact on the tour in terms of distance and then it inserts the

emoved customer into that position. 

After the removal and insertion operators, the well-known two-

pt algorithm proposed by Croes (1958) is used where two edges

rom a tour are removed and then two resulting paths are recon-

ected in a different way. In our algorithm, for each tour in the so-

ution, all possible two-opt moves are applied. After these moves,

f an improvement is achieved, the same two-opt procedure is ap-

lied to the new improved solution until there is no improvement

n the solution. Any two-opt move that violates the time window

onstraints are not allowed in this algorithm. After each two-opt

ove, the SOA is also applied to the tours to find the optimal ve-

icle speeds. 

.2.3. Perturbation search 

In the perturbation stage, the algorithm again uses removal and

nsertion operations between the tours. The tour selection is the
ame as the one in local search. However, the selection of the

ustomer that will be removed and the selection of the position

nto which that customer will be inserted are made randomly. Any

ove that causes an infeasible solution due to the capacity or time

indow constraints is not allowed in the algorithm. 

. Computational results 

In this section, we present extensive computational results and

nalyses on the GLRP and also the performance of the solution ap-

roaches. The aim of the computational analysis is three-fold. First,

e test the formulation proposed for the GLRP and the effect of

he valid inequalities on its performance. Second, we conduct a

etailed analysis on the GLRP by numerically assessing the effect

f a number of parameters, such as depot cost, fuel consumption

nd emission cost, time windows and depot locations. Third, we

ompare three solution approaches for the GLRP, namely to use the

LRP formulation and two heuristic methods. 

The computational experiments were carried out on a server

sing 4 AMD Opteron Interlagos 6282 SE and with 96 GB of RAM.

ll mathematical models and algorithms were implemented in

ava. The IBM ILOG CPLEX Optimization Studio version 12.6.1.0 was

sed as the solver. The time limit was set as two hours for any

nstance. 

.1. Description of the data set 

The instances tested here are from the PRP Library of

emir et al. (2012) . The data set in this library consists of ran-

omly selected cities of the United Kingdom with real road dis-

ances, but where demands, time windows and service time are

andomly generated. The instances are available at http://apollo.

anagement.soton.ac.uk/prplib.htm . As the library does not in-

lude any information on the cost of a depot, the fixed operating

ost of a depot is modeled to be proportional to the distance to the

ustomers. To determine this value, for each depot, the average of

he distances from other demand nodes to that depot is calculated,

earing in mind that any demand node can be a depot. Here, we

ssume that being closer to customers means a more centrally lo-

ated depot, which can reduce the operational cost of a depot. 

The set of speeds are defined from 55 km/h to 90 km/h in

 km/h increments, resulting in R = { 55 , 60 , 65 , 70 , 75 , 80 , 85 , 90 } .
e do not consider any speed level less than 55 km/h based on the

esults of Demir et al. (2014a) who showed that the optimal vehi-

le speed to minimize the amount of emission is around 55 km/h

or given specific parameter values, irrespective of the vehicle be-

ng empty or loaded, and when there are no time related con-

traints. This assumption is justified by the fact that the vehicles

an wait at nodes before the service starts. Therefore, any solution

sing speed values less than 55 km/h would be dominated. 

All other values used for the emission model parameters used

an be found in Appendix B ( Demir et al., 2012; 2014a ). 

.2. Performance of the valid inequalities 

This section reports the results of detailed experiments on the

erformance of the proposed valid inequalities. We use the first

our of the 20-node instances from the PRP Library with three dif-

erent ( m, p ) pairs as (3,1), (3,2), (3,3), resulting in a total of 12

nstances tested here. 

The valid inequalities are used in combination to find the best

onfiguration. We do not consider any combinations that include

VI 1.1) and (VI 1.2) together, as they both are subtour breaking

onstraints. A total of 24 combinations are tested, where each com-

ination is appended to the formulation and solved with CPLEX.

http://apollo.management.soton.ac.uk/prplib.htm
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Table 3 

Performance of the valid inequalities. 

Comb. Av. CPU Av. N. CPU Comb. Av. CPU Av. N. CPU Comb. Av. CPU Av. N. CPU 

Base 1763.42 1.00 1.1–4 2489.45 2.04 1.1–2–4 1795.16 2.00 

1.1 2044.12 1.71 1.2–2 1736.87 1.64 1.1–3–4 1077.80 1.01 

1.2 1705.05 1.28 1.2–3 782.14 0.61 1.2–2–3 1250.60 1.21 

2 2623.29 2.44 1.2–4 2317.37 1.83 1.2–2–4 2639.75 2.43 

3 1426.74 0.92 2–3 1753.66 1.68 1.2–3–4 1045.26 0.93 

4 2529.33 2.16 2–4 2997.97 2.86 2–3–4 1841.75 1.52 

1.1–2 1272.73 1.71 3–4 2138.74 1.76 1.1–2–3–4 1259.45 1.25 

1.1–3 920.89 0.78 1.1–2–3 859.12 0.62 1.2–2–3–4 2061.90 2.16 

Table 4 

Summary of the computational results for the GLRP. 

Fuel consumption 

| N | p Total cost Depot cost Weight Speed Total Avg. speed Distance CPU 

(£) (£) (L) (L) (L) (km/h) (km) (s) 

10 1 243.52 140.30 28.07 45.66 73.73 56.02 457.19 6.59 

10 2 381.67 288.11 25.69 41.14 66.83 56.25 411.39 8.09 

10 3 533.43 442.89 24.87 39.81 64.67 56.39 398.04 7.59 

10 386.21 290.43 26.21 42.20 68.41 56.22 422.21 7.42 

15 1 294.62 152.37 39.09 62.52 101.61 62.42 599.40 809.93 

15 2 435.27 302.02 36.76 58.41 95.18 60.50 568.73 405.52 

15 3 587.33 468.44 32.71 52.20 84.92 57.23 520.13 331.86 

15 439.07 307.61 36.19 57.71 93.90 60.05 562.75 515.77 

20 1 288.76 136.86 42.47 66.03 108.50 56.65 659.87 796.17 

20 2 419.98 281.17 38.61 60.55 99.15 56.25 605.96 592.01 

20 3 560.12 424.66 37.62 59.14 96.76 56.50 591.71 958.23 

20 422.95 280.89 39.56 61.91 101.47 56.47 619.18 782.14 

Average 416.08 292.98 33.99 53.94 87.93 57.58 534.71 435.11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l  

s  

v

 

t  

c  

i  

s  

a  

b  

s  

t  

n  

s  

i

4

 

s  

I  

t  

o  

t

 

c  

c  

i  

s  

d  

 

u  

v  

i  

t  

t  

t  
We normalize the CPU times against the base case, shown in the

first row of the table, in which no valid inequalities are used. 

The average results over the 12 instances are presented in

Table 3 , where the columns titled “Comb.” show the various com-

binations of the valid inequalities 1.1, 1.2, 2, 3 and 4. In this ta-

ble, we present only the average values; the average solution time

under column “Av. CPU” as well as the average normalized solu-

tion time under column “Av. N. CPU”. Detailed results are given in

Appendix C . 

The results in Table 3 indicate that the combinations 1.2–3

and 1.1–2–3 both provide the two lowest average normalized CPU

times equal to 0.61 and 0.62, respectively. In terms of the average

solution time, however, the combination 1.2–3 with 782.14 s per-

forms better than the combination of 1.1–2–3 with 859.12 s, for

which reason the former combination will be used in the rest of

the experiments. 

4.3. Analysis of the GLRP solutions 

We conduct a comprehensive analysis on the GLRP, to test the

sensitivity of the solutions against changes in the input parame-

ters, such as the number of depots p , the fixed cost c k and time

windows [ l i , u i ]. For this purpose, we generate a larger set of prob-

lem instances with | N | = 10, 15, 20 and p = 1, 2, 3, where, for each

pair ( N, p ), we choose the minimum value m 

∗ ∈ {2, 3, 4} so that the

resulting instance is feasible. Four instances for each ( N, p, m 

∗) are

generated, resulting in a total of 36 instances altogether. Details of

the instances as well as the experiments are given in Appendix D . 

We first present a summary of the results for the new instances

in Table 4 , which presents the average values over four instances

for each combination of ( N, p ), averages for each N , and averages

across all instances in the last row. The columns titled “Total Cost”,

“Depot Cost” and “Fuel Consumption” stand for the optimal objec-

tive value, the total cost (in pounds), the fixed cost of depot lo-

cation (in pounds) and the amount of fuel consumed (in L), sepa-

rately for weight and speed-induced amounts, respectively. In the
ast three columns, “Average Speed”, “Distance” and “CPU” repre-

ent the average vehicle speed (in km/h), the total distance tra-

ersed (in km) and finally the CPU time (in s), respectively. 

As it can be seen from the table, as the value of p is increased,

he total cost and the total fixed cost of operating depots also in-

rease by £142.33 and £151.08 on average, respectively. In contrast,

ncreasing the value of p reduces the total amount of fuel con-

umed by 6.25 L on average, and by 2.41 L and 3.84 L for the weight

nd speed-induced consumption, respectively. Increasing the num-

er of opening depots reduces the number of customers to be

erved in the network, leading to less load on the vehicles and the

otal distance traveled. The average CPU times for 10, 15 and 20

odes instances are 7.42, 515.77 and 782.14 s, respectively, which

hows the expected increase on the CPU time as the instance sizes

ncrease. 

.3.1. The effect of the depot cost 

To assess the effect of depot location decisions on fuel con-

umption and emissions, we use two different types of depot costs.

n the first, depot costs are assigned as being inversely propor-

ional to the average distance to other demand nodes. In the sec-

nd, depot costs are generated randomly. In Table 5 , we present

he comparison results for 10, 15 and 20 node problem instances. 

The results indicate that using inversely proportional depot

osts yields different results in terms of the depot location or vehi-

le routes than directly proportional depot costs in all 36 problem

nstances. As for the GLRP with randomly generated depot cost, the

olution change in 35 problem instances, suggesting that location

ecisions do play a crucial role on fuel consumption and emissions.

Based on the average values shown in the last row of Table 5 ,

sing inversely proportional depot costs change depot location and

ehicle routes for all instances, resulting in a 3.17 L (3.60%) increase

n fuel consumption due to a 18.38 km (3.44%) increase in the to-

al distance traveled. Since the cost of the depot located near to

he customers is more expensive, an increase in the total distance

raveled and in the fuel consumed is expected. In contrast, using
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Table 5 

Different depot cost analysis. 

Base (Directly proportional) Inversely proportional Random 

N Fuel cons. A. speed Distance Fuel cons. A. speed Distance Fuel cons. A. speed Distance 

(L) (km/h) (km) (L) (km/h) (km) (L) (km/h) (km) 

10 68 .41 56.22 422.21 65 .60 57.94 397.72 64 .74 57.13 398.99 

15 93 .90 60.05 562.75 98 .06 57.28 595.24 92 .44 58.41 556.71 

20 101 .47 56.47 619.18 109 .63 56.06 666.30 102 .10 57.54 619.31 

Average 87 .93 57.58 534.71 91 .10 57.09 553.09 86 .43 57.70 525.00 

Table 6 

The effect of increase and decrease on the fuel consumption and emission cost. 

Change Fuel cost 

# of 

instances 

Depot 

cost 

Fuel 

consumption Speed Distance 

(£) changed (£) (L) (km/h) (km) 

−50% 0.7 5 291.51 89.17 57.73 541.62 

−10% 1.26 2 292.11 88.59 57.74 538.20 

−5% 1.33 0 292.98 87.93 57.58 534.71 

0 1.4 0 292.98 87.93 57.58 534.71 

5% 1.47 0 292.98 87.93 57.58 534.71 

10% 1.54 1 293.24 87.75 57.38 534.71 

50% 2.1 3 293.68 87.52 57.31 533.52 
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andomly generated depot costs provides a 1.50 L (1.71%) reduc-

ion in fuel consumption due to a 9.71 km (1.82%) decrease in the

otal distance traveled. No matter how depot costs are generated,

he problem yields very similar results in terms of average vehicle

peed. 

.3.2. The effect of the fuel consumption and emission cost 

The results shown in the previous section suggest that the cost

f fuel consumption and emissions has a marginal effect on the lo-

ation decisions, as compared to the fixed depot costs. The cost of

uel consumption can be volatile in practice. In this section, we

onduct additional experiments to analyze the sensitivity of the

esulting solutions on the changes in the unit fuel cost. First, we

est minor (up to ± 5%) and major (up to ± 50%) changes in

he fuel cost. A summary of the results can be found in Table 6 ,

he columns of which show the number of instances (out of 36) in

hich the solution has changed in terms of depot location and/or

ehicle route, average total depot cost, average fuel consumption,

verage vehicle speed and average total distance traveled. 

The results in Table 6 indicate that modest and realistic changes

f about 5% in the unit fuel consumption and emission cost do not

ignificantly alter the solutions obtained. More extreme variations,

owever, may result in more observable differences in the solu-

ions obtained. Fig. 1 (a) and (b) serve to illustrate this point, and

how two solutions for an instance with 15 nodes, three potential

epots and up to two vehicles, with a 50% decrease and increase,

espectively, on the unit fuel and emission cost. In both figures,

he locations which are used as depots to serve other customers

re represented by houses, and opened depots that do not serve

ny other customers (except for itself) are represented by x marks.

The solution shown in Fig. 1 (a) uses 107.05 L of fuel, traverses

 total distance of 656.53 km and with an average speed equal to

6.43 km/h. The same statistics for the solution shown in Fig. 1 (b)

re 86.35 L, 529.95 km and 55 km/h, respectively. Whereas the so-

ution in Fig. 1 (a) has a total cost equal to £673.11 of which fuel

nd emissions account for 11%, the solution in Fig. 1 (b) has a total

ost equal to £806.58 of which 22% is for fuel and emissions. 

.3.3. The effect of time windows 

The results in Table 4 suggest that speed may have a more sig-

ificant effect on fuel consumption as compared to that of weight.

ne of the constraints that affect speed is time windows. To serve

ustomers within the predetermined time windows, in some cases,
ehicles have to increase their speed even if it leads to a higher

uel requirements, and consequently emissions. To analyze the ef-

ects of time windows on the amount of emissions, we generate

ew time windows values by narrowing down the original values

y 10%, 20%, 30%, 40% and 50%. The results are shown in Table 7 . 

The average results reported in Table 7 suggest that narrow-

ng down the time windows by up to 20% does not have a sig-

ificant impact on the solutions. While the increase on the total

ost and the total amount of emission is less than 1% and 3%,

espectively, in only two out of 36 instances, the depot locations

hange. However, for the cases when time windows are narrowed

own by more than 30%, there is a significant change on the solu-

ions in terms of vehicle routes and depot locations. The increase

n the total amount of emission is 7.97% and 13.09%, when the

ime windows are narrowed further down by 40% and 50%, re-

pectively. In this case, the increase in the total distance traveled,

.41% and 13.37%, is due to on the increase in the total amount

f emissions. While the average vehicle speed increases in general,

or some cases, it remains low for tighter time windows as can be

een from Table 7 . The main reason for this unexpected situation

s that some of the vehicle routes became infeasible when time

indows are too tight that forces vehicles use alternative routes

raveling at lower speeds. These new routes, however, eventually

ncrease the total amount of distance traveled and consequently

he total amount of emissions. 

.3.4. The effect of the depot location decision 

In order to evaluate the impact of the depot location decisions,

he GLRP is compared with a version of the problem where the

epots are fixed a priori and cannot be changed. For this purpose,

he instances in the PRP Library with p = 1 are used, where the

ocation of the depot is as described therein ( Demir et al., 2012 ).

n this case, the number of nodes is increased by one due to one

dditional node on which the depot is located. The comparison re-

ults are given in Table 8 . Detailed results are given in Appendix E .

The results indicate that in 10 out of 12 instances, the two

roblems provide different results with respect to the depot loca-

ion and vehicle routes. For 8 out of these 10 instances, the GLRP

esults in a reduction in fuel consumption by 4.98 L (4.89%), on av-

rage ( Table 8 ). The reduction on the amount of weight and speed-

nduced consumption is 2.08 and 2.92 L, respectively. The average

peed for the GLRP is nearly the same as the fixed depot case, but

he total travel distance is reduced by 33.96 km (5.46%) and the

otal cost by 9.04% in the former. 

.4. Performance of the solution algorithms 

In this section, we present computational results on the perfor-

ance of the CLRSOA and the ILS algorithm in terms of solution

uality and computational time compared to solving the GLRP for-

ulation. 

For this purpose, four 20-node problem instances with p =
 , 2 , 3 from PRP data set are used. 

For the CLRSOA, preliminary analysis indicate that for some

roblem instances the optimization process of solving a CumLRP

ormulation takes too much time. In order to reduce the solution
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Fig. 1. Two GLRP solutions on the instance 15 _ 3 _ 2 _ 3 (Google Maps, 2017). 

Table 7 

Comparisons between the different time windows. 

Fuel consumption 

Total cost Fixed cost Weight Speed Total A. speed Distance 

(£) (£) (L) (L) (L) (km/h) (km) 

Base 413.00 292.54 32.95 53.09 86.04 56.30 530.45 

10% 414.19 292.54 33.10 53.79 86.89 57.16 532.64 

20% 415.94 292.34 33.45 54.83 88.29 58.16 540.56 

30% 418.86 292.26 33.96 56.22 90.18 57.97 553.70 

40% 422.41 292.36 34.72 58.17 92.89 58.71 569.78 

50% 429.09 292.87 36.23 61.07 97.30 58.65 610.35 

 

 

 

 

 

M  

r  

a

4

 

f  

a  

t  

s  

t  

e

 

g  

i  

s  

n  

t  

o  
times, we stop the optimization process of the CumLRP formula-

tions after a predetermined time limit and use the resulting in-

cumbent solutions in the “solution pool” for the SOA. The time

limit for the optimization process of the CumLRP is set as 10 min. 

The parameters of the ILS algorithm are chosen after a set

of preliminary fine-tuning experiments and are set as follows:
Table 8 

Comparison between the GLRP with and without a fixed depot location. 

GLRP 

Fuel consumption 

| N | Total cost Depot cost Weight Speed Total A. speed Distance

(£) (£) (L) (L) (L) (km/h) (km) 

11 242.37 134.67 30.06 46.87 76.93 56.46 469.45 

16 290.60 148.07 38.65 63.15 101.80 58.37 616.35 

21 291.68 134.90 44.09 67.89 111.98 56.41 679.78 

Average 274.88 139.21 37.60 59.30 96.91 57.08 588.53 
 axIter = 25 , M axIter NI = 50 , k = 2 and δ = 40 . Since the ILS algo-

ithm contains some random aspects, instances are run five times

nd the best, average and worst results are reported. 

.4.1. Computational experiments 

This section presents the results obtained by solving the GLRP

ormulation and two heuristic algorithms for small sized instances

nd provides a comparison between the solutions and computa-

ional time of the aforementioned solution methods with the re-

ults of the GLRP formulation which solves 20-node GLRP instances

o optimality. We present the comparison results separately for

ach of the two heuristic algorithms. 

The results obtained with the two variants of the CLRSOA are

iven in Tables 9 and 10 , one using the CumLRP and the other us-

ng the CumLRP ′ formulation, respectively. The first three columns

how the problem parameters; the number of nodes (| N |), instance

umber ( I ) and the number ( p ) of depots to be located, respec-

ively. The columns titled “Obj. func.” and “S. time” represent the

bjective function value (in £) and the solution time (in s) of the
PRP (GLRP with a known depot location) 

Fuel consumption 

 Total cost Depot cost Weight Speed Total A. speed Distance 

(£) (£) (L) (L) (L) (km/h) (km) 

256.20 147.37 30.09 47.65 77.74 56.56 477.40 

327.67 173.69 42.62 67.37 109.99 57.27 671.78 

322.69 157.55 46.32 71.63 117.96 55.82 718.28 

302.19 159.53 39.68 62.22 101.89 56.55 622.49 
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Table 9 

Results of the CLRSOA with the CumLRP formulation for 20-node instances. 

GLRP formulation DS BB CB 

| N | I p Obj func. S. time Obj func. S. time Gap Obj func. S. time Gap Obj func. S. time Gap 

(£) (s) (£) (s) (%) (£) (s) (%) (£) (s) (%) 

20 1 1 346 .34 2864 .73 348 .46 70 .28 0 .61 348 .46 82 .84 0 .61 348 .46 90 .65 0 .61 

20 1 2 506 .47 746 .82 512 .88 94 .19 1 .26 512 .99 113 .72 1 .29 512 .99 127 .25 1 .29 

20 1 3 673 .49 904 .23 675 .60 59 .47 0 .31 675 .60 105 .74 0 .31 675 .53 53 .78 0 .30 

20 2 1 306 .33 67 .51 306 .30 16 .45 −0 .01 306 .30 16 .90 −0 .01 306 .30 13 .96 −0 .01 

20 2 2 446 .75 114 .01 446 .72 14 .06 −0 .01 446 .72 17 .45 −0 .01 446 .72 25 .89 −0 .01 

20 2 3 600 .98 147 .81 600 .95 16 .20 0 .00 600 .95 22 .64 0 .00 600 .95 39 .68 0 .00 

20 3 1 206 .05 100 .60 206 .04 23 .20 −0 .01 206 .04 37 .00 −0 .01 206 .04 36 .24 −0 .01 

20 3 2 309 .15 657 .89 309 .82 78 .70 0 .22 309 .82 106 .65 0 .22 309 .82 72 .98 0 .22 

20 3 3 412 .67 642 .50 412 .63 69 .95 −0 .01 412 .66 59 .38 0 .00 413 .37 59 .30 0 .17 

20 4 1 296 .31 151 .82 296 .31 61 .22 0 .00 296 .31 45 .07 0 .00 296 .31 44 .31 0 .00 

20 4 2 413 .80 189 .00 414 .36 16 .87 0 .14 415 .78 32 .99 0 .48 413 .81 40 .03 0 .00 

20 4 3 546 .22 120 .29 546 .23 14 .04 0 .00 546 .23 25 .32 0 .00 546 .84 33 .57 0 .11 

Average 558 .93 44 .55 0 .21 55 .48 0 .24 53 .14 0 .22 

Table 10 

Results of the CLRSOA with the CumLRP ′ formulation for 20-node instances. 

GLRP formulation DS BB CB 

| N | I p Obj func. S. time Obj func. S. time Gap Obj func. S. time Gap Obj func. S. time Gap 

(£) (s) (£) (s) (%) (£) (s) (%) (£) (s) (%) 

20 1 1 346 .34 2864 .73 356 .09 601 .03 2 .81 346 .48 111 .70 0 .04 346 .57 74 .91 0 .07 

20 1 2 506 .47 746 .82 506 .37 326 .74 −0 .02 506 .37 204 .16 −0 .02 506 .37 130 .41 −0 .02 

20 1 3 673 .49 904 .23 673 .81 163 .58 0 .05 682 .69 252 .93 1 .36 673 .41 80 .07 −0 .01 

20 2 1 306 .33 67 .51 306 .30 19 .92 −0 .01 306 .30 33 .21 −0 .01 306 .30 33 .70 −0 .01 

20 2 2 446 .75 114 .01 446 .72 72 .89 −0 .01 446 .72 63 .85 −0 .01 446 .72 52 .94 −0 .01 

20 2 3 600 .98 147 .81 601 .81 96 .13 0 .14 601 .81 55 .51 0 .14 600 .95 64 .03 0 .00 

20 3 1 206 .05 100 .60 206 .04 75 .55 −0 .01 206 .04 58 .66 −0 .01 206 .04 64 .43 −0 .01 

20 3 2 309 .15 657 .89 309 .11 150 .53 −0 .01 309 .11 153 .38 −0 .01 309 .11 117 .05 −0 .01 

20 3 3 412 .67 642 .50 412 .63 106 .51 −0 .01 412 .63 80 .83 −0 .01 413 .37 127 .90 0 .17 

20 4 1 296 .31 151 .82 296 .31 120 .55 0 .00 296 .31 50 .31 0 .00 296 .31 54 .64 0 .00 

20 4 2 413 .80 189 .00 413 .80 68 .43 0 .00 413 .80 78 .24 0 .00 413 .80 80 .47 0 .00 

20 4 3 546 .22 120 .29 546 .22 31 .68 0 .00 31 .09 159 .44 0 .00 546 .22 63 .38 0 .00 

Average 558 .93 152 .79 0 .24 97 .82 0 .12 78 .66 0 .01 
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orresponding strategy; namely, Dynamic Search (DS), Branch &

ound (BB) and Cut & Branch (CB), respectively. We also report the

ap (in %) calculated as (z GLRP − z CLRSOA ) × 100 /z GLRP , where z GLRP 

nd z CLRSOA are the objective function values of the GLRP formu-

ation and the CLRSOA, respectively. As all 20-node problem in-

tances are solved to optimality with the GLRP formulation, the

aps correspond to the deviations from the optimal values. 

In Tables 9 and 10 , some negative gaps are observed. This is due

o the SOP being solved exactly within the CLRSOA but with dis-

retized values in the GLRP formulation.The results on Tables 9 and

0 show that all versions of the CLRSOA provide optimal or near

ptimal solutions in similar amounts of time. Among these six ver-

ions, CumLRP ′ formulation with the CB strategy provides the best

esults. The average gap and the average solution time for CumLRP ′ 
ith CB version is 0.01% and 78.66 s, respectively. 

We report the results of the ILS algorithm in Table 11 . Each in-

tance is run five times and the table provides the best, average

nd worst results of these five runs. 

Similar to results of the CLRSOA, since the SOP is solved ex-

ctly within the ILS algorithm, negative gaps can be observed in

able 11 . Table 11 indicates that the ILS algorithm generally pro-

ides very good results in terms of solution quality and computa-

ional time. The average optimality gap and the average solution

ime of the ILS in the best case scenario is 0.41% and 5.96 s and

.21% and 6.08 s in the worst case scenario. 

In order to explore different solution and escape possible local

ptimal solution, we increase the effects of randomness on the al-

orithm. Therefore, we conduct experiments with higher MaxIter

nd lower δ values. In addition to (25, 40%) combination of Max-

ter and δ values for which the results are reported in Table 12 , we
lso report the summary results for the combinations; (50, 20%)

nd (100, 10%). 

The results on Table 12 indicate that increasing number of

terations results with higher solution times, but better solutions.

ith 50 iterations, the average optimality gap in the best case

cenario is 0.37% and with 100 iterations it becomes 0.28%. On

verage of five experiments, the average optimality gaps are 0.79%

ith 50 iterations and 0.50% with 100 iterations. The solution

imes are approximately 12 and 25 s for 50 and 100 iterations,

espectively. Since solution times up to 25 seconds can be ac-

eptable, we propose to use the algorithm with the 100-iteration

ersion. 

In conclusion, compared to the CLRSOA, the solutions found by

he ILS algorithm are not as good as the ones obtained by the CLR-

OA, but in terms of solution time the ILS algorithm performs bet-

er than the CLRSOA. So, for small sized instances, the CLRSOA is

ery efficient alternative to solve the GLRP. 

.5. Computational analysis for large sized instances 

We also conduct computational analysis on four different 100-

ode problem instances with three different p values as 5, 7, and

0. Due to computational times required, we do not use the CLR-

OA to solve large sized problem instances, and only conduct the

xperiments with the ILS algorithm using the (100, 10%) combi-

ation for the ( MaxIter, δ) setting. The results can be found in

able 13 . 

As it can be seen from Table 13 , increasing the value of p leads

o an increase in the total cost and the total fixed cost of oper-

ting depots. In contrast, as the value of p is increased, the total
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Table 11 

Results of the ILS algorithm for 20-node instances. 

GLRP formulation ILS 

Best Average Worst 

| N | I p Obj. F. S. time Obj. F. S. time Gap Obj. F. S. time Gap Obj. F. S. time Gap 

(£) (s) (£) (s) (%) (£) (s) (%) (£) (s) (%) 

20 1 1 346 .34 2864 .73 346 .27 5 .15 −0 .02 346 .27 5 .34 −0 .02 346 .27 5 .71 −0 .02 

20 1 2 506 .47 746 .82 510 .99 6 .09 0 .89 511 .49 6 .45 0 .99 513 .18 6 .09 1 .32 

20 1 3 673 .49 904 .23 676 .59 5 .58 0 .46 677 .93 5 .07 0 .66 678 .27 5 .22 0 .71 

20 2 1 306 .33 67 .51 308 .17 5 .91 0 .60 308 .17 6 .23 0 .60 308 .17 6 .38 0 .60 

20 2 2 446 .75 114 .01 446 .72 8 .99 −0 .01 451 .54 7 .76 1 .07 460 .49 6 .81 3 .08 

20 2 3 600 .98 147 .81 601 .94 6 .06 0 .16 608 .45 6 .71 1 .24 619 .87 5 .52 3 .14 

20 3 1 206 .05 100 .60 206 .04 5 .44 −0 .01 206 .04 5 .75 −0 .01 206 .04 6 .20 −0 .01 

20 3 2 309 .15 657 .89 309 .12 7 .65 −0 .01 310 .61 7 .46 0 .47 313 .67 6 .88 1 .46 

20 3 3 412 .67 642 .50 415 .94 5 .54 0 .79 418 .19 6 .19 1 .34 421 .61 6 .54 2 .17 

20 4 1 296 .31 151 .82 302 .37 5 .72 2 .05 302 .37 6 .26 2 .05 302 .37 6 .69 2 .05 

20 4 2 413 .80 189 .00 413 .80 4 .78 0 .00 413 .80 5 .29 0 .00 413 .80 5 .83 0 .00 

20 4 3 546 .22 120 .29 546 .22 4 .59 0 .00 546 .22 4 .85 0 .00 546 .22 5 .13 0 .00 

Average 558 .93 5 .96 0 .41 6 .11 0 .70 6 .08 1 .21 

Table 12 

( MaxIter, δ) analysis for ILS algorithm. 

Best Average Worst 

Combination S. Time Gap S. time Gap S. time Gap 

(s) (%) (s) (%) (s) (%) 

(25, 40%) 5 .96 0 .41 6 .11 0 .70 6 .08 1 .21 

(50, 20%) 12 .58 0 .37 12 .71 0 .79 12 .84 1 .19 

(100, 10%) 26 .75 0 .28 27 .49 0 .50 27 .84 0 .71 

Table 13 

Results of the ILS algorithm for 100-node instances. 

Fuel consumption 

| N | I p Total cost Depot cost Weight Speed Total Avg. speed Distance S. time 

(£) (£) (L) (L) (L) (km/h) (km) (s) 

100 1 5 1407.89 848.78 157.93 241.44 399.36 55.84 2417.27 820.04 

100 1 7 1748.75 1184.16 159.43 243.85 403.27 55.85 2441.51 952.13 

100 1 10 2234.23 1715.62 147.00 223.44 370.44 56.20 2225.54 1050.34 

100 2 5 1395.32 851.00 155.40 233.40 388.80 55.42 2343.09 963.34 

100 2 7 1728.97 1191.50 152.48 231.43 383.91 55.20 2324.25 1295.47 

100 2 10 2228.81 1714.27 145.90 221.63 367.53 55.19 2225.86 1190.75 

100 3 5 1047.81 618.20 121.41 185.45 306.86 55.49 1860.54 1118.73 

100 3 7 1288.65 871.05 118.03 180.25 298.29 55.49 1808.33 1003.43 

100 3 10 1667.98 1251.96 117.74 179.42 297.16 55.50 1780.32 1122.83 

100 4 5 1230.91 715.77 146.85 221.11 367.96 55.19 2220.62 839.01 

100 4 7 1510.00 1002.33 143.59 219.03 362.62 55.19 2199.74 1089.31 

100 4 10 1917.73 1456.52 129.79 199.65 329.44 55.19 2005.07 1308.53 
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amount of fuel consumed and the total distance traveled generally

reduces. The difference between average vehicle speeds for differ-

ent p values can be considered as insignificant, suggesting that the

vehicle speed remains stable. In addition, increasing the value of p

generally increases the required solution time. 

5. Conclusions and managerial implications 

In this study, we have introduced the GLRP as a combination

of the traditional LRP and the more recently studied PRP, in which

fuel consumption and CO 2 emissions are explicitly considered. We

have developed a mixed integer programming formulation for the

GLRP, and described a group of preprocessing rules and valid in-

equalities to strengthen the formulation. Additionally, we have pro-

posed two heuristic algorithms to solve small and larger sized in-

stances in reasonable times. For the computational study of the

GLRP, we have conducted different sensitivity analyses by changing

some key parameters such as the number of depots to be opened,

the fixed cost of operating depots and the fuel consumption and

emission cost. Additionally, we also evaluate the impacts of time

windows and depot location decision on fuel consumption. Finally,
e compare the GLRP formulation and the proposed heuristic ap-

roaches in terms of solution quality and time. 

The overall results show that including the “green” aspect in

he objective function through fuel consumption and emissions

oes affect the optimal solutions. It is possible to draw a number

f managerial insights from the results given in the previous sec-

ion. First, depot locations must be explicitly considered in combi-

ation with the routing decisions for reductions not only in cost,

ut also in fuel consumption, resulting in lesser environmental im-

act. In particular, it may seem attractive to locate depots where

t is cheaper to do so, but this may have a knock-on effect on the

eight and speed-induced fuel consumption, resulting in a more

xpensive solution overall. Second, any opportunity that will allow

o use looser time windows in making deliveries should be ex-

lored by operators, given that such constraints are generally seen

o increase speed and distance, along with the associated fuel con-

umption. Finally, the results suggest that it may be beneficial to

ocate depots to areas for which heavy deliveries are to be regu-

arly made. 

Finally, the performance of the heuristic algorithms indicate

hat while the CLRSOA is a very effective approach to solve the
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LRP for small sized instances, the ILS algorithm can be used to

olve larger sized instances in reasonable solution times compared

o both the GLRP formulation and the CLRSOA. 
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ppendix A. Speed optimization algorithm 

The decision variables to be optimized in the algorithm are as

ollows: the vehicle speed between node i ∈ N and i + 1 ∈ N is

enoted by v i . e i and e i represent the arrival and departure time

rom node i ∈ N . 

lgorithm 2 Speed optimization algorithm (SOA). 

nitialize : s ← 0 , e ← n, v iolation ← 0 , p ← 0 , k ← 1 , e 0 = e 0 = l 0 =
 0 = 0 , D = 

∑ e −1 
i = s d i , S = 

∑ e 
i = s s i 

1: for i = s + 1 to e do 

2: v i −1 ← D/ (u e + t e − max { l s , e s } − S) 

3: if k � = 1 then 

4: if e i −1 + d i −1 / v i −1 < l i and e i ≥ l i + s i then 

5: v i −1 ← d i −1 / (l i − e i −1 ) 

6: else if e i −1 + d i −1 / v i −1 < u i and e i ≥ u i + s i then 

7: v i −1 ← d i −1 / (u i − e i −1 ) 

8: end if 

9: end if 

10: v ∗
i −1 

← OptimalSpeed 

11: if v i −1 < v l then 

12: v i −1 ← v l 
13: else if v i −1 > v u then 

14: v i −1 ← v u 
15: end if 

16: if v ∗
i −1 

> v i −1 then 

17: v i −1 ← v ∗
i −1 

18: end if 

19: if k = 1 then 

0: e i = e i −1 + d i −1 / v i −1 

21: e i = e i + s i 
2: else if k � = 1 then 

3: if i � = e then 

4: e i = e i −1 + d i −1 / v i −1 

5: e i = e i + s i 
6: end if 

27: end if 

8: g i ← max { 0 , e i − u i , l i + s i − e i } 
9: if g i > v iolation then 

0: v iolation ← g i 
31: p ← i 

2: end if 

3: end for 

4: k ← k + 1 

5: if v iolation > 0 and e p > u p then 

6: e p ← u p + s p 
37: Speed Opt imizat ion Algorithm (s, p) 

8: Speed Opt imizat ion Algorithm (p, e ) 

9: end if 

0: if v iolation > 0 and e p < l p + s p then 

41: e p ← l p + s p 
2: Speed Opt imizat ion Algorithm (s, p) 

3: Speed Opt imizat ion Algorithm (p, e ) 

4: end if 
ppendix B. Parameter values for CMEM 

Notation Description Typical values 

e Emission and fuel consumption cost (£/L) 1.4 

ω Curb weight (kg) 6350 

k Engine friction factor (kJ/rev/L) 0.2 

ϒ Engine speed (rev/s) 33 

V Engine displacement (L) 5 

a Acceleration (m/s 2 ) 0 

g Gravitational constant (m/s 2 ) 9.81 

θ Road Angle 0 

C r Coefficient of rolling resistance 0.01 

C d Coefficient of aerodynamic drag 0.7 

ρ Air density (kg/m 

3 ) 1.2041 

S Frontal Surface Area (m 

2 ) 3.912 

n t f Vehicle drive train efficiency 0.4 

η Efficiency parameter for diesel engines 0.9 

ξ Fuel to air mass ratio 1 

κ Heating value of a typical diesel fuel (kJ/g) 44 

ψ Conversion factor of fuel (g/s) to (L/s) 737 

P acc Engine power demand 0 
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Appendix C. Performance of the valid inequalities 

20_1_3_1 20_1_3_2 20_1_3_3 20_2_3_1 20_2_3_2 20_2_3_3 20_3_3_1 20_3_3_2 20_3_3_3 20_4_3_1 20_4_3_2 20_4_3_3 

Comb. CPU N.CPU CPU N.CPU CPU N.CPU CPU N.CPU CPU N.CPU CPU N.CPU CPU N.CPU CPU N.CPU CPU N.CPU CPU N.CPU CPU N.CPU CPU N.CPU Av. N. CPU 

Base 3483.90 1.00 6233.13 1.00 900.50 1.00 158.88 1.00 219.44 1.00 617.66 1.00 529.51 1.00 653.21 1.00 639.41 1.00 190.46 1.00 953.75 1.00 6581.21 1.00 1.00 

1.1 720 0.0 0 2.07 2275.56 0.37 1948.22 2.16 148.63 0.94 148.05 0.67 714.99 1.16 410.59 0.78 1038.59 1.59 745.07 1.17 788.38 4.14 4637.97 4.86 4473.36 0.68 1.71 

1.2 1324.21 0.38 6274.56 1.01 890.35 0.99 103.69 0.65 292.39 1.33 310.64 0.50 476.95 0.90 892.33 1.37 823.77 1.29 182.92 0.96 5149.58 5.40 3739.19 0.57 1.28 

2 5037.88 1.45 2048.76 0.33 1448.65 1.61 113.06 0.71 204.39 0.93 589.01 0.95 438.25 0.83 4874.25 7.46 3755.76 5.87 460.43 2.42 5309.04 5.57 720 0.0 0 1.09 2.44 

3 5556.02 1.59 1058.99 0.17 675.16 0.75 75.42 0.47 96.34 0.44 364.03 0.59 145.68 0.28 598.22 0.92 534.12 0.84 146.91 0.77 3437.06 3.60 4432.87 0.67 0.92 

4 2452.66 0.70 6921.07 1.11 1812.97 2.01 288.08 1.81 490.54 2.24 1416.93 2.29 672.08 1.27 1532.30 2.35 1614.65 2.53 231.59 1.22 720 0.0 0 7.55 5719.12 0.87 2.16 

1.1–2 649.98 0.19 1346.65 0.22 1365.05 1.52 114.70 0.72 188.30 0.86 255.94 0.41 308.34 0.58 2884.72 4.42 914.06 1.43 1277.57 6.71 2892.55 3.03 3074.87 0.47 1.71 

1.1–3 4313.98 1.24 1062.72 0.17 1203.24 1.34 73.55 0.46 215.01 0.98 196.90 0.32 420.47 0.79 795.37 1.22 812.68 1.27 118.39 0.62 780.73 0.82 1057.67 0.16 0.78 

1.1–4 720 0.0 0 2.07 2248.76 0.36 2310.59 2.57 218.22 1.37 253.28 1.15 576.12 0.93 683.57 1.29 1938.31 2.97 2117.82 3.31 244.14 1.28 5905.83 6.19 6176.75 0.94 2.04 

1.2–2 1277.91 0.37 3091.40 0.50 831.54 0.92 101.11 0.64 160.09 0.73 421.55 0.68 355.25 0.67 5503.84 8.43 914.34 1.43 116.16 0.61 3889.35 4.08 4179.90 0.64 1.64 

1.2–3 2864.73 0.82 746.82 0.12 904.23 1.00 67.51 0.42 114.01 0.52 147.81 0.24 100.60 0.19 657.89 1.01 642.50 1.00 151.82 0.80 849.33 0.89 2138.37 0.32 0.61 

1.2–4 2624.10 0.75 720 0.0 0 1.16 1403.27 1.56 157.05 0.99 295.42 1.35 434.63 0.70 712.14 1.34 1855.65 2.84 1705.02 2.67 225.44 1.18 6318.59 6.62 4877.18 0.74 1.83 

2–3 3037.83 0.87 1268.50 0.20 807.22 0.90 98.65 0.62 98.24 0.45 192.62 0.31 335.38 0.63 934.32 1.43 5519.49 8.63 122.92 0.65 4688.20 4.92 3940.58 0.60 1.68 

2–4 5675.14 1.63 1866.87 0.30 2290.42 2.54 216.32 1.36 269.70 1.23 926.11 1.50 641.49 1.21 2256.36 3.45 720 0.0 0 11.26 233.27 1.22 720 0.0 0 7.55 720 0.0 0 1.09 2.86 

3–4 4245.84 1.22 2245.85 0.36 1598.37 1.77 143.60 0.90 193.31 0.88 283.05 0.46 1033.87 1.95 1942.19 2.97 1585.92 2.48 228.02 1.20 5711.39 5.99 6453.51 0.98 1.76 

1.1–2–3 364 8.4 9 1.05 1138.23 0.18 692.01 0.77 65.14 0.41 78.21 0.36 220.88 0.36 154.47 0.29 769.89 1.18 760.86 1.19 115.09 0.60 686.94 0.72 1979.28 0.30 0.62 

1.1–2–4 1571.87 0.45 3041.08 0.49 2401.91 2.67 221.09 1.39 235.59 1.07 485.53 0.79 563.95 1.07 1992.42 3.05 5046.06 7.89 615.66 3.23 1217.68 1.28 4149.09 0.63 2.00 

1.1–3–4 2504.64 0.72 1868.04 0.30 1403.78 1.56 107.07 0.67 149.81 0.68 154.19 0.25 290.32 0.55 1297.45 1.99 1160.73 1.82 261.01 1.37 1875.35 1.97 1861.18 0.28 1.01 

1.2–2–3 680.57 0.20 1262.73 0.20 906.13 1.01 61.90 0.39 80.55 0.37 80.55 0.13 92.59 0.17 3998.63 6.12 552.02 0.86 107.41 0.56 3869.96 4.06 3314.18 0.50 1.21 

1.2–2–4 2594.95 0.74 6093.46 0.98 1558.58 1.73 218.15 1.37 294.14 1.34 379.93 0.62 405.38 0.77 720 0.0 0 11.02 2249.01 3.52 152.83 0.80 5168.52 5.42 5362.01 0.81 2.43 

1.2–3–4 1034.52 0.30 1718.78 0.28 1120.11 1.24 107.14 0.67 97.33 0.44 206.15 0.33 210.25 0.40 1833.63 2.81 1436.42 2.25 148.31 0.78 1098.12 1.15 3532.37 0.54 0.93 

2–3–4 1647.79 0.47 1634.40 0.26 1939.98 2.15 132.87 0.84 140.27 0.64 422.97 0.68 213.83 0.40 1909.03 2.92 1682.95 2.63 163.84 0.86 5013.03 5.26 720 0.0 0 1.09 1.52 

1.1–2–3–4 4163.60 1.20 1311.91 0.21 2832.83 3.15 121.69 0.77 104.47 0.48 221.60 0.36 510.64 0.96 2582.24 3.95 1140.17 1.78 199.32 1.05 894.07 0.94 1030.88 0.16 1.25 

1.2–2–3–4 4798.35 1.38 1604.25 0.26 1390.62 1.54 133.27 0.84 149.26 0.68 246.74 0.40 156.11 0.29 5112.90 7.83 5492.51 8.59 136.18 0.72 2802.33 2.94 2720.23 0.41 2.16 
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A

on 

d Total # of vehicles Average speed Distance CPU 

(L) (km/h) (km) (s) 

0 59.60 2 55.00 367,550 4.59 

2 51.03 2 55.00 317,520 2.15 

0 48.33 2 55.00 303,250 7.02 

8 84.50 2 59.09 528,590 7.87 

0 79.13 2 55.00 496,161 11.83 

6 75.96 2 55.00 470,610 11.80 

1 77.51 2 55.00 474,160 10.61 

2 66.05 2 55.00 405,910 8.57 

7 64.10 2 55.00 397,400 3.70 

5 73.32 2 55.00 458,440 3.27 

1 71.10 2 60.00 425,974 9.82 

1 70.30 2 60.56 420,904 7.85 

2 108.16 2 64.06 615,352 1333.66 

9 106.46 2 64.67 606,032 70.87 

5 99.04 2 57.50 599,362 39.63 

1 80.57 2 60.00 487,951 28.19 

1 75.79 2 56.67 466,791 16.36 

2 72.20 2 56.79 448,811 29.37 

3 118.53 2 61.88 712,440 1450.34 

5 114.67 2 61.33 690,470 1517.44 

7 86.35 2 55.00 529,950 1238.87 

1 99.20 2 63.75 581,850 427.52 

0 83.80 2 59.33 511,640 17.40 

8 82.08 2 59.64 502,380 19.58 

7 126.81 3 57.95 763,601 2864.73 

7 109.53 3 57.62 661,061 746.82 

5 108.03 3 58.00 652,861 904.23 

8 115.15 3 55.23 709,652 67.51 

 8 111.22 3 55.24 687,622 114.01 

3 107.73 3 55.25 667,991 147.81 

7 74.34 3 58.41 449,111 100.60 

2 70.25 3 57.14 428,331 657.89 

9 68.64 3 57.75 416,151 642.5 

0 117.70 3 55.00 717,110 151.82 

1 105.59 3 55.00 646,830 849.33 

1 102.66 3 55.00 629,820 2138.37 

A

GLRP with a known depot location 

Fuel consumption 

Distance Total cost Depot cost Weight speed Total Avg. speed Distance 

(km) (£) (£) (L) (L) (L) (km/h) (km) 

395.70 237.96 143.38 26.56 41.00 67.56 58.75 409.33 

530.61 284.79 165.81 32.49 52.49 84.99 55.42 527.11 

493.05 254.96 141.09 32.04 49.29 81.33 57.08 493.05 

458.44 247.10 139.19 29.27 47.80 77.08 55.00 480.09 

469.45 256.20 147.37 30.09 47.65 77.74 56.56 477.40 

656.12 348.12 180.40 47.52 72.28 119.80 60.88 709.14 

516.88 238.02 121.03 31.91 51.65 83.56 57.35 516.88 

692.55 348.92 187.48 44.10 71.22 115.32 55.83 714.65 

599.85 375.62 205.85 46.94 74.32 121.27 55.00 746.44 

616.35 327.67 173.69 42.62 67.37 109.99 57.27 671.78 

784.46 347.07 167.16 50.56 77.95 128.51 55.00 782.85 

715.47 384.67 194.25 53.43 82.59 136.01 55.00 829.41 

459.55 208.71 102.78 29.56 46.10 75.66 58.26 458.50 

759.63 350.32 166.01 51.76 79.89 131.65 55.00 802.38 

679.78 322.69 157.55 46.32 71.63 117.96 55.82 718.28 

588.53 302.19 159.53 39.68 62.22 101.89 56.55 622.49 
ppendix D. GLRP results for 10, 15 and 20-node instances 

Fuel consumpti

| N| I m p Total cost Depot cost Weight Spee

(£) (£) (L) (L) 

10 1 2 1 197.58 114.14 23.00 36.6

10 1 2 2 303.55 232.10 19.42 31.6

10 1 2 3 433.75 366.09 18.13 30.2

10 2 2 1 265.07 146.78 31.32 53.1

10 2 2 2 419.10 308.31 29.73 49.4

10 2 2 3 578.19 471.84 29.10 46.8

10 3 2 1 267.16 158.64 30.30 47.2

10 3 2 2 410.68 318.20 25.64 40.4

10 3 2 3 574.54 484.79 24.53 39.5

10 4 2 1 244.29 141.64 27.67 45.6

10 4 2 2 393.37 293.84 27.98 43.1

10 4 2 3 547.25 448.82 27.69 42.6

15 1 2 1 310.23 158.81 42.04 66.1

15 1 2 2 462.84 313.80 41.26 65.1

15 1 2 3 616.77 478.11 38.89 60.1

15 2 2 1 241.04 128.25 30.85 49.7

15 2 2 2 366.93 260.82 29.18 46.6

15 2 2 3 497.23 396.15 27.38 44.8

15 3 2 1 360.18 194.25 46.40 72.1

15 3 2 2 544.97 384.44 44.82 69.8

15 3 2 3 746.14 625.25 33.58 52.7

15 4 2 1 267.04 128.16 37.09 62.1

15 4 2 2 366.35 249.03 31.79 52.0

15 4 2 3 489.17 374.26 31.00 51.0

20 1 3 1 346.34 168.82 49.94 76.8

20 1 3 2 506.47 353.12 43.06 66.4

20 1 3 3 673.49 522.26 42.38 65.6

20 2 3 1 306.33 145.12 44.47 70.6

20 2 3 2 446.75 291.04 42.74 6 8.4

20 2 3 3 600.98 450.16 41.20 66.5

20 3 3 1 206.05 101.97 29.18 45.1

20 3 3 2 309.15 210.79 27.43 42.8

20 3 3 3 412.67 316.58 26.95 41.6

20 4 3 1 296.31 131.54 46.29 71.4

20 4 3 2 417.54 269.71 41.19 64.4

20 4 3 3 553.35 409.63 39.94 62.7

ppendix E. The impact of the location decision 

GLRP 

Fuel consumption 

| N| I m p Total cost Depot cost Weight Speed Total Avg. speed 

(£) (£) (L) (L) (L) (km/h) 

11 1 2 1 208.31 117.28 25.62 39.40 65.02 55.00 

11 2 2 1 269.73 148.15 33.92 52.93 86.84 56.25 

11 3 2 1 254.96 141.09 32.04 49.29 81.33 57.08 

11 4 2 1 236.49 132.15 28.67 45.86 74.52 57.50 

11 242.37 134.67 30.06 46.87 76.93 56.46 

16 1 2 1 319.02 158.81 42.24 72.19 114.43 65.29 

16 2 2 1 238.02 121.03 31.91 51.65 83.56 57.35 

16 3 3 1 343.04 186.30 42.93 69.03 111.96 55.83 

16 4 3 1 262.31 126.14 37.53 59.73 97.26 55.00 

16 290.60 148.07 38.65 63.15 101.80 58.37 

21 1 3 1 344.47 164.71 50.22 78.18 128.40 55.43 

21 2 3 1 308.18 143.58 46.16 71.41 117.57 56.30 

21 3 3 1 205.33 98.81 29.88 46.21 76.09 58.26 

21 4 3 1 308.73 132.51 50.11 75.76 125.87 55.65 

21 291.68 134.90 44.09 67.89 111.98 56.41 

Average 274.88 139.21 37.60 59.30 96.91 57.08 
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