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This paper introduces the Green Location-Routing Problem (GLRP), a combination of the classical
Location-Routing Problem (LRP) and the Pollution-Routing Problem (PRP). The GLRP consists of (i) lo-
cating depots on a subset of a discrete set of points, from where vehicles of limited capacity will be
dispatched to serve a number of customers with service requirements, (ii) routing the vehicles by de-
termining the order of customers served by each vehicle and (iii) setting the speed on each leg of the
journey such that customers are served within their respective time windows. The objective of the GLRP
is to minimize a cost function comprising the fixed cost of operating depots, as well as the costs of
the fuel and CO, emissions. The amount of fuel consumption and emissions is measured by a widely
used comprehensive modal emission model. The paper presents a mixed integer programming formula-
tion and a set of preprocessing rules and valid inequalities to strengthen the formulation. Two solution
approaches; an integer programming based algorithm and an iterated local search algorithm are also pre-
sented. Computational analyses are carried out using adaptations of literature instances to the GLRP in
order to analyze the effects of a number parameters on location and routing decisions in terms of cost,

fuel consumption and emission. The performance of the heuristic algorithms are also evaluated.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction and background

Recent decades have seen a growing interest in green logis-
tics, which can broadly be defined as planning and execution
of logistics activities in a more environmentally friendly way
by considering external factors such as waste, noise, energy us-
age and Greenhouse Gas (GHG) emissions. “Green routing” is a
concept first introduced by Kara et al. (2007) by observing the
fact that “cost” is not usually directly proportional to distance
traveled but also the load of the vehicle. Palmer (2007) study
the integration of vehicle routing and CO, emissions. Bektas and
Laporte (2011) introduce the Pollution-Routing Problem (PRP) with
a more accurate fuel consumption model that considers speed and
load as decisions. Variants of the PRP have since been studied,
such as time-dependency (Jabali et al., 2012), with backhauling
(Ubeda et al., 2011), with pickup and delivery (Oberscheider et al.,
2013) and with inventory considerations (Mirzapour Al-e hashem
and Rekik, 2014). For comprehensive surveys on green routing and
green logistics, we refer the reader to Shihi and Eglese (2010),
Dekker et al. (2012), Lin et al. (2014), Demir et al. (2014b) and
Eskandarpour et al. (2015), and to Ubeda et al. (2011),
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Figliozzi (2011) and Varsei and Polyakovskiy (2017) for case
studies.

Table 1 summarizes the relevant literature of “green rout-
ing” problems and compares them with our study based on
the following seven factors: (i) the number of objective func-
tions (single or multiple), (ii) type of emission model used,
(iii) the proposed solution approaches (exact or heuristic), (iv)
whether these studies consider time windows or not, and (v,vi,vii)
whether speed, location and routing are considered as decisions or
not.

The Location-Routing Problem (LRP) is a generalization of the
vehicle routing problem that exploits the interdependency be-
tween the location decisions of facilities and routing decisions
of vehicles, as it has been shown that making the two deci-
sions independently can result in suboptimal solutions (Salhi and
Rand, 1989). The basic LRP involves locating facilities and routing
a fleet of vehicles from the facilities to serve a given set of cus-
tomers, with the aim of minimizing the cost of location and rout-
ing (see, e.g., Drexl and Schneider, 2015; Prodhon and Prins, 2014,
for comprehensive surveys).

To the best of our knowledge, there are only a few studies
that consider environmental impacts within the LRP literature. The
first one is by Govindan et al. (2014), who describe a bi-objective
two echelon LRP with time windows which arises in a perish-
able food supply chain network with manufacturers, distribution
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Table 1

Features of “green routing” problems.
Reference Objective  Emission model  Solution method Time windows  Speed  Location  Routing
Kara et al. (2007) Single Factor Exact v
Palmer (2007) Single IFCM Heuristic v v v
Figliozzi (2010) Multi MEET Exact and heuristic v v
Figliozzi (2011) Multi MEET Exact and heuristic v v v
Bektas and Laporte (2011)  Single CMEM Exact v v v
Demir et al. (2012) Single CMEM Exact and heuristic v v v
Jabali et al. (2012) Single MEET Heuristic v v
Demir et al. (2014a) Multi CMEM Heuristic v v v
Qian and Eglese (2014) Single NAEI Heuristic v v '
Our Study Single CMEM Exact and heuristic v v v v

[FCM: Instantaneous fuel consumption model.

MEET: Methodology for calculation transportation emissions and energy consumption.

NAEI: National atmospheric emissions inventory.

(see Demir et al., 2014b, for a detailed description of these models).

Table 2

Features of “green location-routing and green location” problems.
Reference Objective  Emission model  Solution method Time windows  Speed  Location  Routing
Govindan et al. (2014) Multi Factor Heuristic v v v
Kog et al. (2016) Single CMEM Exact and heuristic v v
Toro et al. (2017) Multi Macroscopic Exact v v
Tricoire and Parragh (2017)  Multi Factor Exact and heuristic v v
Khoei et al. (2017) Single CMEM Exact v v v
Our Study Single CMEM Exact and heuristic v v v v

centers and retailers. The two objectives are to minimize the to-
tal cost and to minimize the environmental impact. They pro-
pose a multiobjective hybrid approach by combining multiobjec-
tive particle swarm optimization and an adaptation of a multiob-
jective variable neighborhood search. The second study is by Kog
et al. (2016) in which the authors analyze the impact of location,
fleet composition and routing on emissions in urban freight trans-
portation. The authors present a location-routing problem with
heterogeneous fleet of vehicles in a city logistics concept, which
use the comprehensive modal emission model (CMEM) proposed
by Scora and Barth (2006), Barth et al. (2005), Barth and Bori-
boonsomsin (2008) to calculate emission. Based on city logistics
concepts, cities are divided into three different speed zones and
vehicle speed is considered to be fixed in each speed zone. The
objective is to minimize the total cost which includes those of
depots, operating vehicles, fuel consumption and CO, emissions.
The authors utilize an adaptive large neighborhood search algo-
rithm to solve the problem and to conduct sensitivity analyses.
Toro et al. (2017) study a bi-objective green capacitated location-
routing problem with two objective functions that minimize the
operational cost and fuel consumption and CO, emission. The au-
thors use the e-constraint method to solve the corresponding bi-
objective mathematical model. Tricoire and Parragh (2017) present
a green city hub location routing problem with heterogeneous fleet
and with two objectives; to minimize the total cost and minimize
CO, emissions. The authors develop a decomposition approach that
first generates vehicle routes which are used for a set covering
model. The authors test their algorithm on instances obtained from
industrial partners in Austria that include 22 hubs, 898 or 1635
customers, and two or seven vehicle types. The authors explore the
trade-offs between the amount of pollution and the cost in invest-
ing in facilities.

In a recent study, Khoei et al. (2017) propose a green Weber
problem and its time-dependent version, where the authors com-
bine the location decision of a single facility and the speed de-
cisions of the vehicles sent to customers to minimize the total
amount of CO, emissions. This is the first study that integrates ve-
hicle speeds and time windows in a location problem, although it
does not consider vehicle routes.

Table 2 presents features of the existing “green location-routing
and green location” problems and provides a comparison between
them and our study.

Similar to other related studies (Bektas and Laporte (2011);
Demir et al. (2012, 2014a)) that use CMEM as the emission model,
we also treat speed and load as decision variables in order to es-
timate the emissions more accurately. This makes our contribution
different to others that study a location-routing problem with en-
vironmental concerns.

Although not many scientific studies yet exist on the LRP
with an explicit consideration of fuel consumption and emissions,
recent developments in practice suggest that this is a growing area
of attention, particularly in cargo and fast-moving consumer goods
(FMCG) industries. Unilever, for example, who operates in the
FMCG industry, has adopted a new Transport Management System
since 2012, which optimizes transport flows between suppliers,
factories, warehouses and retailers, using a new network structure.
Increasing transport and fuel efficiency and reducing emissions
are the main drivers behind this system (Unilever, 2017). Similar
initiatives have been put in place by other companies, such as
UPS who achieved a reduction of 25,000 metric tonnes of CO,
through optimizing their network in 2015 (UPS, 2015), and FedEx
who invested in an EarthSmart program since 2010 to reduce
transportation related emissions by optimizing vehicle loads and
routes (FedEx, 2011). FedEx also ask their drivers to apply idle
reduction and speed control techniques to reduce fuel consump-
tion (FedEx, 2016). DHL opened a new logistics center in Milan to
reduce emissions as part of network design in a GoGreen environ-
mental protection program. This new center, which is located in
a strategic region of Milan that can be combined with air and sea
transportation, uses 120 trucks to deliver 810,000 tons of goods
per year. A recent press release indicates that the new DHL center
has resulted in an “estimated reduction of facility and transport
CO, emissions of 18% at the new site. 13% of which can be traced
back to an improved road network and a reduction of both transit
time and the average fuel consumption” (DHL, 2012). Recently,
DHL has made another significant investment by opening a logis-
tics hub in Milan Malpensa Airport which transports 60% of Italian
goods and is the sixth largest cargo airport in Europe. One of the
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company executives emphasizes that the company will focus on
the environmental sustainability for this new hub, which requires
an investment of €350m over the next five years (DHL, 2016).
These recent initiatives serve to illustrate the growing importance
of the need to optimize the network structure to be able to reduce
environmental externalities, which include decisions concerning
routing and location.

Another application area of the GLRP has emerged due to recent
developments in on-road vehicle technologies. One example where
this is being put in practice is a European Commission research
project known as Sartre - Safe Road Trains for the Environment.
In this application, a lead vehicle (usually a truck) travels ahead
of a platoon formed by other semi-autonomous vehicles, which
all follow and travel at the same speed as the lead vehicle. The
ability to maintain a constant speed allows to achieve reductions
in congestion, fuel consumption and accidents. Trials of the road
train technology were successfully held in Sweden (Ward, 2011)
and Spain (Volvo, 2012). Another more recent practice is the use
of autonomous vehicles. These type of vehicles also maintain a rel-
atively constant speed on the road compared to conventional ve-
hicles. Recently, Daimler AG, an automotive corporation that owns
Mercedes-Benz, launched two autonomous trucks; Mercedes-Benz
Future Truck 2025 (Wysocky, 2014) and Freightliner Inspiration
Truck (Linshi, 2015). Although these vehicles are still being trialled,
they are expected to be driven on the roads in the near future
(Dougherty, 2017). Consequently, most of the leading cargo compa-
nies have started to consider using such new technologies in their
delivery operations; DHL published a report on self-driving vehi-
cles in logistics based on its benefits and applications (DHL, 2014),
US Postal Service is planning to make deliveries using self-driving
mail trucks within seven years (Marshall, 2017), FedEx is also inter-
ested in autonomous vehicles and is collaborating with the manu-
facturers, Daimler and Volvo (Woyke, 2017), and Amazon formed a
team to study self-driving vehicles (Stevens and Higgins, 2017).

In this study, we introduce the Green Location-Routing Problem
(GLRP), an extension of the LRP that explicitly accounts for fuel
consumption and CO, emissions, the amount of which is measured
by a widely used comprehensive modal emission model (CMEM).
The GLRP consists of locating depots on a subset of a discrete set of
points, from where vehicles of limited capacity will be dispatched
to serve a number of customers with service requirements, and
routing the vehicles by determining the order of customers served
by each vehicle and the speeds on each leg of the journey, such
that customers are served within their respective time windows
and vehicle capacities are respected. The objective is to minimize
a total cost function comprising depot, fuel and emission costs. As
for the network, we assume a single echelon structure including
the depot(s) and the customers.

The contributions of this paper along its structure are as fol-
lows: (i) we formally define the GLRP, (ii) we propose a mixed
integer linear programming formulation for the GLRP, (iii) we
strengthen the formulation by a set of preprocessing rules and
valid inequalities, all of which are detailed in Section 2, (iv) we
present two solution algorithms; one is to solve small-sized GLRP
instances in reasonable times to near-optimality, and the other to
efficiently solve large-sized GLRP instances, both of which are ex-
plained in Section 3, and (v) we conduct extensive computational
analyses on the GLRP to quantify the benefit of the location deci-
sions on internal (operational) and external (environmental) costs,
and to evaluate the performance of the heuristic algorithms de-
tailed in Section 4. Conclusions are given in Section 5.

2. Problem description and formulation

The GLRP is defined on a complete directed graph G = (N, A)
where N = {1, ..., n} denotes the set of nodes representing both the

set of customers and the potential sites for a total of p depots to be
located, and A = {(i, j) : i, j € N, i # j}is the set of arcs. The fixed
cost of operating a depot at node i € N is denoted by c;. A fleet
of m identical vehicles, each with capacity C serves the customers
across the p depot(s). The distance on arc (i, j)eA is denoted by
d;;. Each customer i has a nonnegative demand g;. The service time
and time windows at node i € N are denoted by s; and [I;, u;],
respectively. If a vehicle arrives at customer i before [;, it waits un-
til /; and then service starts. The minimum and maximum speed
limits for vehicles are denoted by v! and v¥, respectively. The unit
combined fuel consumption and emission cost is denoted by e.

2.1. Calculating fuel consumption and emissions

The CMEM was proposed by Scora and Barth (2006),
Barth et al. (2005), Barth and Boriboonsomsin (2008) in order to
estimate fuel consumption for heavy-goods vehicles. Since emis-
sions are directly related to fuel consumption, one can easily calcu-
late the amount of emissions when the fuel consumption is known.
Compared to other microscopic emission models in the literature,
it requires more detailed vehicle specific parameters such as the
engine friction coefficient and the vehicle engine speed.

Based on the CMEM, the fuel consumption rate can be calcu-
lated as F- = £(KYV + P/n)/k in liters/second (L/s) where & is the
fuel-to-air mass ratio, K is the engine friction factor, Y is the en-
gine speed, V is the engine displacement (in L), n is the efficiency
parameter for diesel engines and « is the heating value of a typ-
ical diesel fuel. Furthermore, P = Peract /¢ 5 + Pace is the second-by-
second engine power output (in kW), where ny is the vehicle drive
train efficiency that relates to the overall efficiency of all compo-
nents transmitting the engine power to the wheels, and Py is the
engine power demand associated with running losses of the engine
and the operation of vehicle accessories such as air conditioning
usage. Pyqcr IS the total tractive power requirement (in kW) and it
can be calculated as follows:

Prace = (Ma + Mg sin6 + 0.5C;pSv* + MgC, cos 0)v/1000,

where M is the total weight of the vehicle (in kg) including the
empty vehicle weight w and weight of the goods carried, a is the
instantaneous acceleration (in m/s2), g is the gravitational constant
(in m/s?), @ is the road angle, C, is the coefficient of aerodynamic
drag, p is the air density (in kg/m3), S is the frontal surface area
(in m2), v is the vehicle speed (in m/s) and C; is the coefficient of
rolling resistance.

To simplify the above formulation, some new parameters are
used as follows: A = &/ky where V is the conversion factor of
fuel, y = 1/1000nm, o = a + gsinf + gGrcosO is a vehicle-arc spe-
cific constant and 8 = 0.5C;pS is a vehicle-specific constant. With
these new parameters, the total fuel consumption F (in L) for a
vehicle traversing a road segment of d units (in m) at a constant
speed v (in m/s) can be given as follows:

F = alydM + AydBv? + AKYVd/v.

As it can be seen from the expression above, the CMEM consists
of three modules, namely the weight module (shown by aAydM),
the speed module (defined by AydBv2) and the engine module
(expressed by AKYVd|v). These three modules are explicitly in-
cluded in the objective function of the mathematical model in the
following section.

2.2. An integrated model of location, routing, fuel consumption and
emissions

In this section, we propose a mixed integer programming for-
mulation for the GLRP which is based on the model developed by
Bektas and Laporte (2011). The decision variables are defined as
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follows: A binary variable xﬁ‘j equals 1 if a vehicle that is assigned
to depot k e N travels on arc (i, j) e A, and 0 otherwise. If the cus-
tomer at node i € N is assigned to a depot at node k € N, then a
binary variable y;, equals 1, and 0 otherwise. The service start time
at node j € N is denoted by a continuous nonnegative variable t;.
Similarly, a continuous nonnegative variable f; represents the total
amount of flow on arc (i, j) € A.

As the vehicle speed is a decision variable, some of the objec-
tive function components and constraints of the formulation will
have non-linear terms due to the emission function used. To lin-
earize these terms, we adapt the discretization technique applied
for the PRP by Bektas and Laporte (2011). To that end, a finite set
R=1{1, .., ..} of speed levels is defined where r R corresponds
to a fixed speed Vv'. In order to include the speed decision into the
model, a new binary variable, w:.‘jr, is introduced which takes the
value of 1, if a vehicle allocated to depot ke N travels with a speed
level reR on arc (i, j) €A, and 0 otherwise. A mathematical model
of the GLRP is as follows:

Minimize
A (1)
keN
+e )y |:(ay)»dija) DX (2.1)
(i.j)<A keN
+( Byad Y )wh (2.3)
keN reR
wkr
+ (KYVAd; Y > =) (2.4)
keN reR v

subject to
> =1 VieN (3)
keN
Vit < Yik VikeN (4)
ZYkk =P (5)
keN

YD x=m (6)
keN jeN\{k}

Zx:.‘j:yik ViikeN:k#i (7)
JjeN\{i}

Zx?izyik ViikeN:k#i (8)
JjeN\{i}

Z x’]?k = Z xﬁj YkeN (9)
JjeN\{k} JjeN\{k}

Gy g VikeN:k#j (10)

ZI; > WG =6 JkeN:ks#j
re

d..
ti+si+y. (;)M‘] —Wi+s)(1-x) <t;
reR

V(i j)eAkeN:k#ij (11)

Y@, j)eA keN (12)

kr _ k
Do wi =xj

reR

-y <t VjieN (13)
ti<u;(1-yj) VieN (14)
Yo ofi< Y fi— -y + ) awi
JjeN\{i} JjeN\{i} keN
VieN (15)
> fi=C -y VieN (16)
jeN\(i)
fiy = CY_ox; Vi.j)eA (17)
keN
x5 e (0,1} Y(i,j)eAkeN (18)
yik € {0,1} Vi,keN (19)
wil € {0,1} Y(i,j)eA keNreR (20)
tj>0 VieN (21)
fij=0 Y@, j)eA. (22)

The objective function consists of two components. The first,
shown by (1), minimizes the fixed cost of operating depots. The
second part shown collectively by (2.1)-(2.4) minimizes the to-
tal cost of fuel consumption and emissions estimated by CMEM
described in Section 2.1. In particular, the first two components
(2.1) and (2.2) represent the weight module of the emission model
in which (i) the empty vehicle weight w is represented by the
load-independent component (2.1), and (ii) the weight of the load
carried associated to the load-dependent component (2.2) is rep-
resented by the flow variable f. Components (2.3) and (2.4) cal-
culate the fuel consumption and emissions due to the speed and
engine modules of the CMEM, respectively. Constraint (3) ensures
that every customer is assigned to exactly one depot. Constraint
(4) stipulates that if a depot is not opened at a node, then none
of the customers can be assigned to the depot at that node. Con-
straint (5) sets the number of depots to be opened equal to p.
Constraint (6) guarantees that at most m vehicles can be used to
serve the customers. With constraints (7) and (8), it is ensured that
if a customer is assigned to a specific depot, then a vehicle vis-
its this customer before and after two other customers which are
also assigned to this depot. Constraint (9) ensures that the num-
ber of vehicles that leave and that arrive at the depot is the same.
Constraints (10)-(14) are related to time and speed. Constraint
(10) calculates the arrival time of a vehicle at the first customer
visited after leaving the depot. Constraint (11) calculates the arrival
times of a vehicle at customers assigned to the same depot as the
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vehicle. Constraint (11) is an adaptation of the well known subtour
elimination constraints proposed by Miller et al. (1960) and pro-
hibit the formation of tours solely within customer nodes. With
constraint (12), vehicles can use only one of the specified speed
levels over an arc. Constraints (13) and (14) model the time win-
dow constraints for customers. These constraints also stipulate
that, if a depot is located at a node j (ie., y;;=1), then ¢; =
0, indicating that the customer at node j is served immediately.
Constraint (15) provides flow conservation between nodes except
where a depot is opened. In particular, f; is the total amount of
demand in the route until, but excluding, customer j, and where
a customer at node k is not taken into account if k is selected as
a depot. Constraints (16) and (17) collectively enforce the vehicle
capacity constraints on the flow on each arc. Finally, constraints
(18)-(22) are the domain constraints on the variables.

2.3. Preprocessing and valid inequalities

This section describes some preprocessing rules and valid in-
equalities to strengthen the formulation presented in the previous
section, and to potentially reduce solution times to optimality.

We first present a couple of variable fixing rules for wf.‘jr vari-
ables, which we implement prior to solving the formulation:

d::
. Ifl-+s,-+# > uj, then wf.‘JT:O

Iq kr
o If 5 > u;, then Wy = 0.

The first rule dictates that if the sum of the lower time limit /;

at node i, the travel time % between nodes i and j and the service
time s; at node i is greater than the upper time limit u; at node
Jj, then wf.‘jr is set equal to zero. The second preprocessing rule is a
special case of the first one where j is the first customer after the
depot.

Next, we describe several valid inequalities in order to
strengthen the linear programming (LP) relaxation of the mathe-
matical formulation in the expectation of reducing the CPU times.
These inequalities narrow the solution space by eliminating some
fractional solutions and can provide stronger lower bounds for the
problem.

First, we consider two-node subtour breaking constraint pro-
posed by Dantzig et al. (1954) in order to eliminate cycles be-
tween two customers and develop two different valid inequalities
as shown below:

Xf+ X5 < Vi V@i, j)eA keN:k+#ij (VI1.1)
Do +x) < D0 v Y@, j)eA (VI12)
keN\{i.j} keN\{i,j}

VI (1.1) and VI (1.2) ensure that if a customer is assigned to a
specific depot, then this customer and any other customer assigned
to the same depot can have a link between them in only one di-
rection.

Second, we develop a flow based valid inequality, which en-
sures that the amount of flow on arc (i, j)eA is larger than the
demand g; of node i € N, unless node i is selected as a depot.

Zxﬁj —Yii | = fi

keN

V(@i j) €A (VI2)

The valid inequality we propose next provides a lower bound
on the number of vehicles required, which is derived from the ratio
of the demand of all customers (excluding depots) to the vehicle
capacity.

(Zkequél—Ykk)> <Z Z xk]

keN jeN\{k}

(VI 3)

Similar inequalities to VI (3) were first proposed by
Achuthan et al. (2003) for a vehicle routing problem, and later
adapted for a location-routing problem by Karaoglan et al. (2012).
The last sets of inequalities are stronger versions of the time win-
dow constraints (13) and (14). These inequalities are the adapted
versions of Bektas and Laporte (2011) proposed for the PRP.

d;

l(l—yﬂ)-i- Z Z Zmax(ol lj+si+ )wl’;rgtj
ieN\{j} keN\{i,j} reR

VieN (VI41)

>y Zmax(o Uj— Ui +S;+ d) wh

ieN\{j} keN\{i,j} reR

tj < uj(1 —yj])

VjeN. (VI4.2)

VI (4.1) implies that service of a customer at node j € N starts
after either the customer’s lower time limit (I;) or the sum of the
lower time limit (;) and service time (s;) of a customer at node i

€ N that proceeds it, and the travel time (%) between these two
customers. Similarly, VI (4.2) guarantees that service of a customer
at node j € N starts before either the customer’s upper time limit
(4;) or the time that ensures that the next customer’s i € N service
starts before its upper time limit (u;) at worst.

3. Heuristic algorithms for the GLRP

In this section, we present two heuristic algorithms to solve
the GLRP. Both algorithms first divide the GLRP into subproblems;
namely, the Cumulative Location Routing Problem (CumLRP) and
the Speed Optimization Problem (SOP), and solve each in a hierar-
chical manner. In particular, once the CumLRP is solved, the loca-
tion of the depots and the routes of the vehicles are determined.
The SOP is then solved using the routes of the vehicles in order to
identify the optimum speeds for the vehicles. The solutions found
by the algorithms are feasible for the GLRP since it satisfies all the
constraints imposed by the GLRP formulation. We describe the two
heuristic algorithms in more detail below.

3.1. Cumulative location-routing and speed optimization algorithm
(CLRSOA)

The Cumulative location-routing and speed optimization algo-
rithm (CLRSOA) works as follows; first, one of the CumLRP for-
mulations that will be introduced in Section 3.1.1 is solved to op-
timality. During the optimization process, some feasible solutions
are stored in the “solution pool”. Based on the depot locations and
vehicle routes, the SOP is solved by the Speed Optimization Algo-
rithm (SOA) explained in Section 3.1.2 for each of the solutions in
the pool. Then, a feasible solution with the lowest objective func-
tion value is selected as the solution of the CLRSOA.

Next, we will present the mathematical formulations and solu-
tion techniques for the two subproblems.

3.1.1. Cumulative location-routing problem

The CumLRP is a special case of the GLRP where the time win-
dow constraints are relaxed and where the speed-induced fuel
consumption cost is not included in the objective function. In other
words, the objective function only minimizes the weight-induced
fuel consumption cost. Singh and Gaur (2017) introduce the Cumu-
lative Vehicle Routing Problem, where only routing decisions are
made and where a factor model is used to estimate fuel consump-
tion instead of a microscopic emission model as in the CumLRP. To
the best of our knowledge, the Cumulative Location-Routing Prob-
lem (CumLRP) has not yet been defined in the literature. The main
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difference between the CumLRP and the classical LRP is the objec-
tive function. The classical LRP minimizes the operational cost that
is a function of the total distance traveled. In the CLRP, the opera-
tional cost depends on both the distance traveled and the load of
the vehicle.

An integer programming formulation of the CumLRP can be de-
rived by removing the speed related objective function compo-
nents (2.3-2.4), as well as the speed and time related decision
variables and constraints from the GLRP formulation (Constraints
10-14). The mathematical model of the CumLRP is as follows:

Minimize (1) + (2.1) + (2.2)
subject to
(3) = (9). (15) — (19), (22).

In addition to the above CumLRP formulation, we also propose
a different version of the CumLRP formulation CumLRP’ to diversify
the solutions in the “solution pool”. In the CumLRP’, we assume
that the vehicles travel at the optimal speed v* on each arc of the
network, calculated as follows. The fuel consumption function F(v,
f), which depends on speed v and load f, can be written as
F(v, f) = (ayrdw) + (@yrdf) + (By Adv?) + (KYVAd/v),

3/ KXV

2By
objective function of the CumLRP’ formulation is the same as that
of GLRP when v" = v* for all reR.

The main difference between the CumLRP and the CumLRP’ for-
mulations is that in the latter, we add the cost components (2.3)-
(2.4) in the objective function with the assumption that the ve-
hicles travel at the optimal speed v*, which makes the optimal
value of the CumLRP’ formulation a valid lower bound for the cor-
responding GLRP.

To solve the CumLRP or CumLRP’ formulations within the CLR-
SOA, we use three different solution strategies of the solver CPLEX
to diversify the solutions in the “solution pool”. The first one is
the default “dynamic search”, the second is “traditional branch and
cut” without the cuts (pure branch and bound algorithm), and
third, a cut-and-branch method using the second technique, but
with some of the valid inequalities added at the root node.

from which v* = is obtained as the global minimizer. The

3.1.2. Speed optimization problem

Once the location of depots and route of vehicles are known,
the only remaining decision is the speed to be used over each arc
so that time windows will be obeyed and the total ‘cost’, which is
composed of speed-induced fuel consumption will be optimized.
This second subproblem is the speed optimization problem intro-
duced by Demir et al. (2012) for road transportation. Given a route
and time windows for each customer, the problem decides the ve-
hicle speed on each arc of the route while minimizing the total
cost including fuel consumption and driver cost. As the estimation
of fuel consumption is non-linear, the authors presented a non-
linear formulation.

Since we do not consider driver cost in the GLRP, we only min-
imize the fuel consumption in our version of the speed optimiza-
tion problem. In addition, we do not need to decide on the vehicle
speed for the arc between the last customer visited before the de-
pot and the depot itself since the vehicles travel at the optimal
speed v* on this arc because there is no time related constraint
for returning the depot. Based on these differences between the
formulation proposed by Demir et al. (2012) and our version, we
reformulate the corresponding speed optimization problem.

Speed optimization algorithm: In order to solve the SOP, we
use the speed optimization algorithm (SOA) which was first pro-
posed by Norstad et al. (2011) and Hvattum et al. (2013) for
maritime transportation. The algorithm was first adapted by
Demir et al. (2012) for ground transportation. The authors stated

that the algorithm finds the optimal solution due to convexity
of the objective function (Hvattum et al, 2013). We adapt the
algorithm proposed by Demir et al. (2012) to our problem. The
pseudo-code of the algorithm is presented in Appendix A. The
main difference of our algorithm compared to the one proposed
by Hvattum et al. (2013) is while calculating the vehicle speeds
we consider the time windows, the minimum and maximum speed
limits and the optimal speed (v*).

Kramer et al. (2015) developed a speed and departure time op-
timization algorithm, which is very similar to the algorithm pro-
posed by Demir et al. (2012). They reformulated the speed opti-
mization problem and proved the optimality of their algorithm by
using the necessary and sufficient Karush-Kuhn-Tucker optimality
conditions of the reformulated version of the speed optimization
problem. Their proof can easily be adapted to prove our version of
the speed optimization algorithm.

We note here that the proposed algorithm gives the exact value
of vehicle speed that minimizes the fuel consumption, rather than
a discretized speed level as in the green location routing problem
formulation. Therefore, it provides a more accurate estimation for
fuel consumption.

3.2. Iterated local search algorithm

We also develop an Iterated Local Search (ILS) algorithm
for the problem. The ILS approach was first proposed by
Lourenco et al. (2003). The ILS algorithm has already been applied
to several vehicle routing problems along with some location-
routing problems in the literature (Derbel et al., 2012; Nguyen
et al., 2012).

The main structure of the proposed algorithm is shown in
Algorithm 1.

Algorithm 1 Iterated local search.
1: Iter < 1, f(s*) < o0
2: for Iter < 1 to MaxIter do
3: Generate an initial solution s
S <« s, Itery; < O
while Itery; < MaxlItery; do
s’ < Local Search(s)
if f(s') < f(S) then
S« ¢
Iteer ~0
10: end if
11: s < Perturbation(s)
12: [feer <~ IterNI —+ 1
13: end while
14: if f(5) < f(s*) then

© XN U R

15: s* «§
16: end if
17: end for

18: return s* and f(s*)

The proposed ILS algorithm consists of three main components;
initial solution, local search and perturbation. At each iteration Iter,
the algorithm first generates an initial feasible solution s, which is
also assigned as the incumbent solution $ (lines 3 to 4). Then, a lo-
cal search procedure is applied to this initial solution to find a new
solution s’ (line 6). If the objective function value of this new solu-
tion f(s’) is less than that of the incumbent solution f($), then this
new solution s’ becomes the incumbent solution § (lines 7-8). To
escape from a local optimum solution, the algorithm perturbs the
incumbent solution § and generates a new starting solution s (line
11). These local search and perturbation procedures repeat until
a certain number Maxltery; of iterations without improvement is
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reached (lines 5-13). Finally, if the objective function of the incum-
bent solution f(S) is less than the that of the global best solution
f(s*), then the incumbent solution § replaces the global best solu-
tion s* (lines 14-15). The algorithm continues until a certain num-
ber Maxliter of iterations is reached (lines 2-17).

3.2.1. Initial solution

Initial feasible solutions to the GLRP are generated by first lo-
cating the depots and then assigning the customers to the located
depots. The depot decisions are made in two different ways. In
the first iteration of the algorithm (Iter = 1), we select the first p
depots that have the lowest average distances to the customers.
In the subsequent iterations (Iter > 1), we identify a larger set of
p + k candidate depot locations that have the lowest average dis-
tances to the customers, where k> 1 is an integer, and randomly
locate p depots from within this set. Once the depot locations are
fixed, customers are assigned to their nearest depots in the first 6%
of the total number Maxliter of iterations of the algorithm. In the
rest of the algorithm, the assignments of customers to depots are
done randomly. The effect of such random assignments on the al-
gorithm'’s performance is numerically investigated in later sections.

To construct the routes, we use the savings algorithm
(Clarke and Wright, 1964). At the beginning of the algorithm, ve-
hicles serve only one customer, which means after visiting a cus-
tomer, the vehicle returns the depot directly without visiting any
other customers. After constructing the tours in this manner, the
algorithm calculates the potential savings to be gained if two dif-
ferent tours are combined. Then, starting from the maximum sav-
ings combination, the algorithm combines tours until there is no
savings combinations left. While combining the tours, our version
of this algorithm also respects vehicle capacity and customer time
window constraints. After constructing the tours, the SOA is ap-
plied to find the optimal vehicle speeds.

3.2.2. Local search

For the local search procedure, initially, the algorithm uses re-
moval and insertion operations between the tours. Initially, two
tours are selected; one from which a customer will be removed
and the other to which the removed customer will be inserted. The
selection of tours are random except for single-customer tours. In
this case, a customer from the tour with the highest number of
customers is removed and inserted into single-customer tour.

The selection of the customer that will be removed and the se-
lection of the position into which that customer will be inserted
are decided as follows. First, the cost of a customer is calculated as
the difference of total distance of the tour with and without that
customer. The customer with the highest cost on tour is selected
to be removed from the former tour. Then, the position that re-
moved customer will be inserted is selected based on its impact
on the latter tour. The algorithm selects the position with the low-
est impact on the tour in terms of distance and then it inserts the
removed customer into that position.

After the removal and insertion operators, the well-known two-
opt algorithm proposed by Croes (1958) is used where two edges
from a tour are removed and then two resulting paths are recon-
nected in a different way. In our algorithm, for each tour in the so-
lution, all possible two-opt moves are applied. After these moves,
if an improvement is achieved, the same two-opt procedure is ap-
plied to the new improved solution until there is no improvement
in the solution. Any two-opt move that violates the time window
constraints are not allowed in this algorithm. After each two-opt
move, the SOA is also applied to the tours to find the optimal ve-
hicle speeds.

3.2.3. Perturbation search
In the perturbation stage, the algorithm again uses removal and
insertion operations between the tours. The tour selection is the

same as the one in local search. However, the selection of the
customer that will be removed and the selection of the position
into which that customer will be inserted are made randomly. Any
move that causes an infeasible solution due to the capacity or time
window constraints is not allowed in the algorithm.

4. Computational results

In this section, we present extensive computational results and
analyses on the GLRP and also the performance of the solution ap-
proaches. The aim of the computational analysis is three-fold. First,
we test the formulation proposed for the GLRP and the effect of
the valid inequalities on its performance. Second, we conduct a
detailed analysis on the GLRP by numerically assessing the effect
of a number of parameters, such as depot cost, fuel consumption
and emission cost, time windows and depot locations. Third, we
compare three solution approaches for the GLRP, namely to use the
GLRP formulation and two heuristic methods.

The computational experiments were carried out on a server
using 4 AMD Opteron Interlagos 6282 SE and with 96 GB of RAM.
All mathematical models and algorithms were implemented in
Java. The IBM ILOG CPLEX Optimization Studio version 12.6.1.0 was
used as the solver. The time limit was set as two hours for any
instance.

4.1. Description of the data set

The instances tested here are from the PRP Library of
Demir et al. (2012). The data set in this library consists of ran-
domly selected cities of the United Kingdom with real road dis-
tances, but where demands, time windows and service time are
randomly generated. The instances are available at http://apollo.
management.soton.ac.uk/prplib.htm. As the library does not in-
clude any information on the cost of a depot, the fixed operating
cost of a depot is modeled to be proportional to the distance to the
customers. To determine this value, for each depot, the average of
the distances from other demand nodes to that depot is calculated,
bearing in mind that any demand node can be a depot. Here, we
assume that being closer to customers means a more centrally lo-
cated depot, which can reduce the operational cost of a depot.

The set of speeds are defined from 55km/h to 90km/h in
5km/h increments, resulting in R = {55, 60, 65, 70, 75, 80, 85, 90}.
We do not consider any speed level less than 55 km/h based on the
results of Demir et al. (2014a) who showed that the optimal vehi-
cle speed to minimize the amount of emission is around 55 km/h
for given specific parameter values, irrespective of the vehicle be-
ing empty or loaded, and when there are no time related con-
straints. This assumption is justified by the fact that the vehicles
can wait at nodes before the service starts. Therefore, any solution
using speed values less than 55 km/h would be dominated.

All other values used for the emission model parameters used
can be found in Appendix B (Demir et al., 2012; 2014a).

4.2. Performance of the valid inequalities

This section reports the results of detailed experiments on the
performance of the proposed valid inequalities. We use the first
four of the 20-node instances from the PRP Library with three dif-
ferent (m, p) pairs as (3,1), (3,2), (3,3), resulting in a total of 12
instances tested here.

The valid inequalities are used in combination to find the best
configuration. We do not consider any combinations that include
(VI 1.1) and (VI 1.2) together, as they both are subtour breaking
constraints. A total of 24 combinations are tested, where each com-
bination is appended to the formulation and solved with CPLEX.
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Table 3

Performance of the valid inequalities.
Comb. Av.CPU Av.N.CPU  Comb. Av.CPU  Av.N.CPU  Comb. Av. CPU  Av. N. CPU
Base 1763.42 1.00 11-4 248945  2.04 11-2-4 1795.16 2.00
11 2044.12 1.71 1.2-2 1736.87 1.64 11-3-4 1077.80 1.01
12 1705.05 1.28 1.2-3 78214 0.61 1.2-2-3 125060 121
2 262329 244 1.2-4 2317.37 1.83 1.2-2-4 2639.75 243
3 1426.74  0.92 2-3 175366  1.68 1.2-3-4 104526  0.93
4 252933 216 2-4 299797  2.86 2-3-4 1841.75 1.52
11-2 1272.73 1.71 3-4 2138.74 1.76 11-2-3-4 125945 125
11-3 920.89 0.78 11-2-3  859.12 0.62 1.2-2-3-4 206190 2.16

Table 4

Summary of the computational results for the GLRP.

Fuel consumption
IN| p  Total cost Depot cost Weight Speed  Total Avg. speed Distance  CPU
(£) (£) (L) L L (km/h) (km) (s)

10 1 24352 140.30 28.07 45.66 73.73 56.02 45719 6.59
10 381.67 288.11 25.69 41.14 66.83 56.25 411.39 8.09
10 3 53343 442.89 24.87 39.81 64.67 56.39 398.04 7.59
10 386.21 29043 26.21 42.20 68.41 56.22 42221 742
15 1 29462 152.37 39.09 62.52 101.61 62.42 599.40 809.93
15 2 43527 302.02 36.76 58.41 95.18 60.50 568.73 405.52
15 3 58733 468.44 32.71 52.20 84.92 57.23 52013 331.86
15 439.07 307.61 36.19 57.71 93.90 60.05 562.75 515.77
20 1 28876 136.86 42.47 66.03 108.50  56.65 659.87 796.17
20 419.98 281.17 38.61 60.55 99.15 56.25 605.96 592.01
20 3 56012 424.66 37.62 59.14 96.76 56.50 591.71 958.23
20 422.95 280.89 39.56 61.91 101.47 56.47 619.18 782.14
Average 416.08 292.98 33.99 53.94 87.93 57.58 534.71 435.11

We normalize the CPU times against the base case, shown in the
first row of the table, in which no valid inequalities are used.

The average results over the 12 instances are presented in
Table 3, where the columns titled “Comb.” show the various com-
binations of the valid inequalities 1.1, 1.2, 2, 3 and 4. In this ta-
ble, we present only the average values; the average solution time
under column “Av. CPU” as well as the average normalized solu-
tion time under column “Av. N. CPU". Detailed results are given in
Appendix C.

The results in Table 3 indicate that the combinations 1.2-3
and 1.1-2-3 both provide the two lowest average normalized CPU
times equal to 0.61 and 0.62, respectively. In terms of the average
solution time, however, the combination 1.2-3 with 782.14 s per-
forms better than the combination of 1.1-2-3 with 859.12 s, for
which reason the former combination will be used in the rest of
the experiments.

4.3. Analysis of the GLRP solutions

We conduct a comprehensive analysis on the GLRP, to test the
sensitivity of the solutions against changes in the input parame-
ters, such as the number of depots p, the fixed cost ¢, and time
windows [I;, u;]. For this purpose, we generate a larger set of prob-
lem instances with |N| = 10, 15, 20 and p = 1, 2, 3, where, for each
pair (N, p), we choose the minimum value m* € {2, 3, 4} so that the
resulting instance is feasible. Four instances for each (N, p, m*) are
generated, resulting in a total of 36 instances altogether. Details of
the instances as well as the experiments are given in Appendix D.

We first present a summary of the results for the new instances
in Table 4, which presents the average values over four instances
for each combination of (N, p), averages for each N, and averages
across all instances in the last row. The columns titled “Total Cost”,
“Depot Cost” and “Fuel Consumption” stand for the optimal objec-
tive value, the total cost (in pounds), the fixed cost of depot lo-
cation (in pounds) and the amount of fuel consumed (in L), sepa-
rately for weight and speed-induced amounts, respectively. In the

last three columns, “Average Speed”, “Distance” and “CPU” repre-
sent the average vehicle speed (in km/h), the total distance tra-
versed (in km) and finally the CPU time (in s), respectively.

As it can be seen from the table, as the value of p is increased,
the total cost and the total fixed cost of operating depots also in-
crease by £142.33 and £151.08 on average, respectively. In contrast,
increasing the value of p reduces the total amount of fuel con-
sumed by 6.25L on average, and by 2.41 L and 3.84 L for the weight
and speed-induced consumption, respectively. Increasing the num-
ber of opening depots reduces the number of customers to be
served in the network, leading to less load on the vehicles and the
total distance traveled. The average CPU times for 10, 15 and 20
nodes instances are 7.42, 515.77 and 782.14 s, respectively, which
shows the expected increase on the CPU time as the instance sizes
increase.

4.3.1. The effect of the depot cost

To assess the effect of depot location decisions on fuel con-
sumption and emissions, we use two different types of depot costs.
In the first, depot costs are assigned as being inversely propor-
tional to the average distance to other demand nodes. In the sec-
ond, depot costs are generated randomly. In Table 5, we present
the comparison results for 10, 15 and 20 node problem instances.

The results indicate that using inversely proportional depot
costs yields different results in terms of the depot location or vehi-
cle routes than directly proportional depot costs in all 36 problem
instances. As for the GLRP with randomly generated depot cost, the
solution change in 35 problem instances, suggesting that location
decisions do play a crucial role on fuel consumption and emissions.

Based on the average values shown in the last row of Table 5,
using inversely proportional depot costs change depot location and
vehicle routes for all instances, resulting in a 3.17 L (3.60%) increase
in fuel consumption due to a 18.38 km (3.44%) increase in the to-
tal distance traveled. Since the cost of the depot located near to
the customers is more expensive, an increase in the total distance
traveled and in the fuel consumed is expected. In contrast, using
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Table 5
Different depot cost analysis.
Base (Directly proportional) Inversely proportional Random
N Fuel cons.  A.speed Distance  Fuel cons. A.speed Distance Fuel cons. A.speed Distance
(L) (km/h) (km) (L) (km/h) (km) (L) (km/h) (km)
10 68.41 56.22 422.21 65.60 57.94 397.72 64.74 57.13 398.99
15 93.90 60.05 562.75 98.06 57.28 595.24 92.44 58.41 556.71
20 101.47 56.47 619.18 109.63 56.06 666.30 102.10 57.54 619.31
Average 87.93 57.58 534.71 91.10 57.09 553.09 86.43 57.70 525.00

Table 6
The effect of increase and decrease on the fuel consumption and emission cost.
# of Depot Fuel
Change Fuel cost instances  cost consumption Speed  Distance
(£) changed (£) L) (km/h) (km)

-50% 0.7 5 291.51 89.17 57.73 541.62
-10% 1.26 2 292.11 88.59 57.74 538.20
—5% 133 0 29298 8793 57.58 534.71
0 14 0 29298 8793 57.58 534.71
5% 147 0 29298 8793 57.58 534.71
10% 1.54 1 29324 8775 57.38 534.71
50% 2.1 3 293.68  87.52 57.31 533.52

randomly generated depot costs provides a 1.50L (1.71%) reduc-
tion in fuel consumption due to a 9.71 km (1.82%) decrease in the
total distance traveled. No matter how depot costs are generated,
the problem yields very similar results in terms of average vehicle
speed.

4.3.2. The effect of the fuel consumption and emission cost

The results shown in the previous section suggest that the cost
of fuel consumption and emissions has a marginal effect on the lo-
cation decisions, as compared to the fixed depot costs. The cost of
fuel consumption can be volatile in practice. In this section, we
conduct additional experiments to analyze the sensitivity of the
resulting solutions on the changes in the unit fuel cost. First, we
test minor (up to + 5%) and major (up to + 50%) changes in
the fuel cost. A summary of the results can be found in Table 6,
the columns of which show the number of instances (out of 36) in
which the solution has changed in terms of depot location and/or
vehicle route, average total depot cost, average fuel consumption,
average vehicle speed and average total distance traveled.

The results in Table 6 indicate that modest and realistic changes
of about 5% in the unit fuel consumption and emission cost do not
significantly alter the solutions obtained. More extreme variations,
however, may result in more observable differences in the solu-
tions obtained. Fig. 1(a) and (b) serve to illustrate this point, and
show two solutions for an instance with 15 nodes, three potential
depots and up to two vehicles, with a 50% decrease and increase,
respectively, on the unit fuel and emission cost. In both figures,
the locations which are used as depots to serve other customers
are represented by houses, and opened depots that do not serve
any other customers (except for itself) are represented by x marks.

The solution shown in Fig. 1(a) uses 107.05L of fuel, traverses
a total distance of 656.53 km and with an average speed equal to
56.43 km/h. The same statistics for the solution shown in Fig. 1(b)
are 86.35L, 529.95km and 55 km/h, respectively. Whereas the so-
lution in Fig. 1(a) has a total cost equal to £673.11 of which fuel
and emissions account for 11%, the solution in Fig. 1(b) has a total
cost equal to £806.58 of which 22% is for fuel and emissions.

4.3.3. The effect of time windows

The results in Table 4 suggest that speed may have a more sig-
nificant effect on fuel consumption as compared to that of weight.
One of the constraints that affect speed is time windows. To serve
customers within the predetermined time windows, in some cases,

vehicles have to increase their speed even if it leads to a higher
fuel requirements, and consequently emissions. To analyze the ef-
fects of time windows on the amount of emissions, we generate
new time windows values by narrowing down the original values
by 10%, 20%, 30%, 40% and 50%. The results are shown in Table 7.

The average results reported in Table 7 suggest that narrow-
ing down the time windows by up to 20% does not have a sig-
nificant impact on the solutions. While the increase on the total
cost and the total amount of emission is less than 1% and 3%,
respectively, in only two out of 36 instances, the depot locations
change. However, for the cases when time windows are narrowed
down by more than 30%, there is a significant change on the solu-
tions in terms of vehicle routes and depot locations. The increase
on the total amount of emission is 7.97% and 13.09%, when the
time windows are narrowed further down by 40% and 50%, re-
spectively. In this case, the increase in the total distance traveled,
7.41% and 13.37%, is due to on the increase in the total amount
of emissions. While the average vehicle speed increases in general,
for some cases, it remains low for tighter time windows as can be
seen from Table 7. The main reason for this unexpected situation
is that some of the vehicle routes became infeasible when time
windows are too tight that forces vehicles use alternative routes
traveling at lower speeds. These new routes, however, eventually
increase the total amount of distance traveled and consequently
the total amount of emissions.

4.3.4. The effect of the depot location decision

In order to evaluate the impact of the depot location decisions,
the GLRP is compared with a version of the problem where the
depots are fixed a priori and cannot be changed. For this purpose,
the instances in the PRP Library with p=1 are used, where the
location of the depot is as described therein (Demir et al., 2012).
In this case, the number of nodes is increased by one due to one
additional node on which the depot is located. The comparison re-
sults are given in Table 8. Detailed results are given in Appendix E.

The results indicate that in 10 out of 12 instances, the two
problems provide different results with respect to the depot loca-
tion and vehicle routes. For 8 out of these 10 instances, the GLRP
results in a reduction in fuel consumption by 4.98 L (4.89%), on av-
erage (Table 8). The reduction on the amount of weight and speed-
induced consumption is 2.08 and 2.92L, respectively. The average
speed for the GLRP is nearly the same as the fixed depot case, but
the total travel distance is reduced by 33.96km (5.46%) and the
total cost by 9.04% in the former.

4.4. Performance of the solution algorithms

In this section, we present computational results on the perfor-
mance of the CLRSOA and the ILS algorithm in terms of solution
quality and computational time compared to solving the GLRP for-
mulation.

For this purpose, four 20-node problem instances with p =
1,2, 3 from PRP data set are used.

For the CLRSOA, preliminary analysis indicate that for some
problem instances the optimization process of solving a CumLRP
formulation takes too much time. In order to reduce the solution
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(b) Solution obtained with e = £0.21/L

Fig. 1. Two GLRP solutions on the instance 15_3_2_3 (Google Maps, 2017).

Table 7
Comparisons between the different time windows.

Fuel consumption

Total cost Fixed cost Weight Speed Total A.speed Distance

(£) (£) L (L) @ (km/h)  (km)
Base 413.00 292.54 32.95 53.09 86.04 56.30 530.45
10% 41419 292.54 33.10 5379 86.89 5716 532.64
20%  415.94 292.34 3345 54.83 8829 5816 540.56
30%  418.86 292.26 33.96 56.22 90.18 57.97 553.70
40% 42241 292.36 34.72 5817 9289 58.71 569.78
50%  429.09 292.87 36.23 61.07 9730 58.65 610.35

times, we stop the optimization process of the CumLRP formula-
tions after a predetermined time limit and use the resulting in-
cumbent solutions in the “solution pool” for the SOA. The time
limit for the optimization process of the CumLRP is set as 10 min.

The parameters of the ILS algorithm are chosen after a set
of preliminary fine-tuning experiments and are set as follows:

Table 8
Comparison between the GLRP with and without a fixed depot location.

Maxlter = 25, MaxlItery; = 50, k = 2 and & = 40. Since the ILS algo-
rithm contains some random aspects, instances are run five times
and the best, average and worst results are reported.

4.4.1. Computational experiments

This section presents the results obtained by solving the GLRP
formulation and two heuristic algorithms for small sized instances
and provides a comparison between the solutions and computa-
tional time of the aforementioned solution methods with the re-
sults of the GLRP formulation which solves 20-node GLRP instances
to optimality. We present the comparison results separately for
each of the two heuristic algorithms.

The results obtained with the two variants of the CLRSOA are
given in Tables 9 and 10, one using the CumLRP and the other us-
ing the CumLRP’ formulation, respectively. The first three columns
show the problem parameters; the number of nodes (|N]), instance
number (I) and the number (p) of depots to be located, respec-
tively. The columns titled “Obj. func.” and “S. time” represent the
objective function value (in £) and the solution time (in s) of the

GLRP PRP (GLRP with a known depot location)
Fuel consumption Fuel consumption

IN]| Total cost Depot cost Weight Speed Total A.speed Distance Total cost Depot cost Weight Speed Total A. speed Distance

(£) (£) (L) (L) (L) (km/h)  (km) (£) (£) (L (L (L (km/h)  (km)
1 242.37 134.67 30.06 46.87 7693 56.46 469.45 256.20 14737 30.09 4765 7774 56.56 477.40
16 290.60 148.07 3865 6315 101.80 58.37 616.35 327.67 173.69 4262 6737 109.99 57.27 671.78
21 291.68 134.90 44.09 6789 11198 56.41 679.78  322.69 157.55 46.32 7163 11796 55.82 718.28
Average 274.88 139.21 37.60 5930 9691 57.08 588.53 302.19 159.53 39.68 6222 101.89 56.55 622.49
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Table 9
Results of the CLRSOA with the CumLRP formulation for 20-node instances.
GLRP formulation DS BB CB
IN| T p  Objfunc. S. time Obj func.  S.time  Gap Obj func.  S.time  Gap Obj func.  S.time  Gap
(£) (s) (£) (s) (%) (£) (s) (%) (£) (s) (%)
20 1 1 34634 2864.73  348.46 70.28 0.61 348.46 82.84 0.61 348.46 90.65 0.61
20 1 2 50647 746.82 512.88 94.19 1.26 512.99 113.72 1.29 512.99 127.25 1.29
20 1 3 67349 904.23  675.60 59.47 0.31 675.60 105.74 0.31 675.53 53.78 0.30
20 2 1 30633 67.51 306.30 16.45 -0.01 306.30 16.90 -0.01 306.30 13.96 -0.01
200 2 2 44675 114.01  446.72 14.06 -0.01  446.72 17.45 -0.01  446.72 25.89 —-0.01
20 2 3 60098 147.81  600.95 16.20 0.00  600.95 22.64 0.00  600.95 39.68 0.00
20 3 1 206.05 100.60  206.04 23.20 -0.01 206.04 37.00 —-0.01 206.04 36.24 —-0.01
20 3 2 30915 657.89  309.82 78.70 022  309.82 106.65 022  309.82 72.98 0.22
20 3 3 41267 64250  412.63 69.95 —-0.01 412.66 59.38 0.00  413.37 59.30 0.17
20 4 1 29631 151.82  296.31 61.22 0.00  296.31 45.07 0.00  296.31 44.31 0.00
20 4 2 413.80 189.00  414.36 16.87 0.14 415.78 32.99 048  413.81 40.03 0.00
20 4 3 546.22 12029  546.23 14.04 0.00 546.23 25.32 0.00 546.84 33.57 0.11
Average 558.93 44.55 0.21 55.48 0.24 53.14 0.22
Table 10
Results of the CLRSOA with the CumLRP’ formulation for 20-node instances.
GLRP formulation DS BB CB
IN| I p  Objfunc. S. time Obj func.  S.time  Gap Obj func.  S.time  Gap Obj func.  S.time  Gap
(£) (s) (£) (s) (%) (£) (s) (%) (£) (s) (%)
20 1 1 34634 2864.73  356.09 601.03 2.81 34648 111.70 0.04  346.57 74.91 0.07
20 1 2 50647 746.82 50637 326.74 -0.02 50637 204.16 -0.02 50637 130.41 —-0.02
20 1 3 67349 904.23  673.81 163.58 0.05 682.69 252.93 136 67341 80.07 —-0.01
20 2 1 30633 67.51 306.30 19.92 -0.01 306.30 33.21 —-0.01 306.30 33.70 —-0.01
20 2 2 44675 114.01  446.72 72.89  —0.01  446.72 63.85 —0.01 446.72 52.94 -0.01
20 2 3 60098 147.81 601.81 96.13 0.14 601.81 55.51 0.14 600.95 64.03 0.00
20 3 1 206.05 100.60  206.04 75.55 -0.01 206.04 58.66  —0.01 206.04 64.43 -0.01
20 3 2 30915 657.89  309.11 150.53 -0.01 309.11 15338  -0.01 309.11 117.05 -0.01
20 3 3 41267 64250  412.63 106.51 —-0.01 412.63 80.83 —-0.01 413.37 127.90 0.17
20 4 1 29631 151.82  296.31 120.55 0.00  296.31 50.31 0.00  296.31 54.64 0.00
20 4 2 413.80 189.00  413.80 68.43 0.00  413.80 78.24 0.00  413.80 80.47 0.00
20 4 3 546.22 12029  546.22 31.68 0.00 31.09 159.44 0.00 546.22 63.38 0.00
Average 558.93 152.79 0.24 97.82 0.12 78.66 0.01

corresponding strategy; namely, Dynamic Search (DS), Branch &
Bound (BB) and Cut & Branch (CB), respectively. We also report the
gap (in %) calculated as (zCLRP — ZC(LRSOAY 5 100/zCLRP| where zCLRP
and zCLRSOA are the objective function values of the GLRP formu-
lation and the CLRSOA, respectively. As all 20-node problem in-
stances are solved to optimality with the GLRP formulation, the
gaps correspond to the deviations from the optimal values.

In Tables 9 and 10, some negative gaps are observed. This is due
to the SOP being solved exactly within the CLRSOA but with dis-
cretized values in the GLRP formulation.The results on Tables 9 and
10 show that all versions of the CLRSOA provide optimal or near
optimal solutions in similar amounts of time. Among these six ver-
sions, CumLRP’ formulation with the CB strategy provides the best
results. The average gap and the average solution time for CumLRP’
with CB version is 0.01% and 78.66 s, respectively.

We report the results of the ILS algorithm in Table 11. Each in-
stance is run five times and the table provides the best, average
and worst results of these five runs.

Similar to results of the CLRSOA, since the SOP is solved ex-
actly within the ILS algorithm, negative gaps can be observed in
Table 11. Table 11 indicates that the ILS algorithm generally pro-
vides very good results in terms of solution quality and computa-
tional time. The average optimality gap and the average solution
time of the ILS in the best case scenario is 0.41% and 5.96 s and
1.21% and 6.08 s in the worst case scenario.

In order to explore different solution and escape possible local
optimal solution, we increase the effects of randomness on the al-
gorithm. Therefore, we conduct experiments with higher MaxIter
and lower § values. In addition to (25, 40%) combination of Max-
Iter and § values for which the results are reported in Table 12, we

also report the summary results for the combinations; (50, 20%)
and (100, 10%).

The results on Table 12 indicate that increasing number of
iterations results with higher solution times, but better solutions.
With 50 iterations, the average optimality gap in the best case
scenario is 0.37% and with 100 iterations it becomes 0.28%. On
average of five experiments, the average optimality gaps are 0.79%
with 50 iterations and 0.50% with 100 iterations. The solution
times are approximately 12 and 25 s for 50 and 100 iterations,
respectively. Since solution times up to 25 seconds can be ac-
ceptable, we propose to use the algorithm with the 100-iteration
version.

In conclusion, compared to the CLRSOA, the solutions found by
the ILS algorithm are not as good as the ones obtained by the CLR-
SOA, but in terms of solution time the ILS algorithm performs bet-
ter than the CLRSOA. So, for small sized instances, the CLRSOA is
very efficient alternative to solve the GLRP.

4.5. Computational analysis for large sized instances

We also conduct computational analysis on four different 100-
node problem instances with three different p values as 5, 7, and
10. Due to computational times required, we do not use the CLR-
SOA to solve large sized problem instances, and only conduct the
experiments with the ILS algorithm using the (100, 10%) combi-
nation for the (Maxlter, §) setting. The results can be found in
Table 13.

As it can be seen from Table 13, increasing the value of p leads
to an increase in the total cost and the total fixed cost of oper-
ating depots. In contrast, as the value of p is increased, the total
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Table 11
Results of the ILS algorithm for 20-node instances.
GLRP formulation ILS
Best Average Worst
IN| I p Obj.FE S. time Obj. . S.time  Gap Obj. . S.time  Gap Obj. E. S.time  Gap
(£) (s) (£) (s) (%) (£) (s) (%) (£) (s) (%)
20 1 1 346.34  2864.73 34627 5.15 -0.02 34627 534 -0.02 34627 5.71 —-0.02
20 1 2 50647 746.82 51099  6.09 0.89 51149 6.45 0.99 513.18 6.09 1.32
20 1 3 67349 904.23 676.59  5.58 046 67793  5.07 0.66 67827 522 0.71
20 2 1 30633 67.51 308.17 5.91 0.60  308.17 6.23 0.60  308.17 6.38 0.60
20 2 2 446.75 114.01 446.72  8.99 -0.01 45154 7.76 1.07 46049 6.81 3.08
20 2 3 60098 147.81 601.94  6.06 0.16 60845  6.71 1.24 619.87  5.52 3.14
20 3 1 20605 100.60  206.04 544 -0.01 206.04 5.75 —-0.01 206.04 6.20 -0.01
20 3 2 30915 657.89  309.12 7.65 -0.01 310.61 7.46 0.47 313.67 6.88 1.46
20 3 3 412.67 642.50 41594 554 0.79 418.19 6.19 134  421.61 6.54 217
20 4 1 296.31 151.82 30237 5.72 205 30237 6.26 2.05 30237 6.69 2.05
20 4 2 413.80 189.00 413.80 4.78 0.00 41380 5.29 000 41380 5.83 0.00
20 4 3 54622 120.29  546.22  4.59 0.00 54622 4.85 0.00 54622 513 0.00
Average 558.93 5.96 0.41 6.11 0.70 6.08 1.21
Table 12
(MaxIter, 8) analysis for ILS algorithm.
Best Average Worst
Combination S. Time Gap S. time Gap S. time Gap
(s) (%) (s) (%) (s) (%)
(25, 40%) 5.96 0.41 6.11 0.70 6.08 1.21
(50, 20%) 12.58 0.37 12.71 0.79 12.84 1.19
(100, 10%) 26.75 0.28 27.49 0.50 27.84 0.71
Table 13
Results of the ILS algorithm for 100-node instances.
Fuel consumption
IN] I P Total cost  Depot cost ~ Weight  Speed Total Avg. speed  Distance  S. time
(£) (£) (L) (L) L (km/h) (km) (s)
100 1 5 1407.89 848.78 157.93 24144 399.36  55.84 2417.27 820.04
00 1 7 1748.75 1184.16 159.43 24385  403.27 55.85 2441.51 952.13
100 1 10 223423 1715.62 147.00 22344 37044  56.20 2225.54 1050.34
100 2 5 1395.32 851.00 155.40 23340 388.80 5542 2343.09 963.34
100 2 1728.97 1191.50 152.48 23143 383.91 55.20 2324.25 1295.47
100 2 10 2228.81 1714.27 145.90 221.63 367.53 55.19 2225.86 1190.75
100 3 1047.81 618.20 121.41 185.45 306.86  55.49 1860.54 1118.73
100 3 1288.65 871.05 118.03 180.25 29829 5549 1808.33 1003.43
100 3 10 166798 1251.96 117.74 179.42 297.16 55.50 1780.32 1122.83
100 4 5 123091 715.77 146.85 22111 367.96 55.19 2220.62 839.01
100 4 1510.00 1002.33 143.59 219.03 362.62  55.19 2199.74 1089.31
100 4 10 1917.73 1456.52 129.79 199.65 32944  55.19 2005.07 1308.53

amount of fuel consumed and the total distance traveled generally
reduces. The difference between average vehicle speeds for differ-
ent p values can be considered as insignificant, suggesting that the
vehicle speed remains stable. In addition, increasing the value of p
generally increases the required solution time.

5. Conclusions and managerial implications

In this study, we have introduced the GLRP as a combination
of the traditional LRP and the more recently studied PRP, in which
fuel consumption and CO, emissions are explicitly considered. We
have developed a mixed integer programming formulation for the
GLRP, and described a group of preprocessing rules and valid in-
equalities to strengthen the formulation. Additionally, we have pro-
posed two heuristic algorithms to solve small and larger sized in-
stances in reasonable times. For the computational study of the
GLRP, we have conducted different sensitivity analyses by changing
some key parameters such as the number of depots to be opened,
the fixed cost of operating depots and the fuel consumption and
emission cost. Additionally, we also evaluate the impacts of time
windows and depot location decision on fuel consumption. Finally,

we compare the GLRP formulation and the proposed heuristic ap-
proaches in terms of solution quality and time.

The overall results show that including the “green” aspect in
the objective function through fuel consumption and emissions
does affect the optimal solutions. It is possible to draw a number
of managerial insights from the results given in the previous sec-
tion. First, depot locations must be explicitly considered in combi-
nation with the routing decisions for reductions not only in cost,
but also in fuel consumption, resulting in lesser environmental im-
pact. In particular, it may seem attractive to locate depots where
it is cheaper to do so, but this may have a knock-on effect on the
weight and speed-induced fuel consumption, resulting in a more
expensive solution overall. Second, any opportunity that will allow
to use looser time windows in making deliveries should be ex-
plored by operators, given that such constraints are generally seen
to increase speed and distance, along with the associated fuel con-
sumption. Finally, the results suggest that it may be beneficial to
locate depots to areas for which heavy deliveries are to be regu-
larly made.

Finally, the performance of the heuristic algorithms indicate
that while the CLRSOA is a very effective approach to solve the
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GLRP for small sized instances, the ILS algorithm can be used to
solve larger sized instances in reasonable solution times compared
to both the GLRP formulation and the CLRSOA.
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Appendix A. Speed optimization algorithm

The decision variables to be optimized in the algorithm are as
follows: the vehicle speed between node i ¢ Nand i+1 € N is
denoted by v;. e; and e; represent the arrival and departure time
from node i € N.

Algorithm 2 Speed optimization algorithm (SOA).
initialize: s < 0,e < n,violation < 0,p < 0,k < 1,eg =€y =1y =
up=0D=y1d,S=Y% s

1: fori=s+1toedo

2: Vi_1 < D/(ue + te — max{l, e;} — S)

3: if k £ 1 then

4: if §i71 + di*l/ul?] < li and éi > li +S; then
5: viq < diq/(i—¢1)

6: else if e, | +d;_{/vi_1 <u; and e; > u; + s; then
7: Viq < diq/(Uui—¢1)

8: end if

9: end if

10: vy | < OptimalSpeed

11:  if vy <V then

12: Vi1 < 7

13: else if v;_; > 1" then

14: Vi < V¢

15: end if

16: if v; | > v;_; then
17: Vi1 < Vi,

18: end if

19: if k=1 then

20: e =2e_1+di_1/Vi

21: e =¢6; +S;

22: else if k £ 1 then

23: if i # e then

24: e =ei_1+di_1/Vi_q
25: ej=¢6 +5Sj

26: end if

27: end if

28: g < max{0,e; —u;, l; +5; —e;}

29:  if g; > violation then

30: violation < g;

31: p<i

32: end if

33: end for

34: k<~ k+1

35: if violation > 0 and e, > up then

36: ep < Up+Sp

37: Speed Optimization Algorithm(s, p)
38: Speed Optimization Algorithm(p, e)
39: end if

40: if violation > 0 and e, < I, + s, then
41: ep<—lp+sp

42: Speed Optimization Algorithm(s, p)
43: Speed Optimization Algorithm(p, e)
44: end if

Appendix B. Parameter values for CMEM
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Notation  Description Typical values

e Emission and fuel consumption cost (£/L) 14

5} Curb weight (kg) 6350

k Engine friction factor (kJ/rev/L) 0.2

T Engine speed (rev/s) 33

Vv Engine displacement (L) 5

a Acceleration (m/s?) 0

g Gravitational constant (m/s2) 9.81
Road Angle 0

G Coefficient of rolling resistance 0.01

Gy Coefficient of aerodynamic drag 0.7

P Air density (kg/m?3) 1.2041

S Frontal Surface Area (m?) 3.912

g Vehicle drive train efficiency 0.4

n Efficiency parameter for diesel engines 0.9

& Fuel to air mass ratio 1

K Heating value of a typical diesel fuel (k]/g) 44

v Conversion factor of fuel (g/s) to (L/s) 737

Pacc Engine power demand 0




Appendix C. Performance of the valid inequalities

20_1.3_1 20_1.3_2 20_1.3.3 20_2_3_1 20_2.3.2 20_2.33 20_3.3_1 20_3.3.2 20_3.3.3 20_4.3_1 20_4.3.2 20433
Comb. CPU NCPU CPU NCPU CPU NCPU CPU NCPU CPU NCPU CPU NCPU CPU NCPU CPU NCPU CPU NCPU CPU NCPU CPU NCPU CPU N.CPU Av. N.CPU
Base 348390 100 623313 100 900,50 100 158.88 1.00 21944 100 61766 100 52951 100 65321 100 63941 100 19046 100 953.75 100 6581.21 1.00 1.00
11 7200.00 2.07 2275.56 037 194822 216 148.63 0.94 148.05 067 71499 116 41059 0.78 103859 159 745.07 117 788.38 4.14 463797 4.86 447336 0.68 171
12 132421 038 627456 1.01 89035 0.99 103.69 0.65 29239 133 310.64 050 47695 0.90 89233 137 82377 129 18292 096 514958 540 373919 0.57 1.28
2 5037.88 145 2048.76 0.33 144865 161 113.06 0.71 20439 093 589.01 095 43825 083 487425 746 375576 5.87 46043 242 5309.04 5.57 7200.00 109 244
3 5556.02 159 1058.99 017 67516 075 7542 047 9634 044 36403 059 14568 028 59822 092 53412 084 14691 0.77 343706 3.60 4432.87 0.67 0.92
4 245266 0.70 6921.07 111 181297 2.01 288.08 181 49054 224 141693 229 67208 127 153230 235 161465 253 23159 122 7200.00 755 571912 0.87 2.16
11-2 64998 019 1346.65 0.22 1365.05 152 11470 0.72 18830 0.86 25594 041 30834 058 288472 442 91406 143 127757 6.71 289255 3.03 3074.87 047 171
11-3 431398 124 106272 017 120324 134 7355 046 21501 098 19690 032 42047 0.79 79537 122 81268 127 11839 0.62 780.73 0.82 105767 0.16 0.78
11-4 7200.00 2.07 224876 0.36 231059 2.57 21822 137 25328 115 57612 093 683.57 129 193831 297 211782 331 24414 128 5905.83 6.19 6176.75 0.94 2.04
1.2-2 127791 037 309140 0.50 83154 092 10111 064 160.09 0.73 42155 0.68 35525 0.67 5503.84 843 91434 143 11616 0.61 3889.35 4.08 4179.90 0.64 1.64
1.2-3 2864.73 082 74682 012 90423 100 6751 042 11401 052 14781 024 10060 019 65789 101 64250 100 151.82 0.80 84933 0.89 213837 0.32 0.61
1.2-4 262410 0.75 7200.00 116 1403.27 156 15705 099 29542 135 434.63 070 71214 134 185565 2.84 170502 2.67 22544 118 631859 6.62 487718 0.74 1.83
2-3 3037.83 0.87 126850 0.20 80722 090 98.65 0.62 9824 045 19262 031 33538 063 93432 143 551949 863 12292 0.65 4688.20 4.92 394058 0.60 1.68
2-4 567514 163 1866.87 030 229042 254 21632 136 269.70 123 92611 150 64149 121 225636 3.45 7200.00 1126 233.27 122 7200.00 755 7200.00 109 2.86
3-4 424584 122 224585 036 159837 177 14360 0.90 19331 088 283.05 046 1033.87 195 194219 297 158592 248 22802 120 571139 599 6453.51 0.98 1.76
11-2-3 364849 105 113823 018 692.01 0.77 6514 041 7821 036 220.88 036 15447 029 76989 118 76086 119 11509 060 686.94 0.72 1979.28 0.30 0.62
11-2-4 1571.87 045 3041.08 0.49 240191 267 221.09 139 23559 107 48553 0.79 56395 107 199242 3.05 5046.06 7.89 61566 3.23 121768 128 4149.09 0.63 2.00
11-3-4 2504.64 0.72 1868.04 030 1403.78 156 10707 067 14981 0.68 15419 025 29032 055 129745 199 1160.73 182 26101 137 187535 197 186118 0.28 1.01
12-2-3 680.57 020 1262.73 020 90613 101 6190 039 8055 037 8055 013 9259 017 3998.63 612 552.02 0.86 10741 0.56 3869.96 4.06 3314.18 0.50 1.21
12-2-4 259495 0.74 609346 098 155858 173 21815 137 29414 134 37993 062 40538 0.77 7200.00 11.02 2249.01 3.52 152.83 0.80 5168.52 542 5362.01 0.81 243
12-3-4 103452 030 1718.78 0.28 112011 124 10714 067 9733 044 20615 033 21025 040 1833.63 2.81 143642 225 14831 078 109812 115 353237 0.54 0.93
2-3-4 1647.79 047 163440 0.26 193998 215 13287 0.84 140.27 0.64 42297 0.68 213.83 040 1909.03 292 168295 263 163.84 0.86 5013.03 526 7200.00 109 1.52
11-2-3-4 4163.60 120 131191 0.21 2832.83 3.15 12169 0.77 10447 048 22160 036 51064 096 258224 395 114017 178 19932 105 894.07 094 1030.88 0.16 1.25
12-2-3-4 479835 138 160425 0.26 1390.62 154 13327 084 14926 0.68 246.74 040 15611 029 511290 7.83 549251 859 13618 0.72 280233 294 2720.23 041 2.16

00T

20Z-281 (610Z) SOI Yo4pasay suonviadQ pup siaindwo) /$p1yag L pub pipy A'g ‘wuvypndg ‘0
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Appendix D. GLRP results for 10, 15 and 20-node instances

Fuel consumption

201

IN| I m p Total cost Depot cost Weight Speed  Total # of vehicles  Average speed  Distance = CPU
(£) (£) (L) L L (km/h) (km) (s)
10 1 2 1 197.58 114.14 23.00 36.60 59.60 2 55.00 367,550 4.59
10 1 2 2 303.55 232.10 19.42 31.62 51.03 2 55.00 317,520 215
10 1 2 3 43375 366.09 18.13 30.20 4833 2 55.00 303,250 7.02
10 2 2 1 265.07 146.78 31.32 53.18 84.50 2 59.09 528,590 7.87
10 2 2 2 41910 308.31 29.73 49.40 79.13 2 55.00 496,161 11.83
10 2 2 3 578.19 471.84 29.10 46.86 75.96 2 55.00 470,610 11.80
10 3 2 1 26716 158.64 30.30 47.21 7751 2 55.00 474,160 10.61
10 3 2 2 410.68 318.20 25.64 40.42 66.05 2 55.00 405,910 8.57
10 3 2 3 574.54 484.79 24.53 39.57 64.10 2 55.00 397,400 3.70
10 4 2 1 24429 141.64 27.67 45.65 73.32 2 55.00 458,440 3.27
10 4 2 2 393.37 293.84 27.98 43.11 71.10 2 60.00 425,974 9.82
10 4 2 3 54725 448.82 27.69 42.61 70.30 2 60.56 420,904 7.85
15 2 1 310.23 158.81 42.04 66.12 108.16 2 64.06 615,352 1333.66
15 2 2 462.84 313.80 41.26 65.19 10646 2 64.67 606,032 70.87
15 2 3 616.77 478.11 38.89 60.15 99.04 2 57.50 599,362 39.63
15 2 2 1 241.04 128.25 30.85 49.71 80.57 2 60.00 487,951 28.19
15 2 2 2 366.93 260.82 29.18 46.61 75.79 2 56.67 466,791 16.36
15 2 2 3 497.23 396.15 27.38 44.82 72.20 2 56.79 448,811 29.37
15 3 2 1 360.18 194.25 46.40 7213 118.53 2 61.88 712,440 1450.34
15 3 2 2 544.97 384.44 44.82 69.85 114.67 2 61.33 690,470 1517.44
15 3 2 3 746.14 625.25 33.58 52.77 86.35 2 55.00 529,950 1238.87
15 4 2 1 267.04 128.16 37.09 62.11 99.20 2 63.75 581,850 427.52
15 4 2 2 366.35 249.03 31.79 52.00 83.80 2 59.33 511,640 17.40
15 4 2 3 489.17 374.26 31.00 51.08 82.08 2 59.64 502,380 19.58
20 3 1 346.34 168.82 49.94 76.87 126.81 3 57.95 763,601 2864.73
20 3 2 506.47 353.12 43.06 66.47 109.53 3 57.62 661,061 746.82
20 3 3 673.49 522.26 42.38 65.65 108.03 3 58.00 652,861 904.23
20 2 3 1 306.33 14512 4447 70.68 115.15 3 55.23 709,652 67.51
20 2 3 2 446.75 291.04 42.74 68.48 111.22 3 55.24 687,622 114.01
20 2 3 3 600.98 450.16 41.20 66.53 107.73 3 55.25 667,991 147.81
20 3 3 1 206.05 101.97 29.18 4517 74.34 3 58.41 449,111 100.60
20 3 3 2 309.15 210.79 2743 42.82 70.25 3 5714 428,331 657.89
20 3 3 3 412.67 316.58 26.95 41.69 68.64 3 57.75 416,151 642.5
20 4 3 1 296.31 131.54 46.29 71.40 117.70 3 55.00 717,110 151.82
20 4 3 2 41754 269.71 41.19 64.41 105.59 3 55.00 646,830 849.33
20 4 3 553.35 409.63 39.94 62.71 102.66 3 55.00 629,820 2138.37
Appendix E. The impact of the location decision
GLRP GLRP with a known depot location
Fuel consumption Fuel consumption
INl I m p Total cost Depot cost Weight Speed Total Avg. speed Distance Total cost Depot cost Weight speed Total Avg. speed Distance
(£) (£) L (L) L (km/h) (km) (£) (£) (L L L) (km/h) (km)
m 1 2 1 20831 117.28 25.62 3940 65.02 55.00 395.70 23796 143.38 26.56 41.00 67.56 58.75 409.33
m 2 2 1 26973 148.15 33.92 5293 86.84 56.25 530.61 284.79 165.81 32.49 5249 8499 5542 52711
11 3 2 1 25496 141.09 32.04 49.29 81.33 57.08 493.05 254.96 141.09 32.04 49.29 8133 57.08 493.05
1 4 2 1 23649 132.15 28.67 45.86 74.52 57.50 458.44 24710 139.19 29.27 4780 77.08 55.00 480.09
1 242.37 134.67 30.06 46.87 7693 56.46 469.45 256.20 147.37 30.09 4765 77.74 56.56 47740
6 1 2 1 319.02 158.81 4224 7219 11443 65.29 656.12 348.12 180.40 47.52 7228 119.80 60.88 709.14
6 2 2 1 238.02 121.03 31.91 51.65 83.56 5735 516.88 238.02 121.03 31.91 51.65 83.56 5735 516.88
16 3 3 1 343.04 186.30 42.93 69.03 11196 55.83 692.55 348.92 187.48 4410 7122 11532 55.83 714.65
6 4 3 1 26231 126.14 37.53 59.73 97.26 55.00 599.85 375.62 205.85 46.94 7432 12127 55.00 746.44
16 290.60 148.07 38.65 63.15 101.80 58.37 616.35 327.67 173.69 42.62 67.37 109.99 57.27 671.78
21 1 3 1 34447 164.71 50.22 7818 12840 55.43 784.46 347.07 167.16 50.56 7795 12851 55.00 782.85
21 2 3 1 30818 143.58 46.16 7141 11757 56.30 715.47 384.67 194.25 53.43 82.59 136.01 55.00 829.41
21 3 3 1 20533 98.81 29.88 46.21 76.09 58.26 459.55 208.71 102.78 29.56 4610 75.66 58.26 458.50
21 4 3 1 30873 132.51 50.11 75.76  125.87 55.65 759.63 350.32 166.01 51.76 79.89 131.65 55.00 802.38
21 291.68 134.90 44.09 67.89 11198 5641 679.78 322.69 157.55 46.32 71.63 11796 55.82 718.28
Average 274.88 139.21 37.60 5930 9691 57.08 588.53 302.19 159.53 39.68 62.22 101.89 56.55 622.49
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