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Holography is the most promising route to true-to-life three-
dimensional (3D) projections, but the incorporation of com-
plex images with full depth control remains elusive. Digitally 
synthesized holograms1–7, which do not require real objects 
to create a hologram, offer the possibility of dynamic pro-
jection of 3D video8,9. Despite extensive efforts aimed at 3D 
holographic projection10–17, however, the available methods 
remain limited to creating images on a few planes10–12, over a 
narrow depth of field13,14 or with low resolution15–17. Truly 3D 
holography also requires full depth control and dynamic pro-
jection capabilities, which are hampered by high crosstalk9,18. 
The fundamental difficulty is in storing all the information 
necessary to depict a complex 3D image in the 2D form of 
a hologram without letting projections at different depths 
contaminate each other. Here, we solve this problem by pre-
shaping the wavefronts to locally reduce Fresnel diffraction 
to Fourier holography, which allows the inclusion of random 
phase for each depth without altering the image projection 
at that particular depth, but eliminates crosstalk due to the 
near-orthogonality of large-dimensional random vectors. 
We demonstrate Fresnel holograms that form on-axis with 
full depth control without any crosstalk, producing large-vol-
ume, high-density, dynamic 3D projections with 1,000 image 
planes simultaneously, improving the state of the art12,17 for 
the number of simultaneously created planes by two orders of 
magnitude. Although our proof-of-principle experiments use 
spatial light modulators, our solution is applicable to all types 
of holographic media.

Holography was originally invented to bypass the limitations 
of lens aberrations to electron microscopy19,20, but it was its optical 
implementation that captured the imagination of the general public 
as a means for true-to-life recreation of 3D objects21,22. Interest in this 
hitherto elusive goal is rapidly intensifying with the advent of vir-
tual and augmented reality23,24. A hologram comprises a holographic 
field and a physical medium in which to store it. There is steady 
progress in improving the physical medium, using metamaterials2–4, 
graphene25, photorefractives26, stretchable materials12 and silicon6, 
improving metrics such as viewing angle17, pixel size25, spectral 
response25 and reconfigurability12, although deformable mirrors17 
and spatial light modulators (SLMs)22 are still the most commonly 
used components. The key to creating realistic-looking projections, 
independent of the media, is the hologram field itself, which is often 
digitally synthesized. Computer-generated holograms (CGHs)1–7 do 

not require real objects to create the hologram, which is essential 
for dynamic holography24. Both Fourier and Fresnel holography 
have been used to create CGHs. Fourier holograms based on estab-
lished methods27,28 such as the kinoform technique27 can project 
only around the focal plane of a lens, limiting them primarily to 
microscopy applications11. In contrast, Fresnel holography can proj-
ect arbitrarily large images with 3D depth29. The first 3D Fresnel 
CGHs were based on the ping-pong algorithm10, which works 
only for two-plane projection. Alternative methods have been pro-
posed30, but they are computationally heavy, do not project deep 3D 
scenes and cannot be implemented on common holographic media. 
A popular approach is to use look-up tables15,22, but this is limited 
to reconstructing simple, low-resolution images. Projection qual-
ity can be improved with cascaded diffractive elements31, which is 
a costly and overly complicated method. Although projections of 
up to several tens of planes have been demonstrated17, these were 
only for a single dot in each plane and could not be obtained simul-
taneously, but had to be created sequentially. For anything more 
complex than a single dot, earlier demonstrations have been lim-
ited to a few image planes, such the three letters shown in ref. 11. In 
all of these approaches, simultaneous multiplane image projection 
remains extremely limited by high crosstalk, resulting in projections 
that are too flat, too blurry or too low resolution, and that can only 
be viewed from within a tiny angular range.

To approximate a genuinely 3D object, a large number of images 
must be projected to successive planes (Fig. 1a) and all these images 
must be embedded into the hologram. We use a succession of 
lenses, implemented as Fresnel zone plates (FZPs), to focus each 
image to a particular plane. The first key step is to shape the wave-
fronts to reduce the Fresnel diffraction to the Fourier transform 
locally at each image plane, so that construction of a single Fresnel 
hologram comprising an arbitrary number of planes is reduced to a 
trivial superposition operation (Fig. 1b). The second step is to add 
random phase at each image plane to suppress crosstalk: an image 
can be regarded as an N-dimensional vector, where N is the num-
ber of pixels (order of 106). Random vectors become asymptotically 
orthogonal in the limit of N → ∞ (Fig. 1c). This property, which is 
due to the central limit theorem and the law of large numbers, leads 
to the elimination of any coherent trace of the images on each other 
during hologram reconstruction, virtually eliminating crosstalk 
from the reconstructed images (Fig. 1d).

We pre-shape the wavefront at each focus not only to allow for 
superposition of many holograms to form a single one, but also to 
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prevent the random phase that we add from distorting the images to 
which they are added. This would be nearly automatic if the recon-
structed image were to have a flat wavefront at its focal plane, as 
would be the case for Fourier holography, but Fourier holography 
is limited to the far field. Fresnel holograms can operate at virtually 
any distance but the propagation kernel is parabolic. We pre-shape 
the wavefront of the source hologram with a parabolic phase such 
that it becomes locally flat at each focus, much like the prechirping 
of an ultrashort laser pulse entering a dispersive medium, where it 
accumulates a parabolic phase shift, only to be chirp-free at a spe-
cific propagation distance. Consider a Fresnel hologram that proj-
ects a complex field distribution:
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where z is the distance between the image and hologram, (x, y) and 
(ξ, η) are the spatial coordinates at the image and hologram planes, 
respectively, H(ξ, η) is the complex field distribution of the holo-
gram and λ is the wavelength1. The main difference from a Fourier 
hologram is the presence of the term, ξ η+λ

π
e j ( )z

2 2
. If this term can be 

cancelled at a specific plane z = z0, this would correspond to reduc-
ing the Fresnel diffraction to a Fourier transform at that plane. 
To this end, we construct the hologram, H(ξ, η), in the form of 

ξ η ξ η= ξ η− +π
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2 2
, where F(ξ, η) is the Fourier hologram 

of the product of the desired image, U(x, y), and a random phase, e−

jϕ(x,y), which is added to suppress crosstalk (see Methods for details). 
The appended quadratic term counteracts the effect of the propaga-
tion kernel, such that, at the particular position of z0, the projected 
field is
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which is similar, in form, to a Fourier hologram. For maximum 
generality and best results, F(ξ, η) should be complex. However, we 
restrict ourselves to using phase-only holograms, so a single SLM 
is sufficient for experimental realization. The points with phase nπ 
for ξ η− +e j ( )k

f2
2 2

 correspond to concentric circles with radii, λ=r nfn ,  
which closely approximate a FZP of focal length f, for integer n. 
Direct superposition of a phase-type FZP on a phase-type Fourier 
hologram will generate a single-plane, phase-type Fresnel holo-
gram, where the focal length of the FZP can be used to controllably  
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Fig. 1 | Principle of crosstalk suppression in multiplane projection. a, Computer-generated holograms need to comprise large numbers of individual 
holograms of 2D images projected to different foci to serve as realistic representations of 3D objects, thus requiring excellent depth control, separation 
and elimination of crosstalk. b, We simultaneously project multiplane images with controllable separation, while remaining in the Fresnel regime. To 
achieve this, we add a phase FZP to a phase Fourier hologram to shift its image to the focal plane of the FZP. This corresponds to projecting a Fourier image 
in the Fresnel regime. Multiple holograms can be generated in this way, each designed to project a slice of a 3D object, then superposed to create a single 
Fresnel hologram. c, Normalized inner product of two complementary chequerboard images, calculated as a function of total pixel size N. The phase of 
each source image is random, uniformly distributed over 0−2π. d, Adding random phase to each image suppresses unwanted crosstalk.
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translate the image to any distance z beyond the Talbot length  
(Fig. 1b). Then, construction of a single Fresnel hologram with M multi-
plane projections is straightforward: ξ η ξ η= ∑ ξ η

=
− +π

λH F e( , ) ( , )M s
M

s
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1
( )zs

2 2 ,  
where Fs(ξ, η) are the Fourier holograms of the images to be pro-
jected at z = zs. This way, the otherwise extremely complicated 
procedure of packing many images into a single Fresnel holo-
gram becomes a trivial superposition operation. The final Fresnel  
hologram is
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After lengthy, but straightforward calculations, the image projected 
by this hologram at each of the image planes reduces to
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sign ⊛ denotes convolution) and x′ and y′ are normalized versions 

of x and y. The primed terms, ′ ′′U x y( , )i , ϕ′(x′, y′) and W′(x′, y′, zi) 
are functions of the normalized coordinates, but remain otherwise 
identical in form and amplitude. The 3D image formed on any con-
ventional detector is given by the light intensity, which is propor-
tional to
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Here, the first term, ∣ ′ ′ ∣′U x y( , )i
2, corresponds to perfect projection 

of the intended image. The second term is a sum of M − 1 individu-
ally as well as mutually random images due to the convolution of the 
random phases and parabolic wavefronts; in practice, they add white 
noise to the ideal image and with increasing M, their contribution, 
already suppressed by a factor of π2, regresses further to the mean by 
the central limit theorem. The third and fourth terms are sums over 
order of M and M2 terms, respectively, and each is in a form such 
that their average contribution over the image is in a similar form 
to the orthogonality of two images. This contribution is ensured to 
be almost surely zero in the limit of N → ∞ by the orthogonality 
of high-dimensional mutually random vectors. Furthermore, these 
terms are all mutually independent and of zero expected values, and 
their summations get closer to zero by the central limit theorem for 
large M. Overall, the final result for any image plane, i, is the ideal 
image, |Ui(x, y)|2 and a small amount of white noise. Practically (in 

all examples considered, N is in the range 105–107), crosstalk is com-
pletely eliminated.

The algorithmic implementation of our method is shown in Fig. 
2a. In step 1, we start with a stack of target images that form the 
desired 3D projection. Each image is passed through a pre-process-
ing stage, where random phase is added. In step 2, each image goes 
through a number of iterations to generate its Fourier CGH (kino-
form). We use an iterative Fourier transform algorithm (IFTA) to 
generate a set of kinoforms, Fi(ξ, η), each to be used for projecting 
an image plane of the targeted 3D projection. We use the adaptive 
additive IFTA32, which is fast enough for real-time applications. In 
step 3, each Fourier CGH is superposed with a phase FZP, to shift 
its projection to the focal plane of the corresponding FZP. In step 
4, the translated holograms are added in complex form to create a 
single complex Fresnel hologram. After the complex superposition, 
the phase of the resulting sum is used as the final hologram.

We first show a set of simulation results for the simultaneous 
projection of 1,000 images to their respective planes from a single 
4,000 × 4,000 pixel 3D hologram. Light is able to focus/defocus 
repeatedly along the propagation axis to form high-fidelity images 
with minimal crosstalk (Fig. 2b and Supplementary Video 1). Next, 
as a demonstration of how the front, back and many in-between 
layers of a complex 3D object can be represented through simulta-
neous projection of multiple planes, we show a 3D spacecraft that 
can be viewed with the correct perspective from any direction over 
the full 4π solid angle (Fig. 2c and Supplementary Video 2). The 
simulation assumes a medium that emits or scatters light only at 
foci (for instance, ref. 33 or Supplementary Fig. 1). We also demon-
strate the possibility of projecting much more complex images from 
a single Fresnel hologram (Fig. 2d and Supplementary Video 3).  
As expected, we find that larger hologram sizes in terms of geom-
etry and pixel count lead to lower crosstalk between adjacent 
planes, increasing the number of separable planes. This increased 
axial resolution is enabled by FZPs, each acting like an imag-
ing lens, extending over the entire hologram. Larger hologram 
sizes enable lenses with higher numerical aperture, leading to a 
smaller depth of field at each plane, which allows for projecting 
at a higher number of planes. The performance of 3D holograms 
in terms of the number of projected planes and image quality is 
further discussed in the Methods. Multiplane projection achieved 
with our method is applicable at any distance beyond the Talbot 
zone, and no physical lens is required to project the images. Thus, 
the method can be used to project over a large depth of field at 
nearly arbitrarily separated planes, for example to depict a closed-
surface 3D object using a single hologram (Figs. 1b and 2c and 
Supplementary Video 2).

We performed a set of experiments to prove the concept using dif-
ferent laser wavelengths and SLMs (Fig. 3a; see Methods). The SLM 
used in the experiments limited the holograms to 512 × 512 pixels. 
We first demonstrate two-plane reconstruction from a single Fresnel 
hologram, projecting greyscale images that are high resolution in 
terms of the number of active (non-black) pixels (Fig. 3b). Next, 
we show a four-plane projection from a single Fresnel hologram 
(Fig. 3c). Finally, we demonstrate the ability to project images over a 
large number of planes (Fig. 3d). This projection, encompassing 11 
images of on-axis letters, constitutes the highest number of planes 
experimentally imaged from a single Fresnel CGH. Altogether, 
these results highlight the exceptional flexibility achieved in the 
design of 3D Fresnel CGHs. A second group of experiments dem-
onstrate the applicability of our method to low-cost 3D projection. 
We used a green laser and a liquid crystal on silicon (LCoS) SLM 
that we extracted from a very low-cost consumer-grade projector. 
The results of the 3D display prototype demonstrating large-volume 
projection are shown in Supplementary Fig. 1. The hologram was 
designed to project three back-to-back images at different depths. 
We also implemented a dynamic display by animating three videos 
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simultaneously, which were projected on-axis, without lateral shift 
(Supplementary Video 4).

The results reported here are far from the fundamental limits 
imposed by physical optics; the quality and number of image planes 
scale up linearly with the number of pixels available from the holo-
graphic media, accompanied by a merely linear increase in required 
computation time. These two favourable scaling properties are direct 
consequences of the elimination of crosstalk and our wavefront 
engineering trick that reduces Fresnel diffraction locally to Fourier 
transforms respectively. SLMs with much higher numbers of pix-
els than those we have used in our experiments have been available 

since 200934, which suggests that more dramatic demonstrations 
are already possible. Our method can be used for real-time, video-
rate dynamic holography, even with current computer technology 
(see Methods). Such real-time capability can conceivably be used 
to incorporate occlusion effects (see Supplementary Information). 
Although our proof-of-concept results are targeted at various 3D 
display applications, including volumetric displays35, in diverse 
scenarios, such as medical visualization or air traffic control, our 
method can find use in a wide range of applications, including mod-
ern electrooptical devices36, microscopy11 and laser–material inter-
actions. Just as holography was invented for electron microscopy,  

70 cm85.5 cm

128.5 cm 100 cm 85.5 cm 70 cm

SLM

a b

c

d

Collimator

Telescope

Multiplane projection

z0
0

1.1z0

1.3z0

1.5z0

1.7z0

1.9z0

2.3z0

2.8z0

3.6z0

5.0z0

9.4z0

Fig. 3 | Experimental demonstration of multiplane projection. a, Optical set-up used in the experiments. b, Two-plane, high-resolution simultaneous 
projection (portraits of Maxwell and Gabor). The distances from the hologram are 85.5 and 70 cm. c, Four-plane simultaneous projection of a rotating 
cube. The distances from the hologram are 128.5, 100, 85.5 and 70 cm. d, Eleven-plane simultaneous projection of the letters spelling BILKENT UNIV, 
where z0 = 18 cm. Scale bars, 2 mm. Each image set is projected without lateral shift from a single hologram. Panel b adapted from: left, https://archive.org/
details/popularsciencemo78newyuoft/page/518; right, © National Portrait Gallery, London.

Nature Photonics | VOL 13 | APRIL 2019 | 251–256 | www.nature.com/naturephotonics 255

https://archive.org/details/popularsciencemo78newyuoft/page/518
https://archive.org/details/popularsciencemo78newyuoft/page/518
http://www.nature.com/naturephotonics


Letters NATure PHoTonics

but had an impact in optics, given the rich history of judicious use 
of random fields in optics37 and the generality of the mathematical 
result that our approach is based on, there may be exciting applica-
tions in near-zero epsilon optics38 and imaging with flat optics2.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
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Methods
Experimental set-up. The experimental set-up (Fig. 3a), in the case of infrared 
illumination, includes a laser source (Yb-fibre laser operating at 1,035 nm, 
300 mW), a collimator to nullify the divergence of the laser beam and enlarge 
the beam spot size to completely fill the hologram displayed on the SLM (~1 cm 
diameter), a reflective liquid-crystal-on-silicon SLM (Hamamatsu, X10468-03) 
with 800 × 600 pixels and 20 μm pixel size, and a digital camera (Canon, 60D). The 
SLM reflects the collimated, linearly polarized laser beam after modulating it with 
the Fresnel CGH. The beam is then optionally (used only in Fig. 3b,c) expanded 
with a ×3 telescope to block the zero-order diffraction, and then impinges on 
a screen. The hologram size is chosen to be 512 × 512 pixels, and the phase 
quantization is set to 202 levels. For visible illumination (Supplementary Fig. 1 and 
Supplementary Video 4) the set-up remains the same except for two changes. First, 
the wavelength of the laser is converted to green (517 nm) with second-harmonic 
generation in a beta barium borate (BBO) crystal. Second, the SLM is replaced with 
a visible one taken from a very inexpensive LCoS projector (LG, PH150G). A ×3 
telescope is used (Supplementary Fig. 1 and Supplementary Video 4). The distances 
at which images can be projected and their sizes depend on the SLM size and its 
pixel dimensions, both of which can be scaled up with larger SLMs and smaller 
pixels, respectively.

Simulations of 3D Fresnel holograms. Simulations of the Fresnel hologram are 
carried out with the Fresnel diffraction equation. To achieve clear images, the zero 
order was filtered with a simulated 4f lens system. This corresponds to masking a 
small central section of the image spectrum, and then calculating the final image 
with the inverse Fourier transform of the spectrum.

Performance characterization of 3D Fresnel holograms. The performance of 
3D Fresnel CGHs depends on the pixel size and pixel density of the hologram, 
the modulation type, the illumination wavelength and the amplitude and phase 
distributions at all image planes. In addition, practical limitations can affect the 
performance, such as experimental limitations in forming images in the vicinity 
of a reflection-type hologram. Therefore, finding an exact analytical expression 
involving all relevant parameters would be extremely complicated. Instead, 
we choose two metrics, which we believe still provide a good insight into the 
performance of 3D Fresnel holograms. The first is the root-mean-square error 
(r.m.s.e.) and the second is the depth of field (DoF). The former is based on image 
quality and is a measure of the similarity between the source images and projected 
images at each plane. The latter is based on the axial resolution and is related to the 
maximum number of separable planes for a given image quality.

The r.m.s.e. is first calculated for each image at its corresponding plane, and the 
results from all planes are then averaged to provide a collective quality metric for 
a 3D hologram. This value is used to evaluate how the projection quality changes 
as a function of the number of separate planes. For instance, the r.m.s.e. of a set of 
rotating back-to-back cubes is shown in Supplementary Fig. 2, showing that the 
error rises linearly with increasing projection planes. For a given error tolerance 
expressed in r.m.s.e., the number of image planes can be truncated.

In parallel, the DoF is used to evaluate the axial resolution. DoF is a metric 
used widely in photography in identifying the maximum distance between two 
separated objects at which the objects still appear acceptably sharp. Thus, crosstalk 
between images can be evaluated with DoFi at each plane (Supplementary Fig. 
3). Minimizing crosstalk in multiplane projection is critical, because an image 
suffering significant crosstalk from neighbouring planes cannot accurately perform 
as a slice of a 3D projection.

We derive a DoF equation using two expressions, one for the Rayleigh range 
of a FZP and the other for spatial relationships between the sizes of the hologram 
and its image. We arrive at the following expression for the DoF at plane i, DoFi 
(Supplementary Fig. 3):











λ

ξ
∝

n
z

DoF 1
di

i

h

2

where zi is the focal length for image plane i, λ is the illuminating wavelength, dξ 
is the pixel size of the hologram and nh × nh is the resolution of Fresnel hologram. 
This expression provides a reasonably accurate estimation of the effect of the 
parameters included in it. For instance, for two similar three-plane projections, 
each with a different focal distance for the central plane, we would expect that 
the crosstalk suffered by the side images should be similar, given that the ratio of 
consecutive image separations is equal to the square of the ratio of central image 
locations. Supplementary Fig. 4 shows a simulation confirming this estimate.

We further see that increasing the hologram size (nh × nh) would enable 
projecting to a higher number of image planes. This can also be understood from 
the following perspective: a FZP acts like a lens, so larger FZP sizes allow larger 
numerical apertures (NAs). A larger NA leads to tighter focus and, similar to the 
case in optical lenses, we expect the DoF for each projection plane to be reduced. 
In parallel, one expects reduced crosstalk, because the images defocus faster when 
removed from the focal plane of FZPs. Thus the axial resolution (that is, the number 
of separable planes) can be increased simply by increasing the hologram pixel 

number. We note that one should not confuse the DoF of a slice of the 3D projection, 
discussed above in analogy to photography, with the DoF of the entire projection. 
The latter is meant to describe the depth of the entire 3D projection. In this sense, it 
is analogous to the DoF term described for the holovideo camera in ref. 29.

Holograms used in the experiments were of 512 × 512 pixels. If a higher-
resolution SLM was available, for instance, an 8K SLM over which 4,000 × 4,000 
pixel holograms are usable, then we expect the DoFi values to be reduced by a 
factor of 60. This would allow significantly higher axial resolutions and many 
more image layers. We demonstrate this prediction by propagating such a high-
resolution 3D Fresnel hologram (4,000 × 4,000 pixels) using the Fresnel equation. 
The simulation results shown in Supplementary Fig. 5 show the odd-numbered 
images from among the 200 images that are projected directly back to back using a 
single 3D Fresnel CGH.

The 3D projections in simulations are in good agreement with the experimental 
results. For instance, a set of representative simulations are compared with 
experiments in Supplementary Fig. 6. Simulations of a single 3D hologram that 
projects two high-resolution portraits to directly back-to-back planes are provided 
in Supplementary Fig. 6a. In comparison, the corresponding experiments shown in 
Supplementary Fig. 6b are in good agreement with the simulations. The hologram 
is 512 × 512 pixels and uses 20 μm pixels in both experiments and simulations.

Scaling of the number of planes with number of SLM pixels. We observed 
a linear scaling between the number of planes and number of pixels of the 
SLM. To see this, we assumed a distance between consecutive images as 
zi+1 = zi + γ(DoFi + DoFi+1), where γ is an empirical parameter chosen to minimize 
crosstalk. This recursive relation can be directly used to calculate the image 
positions. The number of projected planes for given constants γ, z1 and dξ is 
calculated, resulting in linear scaling of the maximum number of planes with 
the total number of pixels (Supplementary Fig. 7), preserving the image quality 
(r.m.s.e. ≈ 0.24).

Computation time and possibility of real-time calculations for video-rate 
holography. The most time-consuming step in our calculations is the Fourier 
transform, which is well optimized for parallel computation, including for 
graphics processor unit (GPU) based computation. Furthermore, for video-rate 
holographic projections, it will rarely be the case that every part of the holographic 
image will change from one frame to the next. Much more commonly, changes 
will be limited to parts of the hologram. In that case, thanks to its superposition-
based multiplane construction, large parts of our calculation would remain 
unchanged and would not need to be recalculated. For instance, if the canopy of 
the spacecraft in Fig. 2c opens up but the rest of the craft remains unchanged, 
only parts of the hologram describing the canopy will have to be recalculated. 
This unique property of our algorithm is similar to a technique commonly used 
in most compression algorithms and further eases the requirements on real-time 
calculations. The typical calculation time for the experimentally demonstrated 3D 
holograms presented here is about 22 s using a single-CPU computer (Intel Core 
i7 4790K). A speed-up of 275-fold is achieved using a modern GPU, resulting in 
an 80 ms calculation time for experimental projection (Nvidia GeForce GTX980). 
We note that already available advanced GPUs, such as the Nvidia Tesla v100, 
will allow another tenfold speed-up. Furthermore, these calculations were 
performed using Matlab for its convenience. Implementation of our algorithm in 
a low-level programming language, such as C, would probably result in at least a 
twofold improvement. The projected calculation time with these improvements 
is likely to allow video rates of 20 Hz. More specialized hardware, such as a field-
programmable gate-array platform, can improve calculation times further. Given 
the past rate of development of computational hardware, calculation time and cost 
appear unlikely to pose a limitation to the real-time generation of 3D dynamic 
holograms at video rates using our approach.

Orthogonality of large random vectors. The orthogonality of large random 
vectors can be proved through several different approaches, including waist 
concentration theory39. Here, we follow a simple approach based on the law of large 
numbers40 and the central limit theorem.

Assume X and Y to be non-equal large uniformly random vectors of equal 
size N, which is large. After normalization the vectors become X/||X|| and Y/||Y||, 
where ||X|| and ||Y|| are the lengths of X and Y, respectively. The inner vector 
product of the two vectors is given as

=
.

X Y
X Y

IP
,

By the law of large numbers, ∥ ∥ ∕ →X N 1 and ∥ ∥ ∕ →Y N 1 with high 
probability for large N. Large N also yields ⟨ ⟩ ∕ →X Y N, 1 according to the 
central limit theorem. The inner product scales with ∕ N1 , showing that large 
random vectors rapidly converge to zero, rendering these vectors orthogonal. 
Similarly, in multi-plane Fresnel holography, we see that adding random phase to 
source images renders them orthogonal and reduces the crosstalk between their 
corresponding projected images (Supplementary Fig. 8).
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Orthogonality of two images. We begin by cautioning the reader that use of a 
single quantity to characterize the cumulative amount of crosstalk between two 
images, each comprising large numbers of elements, would, inevitably, prove 
insufficient for the most general use. Nevertheless, orthogonality, defined through 
the inner product, works as an excellent measure for a wide range of images, from 
simple, complementary geometric patterns to human portraits (Supplementary Fig. 
8). We calculate this quantity as follows. The images, together with their phase, are 
represented in complex form and are treated as vectors. The baseline of each vector 
is corrected by its average value, and each is normalized by its length. We then 
simply calculate the inner product as

=
| + + … + |α β α β α β− − −x e y e x e y e x e y e

X Y
IP

j j j j
N

j
N

j
1 1 2 2

N N1 1 2 2

where the vectors are = . .α α αX x e x e x e( , , , )j j
N

j
1 2

N1 2  and 
= . .β β βY y e y e y e( , , , )j j

N
j

1 2
N1 2 . N is the total number of pixels in each image.

Theoretical calculations. The first step is to configure the hologram to produce 
a flat ‘propagation kernel’ even though we are in the Fresnel regime, such that the 
projected field magnitude will correspond to the desired 2D image at a given z. 
This opens the door to adding a pure phase term to each plane in a way that it does 
not alter the image formed at that plane. This is possible because an image will be 
formed by detecting the light intensity, which is proportional to the absolute square 
of the field, an operation that drops any pure phase contributions. If the projection 
W(x, y, z) is of the form W(x, y, z) = WA(x, y, z)ejΦ(x,y,z), then the image formed will 
be proportional to |WA(x, y, z)|2.

We start by recalling the Fresnel and Fourier hologram equations1. We  
consider the Fourier hologram, F(ξ, η), of an image U(x, y), which is  
additionally multiplied by a random phase, e−jϕ(x,y), to suppress crosstalk,  
as will be shown below. The physical significance of being in the Fourier 
(Fraunhofer) regime is that U(x, y)e−jϕ(x,y) is the field that would be formed in the 
far field, at the plane z = zf:

∫ ∫ξ η
λ

= − ϕ λ ξ η−

−∞

∞
−

π +λ
π

F e
j z
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j x y j z x y( , )
2 ( )f

f

2

Here, zf ≫ π(ξ2 + η2)/λ, which is the Fraunhofer condition. Similarly, the image 
formed by such a Fourier hologram in the far field is given by
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The Fresnel hologram is more flexible in that it can project an image, W(x, y, zi), at 
some arbitrary plane, zi = z0, and is given by
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Similarly, the image to be projected at a plane zi = z0, W(x, y, z0), by a Fresnel 
hologram, H(ξ, η), is given by

∫ ∫
λ

ξ η ξ η

= λ

λ ξ η λ ξ η

π +

−∞

∞ π + − π +

λ
π

W x y z e
j z

e

H e e

( , , )

( , ) d d
(9)

j z
j z x y

j z j z x y

0
0

( )

( ) 2 ( )

2
0

0
2 2

0
2 2

0

The main difference of the Fresnel hologram (equation (8)) from a Fourier 
hologram (equation (6)) is the presence of a parabolic wavefront, which can  
be cancelled, albeit only for a specific plane, if we construct the hologram in  
the form

ξ η ξ η= λ ξ η− π +H F e( , ) ( , ) (10)j z ( )
0

2 2

which projects an image, W(x, y, zi), at a plane zi = z0. As explained in the 
main text, with this arrangement, a simple superposition operation is sufficient 
to construct a multiplane Fresnel hologram that projects a different image to each 
plane:

∑ξ η ξ η= λ ξ η

=
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s
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s
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Here, M is the total number of image planes, Fs(ξ, η) is the Fourier hologram of the 
image to be projected to a plane at z = zs. The final Fresnel hologram is
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We emphasize that the random phase, ϕ−e j x y( , )s , is different and mutually 
independent for each plane, s. Next, we want to calculate the image projected by 
this hologram at an arbitrary plane i, and demonstrate how the addition of the 
random phase does not distort the image it is added to, but that the random phase 
added to the other images suppresses their crosstalk.

The image formed by this hologram at an arbitrary plane, zi, is given by
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or using equation (11):
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We now separate the sum into terms s = i and s ≠ i, and evaluating ξ η+π
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the limit of zs → zi:

∫ ∫

∫ ∫ ∑

λ
ξ η ξ η

λ

ξ η ξ η

=

+

λ λ ξ η

λ

λ ξ η π
λ ξ η

π +

−∞

∞ − π +

π +

−∞

∞

=
≠

π −
+ − +

λ

λ

π

π

W x y z e
j z

e F e

e
j z

e

F e e

( , , ) ( , ) d d

( , ) d d

(15)

i

j z

i

j z x y
i

j z x y

j z

i

j z x y

s
s i

M

s
j

z z
z z j z x y

( ) 2 ( )

( )

1

( )
( ) 2 ( )

i
i i

i
i

s i
i s i

2
2 2

2
2 2

2 2

Using the relation ∫∫ ξ η ξ η
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equation (6)) to simplify the first term, interchanging the order of the summation 
and the integral transform for the second term, and making the transformations 
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 to cast the integral transform into an inverse Fourier transform 

(see ref. 1), we obtain
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Now, let us use the following relations, where F  denotes Fourier transform:
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which is obtained by applying the same transformation above on equation (6) and 
using
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we rewrite the terms above as Fourier transforms themselves.
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Thus, each element of the second term is in the form of the inverse Fourier 
transform of the product of Fourier transforms of two functions. Using the 
convolution property, they can be replaced by the Fourier transform of their 
convolution, which cancels the inverse Fourier transform
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Next, we simplify the notation by introducing α = −
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The series term contains the convolution of the product of the other images and 
their random phases with a parabolic phase (wavefront). The convolution with a 
parabolic phase plays a very important role, because it mixes the random phase 
with the amplitude, rendering both the amplitude and phase of the resulting field 
random. This effect is illustrated in Supplementary Fig. 9.

We want to compare the magnitude of the first term with the magnitudes of the 
terms within the series. Before we can do so, we should arrange for the integration due 
to the convolution to be over dimensionless coordinates. To achieve this, we transform 
the entire equation into normalized (dimensionless) lateral coordinates through the 
transformation x → αx′ and y → αy′. By its definition, the convolution term is

∫ ∫⊛ = − −ϕ α

ϕ
α

− − + ∕

−∞

∞

− − −
+

U x y e e U x u y v

e e u v

( , ) ( , )

d d

(23)
s

j x y j x y
s

j x u y v j u v

( , ) ( )

( , )
( )

s

s

2 2 2

2 2
2

Introducing the normalized coordinates, u = αu′, v = αv′, x = αx′ and y = αy′
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We now introduce the new functions ′ ′ ′U x y( , )i  and ϕ′(x′, y′), taking the normalized 
coordinates as their parameters, but otherwise identical in form, amplitude and 
unit, as Ui(x, y) and ϕ(x, y). To give a concrete example, for = − + ∕U x y U e( , )i
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Similarly, W(x, y) gets mapped to W′(x′, y′) and using the relation α2k′ = k/π to 
simplify, W′(x′, y′) is given by
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This expression can be analysed to clearly reveal how the random phase 
suppresses crosstalk. As mentioned at the beginning of this section, the 3D 
image formed on any conventional detector or an image viewed through a 
scattering process is given by |W′(x′, y′, zi)|2. To simplify further, we introduce 

′ ′Y x y( , )s  ≡  ′ ′ ′ ⊛ ′ ′′ ′ ′ϕ +U x y e e( , )s
j x y j x y( , ) ( )s

2 2
. We note that all Ys(x′, y′) are random, 

because they are all convolutions of ′ ′ ′ ′ ′ ′ϕU x y e( , )s
j x y( , )s  the product of the coherent 

amplitude defining the image, ′ ′ ′U x y( , )s  and the random phase corresponding to that 
image, ′ ′ ′ϕe j x y( , )s , with a parabolic wavefront, ′ ′− +e j x y( )2

. This operation is sufficient 
to thoroughly mix the non-random amplitude information defining the image 
with the random phase information. The end result is virtually completely random 
valued (Supplementary Fig. 9), except in the limiting case of α → 0, in which case 

δ→ ′ ′′ ′− +e x y( , )j x y( )2
 and the convolution operation yields ′ ′ ′ ′ ′ ′ϕU x y e( , )s

j x y( , )s  unaltered. 
However, α → 0 implies zi → zs, which would mean that the two images are already in 
the same plane. Thus, this limit is not relevant in practice.

Next, we calculate the value of |W′(x′, y′, zi)|2:
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We now discuss each of the terms of the result above. The first term, 
∣ ′ ′ ′ ∣U x y( , )i

2, corresponds to the production of the desired image in perfect form, 
apart from an overall multiplicative constant, which is not important. The second 
term is a sum of M − 1 random images, as discussed above. They are also mutually 
independent, so their summation is further closer to a constant value by the central 
limit theorem for large M. In practice, their role is to add a certain amount of white 
noise to the ideal image. Furthermore, their contribution is strongly suppressed by 
the prefactor of π2 ≈ 10, as well as the summation of M − 1 of them. The third term 
is a sum over M − 1 terms, each of which are in a form such that their contribution, 
averaged over the image (in all the examples considered here, N, the number of 
hologram pixels, varies between 105 and 107), is similar to inner products of very 
high dimensional (equivalent to N) mutually random vectors. Furthermore, unlike 
the second term, they do not involve absolute squares, so their random values are 
allowed to converge to zero. Together with the near-complete orthogonality of 
mutually random vectors in high dimensions, their contribution vanishes in the 
limit of large dimensions, that is, a large number of pixels in the images and a large 
number of planes. The fourth term involves in the order of M2 terms, which vanish 
for the same reasons, but even faster due to their large numbers for large M.

Overall, we see that the final result for any image plane, i, is that we obtain 
the ideal image, |Ui(x, y)|2, only with the addition of some amount of white noise. 
There remains absolutely no trace of any coherent manifestation of any of the 
other images. We declare crosstalk to have been suppressed (see Supplementary 
Fig. 10 for a simple demonstration for the case of M = 2). Finally, we note that the 
demonstrations here were restricted to the use of pure phase holograms, Fi(x, y), 
for practical reasons. This limitation causes additional deterioration of the image 
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reproduction, which can be avoided at the cost of increased complexity of the 
experimental implementation, if so desired.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding authors upon reasonable request.
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