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Abstract

In the contest literature, sabotage is defined as a deliberate and
costly activity which damages the opponent’s likelihood of winning
the contest. The existing results mostly suggest that contestants are
discouraged anticipating a possible sabotage. In this paper we investi-
gate the act of sabotage in a team contest where team members exert
costly effort as a contribution to their team’s aggregate effort which
in turn determines the contest outcome. For the baseline model with
no sabotage, there exists a corner equilibrium indicating a free-rider
problem in each team. As for the model with sabotage, our character-
ization of Nash equilibrium reveals two important results: (i) There
exists a unique interior equilibrium so that the free-rider problem is no
longer a concern; and (ii) The discouragement effect of sabotage van-
ishes for some players. Furthermore, we investigate the team owner’s
problems of prize allocation and team formation considering the ob-
jective to maximize his team’s winning probability.
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1 Introduction

Contests are strategic interactions in which participants expend costly re-
sources (e.g., effort, time, money, etc.) aiming to win a valuable prize. Per-
haps most importantly, all of the resources expended are lost independent
of who wins the contest. Many real-life examples can be provided: sports,
war, politics, R&D competition, advertising, etc. In all of these examples,
contestants exert efforts in order to increase their chances of winning; and
in some of them, contestants are also able to take some actions in order to
reduce their opponents’ winning probabilities, thereby indirectly increasing
their own winning probabilities. The latter action is commonly labeled as
“sabotage” in the literature.

Real-life examples to sabotage are aggressive play or attempting to pro-
voke illegal responses from competitors in sports, destruction of the rival’s
weaponry or resources in warfare, negative campaigning in politics, etc.1 In
addition to such real-life observations, many scholars also reported sabotage
in laboratory experiments (see Harbring and Irlenbusch, 2005, 2011; Harbring
et al., 2007; Vandegrift and Yavas, 2010 among others) and field studies (see
Balafoutas et al., 2012; Deutscher et al., 2013; Brown and Chowdhury, 2017
among others). For example, among these papers, Harbring et al. (2007)
investigated behavior in experimental corporate contests with heterogeneous
players; whereas Vandegrift and Yavas (2010) studied a similar framework
preceded by a real-effort task which endogenized the heterogeneity in partic-
ipants’ ability levels. As for the field studies, Balafoutas et al. (2012) and
Deutscher et al. (2013) both reported that sabotage is more likely to be used
by relatively less qualified parties and to be targeted at more qualified ones,
analyzing data from Judo World Championships and German Bundesliga,
respectively.

To the best of our knowledge, in the literature on contests/tournaments,
Dye (1984) is the first to mention the possibility of sabotage. Lazear (1989)
presented a theoretical model of sabotage in contests and showed that a larger
prize spread between the winner and the loser(s) would lead to an increase
in sabotage activity.2 Later, Konrad (2000) studied the effect of sabotage
on equilibrium behavior in an n-player lobbying contest. He showed that
sabotage may increase or decrease the total lobbying effort exerted at the

1For more real-life examples, see a recent survey by Chowdhury and Gürtler (2015).
2A result which is observationally verified by a number of studies (e.g., Garicano and

Palacios-Huerta, 2000; Harbring and Irlenbusch, 2004, 2011; Vandegrift and Yavas, 2010).
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equilibrium and that the total amount of sabotage decreases in the num-
ber of players. Afterwards, Chen (2003) analyzed sabotage in promotion
tournaments where relative performances are important and indicated that
players with the highest caliber might not have the best chance of being
promoted. Münster (2007) studied a case of directed sabotage in selection
tournaments and showed that contestants who choose a higher productive
effort are sabotaged more heavily at the equilibrium. Moreover, he argued
that the possibility of sabotage may deter more productive players from en-
tering the tournament. In a related study, Amegashie (2012) analyzed the
subgame perfect Nash equilibrium of a two-stage contest in which players
choose destructive efforts (i.e., sabotage) in stage 1 and productive efforts
in stage 2. He found that players engage in destructive activities only if
the winning prize is sufficiently high, and after that threshold point, players’
productive efforts remain constant in the prize level.

Despite the fact that the act of sabotage has already been studied in
the contest literature for over thirty years, the analysis of sabotage in team
contests remains an understudied topic in this literature. To our knowledge,
there is only one paper studying sabotage in a team contest. Gürtler (2008)
assumed that each contestant —as a member of one of the two teams—
chooses a productive effort in order to increase his team’s performance, but
is also able to sabotage the members of the opposing team. As a main
result, it is shown that a team directs all its sabotage activities at the least
skilled member of the opposing team. This is rather interesting since it is
in stark contrast to the findings that the most skilled players are most likely
sabotaged in individual contests (see Chen, 2003; Münster, 2007).

We study sabotage in a one-shot contest between two teams. Each team
is divided into two groups which differ in their effectiveness parameters and
winning prizes. For this model we can provide several interpretations: (i)
Consider two football teams playing a football game. Each football team
has attackers and defenders. (ii) Consider two countries in war. Each coun-
try has attack forces and defense forces. (iii) Consider two political parties
competing over two regions. The representatives in different regions can be
interpreted as different groups. In this paper, for the sake of expositional
simplicity, we stick to the football game interpretation keeping the alterna-
tive interpretations in mind. In a given football team, each group chooses a
contest effort which contributes to their team’s aggregate effort which in turn
determines the contest outcome. Additionally, each group is able to sabotage
a particular group in the opposing team, which we call directionally restricted
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sabotage.3 We then characterize and compare the sets of Nash equilibria in
models with no sabotage and with directionally restricted sabotage.

One of the most common results in the literature on sabotage in contests
is the discouragement effect (see Section 4 by Chowdhury and Gürtler, 2015).
For instance, Chen (2003) and Münster (2007) showed that the most skilled
players are subject to more sabotage; and Gürtler and Münster (2010) found
that players who exert high effort in the first stage of a two-stage contest
are sabotaged more than those who exert low effort. These findings imply
that if there is a possibility of being sabotaged, then there is less incentive
to exert high effort or even to enter the contest. On top of these, Amegashie
(2012)’s above-mentioned findings imply that sabotage fully crowds out any
additional productive effort that would have been exerted by players in the
absence of sabotage. By a stark contrast, at the interior equilibrium of our
model, we observe a converse effect for one of the groups. More precisely,
compared to the equilibrium efforts exerted in the model with no sabotage,
there exists a group which exerts higher contest effort once the sabotage
option becomes available. This result, which can be labeled as the encour-
agement effect, appears to be related to the collective nature of the model.

Another interesting issue is that in the baseline model with no sabotage,
we detect a free-rider problem. Depending on the values of effectiveness
parameters and winning prizes, either attackers or defenders exert no effort
at the equilibrium. Similar findings were previously reported by Baik (1993,
2008) and Baik et al. (2001).4 This result is also closely related to the seminal
work by Holmström (1982) highlighting free-rider problems in a team (i.e.,
a group of individuals who are organized so that their productive inputs
are related). The literature emerged from this seminal paper focuses on
optimal contract design to resolve such problems (see McAfee and McMillan,
1991; Itoh, 1991; Vander Veen, 1995; Gershkov et al., 2009 among others).
Interestingly, without a referral to an optimal contract, in this paper we show
that the option to sabotage works as a natural solution to free-riding. More

3A sabotage activity is said to be directed if a player is facing multiple opponents and
is able to choose the victim of his sabotage. Here we restrict the possible directions for
sabotage, arguing that the defenders/attackers in a football team are facing the attack-
ers/defenders in the opposing team. For the interested reader, we analyze the case of
directed sabotage in the Appendix and characterize the conditions under which the model
reduces to our original model with directionally restricted sabotage.

4In fact, if one considers our baseline model in the context of public good provision,
such results date back to Olson (1965).
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precisely, the free-riding group starts contributing to the team’s aggregate
effort once there is a possibility of sabotage from the opposing team members.

Finally, we are interested in the team owner’s problem of optimal design.
First, consider the following scenario: If a team wins the contest, the team
owner receives a prize; and a certain ratio of this prize will be distributed
as a premium among the groups in the team. The team owner’s problem
is to optimally allocate these prize shares in order to maximize his team’s
winning probability. Second, consider the following scenario: A team owner
has a transfer budget to be spent on attackers and defenders who differ in
their effectiveness parameters. Given that hiring more effective players is
more costly, the team owner’s problem is to optimally form the team in
order to maximize his team’s winning probability. Here we characterize the
team owners’ optimal strategies in these two situations.

The rest of the paper is organized as follows: In section 2, we formulate
the models with no sabotage and with directionally restricted sabotage. We
then characterize and compare the sets of Nash equilibria in these models.
In section 3, we investigate the team owner’s problems of optimal design
by letting the team owner (i) to allocate a given prize among two groups
and (ii) to spend a given transfer budget for hiring players with different
effectiveness parameters. Section 4 concludes.

2 The Model

As mentioned earlier, for the sake of expositional simplicity, we refer to the
football game interpretation in this paper. The alternative interpretations
are mentioned when necessary.

2.1 A Team Contest

Consider two football teams playing a football game: team 1 and team 2.
Each team consists of two groups: attackers (a) and defenders (d). In this
football game, each group decides how much costly effort to exert which
contributes to an aggregate effort level for the team. These aggregate efforts
determine which team wins the contest. Accordingly, if team i ∈ {1, 2} wins
the contest, then group j ∈ {a, d} in team i gets a prize of V j

i > 0, whereas
the groups in the losing team do not get any payoff.

Other than winning prizes, the groups also differ in the effectiveness of
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their contest efforts in their team’s aggregate effort function. For every team
i ∈ {1, 2}, the aggregate effort is

Ei = γai e
a
i + γdi e

d
i

where eji ∈ [0,∞) is the contest effort exerted by group j ∈ {a, d} and
γji > 0 is the effectiveness parameter for group j ∈ {a, d}. We assume that
γai 6= γdi . The winner is determined by the following Tullock-type contest
success function:

Pi(E1, E2) =
Ei

E1 + E2

.

Finally, for any group j ∈ {a, d} in any team i ∈ {1, 2}, we consider the same
linear cost function

C(eji ) = eji .

To sum up, in this contest each group j ∈ {a, d} in each team i ∈ {1, 2}
maximizes

U j
i (eji , ·) = Pi(E1, E2)V

j
i − C(eji ) =

Ei
E1 + E2

V j
i − e

j
i .

Below we analyze the Nash equilibrium for this baseline model.

Proposition 1. In the above-described team contest, assume without loss of
generality that for groups j, j′ ∈ {a, d} in team 1 and for groups k, k′ ∈ {a, d}
in team 2:

γj1V
j
1 > γj

′

1 V
j′

1 and γk2V
k
2 > γk

′

2 V
k′

2 .

Then there exists only a corner equilibrium in which

ej1 =
γj1γ

k
2 (V j

1 )2V k
2

(γj1V
j
1 + γk2V

k
2 )2

, ej
′

1 = 0, ek2 =
γj1γ

k
2V

j
1 (V k

2 )2

(γj1V
j
1 + γk2V

k
2 )2

, ek
′

2 = 0.

This leads to the following equilibrium aggregate efforts:

E∗1 =
(γj1)

2γk2 (V j
1 )2V k

2

(γj1V
j
1 + γk2V

k
2 )2

and E∗2 =
γj1(γ

k
2 )2V j

1 (V k
2 )2

(γj1V
j
1 + γk2V

k
2 )2

.

Furthermore, if γai V
a
i = γdi V

d
i for some team i ∈ {1, 2}, then there exist

multiple equilibria such that both groups in team i exert efforts reaching an
aggregate effort of E∗i above.
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Proof. Given an aggregate effort E2 for team 2, the first order condition with
respect to ea1 for group a in team 1 is

γa1E2

(E1 + E2)2
V a
1 − 1 = 0 .

For group d in team 1, a symmetric first order condition can be written as

γd1E2

(E1 + E2)2
V d
1 − 1 = 0 .

Accordingly, it must be that

γa1V
a
1 = γd1V

d
1 (1)

at the equilibrium, which is not necessarily true. This leads to a corner
solution that if the right-hand-side is greater than the left-hand-side, then
only the attackers exert positive effort at the equilibrium; and vice versa.
Considering a symmetric result for the other team, and under the assumption
that γj1V

j
1 > γj

′

1 V
j′

1 and γk2V
k
2 > γk

′
2 V

k′
2 for groups j, j′ ∈ {a, d} in team 1 and

for groups k, k′ ∈ {a, d} in team 2, the respective equilibrium efforts are

ej1 =
γj1γ

k
2 (V j

1 )2V k
2

(γj1V
j
1 + γk2V

k
2 )2

, ej
′

1 = 0,

ek2 =
γj1γ

k
2V

j
1 (V k

2 )2

(γj1V
j
1 + γk2V

k
2 )2

, ek
′

2 = 0.

so that

E∗1 =
(γj1)

2γk2 (V j
1 )2V k

2

(γj1V
j
1 + γk2V

k
2 )2

, and E∗2 =
γj1(γ

k
2 )2V j

1 (V k
2 )2

(γj1V
j
1 + γk2V

k
2 )2

. (2)

Finally, for the sake of completeness, we must note that if equation (1)
indeed holds for team i ∈ {1, 2}, then there exist multiple equilibria such that
both groups in team i exert efforts reaching an aggregate effort of E∗i .

Let γji V
j
i denote a measure for motivation of group j ∈ {a, d} in team i ∈

{1, 2}. The idea is that an increase in γji or V j
i would increase the expected

utility of this group which motivates them to contribute more. Notice that in
the statement of Proposition 1, group j in team 1 and group k in team 2 are
assumed to be relatively more motivated in their teams. And apparently, the
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equilibrium aggregate efforts only depend on the effectiveness parameters and
the winning prizes of these relatively more motivated groups. In particular,
E∗1 is increasing in γj1 and V j

1 , but decreasing in γk2 and V k
2 . The symmetric

is true for E∗2 , and the respective interpretations are quite straightforward.
We complete this section by emphasizing the following remark.

Remark 1. As stated in Proposition 1, if the equation (1) does not hold for
some team i ∈ {1, 2}, then there exists a free-riding group in team i exerting
no effort in the team contest.

This observation becomes particularly important when the option to sabotage
is introduced in the following section.

2.2 Introducing Sabotage

In this section, we introduce an additional choice variable for the groups in
both teams: sabotage. Any act that reduces the effectiveness of the opposing
team members can be classified as a sabotage activity. For instance, given
the football game interpretation, possible sabotage activities are playing more
aggressively and attempting to provoke illegal responses from the opposing
team members. With such actions one may inflict injuries or may cause
the opponent players to receive yellow/red cards. These would decrease the
effectiveness of the opposing team members, thereby indirectly creating an
advantage for one’s team.5

We consider a situation where group a/d in one team can only sabotage
group d/a in the opposing team. To put it differently, group a/d in one team
cannot sabotage group a/d in the opposing team. The intuition is as follows:
In a football game, the attackers in a team are faced with the defenders in
the opposing team; so that if the opposing defenders exert some sabotage
effort, then the attackers should be the ones suffering from this act. This is
what we call directionally restricted sabotage.

5Following the war interpretation, the destruction of rival’s weaponry or resources can
be labeled as a sabotage act. Or, following the political party interpretation, a possible
sabotage activity is negative campaigning.
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d2a1

a2d1

friendship

competition

sabotage

In that sense, one can argue that we study a small network with (i)
four nodes representing the groups and (ii) three types of links representing
group interactions. In particular, a1 has a friendship link with d1; a2 has
a friendship link with d2; a1 and d1 have competition links with both a2
and d2; a1 has a sabotage link with d2; and d1 has a sabotage link with a2.6

Accordingly, the aggregate effort functions become

E1 =
γa1

1 + sd2
ea1 +

γd1
1 + sa2

ed1

and

E2 =
γa2

1 + sd1
ea2 +

γd2
1 + sa1

ed2

where sji ∈ [0,∞) denotes the sabotage effort exerted by group j ∈ {a, d} in
team i ∈ {1, 2} at the respective group in the opposing team. As it can be
seen, we assume for concreteness that if group j ∈ {a, d} in team i ∈ {1, 2}
is sabotaged in the amount of s, then the effectiveness level of this group
reduces from γji to γji /(1 + s).

The contest success function is preserved in terms of the aggregate efforts
E1 and E2. Finally, the cost function of group j ∈ {a, d} in team i ∈ {1, 2}
is updated to

Cj
i (e

j
i , s

j
i ) = eji + µjis

j
i

where µji > 0 denotes the cost of exerting one unit of sabotage effort.

6In a similar manner, consider the war interpretation of our model. For each country,
the defense forces are located within the country, whereas the attack forces are moved to
the opposition territory for battle. It seems clear that it would be impossible for the defense
forces of a country to sabotage the defense forces of the opposing country, since they are
located within different territories. Also, consider the political party interpretation of our
model. Party 1’s representatives in one region can only sabotage party 2’s representatives
in the same region; and so on. Notice that this situation can be captured by the network
above following a simple replacement of the nodes a2 and d2.
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In this contest each group j ∈ {a, d} in each team i ∈ {1, 2} maximizes

U j
i

(
(eji , s

j
i ), ·
)

= Pi(E1, E2)V
j
i − C

j
i (e

j
i , s

j
i ) =

Ei
E1 + E2

V j
i − e

j
i − µ

j
is
j
i .

Below we characterize the unique interior Nash equilibrium of this model.

Proposition 2. In this model with directionally restricted sabotage, the ag-
gregate efforts at the unique interior equilibrium are given by

E∗1 = γd1µ
a
2

V d
1

V a
2

+ γa1µ
d
2

V a
1

V d
2

and E∗2 = γd2µ
a
1

V d
2

V a
1

+ γa2µ
d
1

V a
2

V d
1

.

Furthermore, the respective equilibrium contest and sabotage efforts are

sd∗1 =
γa2E

∗
1V

a
2

(E∗1 + E∗2)2
− 1, sa∗1 =

γd2E
∗
1V

d
2

(E∗1 + E∗2)2
− 1 ,

sd∗2 =
γa1E

∗
2V

a
1

(E∗1 + E∗2)2
− 1, sa∗2 =

γd1E
∗
2V

d
1

(E∗1 + E∗2)2
− 1 ,

ed∗1 =
µa2γ

d
1E
∗
2(V d

1 )2

V a
2 (E∗1 + E∗2)2

, ea∗1 =
µd2γ

a
1E
∗
2(V a

1 )2

V d
2 (E∗1 + E∗2)2

,

ed∗2 =
µa1γ

d
2E
∗
1(V d

2 )2

V a
1 (E∗1 + E∗2)2

, ea∗2 =
µd1γ

a
2E
∗
1(V a

2 )2

V d
1 (E∗1 + E∗2)2

.

Such an interior equilibrium exists if and only if

γjiE
∗
−iV

j
i

(E∗1 + E∗2)2
> 1

for every i ∈ {1, 2} and j ∈ {a, d}; and this inequality is satisfied as long as
all of the winning prizes are sufficiently large.

Proof. Consider the maximization problems for group d in team 1 and group a
in team 2. The corresponding first order conditions are

∂Ud
1

∂ed1
=

γd1
1 + sa2

E2

(E1 + E2)2
V d
1 − 1 = 0 (3)

∂Ud
1

∂sd1
=

γa2
(1 + sd1)

2

ea2E1

(E1 + E2)2
V d
1 − µd1 = 0 (4)

∂Ua
2

∂ea2
=

γa2
1 + sd1

E1

(E1 + E2)2
V a
2 − 1 = 0 (5)

∂Ua
2

∂sa2
=

γd1
(1 + sa2)

2

ed1E2

(E1 + E2)2
V a
2 − µa2 = 0 (6)
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From (3) we get
γd1E2V

d
1

(E1 + E2)2
= 1 + sa2 ;

and from (6) we get

γd1E2V
a
2

(E1 + E2)2
= µa2

(1 + sa2)
2

ed1
.

Thus

ed1 =
µa2γ

d
1E2(V

d
1 )2

V a
2 (E1 + E2)2

.

In a similar manner, we can write all equilibrium contest and sabotage
efforts in terms of each γji , V

j
i , µji , and Ei. These values are

1 + sd1 =
γa2E1V

a
2

(E1 + E2)2
, 1 + sa1 =

γd2E1V
d
2

(E1 + E2)2
, (7)

1 + sd2 =
γa1E2V

a
1

(E1 + E2)2
, 1 + sa2 =

γd1E2V
d
1

(E1 + E2)2
, (8)

ed1 =
µa2γ

d
1E2(V

d
1 )2

V a
2 (E1 + E2)2

, ea1 =
µd2γ

a
1E2(V

a
1 )2

V d
2 (E1 + E2)2

, (9)

ed2 =
µa1γ

d
2E1(V

d
2 )2

V a
1 (E1 + E2)2

, ea2 =
µd1γ

a
2E1(V

a
2 )2

V d
1 (E1 + E2)2

. (10)

Notice that we also have

ea2
(1 + sd1)

= µd1
V a
2

V d
1

;

and by symmetry,

ea1
(1 + sd2)

= µd2
V a
1

V d
2

;
ed2

(1 + sa1)
= µa1

V d
2

V a
1

; and
ed1

(1 + sa2)
= µa2

V d
1

V a
2

.

Thus

E∗1 = γd1
ed1

1 + sa2
+ γa1

ea1
1 + sd2

= γd1µ
a
2

V d
1

V a
2

+ γa1µ
d
2

V a
1

V d
2

and

E∗2 = γd2
ed2

1 + sa1
+ γa2

ea2
1 + sd1

= γd2µ
a
1

V d
2

V a
1

+ γa2µ
d
1

V a
2

V d
1

.
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By replacing these E∗1 and E∗2 values into the equations (7)–(10), we can
write all equilibrium contest and sabotage efforts.

Finally, from the equations (7)–(10), we can derive the necessary and suf-
ficient conditions for the existence of an interior equilibrium: Given positive
aggregate efforts for both teams, an interior equilibrium exists if and only if
for every i ∈ {1, 2} and j ∈ {a, d}: we have sji > 0, i.e.,

γjiE−iV
j
i

(E1 + E2)2
> 1.

And these conditions are satisfied when all of the winning prizes are suffi-
ciently large.7 This completes the proof.

For comparative statics results, we focus on team 1. The equilibrium
aggregate effort E∗1 increases in the effectiveness parameters and winning
prizes for both groups in team 1, as well as in the cost of sabotage for both
groups in team 2. Furthermore, E∗1 decreases when the winning prize for
either of the groups in team 2 increases.

Comparative statics for the equilibrium contest and sabotage efforts are
not straightforward. Accordingly, we concentrate on the ratio of equilibrium
efforts. For instance, considering the ratio

ed∗1
ea∗1

=
µa2γ

d
1V

d
2 (V d

1 )2

µd2γ
a
1V

a
2 (V a

1 )2
,

we see that the relative contest effort of group d in team 1 increases when
there is an increase in the effectiveness parameter for this group, or in the cost
of sabotage for the respective saboteur, or in the winning prize for group d
in either of the teams. The converse would be true for the parameters in the
denominator. As for the sabotage activity, considering the ratio

1 + sd∗1
1 + sa∗1

=
γa2V

a
2

γd2V
d
2

,

we see that the relative sabotage effort of group d in team 1 increases when
there is an increase either in the effectiveness parameter or the winning prize

7Notice that if all winning prizes are multiplied by the same scalar, then the equilibrium
values for E1 and E2 remain unchanged. Accordingly, for any quadruple of winning prizes,
there exists a scalar above which the respective winning prizes lead to positive sabotage
efforts for all players.
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for the respective victim: group a in team 2. The converse would be true for
the parameters in the denominator.

The current model yields an interesting insight regarding free-riding. As
highlighted in Remark 1, our result in the baseline model is related to the
findings in the optimal contract literature following the seminal work by
Holmström (1982). This literature focuses on free-rider problems among
team members and studies optimal contract design to resolve such problems
(see McAfee and McMillan, 1991; Itoh, 1991; Vander Veen, 1995; Gershkov et
al., 2009 among others). By contrast, in the current paper, we show that an
optimal contract analysis may not be necessary in the sense that none of the
groups free-rides once they are given an option to sabotage their opponents.

Remark 2. Although there exits a free-rider problem in the baseline model
with no sabotage, our model with directionally restricted sabotage has a unique
interior equilibrium for which none of the groups free-rides. This indicates
that the possibility of sabotage turns out to be a natural solution to free-riding.

Recall that γji V
j
i denotes a measure for motivation of group j ∈ {a, d}

in team i ∈ {1, 2}. Then our equilibrium analysis for the baseline model
suggests that the relatively less motivated group in a team free-rides if there
is no option to sabotage. However, when sabotage becomes available, the
new motivation of group d in team 1 reduces to

γd1
1 + sa∗2

V d
1 =

(E∗1 + E∗2)2

E∗2
.

at the unique interior equilibrium. The new motivation of group a in team 1
after being sabotaged turns out to be the same. Since both groups are now
equally motivated, both groups are willing to exert positive contest efforts at
the equilibrium. It is worth noting that this does not lead to a multiplicity
of equilibria since equilibrium contest efforts should be chosen in such a way
that they are consistent with the equilibrium sabotage efforts.

From an efficiency perspective, this result deserves a further discussion.
Exerting more effort in a contest with an exogenously given winning prize is
arguably inefficient, since exerting effort has some cost, but has no influence
on the winning prize. This implies that solving the free-rider problem would
be undesirable. Yet, it may be desirable in certain situations where the third
parties (e.g., spectators in sport contests, consumers in a competitive market,
etc.) benefit from increased contest efforts. These issues aside, one should
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keep in mind that the sabotage act is not proposed as a rule or mechanism
in order to solve the free-rider problem in this paper, but rather it turns out
to be a natural solution after being introduced as a realistic extension to the
baseline model with no sabotage. This highlights that a designer who has
efficiency concerns should be extra careful studying such team contests and
should avoid using an oversimplified model8 which might be very misleading.

Furthermore, our findings also oppose a common result in the literature
on sabotage in contests/tournaments. More precisely, it is commonly argued
in this literature that the prospect of being sabotaged has a discouragement
effect in the sense that contestants exert lower equilibrium efforts in com-
parison to what they would choose in case of no sabotage. By contrast, we
show here that both directions are possible. For instance, in our baseline
model with no sabotage, only the relatively more motivated groups exert
positive contest efforts. When there is a possibility of sabotage, those groups
might exert lower contest efforts at the equilibrium depending on the model
parameters, meaning that they might be discouraged. On the other hand,
the free-riding groups start contributing to their teams’ aggregate efforts,
meaning that they are not discouraged, but are even encouraged. We relate
this result to the collective nature of our model.

Remark 3. For the free-riding group in the baseline model, a possibility of
sabotage has an encouragement effect.

It is worth mentioning that even when the model is extended to include
teams with n groups, we would obtain qualitatively similar results. To be
more precise, if there exist k groups with the highest motivation in a team,
then the remaining n− k groups would free-ride in the baseline model; and
after a sabotage option is introduced, some of these groups would start ex-
erting positive contest efforts at the equilibrium given that their respective
interior equilibrium conditions are satisfied.

Finally, in this paper we study a particular team contest with directionally
restricted sabotage which is played on a network with given sabotage links.
We could also consider a case in which a group in one team can sabotage
any group in the opposing team. In order to provide some insights to the
interested reader, such an analysis is given in the Appendix.

8An oversimplified model refers to a model that disregards sabotage although the real-
life scenario to be explained includes a sabotage act. Apparently, such an oversimplified
model makes significantly different predictions.
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3 Team Owner’s Problems

In this section we study the team owner’s problems of optimal design.
Throughout this section, we restrict ourselves to cases in which there ex-
ists an interior equilibrium. As specified earlier, this can easily be achieved
if the winning prize V j

i is sufficiently high for every i ∈ {1, 2} and j ∈ {a, d}.

3.1 Prize Allocation

Assume that the owner of team i decides on how to distribute a total prize of
Vi among the groups a and d in case of winning. Accordingly, the respective
constraints are V a

1 +V d
1 = V1 and V a

2 +V d
2 = V2. Obviously, given a strategy

for the opposing team owner, the team owner’s objective is to maximize his
team’s winning probability. More precisely, the owner of team 1 maximizes

P1(E1, E2) =
E1

E1 + E2

=
γd1µ

a
2
V d1
V a2

+ γa1µ
d
2
V a1
V d2(

γd1µ
a
2
V d1
V a2

+ γa1µ
d
2
V a1
V d2

)
+
(
γd2µ

a
1
V d2
V a1

+ γa2µ
d
1
V a2
V d1

) .

The following proposition shows the optimal allocation of prize shares.

Proposition 3. In the model with directionally restricted sabotage, the owner
of team 1 should allocate a total prize of V1 according to

V d∗
1 =

V1
2

(
γd1µ

a
2

γd1µ
a
2 + γa1µ

d
2

+
γa2µ

d
1

γd2µ
a
1 + γa2µ

d
1

)
and

V a∗
1 =

V1
2

(
γa1µ

d
2

γd1µ
a
2 + γa1µ

d
2

+
γd2µ

a
1

γd2µ
a
1 + γa2µ

d
1

)
in order to maximize his team’s winning probability.

Proof. See the Appendix.

For comparative statics, we concentrate on V d∗
1 . It is easy to see that if

the expression in parenthesis is greater than 1, then V d∗
1 > V1/2 > V a∗

1 , i.e.,
the owner of team 1 prefers to allocate a higher prize share to group d. This
occurs when γd1 , γa2 , µd1, and µa2 are sufficiently high. This is quite intuitive,
since these parameters represent the significance of group d in team 1: γd1 is
the effectiveness parameter for this group; γa2 is the effectiveness parameter
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for the group in the opposing team which has a sabotage link with this group;
and µd1 and µa2 are the respective costs of sabotage for these two groups.
Accordingly, if γd1 increases, the contest effort by group d in team 1 should
be incentivized more; if γa2 increases, the sabotage effort at group a in team 2
should be incentivized more; if µd1 increases, the sabotage effort by group d
in team 1 should be compensated; and if µa2 increases, the contest effort by
group d in team 1 should be incentivized even further since group a in team 2
is to be compensated for its sabotage at the equilibrium.

Let γd1µ
a
2 be defined as the weighted effectiveness of group d in team 1. As

µa2 decreases, this group is apt to be sabotaged more, which in turn decreases
the group’s effectiveness; so that the weighted effectiveness somehow captures
the effectiveness of a group depending on its adversary. Now, returning back
to V d∗

1 , we can reinterpret our result: The owner of team 1 allocates the half
of the prize V1 proportional to the weighted effectiveness of the groups in his
team and the rest of the prize proportional to the weighted effectiveness of
their respective adversaries.

Obviously, the optimal prize shares for team 2 can be expressed and
interpreted in a symmetric manner.

3.2 Team Formation

Here we model the transfer market. Consider the situation where a team
owner has a choice of forming the team under a given budget constraint.
In particular, we let the team owner choose any effectiveness level for each
group in his team: γa and γd. Since µji is not a choice variable for the owner
of team i ∈ {1, 2}, in order for this analysis to be meaningful, we assume
that µa1 = µa2 = µd and µd1 = µd2 = µa.9

Under the assumption that the cost of hiring a player with an effectiveness
parameter γ is γα where α > 1, the owner of team 1 aims to maximize

P1(E1, E2) =
E1

E1 + E2

=
γd1µ

a V
d
1

V a2
+ γa1µ

d V
a
1

V d2(
γd1µ

a V
d
1

V a2
+ γa1µ

d V
a
1

V d2

)
+
(
γd2µ

a V
d
2

V a1
+ γa2µ

d V
a
2

V d1

)
9Suppose that the effectiveness parameters could be different for teams and assume

without loss of generality that µd
1 > µd

2. This implies that team 1 cannot hire a defender
with a sabotage cost lower than that of the defenders in team 2. This surely sounds odd.
Here we simply assume that µj is a property of a group, but not a team.
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subject to the budget constraint (γa1 )α + (γd1)α = Γ1. We note here that
E2 is independent of γa1 and γd1 ; and as a result, this maximization problem
corresponds to the maximization of E1.

10

The following proposition shows the optimal effectiveness parameters.

Proposition 4. In the model with directionally restricted sabotage, given the
budget constraint (γa1 )α + (γd1)α = Γ1, the owner of team 1 should form the
team in such a way that

γa∗1 =

 Γ1

1 +

(
µaV d

1 V
d
2

µdV a
2 V

a
1

) α
α−1


1
α

and γd∗1 =

 Γ1

1 +

(
µdV a

2 V
a
1

µaV d
1 V

d
2

) α
α−1


1
α

in order to maximize his team’s winning probability.

Proof. See the Appendix.

We see that the optimal choice of effectiveness parameter for group d in
team 1 increases in µa, V d

1 , V d
2 , and Γ1; whereas it decreases in µd, V a

1 , V a
2 ,

and α. Here we omit the interpretations for Γ1 and α, as they seem to be
straightforward. The owner of team 1 invests more on the defensive side, in
case there is (i) an increase in µa which makes the sabotage by group a in
team 2 more costly; (ii) an increase in V d

1 which motivates group d in team 1
to exert a higher contest effort; and (iii) an increase in V d

2 which deters
group a in team 2 from exerting a higher contest effort so that group d in
team 1 can further concentrate on its contest effort rather than sabotage.
The converse interpretations follow for µd, V a

1 , and V a
2 .

Given Proposition 4, we also have

γd∗1
γa∗1

=

(
µaV d

1 V
d
2

µdV a
2 V

a
1

) 1
α−1

.

This means that when µaV d
1 V

d
2 > µdV a

2 V
a
1 , the owner of team 1 focuses

relatively more on the defensive side. This happens when the cost of sabotage
is higher for the respective saboteurs and/or when the winning prize for

10This eliminates the strategic interaction between the team owners. Independent of
what the owner of team −i does, the owner of team i would always choose the same values
of effectiveness parameters for groups a and d.
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group d in either of the teams is higher. On top of these, the difference
between γd∗1 and γa∗1 decreases as the hiring cost parameter α increases.

In the analysis above, we assume that winning prizes V j
i are exogenously

given. Instead, if we consider endogenous prizes (and refer to the analysis in
Subsection 3.1), since we would have V d

1 V
d
2 = V a

2 V
a
1 , the new ratio between

γd∗1 and γa∗1 would become

γd∗1
γa∗1

=

(
µa

µd

) 1
α−1

.

This observation leads to the following remark.

Remark 4. In the model with directionally restricted sabotage, given the
budget constraint (γa1 )α + (γd1)α = Γ1, if the team owners strategically choose
the allocation of prize shares, then the owner of team 1 should form the team
in such a way that

γa∗1 =

 Γ1

1 +

(
µa

µd

) α
α−1


1
α

and γd∗1 =

 Γ1

1 +

(
µd

µa

) α
α−1


1
α

in order to maximize his team’s winning probability.

It appears that when winning prizes for both groups are endogenously
determined by the team owners, the effects of winning prizes on the optimal
choices of effectiveness parameters are suppressed. However, the remaining
part of the aforementioned interpretations are preserved.

4 Conclusion

In this study we have contributed to the burgeoning literature on team con-
tests by introducing sabotage as an additional dimension of the contestants’
strategy space. The members of a team chooses not only contest efforts
which contribute to their team’s aggregate effort, but also sabotage efforts
directed at a particular group in the opposing team. Our analysis unveils
two fundamental differences in the equilibrium strategies: (i) the discour-
agement effect of sabotage commonly reported in individual contests does
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not appear for some players in this team contest; and even more interest-
ingly, (ii) the free-rider problem inherent in team contests disappears with
the added option to sabotage.

These results highlight the undesired consequences of ignoring a factor
that could be involved in the strategic trade-offs of players for the sake of
simplicity. For instance, in this paper we have observed that analyzing a
strategic interaction between teams that naturally includes a sabotage act
via an oversimplified model in which the team members are only allowed to
choose their contest efforts may create a free-rider problem that in fact does
not exist. This indicates that a designer who is concerned about free-riding
or who values the intensity of competition between teams might be misled
by an oversimplified model, and therefore should not disregard the effect of
sabotage on the effort choices of players. Furthermore, as sabotage turns out
to be a natural solution to the free-rider problem, our model allows us to
investigate two different design problems of a team owner: (i) allocation of
winning prizes among team members and (ii) team formation under a given
transfer budget.11

Finally, our results are also of interest from an experimental design per-
spective. The theoretical predictions of our analysis will be of practical value
to experimental economists who investigate team contests in the lab. Future
work may elaborate on this issue.

11In the baseline model with no sabotage, the free-riding result makes the team owner’s
problems trivial since the team owner would always concentrate on the most motivated
group in his team.
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Appendix

Team owner’s problem of prize allocation:
For given values of γji and µji for every i ∈ {1, 2} and j ∈ {a, d}, the owner
of team 1 aims to maximize12

P1(E1, E2) =
E1

E1 + E2

=
γd1µ

a
2
V d1
V a2

+ γa1µ
d
2
V a1
V d2(

γd1µ
a
2
V d1
V a2

+ γa1µ
d
2
V a1
V d2

)
+
(
γd2µ

a
1
V d2
V a1

+ γa2µ
d
1
V a2
V d1

) .

The first order condition for team 1 yields

∂E1

∂V d
1

E2 =
∂E2

∂V d
1

E1 .

Now, considering that V a
1 and V d

1 are dependent variables, we have(
γd1µ

a
2

1

V a
2

− γa1µd2
1

V d
2

)
E2 =

(
γd2µ

a
1

V d
2

(V a
1 )2
− γa2µd1

V a
2

(V d
1 )2

)
E1 .

Similarly, for team 2 we get(
γd2µ

a
1

1

V a
1

− γa2µd1
1

V d
1

)
E1 =

(
γd1µ

a
2

V d
1

(V a
2 )2
− γa1µd2

V a
1

(V d
2 )2

)
E2 .

Multiplying these two equations side by side, canceling out E1E2 from
both sides, and then multiplying both sides with (V d

1 V
a
1 V

d
2 V

a
2 )2 we obtain(

γd1µ
a
2V

d
2 − γa1µd2V a

2

) (
γd2µ

a
1V

d
1 − γa2µd1V a

1

)
V d
1 V

a
1 V

d
2 V

a
2 =[

γd2µ
a
1V

d
2 (V d

1 )2 − γa2µd1V a
2 (V a

1 )2
] [
γd1µ

a
2V

d
1 (V d

2 )2 − γa1µd2V a
1 (V a

2 )2
]
.

12Note that (
f(x)

f(x) + g(x)

)′
=
f ′(x)(f(x) + g(x))− f(x)(f(x)′ + g(x)′)

(f(x) + g(x))2

=
f ′(x)g(x)− f(x)g′(x)

(f(x) + g(x))2

so that in order for the above expression to be equal to zero, it must be that

f ′(x)g(x) = f(x)g′(x).
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After arranging terms, we are left with

γd1γ
d
2µ

a
1µ

a
2(V

d
1 )2V a

1 (V d
2 )2V a

2 + γa1γ
a
2µ

d
1µ

d
2V

d
1 (V a

1 )2V d
2 (V a

2 )2 =

γd1γ
d
2µ

a
1µ

a
2(V

d
1 )3(V d

2 )3 + γa1γ
a
2µ

d
1µ

d
2(V

a
1 )3(V a

2 )3 .

And this equality can be rewritten as[
γd1γ

d
2µ

a
1µ

a
2(V

d
1 V

d
2 )2 + γa1γ

a
2µ

d
1µ

d
2(V

a
1 V

a
2 )2
]

(V d
1 V

d
2 − V a

1 V
a
2 ) = 0 .

Since the first term is positive, it must be that V d
1 V

d
2 = V a

1 V
a
2 . From this

equation we find
V d
1

V a
2

=
V a
1

V d
2

=
V d
1 + V a

1

V d
2 + V a

2

=
V1
V2

.

Then, for the sake of expositional simplicity, we set

ρd1 = γd1µ
a
2, ρd2 = γd2µ

a
1, ρa1 = γa1µ

d
2, and ρa2 = γa2µ

d
1 .

Now we can write

E1 = γd1µ
a
2

V d
1

V a
2

+ γa1µ
d
2

V a
1

V d
2

=
V1
V2

(ρd1 + ρa1)

and

E2 = γd2µ
a
1

V d
2

V a
1

+ γa2µ
d
1

V a
2

V d
1

=
V2
V1

(ρd2 + ρa2) .

Following some algebraic operations, the first order condition for team 1 can
be rewritten as(

ρd1
V1
V2V d

1

− ρa1
V1
V2V a

1

)
V2
V1

(ρd2 + ρa2) =

(
ρd2

V2
V1V a

1

− ρa2
V2
V1V d

1

)
V1
V2

(ρd1 + ρa1) .

Canceling out all V1 and V2, we have

ρd1(ρ
d
2 + ρa2) + ρa2(ρ

d
1 + ρa1)

V d
1

=
ρd2(ρ

d
1 + ρa1) + ρa1(ρ

d
2 + ρa2)

V a
1

.

From this equality we find

V d
1 =

V1
[
ρd1(ρ

d
2 + ρa2) + ρa2(ρ

d
1 + ρa1)

]
2(ρd2 + ρa2)(ρ

d
1 + ρa1)

=
V1
2

(
ρd1

ρd1 + ρa1
+

ρa2
ρd2 + ρa2

)
.
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Finally, returning back to the standard notation, we have

V d∗
1 =

V1
2

(
γd1µ

a
2

γd1µ
a
2 + γa1µ

d
2

+
γa2µ

d
1

γd2µ
a
1 + γa2µ

d
1

)
.

The optimal share for the other group is simply V a∗
1 = V1 − V d∗

1 .

Team owner’s problem of team formation:
Now that the strategic interaction is absent, the analysis turns out to be
much simpler. The first order condition with respect to γd1 is

µa
V d
1

V a
2

+ µd
V a
1

V d
2

∂γa1
∂γd1

= 0 .

Moreover, from the derivative of the budget constraint, it follows that

α(γa1 )α−1
∂γa1
∂γd1

+ α(γd1)α−1 = 0

which implies

∂γa1
∂γd1

= −
(
γd1
γa1

)α−1
.

Using this information in the first order condition above, we have

µa
V d
1

V a
2

− µdV
a
1

V d
2

(
γd1
γa1

)α−1
= 0

so that
γd1
γa1

=

(
µaV d

1 V
d
2

µdV a
2 V

a
1

) 1
α−1

.

Then putting this finding into the budget constraint, we find

γa∗1 =

 Γ1

1 +

(
µaV d

1 V
d
2

µdV a
2 V

a
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) α
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1
α

and γd∗1 =
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µdV a
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a
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µaV d
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) α
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1
α

.
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The alternative model with restricted sabotage:
In this paper we have considered directionally restricted sabotage allowing
each group in a team to sabotage a certain group in the opposing team.
Here we relax this assumption and analyze the case with directed sabotage:
Any group in a team can sabotage any group in the opposing team. Similar
to our original model, eji denotes the contest effort by group j ∈ {a, d} in
team i ∈ {1, 2}. As for the sabotage efforts we need a new notation including
information regarding the origin and the destination of sabotage. Let sjki
denote the sabotage made by group j ∈ {a, d} in team i ∈ {1, 2} towards
group k ∈ {a, d} in the opposing team. Also let µjki denote the corresponding
cost of this sabotage activity.

Then we can write the aggregate effort functions as follows:

E1 =
γa1

1 + saa2 + sda2
ea1 +

γd1
1 + sad2 + sdd2

ed1

and

E2 =
γa2

1 + saa1 + sda1
ea2 +

γd2
1 + sad1 + sdd1

ed2 .

Letting
Cj
i (e

j
i , s

ja
i , s

jd
i ) = eji + µjai s

ja
i + µjdi s

jd
i ,

we say that group j ∈ {a, d} in team i ∈ {1, 2} maximizes

U j
i

(
(eji , s

ja
i , s

jd
i ), ·

)
=

Ei
E1 + E2

V j
i − e

j
i − µ

ja
i s

ja
i − µ

jd
i s

jd
i .

Utilizing the first order conditions with respect to saa1 and sda1 , we get

∂Ua
1

∂saa1
=

γa2
(1 + sda1 + saa1 )2

ea2E1

(E1 + E2)2
V a
1 − µaa1 = 0

∂Ud
1

∂sda1
=

γa2
(1 + sda1 + saa1 )2

ea2E1

(E1 + E2)2
V d
1 − µda1 = 0 .

In order for these first order conditions to be satisfied simultaneously, it must
be that

V a
1

µaa1
=
V d
1

µda1
.

Otherwise, we must have a corner solution. To put it differently, unless this
equality is satisfied, a directionally restricted sabotage would be observed in
the equilibrium. Below we further elaborate on this issue.
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Note that if any of the derivatives with respect to saa1 and sda1 are positive,
then a marginal increment in the corresponding variable would be a possible
deviation. Therefore none can be positive at an equilibrium. This implies
that if one of the first order conditions is satisfied, then the derivative with
respect to the other variable should be negative, which corresponds to a cor-
ner solution for that variable. For more concrete arguments, assume without
loss of generality that

V a
1

µaa1
<
V d
1

µda1
.

If the former first order condition is satisfied, then the derivative with respect
to sda1 would be positive. This cannot happen at an equilibrium. Then, it
must be that the latter first order condition is satisfied, meaning that there
will be a corner solution for saa1 , which is saa1 = 0.

Finally, given our model interpretation, it is reasonable to assume that
µaa1 > µda1 . This is because the defenders in team 1 are located closer to the
attackers in team 2 in comparison to the attackers in team 1, so that if the
attackers in team 2 are to be sabotaged, then the defenders in team 1 should
have a cost lower than that of the attackers in team 1.13 Accordingly, for a
wide range of V a

1 , V d
1 , V a

2 , and V d
2 values, the current model would reduce to

our model with directionally restricted sabotage at the equilibrium.

13We are referring to the football game or war interpretation here. If we consider the
political party interpretation, we would expect that µaa

1 < µda
1 since group a in team 1 is

now closer to group a in team 2 than group d in team 1 is.
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