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1. Introduction

Let R be the recursion operator of an integrable equation. Then the integrable hierarchy of equations are defined as
v, =R"V, n=0,1,2,.... (11)
In [1], we proposed a system of equations
R[v, — aR"0p] =boy, n=0,1,2,..., (1.2)

where o, 01 are some classical symmetries of the same integrable equation. This hierarchy represents the negative hierar-
chy of the integrable system defined in (1.1). For some specific choices of the constants q, b, and o, 01 we have studied
the existence of three-soliton solutions and Painlevé property of the negative KdV hierarchy where the recursion operator
is R = D2 + 8v + 4u,D~!. For this case the system of equations in (1.2) is denoted as KdV(2n+4) equations for n> 1. When
a=-1,b=0,n=1, and by letting v = uy to get rid of nonlocal terms containing D~! we obtain KdV(6). We have also ob-
tained (2 + 1)-dimensional extension of this equation, the (2 + 1)-KdV(6) equation, by choosing a =—-1,b=-1,n=1, and
09 = Ux, 01 = Vy. The expanded form of (2 + 1)-KdV(6) equation with v = uy is given as [2]

Usxxt + Usoxx + 40Uy Uxxx + 20Uy Uyxnx + Sliylixe + 120u§uxx + 4Urlyy + Uyy = 0. (1.3)

We showed that all (2 + 1)-KdV(6) equation and 2+1 dimensional KdV(2n+4) for n>1 possesses three-soliton solution
having the same structure with the KdV equation’s three-soliton solution and also Painlevé property. Negative flows have
been considered earlier in [3-5].
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By using our approach (1.2), we obtain negative hierarchy of integrable equations which are nonlocal in general. Here
nonlocality is due to the existence of the terms containing the operator D~!. In the KdV case the nonlocal terms disappear
by redefinition of the dynamical variable. This may not be possible for other integrable systems. A new type of nonlocal
reductions of integrable systems are obtained by relating one of the dynamical variable to the time and space reflections
of the other one. Such a nonlocal reduction was first introduced by Ablowitz and Musslimani [6,8]. Ablowitz-Muslimani
type of nonlocal reductions attracted many researchers [10-33]| to investigate new nonlocal integrable equations and find
their solitonic solutions. These nonlocal integrable equations have been obtained by applying the Ablowitz and Musslimani
nonlocal reductions of the AKNS [9] and other integrable systems of equations. First example was the nonlocal nonlinear
Schrédinger (NLS) equation and then nonlocal modified KdV (mKdV) equation. Ablowitz and Musslimani proposed later
some other nonlocal integrable equations such as reverse space-time and reverse time nonlocal NLS equation, sine-Gordon
equation, (1+1)- and (2 + 1)- dimensional three-wave interaction, Davey-Stewartson equation, derivative NLS equation,
ST-symmetric nonlocal complex mKdV and mKdV equations arising from symmetry reductions of general AKNS scattering
problem [6-8]. They discussed Lax pairs, an infinite number of conservation laws, inverse scattering transforms and found
one-soliton solutions of these equations. Ma, Shen, and Zhu showed that ST-symmetric nonlocal complex mKdV equation
is gauge equivalent to a spin-like model in Ref. [24]. Ji and Zhu obtained soliton, kink, anti-kink, complexiton, breather,
rogue-wave solutions, and nonlocalized solutions with singularities of ST-symmetric nonlocal mKdV equation through Dar-
boux transformation and inverse scattering transform [25], [26]. In [27], the authors showed that many nonlocal integrable
equations like Davey-Stewartson equation, T-symmetric NLS equation, nonlocal derivative NLS equation, and ST-symmetric
complex mKdV equation can be converted to local integrable equations by simple variable transformations. Multidimen-
sional nonlocal equations equations have been considered in [29-31]. Recently we studied all possible nonlocal reductions
of the AKNS system. We have obtained one-, two-, and three-soliton solutions of the nonlocal NLS [32] and mKdV equations
[33]. We also studied nonlocal reductions of Fordy-Kulish [34] and super integrable systems [35,36].

In this work, by the use of the formula (1.2) we obtain negative AKNS hierarchy denoted by AKNS(—n) forn=0,1,2,...
with one time t and two space variables x and y. In [37], Bogoyavlenski gave a type of AKNS(0) system which can be reduced
to a single complex equation that is a compatibility condition for a certain linear system. The reduced equation admits the
Lax representation, has breaking solitons, and can be embedded into some (3 + 1)-dimensional complex integrable equation
[38]. Strachan also presented a single equation reduced from the same AKNS(0) system as a (2 + 1)-dimensional general-
ization of the NLS equation and found one-soliton solution of this system by using Hirota method [39]. All these systems
are nonlocal due to the term D! in the recursion operator. We obtain the Hirota bilinear form of these systems and obtain
one- and two-soliton solutions for n = 0, 1, 2. We then find all possible local and nonlocal reductions of the negative AKNS
hierarchy for n =0, 1, 2. There are in total 30 reduced equations for n =0, 1, 2. All these equations constitute new exam-
ples of (2 + 1)-dimensional integrable system of equations. There exists only one type of local reductions where the second
dynamical variable is related to the complex conjugation of the other variable. By the use of constraint equations we ob-
tain one-soliton solutions of the local and nonlocal reduced equations from the one-soliton solutions of the negative AKNS
system of equations. There are solutions which develop singularities in a finite time and there are also solutions which are
finite and bounded depending on the parameters of the one-soliton solutions.

2. Negative AKNS system

The AKNS hierarchy [9] can be written as

u, =R"uy n=0,1,2,...), u= P) e (Pw) = gN-1( Px)
q QrN qx

where R is the recursion operator,
- (—pD‘lq +3D  —pD7'p )
aD~'q aD~'p—3D)’
Here D is the total x-derivative and D~ = [* (standard anti-derivative).
Writing (1.2) in the following form
R(ug,) —aR™(ux) =buy, forn=0,1,2,..., (2.1)

where u = (g), here a, b are any constants, we obtain (2 + 1)-dimensional negative AKNS(—n) systems for n =0,1,2,....In
this work we will only consider the systems for n =0, 1, 2.

(1) (n=0) (2+ 1) -AKNS(0) system:
When n =0, Eq. (2.1) reduces to R(u;) — auyx = buy. This yields the system

1
bpy = 5 Pex —aPx — pD~ (pq). (2.2)

1
bay = —5 qix — A Gx + qD' (pq):. (2.3)
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(2) (n=1)(2+ 1)-AKNS(—1) system:
When n =1, Eq. (2.1) reduces to R(u; — auy) = buy. Letting u¢ — auy = w, where w = Zj;) we have
U — AUy = w, Rw = buy.

This yields the system

w1 = Pr — apx
Wy = qr — aqx

1
bpy = 5@1x pD~ (g1 + pw,)

1
by = —5w2x+ gD~ (qw1 + pa,).

Inserting w; and w, we obtain the system

1 a
bPy = 5 Px — 5 Pox + ap®>q— pD~" (pq):.

1 a
bay = =5 dix + 5 o = apq® +qD7" (pq):.

(3) (n=2) (2+ 1)-AKNS(-2) system:
When n =2, Eq. (2.1) reduces to R(ur — aRuy) = buy. Letting u; — aRuy = @, where w = (Z;) we have

U — ARUy = W, Rw = buy.
This yields the system
5 1
w1 = Pr — a<_p q+ j[’xx)
, 1
wy = (qr — a(P - EQXx)
1
bpy = 5@1x— pD~" (qo + p)

1
bgy = —5@2x gD~ (qw; + pws).

Inserting w7 and w, we obtain the system

1 a 3a
bpy = 5 Ptx = 5 Pos + = P4 Px = PD™" (P):.

1 a 3a
by = —5 Gix — 7 Qoo+ 5 PAG+ D" (PO

3. Hirota method for negative AKNS system

To obtain the Hirota bilinear form for the negative AKNS(—n) system, with n =0, 1, and n = 2, we let

_8& ,_h
p_f: q f’

?;z—(ff") +B.

where $ is an arbitrary constant.

and

(1) (n =0) Hirota bilinear form for (2 + 1)-AKNS(0) system:
Using (3.1) and (3.2) in Egs. (2.2) and (2.3) we have

DSy — &) = 5 (e — 8eli — 8l + &) — (e~ 2Fo).

b(fhy —hfy) = —% (fhex = hefx = hefe + hfix) — a(fhe — hfy).

163

(3.1)

(3.2)
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Hence we obtain the Hirota bilinear form as

P(D)g- £} = (bD, — 3 DD, +aDy){g - f} =0, (35)
PZ(D){h-f}E(bDy-l-%D[DX-‘ran){h-f}:O, (3.6)
PAD)S - f) = (D} ~2B)(J - f} = -2 gh. 37)

(2) (n=1) Hirota bilinear form for (2 + 1)-AKNS(—1) system:
Using (3.1) and (3.2) in Egs. (2.5) and (2.6) we get

b(fgy —gfy) = % (f8ix — 8t fx — &xft +8fix) — g(fgxx — 2 fx8x + &fxx — 288f), (3.8)

B(fhy ~13) = 5 (o = hefi = efe + hf) + 5 (s = 2fih -+ o~ 28R

(3.9
Hence we obtain the Hirota bilinear form as
1
P(D)g f} = (bD, - 5 DDy + 502 —aB){g - £} =0, (310)
1 a .,
PD){h- f} = (bDy 45 DDy~ 5D + aﬂ){h fy=0, (311)
Py(D){f- f} = (Df = 2P){f- f} = -2 gh. (3.12)
(3) (n = 2) Hirota bilinear form for (2 + 1)-AKNS(—2) system:
Using (3.1) and (3.2) in Egs. (2.8) and (2.9) we have
4b(fgy _gfy) =2(fgix — 8t fx — & ft + &fix) — a(f8xxx + 3 fix8x — 38 fx — &fwxx) + 6aB (g f — &fx). (3.13)

4b(fhy - hfy) = —=2(fhee — he fx — B fe + M fex) — a(fhxx — 3 fihax + 3hx fix — D faxx) + GClﬁ (hef —hfy). (3.14)
Hence we obtain the Hirota bilinear form as

PD)(g- £} = (bDy — 30D+ 502 32 6D) (g ) =0, (3.15)
BD)g- 1} = (D, + 5D, + §D} — 5 BDL)ih- f} =0, (316)
PO)f - f) = (D:-2p)(f f) = -2 gh. (317)

After having Hirota bilinear forms (3.5)-(3.7), (3.10)-(3.12), and (3.15)-(3.17), next step is to find the functions g, h, and f
by using the Hirota method (see Sec. VI).

4. Local reductions

It is straightforward to show that there exist no consistent local reductions in the form of q(x,y,t) = o p(x,y,t) for all
n=0,1,2. Here we will give the local reductions in the form of q(x,y.t) = o p(x,y,t) for all n =0, 1, 2 where o is any real
constant.

(1) Local reductions for the system n = 0:
Let q(x,y,t) =0 p(x,y,t) then two coupled Egs. (2.2) and (2.3) reduce consistently to the following single equation:

1 i
bpy =5 P —apx—0 pD (PP, (41)

where o is any real constant and a bar over a letter denotes complex conjugation. Here a and b are pure imaginary
numbers. In [37], Bogoyavlenski presented the system

iU — Uy — 2ud; " (uv), = 0, (4.2)
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iV + Uyy + 2005 1 (uv)y = 0. (4.3)
Note that if we interchange the variables t and y, take a=0 and b = % in the system (2.2) and (2.3) we exactly get
this system. Bogoyavlenski also mentioned about the reduction u = a¥, o« € R and obtained the single equation

Up = iy + 2iavd; V)] (4.4)

This equation has breaking solitons and Lax representation.
Local reductions for the system n = 1:
Let q(x,y,t) =0 p(x,y,t) then two coupled Eqgs. (2.5) and (2.6) reduce consistently to the following single equation:

(2

~

1 a _ _
bpy = 5 Ptx — 5 Pox + 00 p*p—o pD' (pp), (4.5)

where o is any real constant and a bar over a letter denotes complex conjugation. Here a is a real and b is a pure
imaginary number.

(3) Local reductions for the system n = 2:
Let q(x,y,t) = o p(x,y,t) then two coupled Egs. (2.8) and (2.9) reduce consistently to the following single equation:

1 a 3a _ _
by = 5 Pox— 7 Pox+ 5 O PPPx— 0 pD~" (pP):. (4.6)

where o is any real constant and a bar over a letter denotes complex conjugation. Here a and b are pure imaginary
numbers.

5. Nonlocal reductions

In order to have consistent nonlocal reductions we use the following representation for D!

DF = % (/_; —/XOO)F(x’,y, £)dx'. (51)

We define the quantity p(x, y, t) which is invariant under the discrete transformations x — €1x, y — €5y, and t— €3t as
X o0
plxy.t) =D ppf = ( | - )p(x/,y,r)p(el X2y, €0) dX, (52)
—00 X

where €2 = €2 = €2 = 1. It is easy to show that
ple1x, €y, €3t) =€ p(x,¥,1). (5.3)

(1) Nonlocal reductions for the system n = 0:
(a) Let q(x,y.t) = 0 p(€1x, €3), €3t) then two coupled Egs. (2.2) and (2.3) reduce consistently to the following single
equation:

1
bpy = 5 P —apx— 0 pD' (pp)e. (54)

where o is any real constant and p¢ = p(€1x, €3, €3t). The above reduced equation is valid only when €3 = —1
and €; €; = 1. We have only two possible cases; p¢ = p(x,y, —t) and p¢ = p(—x, —y, —t) for time reversal and time
and space reversals respectively.

(b) Let q(x,y.t) = o p(e1x, €2, €3t) then two coupled Egs. (2.2) and (2.3) reduce consistently to the following single
equation:
1 _
bpy = 5 pox —apx— 0 pD~' (PF)s, (5.5)

where o is any real constant. This reduction is valid only when
€166sb=-b, €d=—a (5.6)
In this case we have seven different time and space reversals:
(i) p¢(x,y,t) = p(—x,y,t), where a is pure imaginary and b is real.
(ii) p®(x,y.t) = p(x, —y,t), where a is pure imaginary and b is real.
(iii. p¢(x,y,t) = p(x,y, —t), where a and b are real.
(iv) p€(x,y.t) = p(—x, —y.t), where a and b are pure imaginary.
(v) p¢(x,y,t) = p(=x,y, —t), where a is real and b is pure imaginary.
(vi) p¢(x,y,t) = p(x, —y, —t), where a is real and b is pure imaginary.
(vii) p¢(x,y,t) = p(=x, =y, —t), where a and b are real.
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Each case above gives a nonlocal equation in the form of (5.5) in 2+1 dimensions.
In [40] nonlocal reduction given in (v) and corresponding nonlocal equation have been considered for g = —% in (3.7).
Soliton solution have been also found.
(2) Nonlocal reductions for the system n = 1:
(a) Let q(x,y,t) = o p(€1X, €2), €3t) then two coupled Egs. (2.5) and (2.6) reduce consistently to the following single

equation:
1 a
bpy = 5Pt — 5 P+ a0 PP — 0 D" (PP, (5.7)
where o is any real constant and p¢ = p(€1x, €Y, €3t). The above reduced equation is valid only when €, = —1 and

€1€3 = 1. We have only two possible cases; p¢ = p(x, —y,t) and p¢ = p(—x, —y, —t) for space reversal and time and
space reversals respectively.
(b) Let q(x,y,t) = o p(€1x, €3, €3t) then two coupled Eqgs. (2.5) and (2.6) reduce consistently to the following single

equation:
1 a - -
bpy = 5 Pex — 5 Pxx+ a0 P2 — 0 pD™! (pFF)r. (5.8)
where o is any real constant. This reduction is valid only when
€16,63b=-b, € €6d=a. (5.9)

In this case we have seven different time and space reversals:
(i) p*(x,y,t) = p(—x,y,t), where a is pure imaginary and b is real.
(ii) p€(x,y.t) = p(x, —y,t), where a and b are real.
(iii) p¢(x,y.t) = p(x,y, —t), where a is pure imaginary and b are real.
(iv) p¢(x,y,t) = p(—x, —y,t), where a and b are pure imaginary.
(v) p¢(x,y,t) = p(=x,y, —t), where a is real and b is pure imaginary.
(vi) p¢(x,y,t) = p(x, —y, —t), where a and b are pure imaginary.
(vii) p¢(x,y,t) = p(=x, —y, —t), where a and b are real.
Each case above gives a nonlocal equation in the form of (5.8) in 2+1 dimensions.
(3) Nonlocal reductions for the system n = 2:
(@) Let g(x,y,t) = 0 p(€1X, €3, €3t) then two coupled Egs. (2.8) and (2.9) reduce consistently to the following single

equation:
1 a 3a B e
bpy = 5 Pex — 5 Pxox + -0 PP px — 0 PD™(pP°)e, (5.10)
where o is any real constant and p¢ = p(e€1x, €, €3t). The above reduced equation is valid only when €3 = —1

and €;€; = 1. We have only two possible cases; p¢ = p(x,y, —t) and p¢ = p(—x, —y, —t) for time reversal and
time and space reversals respectively.
(b) Let q(x,y,t) = 0 p(€1x, €3, €3t) then two coupled Eqgs. (2.5) and (2.6) reduce consistently to the following single

equation:
1 a 3a . 1=
bpy = 5 Ptx — 7 Pxwx + 50 PP Px — 0 D™ (PP°)r, (5.11)
where o is any real constant. This reduction is valid only when
€16265b=-b, €d=-a. (5.12)

In this case we have seven different time and space reversals:

(i) p¢(x,y,t) = p(—x,y,t), where a is pure imaginary and b is real.
(ii) p¢(x,y,t) = p(x, —y,t), where a is pure imaginary and b is real.
(iii) p¢(x,y,t) = p(x,y, —t), where a and b are real.

(iv) p€(x,y.t) = p(—x, —y.t), where a and b are pure imaginary.

(v) p¢(x,y,t) = p(—x,y, —t), where a is real and b is pure imaginary.

(vi) p¢(x,y,t) = p(x, —y, —t), where a is real and b is pure imaginary.
(vii) p¢(x,y,t) = p(=x, —y, —t), where a and b are real.

Each case above gives a nonlocal equation in the form of (5.11) in 2+1 dimensions. At the end we obtain 27 nonlocal
equations from negative AKNS hierarchy in 2+1 dimensions.

Remark 1. In all the above nonlocal equations we can use D~! = [* when there exist only y and t reversals, p¢ =
p(x. €2y, €3t).

6. Soliton solutions for negative AKNS hierarchy

In the following sections we solve the Hirota bilinear equations of (2 + 1)-AKNS(—n) systems for n =0,1,2 when 8 =0
and find one- and two-soliton solutions.
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6.1. One-soliton solution of (2 + 1)-AKNS(—n) system (n=0,1,2)
Here we will present how to find one-soliton solution of (2 + 1)-AKNS(0) system. For n =1 and n =2 the steps for

finding one-soliton solution are same with n = 0 case except the dispersion relations.
Consider the system (3.5)-(3.7). To find one-soliton solution we use the following expansions for the functions g, h, and

f
g=¢g. h=c¢hy, f=1+¢f, (6.1)
where
g1 = 691, h = eez, 0; = kix + T,y + wit + 5,’, i=1,2. (6.2)
When we substitute (6.1) into the Egs. (3.5)-(3.7), we obtain the coefficients of ¢ as
1
P (D){g: -1} = bg1y - 581xt +081x = 0, (6.3)
1
P, (D){hy -1} = bhy, + ihl"“ +ah;x =0, (6.4)
yielding the dispersion relations
1/1 1/ 1
T = B(Eklwl — akl), Ty = E(—ikza)z — akz). (65)
From the coefficient of &2
foax = —g1h1, (6.6)

we obtain the function f, as

eki+ka)X+(T1+T2)y+ (w1 +w2 ) t+01+5;

=— 6.7
fa Tl (6.7)

The coefficients of &3 vanish with the dispersion relations and (6.7). From the coefficient of &% we get
foZ,XX - fzz,x = Os (6.8)

and this equation also vanishes immediately due to the dispersion relations and (6.7). Without loss of generality let us also

take € = 1. Hence a pair of solutions of (2 + 1)-AKNS(0) system (2.2) and (2.3) is given by (p(x, y, t), q(x, y, t)) where
e e

Tracs AP0 =T

with 9,‘ = k,~x+1‘iy+a),-t+5,~, i=12 1= %(%]{10)] —akqy), Tp = %(7%]{20)2 —aky), and A= —

i=1,2 are arbitrary complex numbers.
For n = 1 that is for the system (2.5) and (2.6) one-soliton solution is given by (6.9) where 6; = kix + T,y + wit +6;, i=1,2
with

p(x.y.t) = (6.9)

1 o .
T Here k;, w;, and §;,

1/1 a, , 1/ 1 a,,
T‘l = B<§l<1a)1 - §k1>, Tz = B(—jkza)z + §k2> (610)
For n =2 that is for the system (2.8) and (2.9) one-soliton solution is again given by (6.9) where 6; = k;x + t;y + w;t + §;,
i=1,2 with
1/1 a 1 1 a
71 = B<§k10)1 — Zk?), T = E<_§k2w2 — Zkg) (611)
6.2. Two-soliton solution of (2 + 1)-AKNS(—n) system (n =0,1,2)

Here as in the previous section, we will only deal with (2 + 1)-AKNS(0) system and find two-soliton solution of this
system. For n =1 and n = 2 we have the same form of two-soliton solution only with difference of the dispersion relations.
Consider the system (3.5)-(3.7). For two-soliton solution, we take

g=¢eg1+&g, h=¢eh +&hs, f=1+6&%f+e&*fs, (6.12)
where

gr=e ref hy=eh 4o, (6.13)
with 6; = kix + Ty + wit + &, n; = €x + 5;y + m;t + o; for i = 1,2. When we insert above expansions into (3.5)-(3.7), we get
the coefficients of ¢, 1 <n<8 as

1
€ :bg1y = 581x + 081 =0, (6.14)
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1
bhy y + ihl,xt +ah;x=0, (6.15)

&2 o +8h =0, (6.16)

1 1
83b@wb—&hw—§®Mh—&dn—&ﬂm+&hﬂﬂw@mb—&hﬁ+@w—§&ﬂ+@uza
(6.17)

1 1
b(hiyf, —hifay) + i(hlxth —hicfox —hixfor +hifoxe) +athixf —hifox) +bhsy + jh3.xt +ah3, =0, (6.18)

e*: fofaxx — f5 5+ faxe + 81h3 + g3hy =0, (6.19)

1
€% :b(g1yfa — g1 fay) — E(gl.xtf4 —81cfax — Gxfar + &1 fax) + (€1 xfa— &1 fax)

1
+b(g3yf2 —&3foy) — i(g3,x[f2 —8fox — Bxfor + 8 ox) + a(@3xf2 —23f2x) =0, (6.20)

1
b(hiyfa —hifay) + §(h1,xtf4 — Ny fax —hixfae +hifax) +aChyxfa—hifay)

1
+b(hsyfo —hsfay) + E(ha,xrfz —h3fox —haxfor+h3fox) +alhsxfz —h3fax) =0, (6.21)
€% foxxfa — 2foxfax+ fofan +83h3 =0, (6.22)
1
e :b(gsyfa—gsfay) — j(g3‘xtf4 — 83 fax — G3xfar +83fax) +a(xfs — 83f4x) =0, (6.23)
1
b(hsyfa —h3fay) + §(h3.xtf4 —h3fax—hsxfar +h3fax) +aChsxfa—hsfax) =0. (6.24)
88 :f4f4.xx - ffx =0. (6-25)
The Eqgs. (6.14) and (6.15) give the dispersion relations
1/1 1 1 .
T = E(jk’w" - ak,-), Si = E(_ieimi - aé,-), i=1,2. (6.26)
From the coefficient of £2 we obtain the function f;,
fo = elrtmran 4 gbrtmtan | efhtmtan 4 efatimten Z elitnitay (6.27)
1<i,j<2
where
1
% =——— 1 <ij<2. 6.28
(k,‘ + gj)Z =tJ ( )
The Egs. (6.17) and (6.18) give the functions g3 and hs,
g3 :A1691+02+711 +A2991+92+772’ h3 — B1 891+771+772 +32692+771+772’ (629)
where
(ki —k2)? (€1 — ;)2
L= , L= i=1,2. 6.30
! (k1 + Z,‘)Z(kz + Z,‘)z ! ([1 + ki)z ([2 + ki)z ( )

The Eq. (6.19) yields the function f; as
fa= Me91+92+'71“72, (6.31)
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where
ki — k)% (l; — )2
_ (k1 — k)7 (h = ) _ (6.32)
(ke +11)2(ky + 1)2 (ko + 11)2 (k2 + [)?
Other Egs. (6.20)-(6.25) vanish immediately by the dispersion relations (6.26) and the functions f5, f4, g3, and hs.
Take ¢ = 1. Then two-soliton solution of the system (2.2) and (2.3) is given with the pair (p(x, y, t), q(x, y, t)),
01 0> A 01+02+m A 01+02-+12
p(X’y’t):1 - e9+e + 169 + Ze _ ’ (6.33)
+ ethtmtan 4 eth+mtan 4 etatm+on 4 eta+n+e2n 4 Meti1+02+m+n
m M2 B O1+11+12 B O2+11+12
qx.y.t) = e e +he T Pae (6.34)

1+ et +ni+an + et +m+ary + et +ni+az + et +na+on + Me01+02+n1+m°

with 6; = ki + Ty + it +8;, 0= £x+sy +mit +o; for i=1,2 with the dispersion relations 7; = } (3kw; —ak;), s;=
%(—%é,-m,- —at;), i=1,2. Here k;, ¢;, w;, m;, 8;, and «;, i = 1,2 are arbitrary complex numbers.

For n =1 i.e. for the system (2.5) and (2.6) two-soliton solution is given by (6.33) and (6.34) where 6; = k;x + T;y + w;t +
8;, mj = X + s;y + mit + «; for i = 1, 2 with the dispersion relations

1/1 a 1/ 1 a .
T = E<§k,-a),- — iklz)’ Si = E(—ieimi + i(i?), i=1,2. (6.35)
For n = 2 that is for the system (2.8) and (2.9) two-soliton solution is also given by (6.33) and (6.34) where 6; = k;x + t;y +
wit + 8;, n; = ¢;x + s;y + m;t + «; for i = 1, 2 with the dispersion relations

1/1 a 1,01 a .
T = B<§kiwi - Zk?), S = E(*if,’mi - Zf?), i=1,2. (636)

7. Soliton solutions of reduced equations

In our studies of nonlocal NLS and nonlocal mKdV equations we introduced a general method [32-36] to obtain soliton
solutions of nonlocal integrable equation. This method consists of three main steps:

» Find a consistent reduction formula which reduces the integrable system of equations to integrable nonlocal equations.

» Find soliton solutions of the system of equations by use of the Hirota bilinear method or by inverse scattering transform
technique, or by use of Darboux transformation.

o Use the reduction formulas on the soliton solutions of the system of equations to obtain the soliton solutions of the
reduced nonlocal equations. By this way one obtains many different relations among the soliton parameters of the system
of equations.

In the following sections we mainly follow the above method in obtaining the soliton solutions of AKNS(—n) systems for
n=0,1, and n =2 by using Type 1 and Type 2 approaches given in [33].

7.1. One-soliton solutions of local reduced equations

The constraints that one-soliton solutions of the local Eqgs. (4.1), (4.5), and (4.6) which are reduced from AKNS(—n) for
n=0,1, and n = 2 systems respectively can be found by the local reduction formula q(x,y,t) = o p(x,y,t) that is

elkaX+Tay+wyt+8; o ekixttiy+ant+8,

(7)

1+ Aeti kXt (mny+ @061+ 1 4 Ap(a-+ka Xt (Bi+ )y (@1-+@2)0+01+3;

If we use the Type 1 approach, we obtain the following constraints:

Dky=ki, 2)wp=d1, 3)e” =o€, (7.2)
so that the equality (7.1) is satisfied for each n=0,1, and n = 2. Note that under the above constraints, the dispersion
relations give 1, = 7;. Hence one-soliton solutions of (4.1), (4.5), and (4.6) are given by

ek1 X+T1y+w1t+6

(7.3)

p(x,y,t) =

__ 0 p(ky+k)x+(T1+ 7)Y+ (@1 +@)t+8+8;

T (kitki)?
where
i. for n =0, a and b are pure imaginary numbers and 7; = %(%kﬂu] —aky),
ii. forn=1, ais a real and b is a pure imaginary number and 7; = %(%Iq wy — %k%),
iii. for n =2, a and b are pure imaginary numbers and 7y = § (3kj@; — §k3).
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If sign(o) <0 we can let

o = 7(’(1 + ’_<1 )2 ek, (74)
where p is another real constant. Then the above one-soliton solution becomes
il 75
p(x,y,t):m, (7.5)
where
1 - _ _ -
0 = 51k +kO)x+ (T + 7)Y + (Wi + W)t + 81 + 8 + 1, (7.6)
1 - _ _ -
= i[(kl —kD))x+ (t1 = Ty + (W —w)t + 681 — 61 — ], (7.7)

Hence one-soliton solutions of the locally reduced equations for n = 0, 1, 2 are finite and bounded when sign(o') = —1. The
norm of p becomes

Py OF = —— (7.8)
e 4cosh’6’ ’
Note that in [39], Strachan studied one-soliton solutions of the generalization of NLS equation given by
10y = Oy + V(Y DY
0V =20,y |% (7.9)
Indeed the single Eq. (4.1) is equivalent to the above system if we interchange the variables t and y, take a =0, o0 = -1,
and b= 4 in (4.1). To obtain one-soliton solution, Strachan applied the Hirota method directly on the Hirota bilinear form

of this single equation. One of the solutions given in [39] is same with our one-soliton solution (7.3). Notice that there is a
typo in the Hirota bilinear form of the (7.9) and so in the dispersion relation in [39]. In addition to that solution, Strachan
obtained more general solution by changing the solution ansatz.

7.2. One-soliton solutions of nonlocal reduced equations
Firstly let us consider the nonlocal reduction q(x,y,t) = o p(€1x, €2V, €3t). Here the constraints that one-soliton solutions

of the nonlocal Egs. (5.4), (5.7), and (5.10) which are reduced from AKNS(—n) for n =0, 1, and n = 2 systems respectively
can be found by

ek2x+rzy+w2t+82 o e k1x+€,T1y+€301t+8
1 4+ Aeki+ko)x+(T1+72)y+(@1 +w2)t+61 46> = 1 1 Aeer (o T W6 (6 1 )y s (@n ) £, 18, (7.10)
where A= —m and t;, i=1,2 can be written in terms of k; and w; due to the dispersion relations of each case
n=0,1,2.
If we use the Type 1 approach, we obtain
l)kz =€1k1, 2)(1)2 = €3W1, 3) 662 =O’€81. (711)

When we use these constraints with the possibilities for (€, €5, €3) given in Sects. 7.4, 7.5, and 7.6 on the dispersion
relations of the cases n =0, 1,2, we get 75 = €,7;.
For n = 0 we have (€1, €3,€3) = (1,1, —1) and one-soliton solution of the reduced Eq. (5.4) is
ek1x+t1y+w1t+81

px.y.t) = =

(7.12)
-4,

e2kix+2T1y+281 7

where 71 = %(%kw}] — akq). Assume that all the parameters; ky, w{, 81, a, and b so 7 are real. Let 0 = —4k%62/‘ then

¢
e
px.y,t) = 11 e202n (713)
where p is a real constant and
@ =kix+ 11y + w1t + 84, (7.14)
0= k1X+T1y+81. (715)
Eq. (713) can further be simplified as
ew1t—H
px.y.t) = (7.16)

2cosh(6 + )’
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Hence for the defocusing case, sign(c) = —1, one-soliton solution is bounded for all t>0 for w; <0 and finite for all (x, y,

£).

For n =1 we have (€4, €3, €3) = (1, —1,1) and one-soliton solution of the reduced Eq. (5.7) is
ek1x+r1y+w1t+51
P(X,y,t) = 1= 4Lk%32k1)<+2a)11+251 s

(717)

where 71 = %(%kw)] - %k{). Assume that all the parameters; kq, w1, 81, a, and b so T are real. Let o = —4k%e2“ then

¢
e
p(x,y.t) = 11 o002 (7.18)
where p is a real constant and
¢ =kix+ 11y + w1t + 61, (719)
0 = k1X+C()1t+(Sl, (720)
which can be simplified as
enr 1 721
Y t) = ———i——. .
px.y.0) 2 cosh(6 + ) (721)
Hence for sign(o) = —1, one-soliton solution is finite for all (x, y, t) but not bounded.
For n =2 we have (€1, €3, €3) = (1,1, —1) and one-soliton solution of the reduced Eq. (5.10) is
el<1x+ny+w1t+81
(7.22)

p(X’ Y, t) = 1— %62k1x+2ﬁy+281 ’
4 1

where 71 = %(%kla}] - %k%). Hence, similar to n = 0 case, the solution (7.22) can be simplified to the form (7.16) with only
difference in t¢. And that solution is bounded for all t> 0 for w; <0 and finite for all (x, y, t) when sign(o) = —1.

Note that other possibility in each of the cases for (€4, €5, €3) is (-1, -1, —1). Clearly, because of the definition of the
constant A, if we use Type 1 approach we obtain trivial solution. Hence we use Type 2 on

602 60{

11 At " T4 A 10 (7.23)
From the application of the cross multiplication we get

e% 4 Ae*e% = ket + Ake?D1e%, (7.24)
where

O =kix+Ty+wit+6;, 07 =-kx—-ty-owjt+d;, j=1.2.
Hence we obtain the conditions

DAce? =1, 2)Ae?2 =0, (7.25)

yielding €1 = “;‘11'%\/;2) and €% = &i\/o (ky +ky) for §; = +1, j=1,2. Therefore one-soliton solutions of the Eqs. (5.4),
(5.7), and (5.10) are given by

i$1ek1X+le+w1t(l<1 +]<2)
ﬁ(] + %:1 é:ze(k1+l<2)x+(r1+r2)y+(w1 +w2)t) ’

with corresponding dispersion relations; (6.5) for n =0, (6.10) for n =1, and (6.11) for n = 2. We can further simplify the
solution (7.26) as

p(x.y.t) = E=%1,j=1,2, (7.26)

e¢+51
px.y.t) = 3 coshd’ (7.27)
where
1
¢ = 5[("1 —k2)x+ (71 — T2)y + (w1 — w)t], (7.28)
1
0= Sl +k)x + (11 + )y + (@1 + @)t]. (7.29)

The solution (7.27) is finite if k; + ky, 71 + 72, and w; + w; are real. In addition to that it is bounded if k; —k;, =0, 71 — 75 =
0, and w1 —w, <0 for t>0. For n=0 and n =2 cases, these conditions are satisfied if k{, T, w; are real, k; = k,, 71 =
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Ty, Wy = —w1, and w1 <0 for t>0. For n = 1 case, they are satisfied if ki, 71, w1, a are real, k; = ky, 71 = Ty, Wy = 2ak; — wy,
and w; —ak; <0 for t>0.

The second nonlocal reduction formula is q(x,y,t) = o p(€1x, €Y, €3t). The constraints that one-soliton solutions of the
nonlocal Egs. (5.5), (5.8), and (5.11) which are reduced from AKNS(—n) for n =0, 1, and n = 2 systems respectively can be
found by

ekox+Ty+wyt+8; Ueell_clx+ezf1y+egd)1t+51
1 + Aeki+k)x+(@+)y+(@1+@,)t+81+5, = 1 + Ae€r (ky+ky )X+€o (Fy+T2)y+€3 (@1 4@ )t +61 48, (7.30)
where A = —W and t;, i = 1, 2 satisfy the dispersion relations given for each case n =0, 1, 2.
By applying the Type 1 approach, we obtain
Dky = ek, 2)wy = e3@1, 3)e® =oed. (7.31)

Using these constraints besides the conditions (5.6), (5.9), and (5.12) in the dispersion relations of the cases n=0,1,2 we
get T, = €,74.
Thus one-soliton solutions of the reduced Egs. (5.5), (5.8), and (5.11) are given by

eklx+r1y+a>]t+81

(7.32)

p(x.y.t) =

_ 0 p(ki+erk)x+(Ti+€2F1)y+ (w1 +€301)t+81+81
(ky+€1ky)?

with the corresponding dispersion relations 7; = }(3kjwy —aky). 7 = 1 (3kjwy — §k?). and 71 = 1 (3kyo1 — $k3) given
respectively. It is clear that there are finite and singular solutions (7.32) depending on the parameters of the solutions.

Note that since there are 21 nonlocal reduced equations by the reduction formula q(x,y,t) = o p(€1x, €;), €3t) for n =
0,1,2 let us only consider y-reflection that is when (€1, €5, €5) = (1, —1,1) as an example. Let o = —(k; + k;)2e#, pu is a
real constant. Then one-soliton solutions of the nonlocal equations:

1 _
(n=0). bpyX.y.t) = 5Px(x..t) —apx(x.y.t) =0 p(x.y. £)D (p(X, ¥, )P(X, =y, ), (7.33)
where a is a pure imaginary, b is a real number,
1 a _
(n=1), bpyx,y.t) =5Px(*.y.0) = 5 Pa(X. 3. 0) + ao p* (X, ¥, ) p(x, =y t)
—op(x.y.t)D" (p(x.y. ) p(x, =y, )z, (7.34)
where a and b are real numbers,
1 a 3a _
(n = 2)7 bpy(xﬁy’ t) :iptx(x?_]ﬂ t) - ZpXXX(X’y’ t) + To-p(xuyﬂ t)p(X, _ys t)pX(X7y7 t)

7Up(x’y’t)Dil(p(Xsyﬂt)ﬁ(xr 7yﬂt))fﬂ (7'35)
where a is a pure imaginary, b is a real number, become

e?
p(x,y,t) = 2cosh(@)’ (7.36)
where
¢ = %[(h — kx4 (T + Ty + (@1 — @)+ (81— 81 — )], (7.37)
6= 10 + T+ (7 — )y + (@ + B0+ Gy + 51— )] (7.38)

The solution (7.36) is finite if 7y — ¥; € R which happens when 7; € R. In addition to that it is bounded if k; —k; =0, 77 +
71 =211 =0, and wq — @1 <0 for t>0. This occurs only when k; € R and 7; = 0. But taking t; = 0 reduces the dimension
of the solution from 2 +1to 1+ 1.

8. Conclusion

In this work we obtained a new negative AKNS hierarchy denoted by AKNS(—n) for n=0,1,2,... in 2 + 1 dimensions.
We obtained the Hirota bilinear forms of these systems and found one- and two-soliton solutions for n =0, 1, 2. We then
found all possible local and nonlocal reductions of these systems. Using the constraint equations among the dynamical
variables for n=0,1,2 we found 3 new local and 27 new nonlocal reduced equations in 2 + 1 dimensions. These new
nonlocal equations contain two different types of nonlocality. They contain terms with D-! (integro-differential equations)
and terms p(€1X, €Y, €3t) (mirror symmetric terms) where 612 = ef = 632 = 1. From the one-soliton solutions of the negative
AKNS system of equations we obtained one-soliton solutions of the local and nonlocal reduced equations. Among all these
one-soliton solutions there are solutions which develop singularities in a finite time and there are also solutions which are
finite and bounded depending on the parameters of the solutions.
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