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Cooperative Localization in Hybrid Infrared/Visible
Light Networks: Theoretical Limits
and Distributed Algorithms

Musa Furkan Keskin

Abstract—Light emitting diode (LED) based visible light po-
sitioning networks can provide accurate location information in
environments where the global positioning system (GPS) suffers
from severe signal degradation and/or cannot achieve high preci-
sion, such as indoor scenarios. In this paper, we propose to employ
cooperative localization for hybrid infrared/visible light networks
that involve multiple LED transmitters having known locations
(e.g., on the ceiling) and visible light communication (VLC) units
equipped with both LEDs and photodetectors (PDs) for the pur-
pose of cooperation. In the considered scenario, downlink trans-
missions from LEDs on the ceiling to VLC units occur via visible
light signals, while the infrared spectrum is utilized for device-
to-device communications among VLC units. First, we derive the
Cramér—Rao lower bound and the maximum likelihood estimator
(MLE) for the localization of VLC units in the proposed coop-
erative scenario. To tackle the nonconvex structure of the MLE,
we adopt a set-theoretic approach by formulating the problem
of cooperative localization as a quasiconvex feasibility problem,
where the aim is to find a point inside the intersection of convex
constraint sets constructed as the sublevel sets of quasiconvex func-
tions resulting from the Lambertian formula. Next, we devise two
feasibility-seeking algorithms based on iterative gradient projec-
tions to solve the feasibility problem. Both algorithms are amenable
to distributed implementation, thereby avoiding high-complexity
centralized approaches. Capitalizing on the concept of quasi-Fejér
convergent sequences, we carry out a formal convergence analysis
to prove that the proposed algorithms converge to a solution of
the feasibility problem in the consistent case. Numerical examples
illustrate the improvements in localization performance achieved
via cooperation among VLC units and evidence the convergence
of the proposed algorithms to true VLC unit locations in both the
consistent and inconsistent cases.

Index Terms—Positioning, visible light, infrared, cooperative
localization, set-theoretic estimation, quasiconvex feasibility,
gradient projections, quasi-Fejér convergence.
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1. INTRODUCTION

A. Background and Motivation

CCURATE wireless positioning plays a decisive role
A in various location-aware applications, including patient
monitoring, inventory tracking, robotic control, and intelligent
transportation systems (ITSs) [1]-[4]. In the last two decades,
radio frequency (RF) based techniques have commonly been
employed for wireless indoor positioning [5], [6]. Recently, light
emitting diode (LED) based visible light positioning (VLP) net-
works have emerged as an appealing alternative to RF-based
solutions, providing high-accuracy and low-cost localization
services [7]. While visible light networks can be harnessed
for enhancing localization performance in indoor scenarios [8],
they also offer illumination and high speed data communica-
tions simultaneously without incurring additional installation
costs via the use of existing LED infrastructure [9]. In VLP
networks, various position-dependent parameters such as re-
ceived signal strength (RSS) [10], [11], time-of-arrival (TOA)
[12], [13], time-difference-of-arrival (TDOA) [14] and angle-
of-arrival (AOA) [15] can be employed for position estimation.
In order to quantify performance bounds for such systems, sev-
eral accuracy metrics are considered, including the Cramér-Rao
lower bound (CRLB) [10], [12], [13], [16] and the Ziv-Zakai
Bound (ZZB) [17].

Based on the availability of internode measurements, wire-
less localization networks can broadly be classified into two
groups: cooperative and noncooperative. In the conventional
noncooperative approach, position estimation is performed by
utilizing only the measurements between anchor nodes (which
have known locations) and agent nodes (the locations of which
are to be estimated) [18], [19]. On the other hand, cooperative
systems also incorporate the measurements among agent nodes
into the localization process to achieve improved performance
[19]. Benefits of cooperation among agent nodes are more pro-
nounced specifically for sparse networks where agents cannot
obtain measurements from a sufficient number of anchors for
reliable positioning [20]. There exists an extensive body of re-
search regarding the investigation of cooperation techniques
and the development of efficient algorithms for cooperative lo-
calization in RF-based networks (see [18]—-[20] and references
therein). In terms of implementation of algorithms, centralized
approaches attempt to solve the localization problem via the op-
timization of a global cost function at a central unit to which all
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measurements are delivered. Among various centralized meth-
ods, maximum likelihood (ML) and nonlinear least squares
(NLS) estimators are the most widely used ones, both leading to
nonconvex and difficult-to-solve optimization problems, which
are usually approximated through convex relaxation approaches
such as semidefinite programming (SDP) [21]-[23], second-
order cone programming (SOCP) [24], [25], and convex under-
estimators [26]. In distributed algorithms, computations related
to position estimation are executed locally at individual nodes,
thereby reinforcing scalability and robustness to data conges-
tion [19]. Set-theoretic estimation [27]—[30], factor graphs [19],
and multidimensional scaling (MDS) [31] constitute common
tools employed for cooperative distributed localization in the
literature.

Despite the ubiquitous use of cooperation techniques in
RF-based wireless localization networks, no studies in the litera-
ture have considered the use of cooperation in VLP networks. In
this study, we extend the cooperative paradigm to infrared and
visible light domains. More specifically, we set forth a coop-
erative localization framework for hybrid infrared/visible light
networks whereby LED transmitters on the ceiling function as
anchors with known locations and visible light communica-
tion (VLC) units with unknown locations are equipped with
LEDs and photodetectors (PDs) for the purpose of communi-
cations with both LEDs on the ceiling and other VLC units.’
Utilization of the proposed framework is primarily motivated
by indoor VLC systems endowed with infrared uplink capabil-
ity. Since infrared LEDs and PDs are already available in some
VLC systems for efficient uplink transmission [8], [32]-[35],
they can also be utilized for device-to-device communications
to achieve cooperation among VLC units. An additional benefit
of using infrared wavelengths for cooperation is that it helps
mitigate eye safety risks incurred by communications among
VLC units [36].2

The proposed network facilitates the definition of arbitrary
connectivity sets between the LEDs on the ceiling and the VLC
units, and also among the VLC units, which can provide sig-
nificant performance enhancements over the traditional non-
cooperative approach employed in the VLP literature. Based
on the noncooperative (i.e., between LEDs on the ceiling and
VLC units) and cooperative (i.e., among VLC units) RSS mea-
surements, we first derive the CRLB and the MLE for the lo-
calization of VLC units. Since the MLE poses a challenging
nonconvex optimization problem, we follow a set-theoretic es-
timation approach and formulate the problem of cooperative
localization as a quasiconvex feasibility problem (QFP) [37],
where feasible constraint sets correspond to sublevel sets of cer-
tain type of quasiconvex functions. The quasiconvexity arising
in the problem formulation stems from the Lambertian formula,

'In this paper, “VLP network” (when used in the context of cooperation) and
“hybrid infrared/visible light network™ are used interchangeably to refer to an
indoor VLC system where LED transmitters on the ceiling emit visible light
signals to VLC units for downlink communications and VLC units communicate
with one another using infrared wavelengths.

ZPlease see Remark 2 in Section II-B for an eye-safety analysis of infrared
LEDs.

which characterizes the attenuation level of infrared/visible light
channels.? Next, we design two feasibility-seeking algorithms,
having cyclic and simultaneous characteristics, which employ
iterative gradient projections onto the specified constraint sets.
From the viewpoint of implementation, the proposed algorithms
can be implemented in a distributed architecture that relies on
computations at individual VLC units and a broadcasting mech-
anism to update position estimates. Moreover, we provide a
formal convergence proof for the projection-based algorithms
based on quasi-Féjer convergence, which enjoys decent proper-
ties to support theoretical analysis [38].

B. Literature Survey on Set-Theoretic Estimation

The applications of convex feasibility problems (CFPs) en-
compass a wide variety of disciplines, such as wireless localiza-
tion [27]-[30], [39], compressed sensing [40], image recovery
[41], image denoising [42] and intensity-modulated radiation
therapy [43]. In contrary to optimization problems where the
aim is to minimize the objective function while satisfying the
constraints, feasibility problems seek to find a point that satis-
fies the constraints in the absence of an objective function [40].
Hence, the goal of a CFP is to identify a point inside the inter-
section of a collection of closed convex sets in a Euclidean (or,
in general, Hilbert) space. In feasibility problems, a commonly
pursued approach is to perform projections onto the individual
constraint sets in a sequential manner, rather than projecting onto
their intersection due to analytical intractability [44]. The work
in [27] formulates the problem of acoustic source localization
as a CFP and employs the well-known projections onto convex
sets (POCS) technique for convergence to true source locations.
Following a similar methodology, the noncooperative wireless
positioning problem with noisy range measurements is modeled
as a CFP in [28], where POCS and outer-approximation (OA)
methods are utilized to derive distributed algorithms that per-
form well under non-line-of-sight (NLOS) conditions. In [39],
a cooperative localization approach based on projections onto
nonconvex boundary sets is proposed for sensor networks, and it
is shown that the proposed strategy can achieve better localiza-
tion performance than the centralized SDP and the distributed
MDS although it may get trapped into local minima due to non-
convexity. Similarly, the work in [29] designs a POCS-based
distributed positioning algorithm for cooperative networks with
a convergence guarantee regardless of the consistency of the
formulated CFP, i.e., whether the intersection is nonempty
or not.

Although CFPs have attracted a great deal of interest in
the literature, QFPs have been investigated only rarely. QFPs
represent generalized versions of CFPs in that the constraint
sets are constructed from the lower level sets of quasiconvex
functions in QFPs whereas such functions are convex in CFPs
[37]. The study in [37] explores the convergence properties of

3Throughout the paper, the near-infrared region between 780 nm and 950 nm
is considered as the infrared spectrum [36]. The Lambertian channel attenuation
model is valid in both the visible light spectrum and the infrared region from
780 nm to 950 nm [36].
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subgradient projections based iterative algorithms utilized for
the solution of QFPs. It is demonstrated that the iterations con-
verge to a solution of the QFP if the quasiconvex functions
satisfy Holder conditions and the QFP is consistent, i.e., the
intersection is nonempty. In this work, we show that the Lam-
bertian model based (originally non-quasiconvex) functions can
be approximated by appropriate quasiconvex lower bounds,
which convexifies the (originally nonconvex) sublevel con-
straint sets, thus transforming the formulated feasibility problem
into a QFP.

C. Contributions

The previous work on VLP networks has addressed the prob-
lem of position estimation based mainly on the ML estimator
[13], [16], [45], the least squares estimator [15], [45], trian-
gulation [11], [46], and trilateration [14] methods. This paper,
however, considers the problem of localization in VLP networks
as a feasibility problem and introduces efficient iterative algo-
rithms with convergence guarantees in the consistent case. In
addition, the theoretical bounds derived for position estimation
are significantly different from those in [16], [45] via the in-
corporation of terms related to cooperation, which allows for
the evaluation of the effects of cooperation on the localization
performance in any three dimensional cooperative VLP sce-
nario. Furthermore, unlike the previous research on localization
in RF-based wireless networks via CFP modeling [27]-[29],
[39], where a common approach is to employ POCS-based it-
erative algorithms, we formulate the localization problem as a
QFP for VLP networks, which necessitates the development of
more sophisticated algorithms (e.g., gradient projections) and
different techniques for studying the convergence properties of
those algorithms (e.g., quasiconvexity and quasi-Fejér conver-
gence). The main contributions of this paper can be summarized
as follows:

¢ For the first time in the literature, we propose to employ
cooperative localization for VLP networks via a generic
configuration that allows for an arbitrary construction of
connectivity sets and transmitter/receiver orientations.

e The CRLB for localization of VLC units is derived in the
presence of cooperative measurements (Section II). The
effects of cooperation on the performance of localization
in VLP networks are illustrated based on the provided
CRLB expression (Section VI-A).

® The problem of cooperative localization in VLP networks
is formulated as a quasiconvex feasibility problem, which
circumvents the complexity of the nonconvex ML estima-
tor and facilitates efficient feasibility-seeking algorithms
(Section III).

® We design gradient projections based low-complexity iter-
ative algorithms to find solutions to the feasibility problem
(Section IV). The proposed set-theoretic framework favors
the implementation of algorithms in a distributed architec-
ture.

e We provide formal convergence proofs for the proposed
algorithms in the consistent case based on the concept of
quasi-Fejér convergence (Section V).

LEDs
Downlink Visible Light
Communications
VLC Units
- Device-to-Device Infrared '
Communications
Fig. 1. Cooperative VLP network.

II. SYSTEM MODEL AND THEORETICAL BOUNDS

A. System Model

The proposed cooperative VLP network consists of N;, LED
transmitters and Ny VLC units, as illustrated in Fig. 1. The
location of the jth LED transmitter is denoted by y; and its ori-
entation vector is given by ny ; for j € {1,..., Ny }. The loca-
tions and the orientations of the LED transmitters are assumed
to be known, which is a reasonable assumption for practical
systems [45], [46]. In the proposed system, each VLC unit not
only gathers signals from the LED transmitters but also com-
municates with other VLC units in the system for cooperation
purposes. To that aim, the VLC units are equipped with both
LEDs and PDs; namely, there exist I; LEDs and K; PDs at
the ith VLC unit for ¢ € {1,..., Ny }. The unknown location
of the ith VLC unit is denoted by x;, where ¢ € {1,..., Ny }.
For the jth PD at the ith VLC unit, the location is given by
x; + a; ; and the orientation vector is denoted by n%? j» Where
je€{l,..., K;}.Similarly, for the jth LED at the ith VLC unit,
the location is given by x; + b, ; and the orientation vector is
represented by n<T27)j, where j € {1,..., L;}. The displacement
vectors, a; ;’s and b; ;’s, are known design parameters for the
VLC units. Also, the orientation vectors for the LEDs and PDs
at the VLC units are assumed to be known since they can be de-
termined by the VLC unit design and by auxiliary sensors (e.g.,
inertial measurement unit (IMU) consisting of gyroscope, ac-
celerometer and magnetometer [47]-[49].%) To distinguish the
LED transmitters at known locations from the LEDs at the VLC
units, the former are called as the LEDs on the ceiling (as in
Fig. 1) in the remainder of the text.

Ata given time, each PD can communicate with a subset of all
the LEDs in the system. Therefore, the following connectivity
sets are defined to specify the connections between the LEDs
and the PDs:

S —{£e{1,...,Ny} | £th LED on ceiling is
connected to kth PD of jth VLC unit} (1)
S = {0 € {1,...,L;} | fth LED of ith VLC unit is
connected to kth PD of jth VLC unit}. 2)
“4Relative locations and orientations of PDs and LEDs on VLC units can

easily be calculated via simple linear operations (i.e., rotations and translations)
based on IMU orientation measurements.
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Namely, S’ g represents the set of LEDs on the ceiling that are
connected to the kth PD at the jth VLC unit. Similarly, S,i 2
is the set of LEDs at the ¢th VLC unit that are connected to the
kth PD at the jth VLC unit.

The aim is to estimate the unknown locations, X1, ..., Xy, ,
of the VLC units based on the RSS observations (measurements)
at the PDs. Let P( ,3 represent the RSS observation at the kth PD
of the jth VLC unit due to the transmission from the ¢th LED
on the ceiling. Similarly, let Péllk’j denote the RSS observation
at the kth PD of the jth VLC unit due to the /th LED at the
ith VLC unit. Based on the Lambertian formula [12], [50], ﬁfk)

and Pé(fk’,j ) can be expressed as follows:’
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and di,lkj) e X; +ajr — b; ¢. In (5) and (6), m, (mé ) is
the Lambertian order for the (th LED on the ceiling (at the ith
VLC unit), A,i]) is the area of the kth PD at the jth VLC unit,

and ﬁT’g (P}Z}) is the transmit power of the ¢/th LED on the
ceiling (at the sth VLC unit). In addition, the noise components,

1“7%3 and nyij ), are modeled by zero-mean Gaussian random

variables each with a variance of a ;- Considering the use of
a certain multiplexing scheme (e.g., time division multiplexing
among the LEDs at the same VLC unit and on the ceiling, and
frequency division multiplexing among the LEDs at different
VLC units or on the ceiling), W 1 ) and 77; i 7 are assumed to be
independent for all different (7, k) pairs and for all £ and i.

3Since the wavelength of the infrared/visible light carrier (on the order of
107 m) is much lower than dimensions of typical PDs (i.e., 1072 m), multipath
reflections are averaged out by integration of the incident optical power over
the area of a PD [33], [36], [51]. Hence, in this study, only line-of-sight (LOS)
links are taken into account in the infrared/visible light channel model.

B. ML Estimator and CRLB

T
Let x £ [x] ... x}%, |  denote the vector of unknown pa-

rameters (which has a size of 3Ny x 1) and let P represent a
vector consisting of all the measurements in (3) and (4). The
elements of P can be expressed as follows:

pl) v
{{{ bk }kfegiﬂ }kE{lx“”Kf}} |
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Pt }
{{{ b }ZESE-”) el Ny N}

Then, the conditional probability density function (PDF) of P
given x, i.e., the likelihood function, can be stated as
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where Nt((f,fk> represents the total number of LEDs that can
communicate with the kth PD at the jth VLC unit; that is,
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the maximum likelihood estimator (MLE) is

XML = arg mmz Zl hyur () ©)

j=1k=1 ]:
and the Fisher information matrix (FIM) [52] is given by

[ Dlog J(PIx) dlog /(P |x)
[Jitlyf’Z =E { axtl axt2 } (10)

where x;, (x:,) represents element ¢; (f2) of vector x with
ti,t2 € {1,2,...,3Ny }. Then, the CRLB is stated as

CRLB = trace(J ') <

(1)

where X represents an unbiased estimator of x. From (7) and
(8), the elements of the FIM in (10) can be calculated after some
manipulation as
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Based on (11) and (12), the CRLB for location estimation
can be obtained for cooperative VLP networks (please see
Section S-VIII in the supplementary material for the partial
derivatives in (12)). The obtained CRLB expression is generic
for any three-dimensional configuration and covers all possi-
ble cooperation scenarios via the definitions of the connectivity
sets (see (1) and (2)). To the best of authors’ knowledge, such
a CRLB expression has not been available in the literature for
cooperative VLP networks.

Remark 1: From (12), it is noted that the first summation
term in the parentheses is related to the information from the
LED transmitters on the ceiling whereas the remaining terms are
due to the cooperation among the VLC units. In the noncooper-
ative case, the elements of the FIM are given by the expression
in the first line of (12).

Via (11) and (12), the effects of cooperation on the accu-
racy of VLP networks can be quantified, as investigated in
Section VI.

Remark 2: According to [53], the irradiance value of the
infrared emitters should be lower than 100 W/m? to eliminate
the cornea/lens risk in the range from 780 nm to 3000 nm. Based
on [36, Sec. II-C], the irradiance at a distance d (m) and an
irradiation angle ¢ is given by

T(d, 6) = Pr o cos™ (6) (W/m?)

where Pr is the optical power of the LED (W) and m is the Lam-
bertian order. Setting m = 1 and ¢ = 0 (i.e., directly looking at
the infrared source, which is the worst case from an eye-safety
perspective), the value in (13) becomes
P,
I(d,¢ = 0°) = — (W/m?).
md?
Considering the limit value of 100 W/m?, for an eye looking
directly at the infrared source at a distance of d = 0.2 m, the
optical power of the infrared LED should satisfy

Pr <1256 W

(13)

(14)

15)

so that the LED does not pose any risks to the cornea/lens of
the eye. As observed from the numerical results in Section VI,
significant cooperation benefits can be achieved with 1 W optical
power for the LEDs on the VLC units (i.e., the LEDs employed
for cooperation). Therefore, the optical power values for which
the proposed system can enjoy the advantages of cooperation
are well below the eye-safety limits of the cornea/lens presented
in [53]. Regarding the thermal retinal risks and blue light hazard,
the irradiance limit is given by 3.77 W/sr/(0.2)? = 94.25 W/m?
[53], which yields the condition Pr < 11.84 W for d = 0.2 m.
Similar to the case of the cornea/lens risk, the optical power
values in typical indoor scenarios considered in this paper satisfy
the eye-safety limits related to the thermal retinal risks and blue
light hazard.

III. COOPERATIVE LOCALIZATION AS A QUASICONVEX
FEASIBILITY PROBLEM

In this section, the problem of cooperative localization
in VLP networks is investigated in the framework of con-
vex/quasiconvex feasibility. First, the feasibility approach to the

localization problem is motivated, and the problem formulation
is presented. Then, the convexity analysis is carried out for the
resulting constraint sets.

A. Motivation

For the localization of the VLC units, the MLE in (9) has
very high computational complexity as it requires a search over
a 3 Ny dimensional space. In addition, the formulation in (9)
presents a nonconvex optimization problem; hence, convex opti-
mization tools cannot be employed to obtain the (global) optimal
solution of (9). As the number of VLC units increases, central-
ized approaches obtained as solutions to a given optimization
problem (such as (9)) may become computationally prohibitive.
Besides scalability issues, centralized methods also require all
measurements gathered at the VLC units to be relayed to a cen-
tral unit for joint processing, which may lead to communication
bottlenecks. Therefore, low-complexity algorithms amenable to
distributed implementation are needed to efficiently solve the
cooperative localization problem in VLP networks. To that aim,
the localization problem is cast as a feasibility problem with
the purpose of finding a point in a finite dimensional Euclidean
space that lies within the intersection of some constraint sets.
Feasibility-seeking methods enjoy the advantage of not requir-
ing an objective function, thereby eliminating the concerns for
nonconvexity or nondifferentiability of the objective function
[54]. Hence, modeling the localization problem as a feasibility
problem (i) alleviates the computational burden of minimizing
a (possibly nonconvex) cost function in the highly unfavorable
centralized setting and (i) facilitates the use of efficient dis-
tributed algorithms involving parallel or sequential processing
at individual VLC units.

B. Problem Formulation

Considering the Lambertian formula in (3)—(6), an RSS mea-
surement at a PD can be expressed as

P, =P +n (16)

where P, is the true observation (as in (5) or (6)) and 7 is the
measurement noise. Suppose that the RSS measurement errors
are negative, which yields Pr < P..% Then, based on (5) and
(6), the following inequality is obtained:

g(X;YanTanR7m7’y) SO (17)

where g : R — R is the Lambertian function with respect to
the unknown PD location x, defined as
[(x—y)'nr]" (y —x)"ng

=y ’
(18)

a
9(x;y,nr,ng,m,y) =y —

6In order to satisfy the negative error assumption, a constant value can always
be subtracted from the actual RSS measurement [55]. Decreasing the value of
an RSS measurement is equivalent to enlarging the corresponding feasible set.
Although this assumption does not have a physical justification, it facilitates
theoretical derivations and feasibility modeling of the localization problem. It
will be justified via simulations in Section VI-B that the proposed feasibility-
seeking algorithms will converge for realistic noise models (e.g., Gaussian), as
well.
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y, np, ng, and m are known, d is the dimension of }he visible
light localization network, and + is given by v = %ﬁ.
The field-of-views (FOVs) of the LED transmitters and the
PDs are taken as 90°, which implies that (x — y)"ny > 0 and
(y —x)"ng > 0. Under the assumption of negative measure-
ment errors, the feasible set in which the true PD location resides

is given by the following lower level set of g(x):

Ez{xeRd‘g(x;y,nT,nR,m,’y)SO} 19)
which will hereafter be referred to as the Lambertian set. In RF
wireless localization networks, such feasible sets are generally
obtained as balls [27], [29], hyperplanes [56], or ellipsoids [57],
all of which lead to closed-form expressions for orthogonal
projection. For k € {1,2,...,K;}andj € {1,2,..., Ny }, the
Lambertian set corresponding to the kth PD of the jth VLC unit
based on the signal received from the /th LED on the ceiling for

teS lf,j ) is defined as follows:

N ={zer?|gil@) <0} (20)

where gjﬁ],z (z) is given by
~(7) AL . a0 () =~ ) 21
ng(Z) —g(ZaYé aj,kanT7[anR7k7m577g7 ) ( )

and %’,} is calculated from (3). Similarly, the Lambertian set
corresponding to the kth PD of the jth VLC unit based on

the signal received from the {th LED of the ith VLC unit for
¢ e 5" is defined as

i) ={zer' gl @x)<0} @

where géi’,’gj) (z,x;) is given by

(z,xi) 2 g (Z;Xi +bi¢—aj, n(Ti?é, ng?k7mgi>,74(f1$j))

(23)
and 7,5;‘,;” is calculated from (4). The sets defined as in (20)
represent noncooperative localization as they are constructed
from the RSS measurements corresponding to the LEDs on the
ceiling, whereas the sets in (22) are based on the signals from
the LEDs of the other VLC units and represent the cooperation
among the VLC units. Assuming negatively biased RSS mea-
surements, the problem of cooperative localization in a visible
light network reduces to that of finding a point in the intersec-
tion of sets as defined in (20) and (22) for each VLC unit. If the
Lambertian function in (18) is assumed to be quasiconvex,’ then
the quasiconvex feasibility problem (QFP) can be formulated as
follows [37], [58]:

gt

"The conditions under which the Lambertian function is quasiconvex are
investigated in Section III-C.

Problem 1: Letx = (xi,...,Xy, ). The feasibility problem
for cooperative localization of VLC units is given by®

find x e RV

subjectto x; € A; N Y, 5=1,...,Ny 24)
where
K;
A= N N (25)
k=1 (‘Egij)
Kj Ny
T, = ¢l 26
j T (26)

C. Convexity Analysis of Lambertian Sets

The Lambertian sets as defined in (19) are not convex in
general. The following lemma presents the conditions under
which the Lambertian sets become convex.

Lemma 1: Consider the a-sublevel set

By = {x € Q|g.(x) < o} 27
of g (x), which is given by
(y —x)"np
9eX) =Y —5——m (28)
=T ey e

where € is a small positive constant to avoid non-differentiability
and non-continuity of ¢.(-) at y, as in [59, Eq. 7], £ > 1 and
~ > 0 are real numbers, and 2 C R is defined as
Q:{XERd‘<y—X)T1’1R 20}. (29)
Then, B,, is convex for each o € R.
Proof: Please see Section S-I in the supplementary
material. u
Remark 3: Lemma 1 characterizes the type of Lambertian
functions whose sublevel sets are convex. Since a function
whose all sublevel sets are convex is quasiconvex [60], Lamber-
tian functions of the form (28) are quasiconvex over the halfs-
pace € in (29). It can be noted that €2 consists of those VLC unit
locations which are able to obtain measurements from an LED
located at y due to the receiver FOV limit of 90°.

D. Convexification of Lambertian Sets

In this part, we utilize Lemma 1 to investigate the following
two cases in which the Lambertian functions can be transformed
into the form of (28) and Problem 1 becomes a QFP.

81t may be more convenient to regard the problem in (24) as an implicit
quasiconvex feasibility problem (IQFP) since the Lambertian sets C é 7k7) depend
on the locations of the VLC units, which are not known a priori [29]. It should
be emphasized that the feasibility problem posed in Problem 1 is different from
those in RF-based localization systems (e.g., [28], [29]) since the constraint
sets and the associated quasiconvex functions have distinct characteristics as
compared to convex functions (e.g., distance to a ball) encountered in RF-based
systems.
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1) Case 1. Convexification via Majorization: We propose to
approximate the Lambertian function g(x) in (18) by a qua-
siconvex minorant §(x) such that g(x) < g(x) for x € Q and
L C L, where £ £ {x € Q| §(x) < 0} represents a majoriza-
tion of the original set £ £ {x € Q|g(x) <0}. Assuming
x € ), we have

(x=y)"'nr]" (y —x)"'ng

g(x) =~ — o (30)
[x v
o HX-YH'"HWH"L%— VIR
x|
_ T
=5 — (y X) I:R 2 g(X) (32)
[x — ]

where (31) is due to the Cauchy-Schwarz inequality and x € 2,
and (32) follows from the unit norm property of the orientation
vector. Then, including ¢ in the denominator, we construct the
Lambertian sets as (hereafter called expanded Lambertian sets)

£ = {x € Qfj(x) <0} (33)
with

v (y=xT"ng

A aa

and (Q being as in (29). According to Lemma 1, £ in (33) is
convex, g.(x) in (34) is quasiconvex over 2 and the resulting
problem of determining a point inside the intersection of such
sets turns into a QFP, which can be studied through iterative
projection algorithms [37], [58].

2) Case 2. Known VLC Height, Perpendicular LED: In
this case, as in [10], [12], [13], [61], it is assumed that the
LED transmitters on the ceiling have perpendicular orienta-
tions, i.e., ny; =[0 0 —1]" for each j € {1,2,..., Nz},
and the height of each VLC unit is known. This assumption
is valid for some practical scenarios, an example of which is
a VLP network where the LEDs on the ceiling are pointing
downwards and the VLC units are attached to robots that move
over a two-dimensional plane [7, Fig. 3]. Assuming that the
height of the LED transmitters relative to the VLC units is h
andny =[0 0 — 1}T, the Lambertian function in (18) can be
rewritten as follows:

hm (y _ X)TIIR

||m+3 (35)

g(x;yanTanRamafY):’Y ||
X —

Then, the Lambertian set corresponding to the function in (35)
by introducing € in the denominator is obtained as

L={xe€Q]|g(x) <0} (36)
with

_ (y —x)"np
=y e

ge(x) =7 (37
where () is given by (29) and 4 = y/h™. Note that the Lam-
bertian set in (36) is effectively defined on R? since the height
of the VLC unit is already known. According to Lemma 1,

the set defined in (36) is convex. Therefore, in this case, the
noncooperative sets as defined in (20) are originally convex.

Based on the discussion above, it is concluded that in the
case of a known VLC height and perpendicular LED transmitter
orientations, the expanded Lambertian sets in (33) defined on R?
must be used for the measurements among the VLC units (i.e.,
cooperative measurements) in order to ensure that Problem 1
is a QFP. For the general case in which the LED orientations
are arbitrary and/or the heights of the VLC units are unknown,
all the noncooperative and cooperative Lambertian sets must be
replaced by the corresponding expanded versions in (33).

A noncooperative VLP network is illustrated in Fig. 2(a),
where there exist four LED transmitters on the ceiling and two
VLC units. In the network, it is assumed that the heights of the
VLC units are known and the LEDs on the ceiling have per-
pendicular orientations so that Case 2 type convex Lambertian
sets can be utilized for the measurements between the LEDs on
the ceiling and the VLC units. Fig. 2(b) shows the cooperative
version of the VLP network with cooperative Lambertian sets
including both the nonexpanded (original) sets as in (22) and
Case 1 type expanded sets as in (33). It is noted from Fig. 2(b)
that incorporating cooperative Lambertian sets into the localiza-
tion geometry can significantly reduce the region of intersection
of the Lambertian sets.

IV. GRADIENT PROJECTIONS ALGORITHMS

In this section, we design iterative subgradient projections
based algorithms to solve Problem 1. The idea of using sub-
gradient projections is to approach a convex set defined as a
lower contour set of a convex/quasiconvex function by moving
in the direction that decreases the value of that function at each
iteration, i.e., in the opposite direction of the subgradient of the
function at the current iterate [44], [62]. First, the definition of
the gradient projector is presented as follows:

Definition 1: The gradient projection operator G’} ‘R —
R? onto the zero-sublevel set of a continuously differentiable
function f : R? — R is given by [63]

x—)»L)Qfo, if f(x)>0
G ixrs 4 X s O GIZO0 g
X, if f(x) <0

where A is the relaxation parameter and V is the gradient oper-
ator. The gradient projector can also be expressed as

fT(x)

R

with f7(x) denoting the positive part, ie., [T (x)=
max{0, f(x)}. In the sequel, it is assumed that G’ (x) = x
when x is outside the region where f is quasiconvex.

G (x) =x V() (39)

A. Projection Onto Intersection of Halfspaces

Since the functions of the form (28) are continuously differ-
entiable and quasiconvex on the halfspace €2 in (29), a special
case of subgradient projections, namely, gradient projections,
can be utilized to solve Problem 1, under the constraint that
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Fig. 2. (a) A noncooperative VLP network consisting of four LED transmit-

ters on ceiling and two VLC units. VLC-1 is connected to LED-1 and LED-2,
and VLC-2 is connected to LED-3 and LED-4. Green and blue regions repre-
sent the noncooperative Lambertian sets for VLC-1 and VLC-2, respectively.
(b) Cooperative version of the VLP network in (a), shown by zooming onto VLC
units. Case 1 type expanded cooperative Lambertian sets and their nonexpanded
(original) counterparts are illustrated along with noncooperative Lambertian
sets. Cooperation helps shrink the intersection region of Lambertian sets for
VLC units.

iterates must be inside €2 to guarantee quasiconvexity. Hence,
at the start of each iteration of gradient projections, projections
onto the intersection of halfspaces of the form €2 in (29) can
be performed to keep the iterates inside the quasiconvex region.

The procedure for projection onto the intersection of halfspaces
I{J
— ()
Iy = ﬂ ﬂ Qz{k
k=1

S

corresponding to the jth VLC unitfor j € {1,2,..., Ny }, with
the halfspaces given by

Q) 2 (x e R |(yr —a; —x)"nll} >0}, @D
is provided in Algorithm 1.° In order to find a point inside
the intersection of halfspaces, the method of alternating (cyclic)
projections is employed in Algorithm 1, where the current iterate
is projected onto each halfspace in a cyclic manner. Convergence
properties of this method are well studied in the literature [64],
[65]. I'; is guaranteed to be nonempty since it represents the
set of possible locations for the jth VLC unit at which the
RSS measurements from the connected LEDs on the ceiling
can be acquired. However, the intersection of the halfspaces
corresponding to the LEDs of the other VLC units that are
connected to the jth VLC unit may be empty due to the VLC
unit locations being unknown and variable during iterations.

(40)

Algorithm 1: Projection onto Intersection of Halfspaces I';.

function Pr (x;)

(0)
j
Iterative Step: Given the nth iterate x;”) € R¢
fork=1,...,K; do

for £ € §,Ejj) do

Initialization: x; ' = x;

) = By ) @
end for
end for
Set X§7b+1) _ X(7z)
Stopping Criterion: Hx;”+1> - x;") ’ < 6 for some

6> 0.
end function

B. Step Size Selection

An important phase of the proposed projection algorithms is
determining the relaxation parameters (i.e., step sizes) associ-
ated with the gradient projector. The step size selection proce-
dure exploits the well-known Armijo rule, which is an inexact
line search method used extensively for gradient descent meth-
ods in the literature [66], [67], [68, Section 1.2]. Algorithm 2
provides an Armijo-like procedure for step size selection given
a set of Lambertian functions, the initial step size value A, a
fixed constant 5 € (0, 1) specifying the degree of decline in
the value of the function, step size shrinkage factor £ € (0, 1),
and the current point x. The guarantee of existence of a step
size as described in Algorithm 2 can be shown similarly to [69,
Lemma 4].

9Pp(x) denotes the orthogonal projection operator, i.e., Pg(x)=

arg miny ¢ Hw —x||.
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Algorithm 2: Armijo Rule for Step Size Selection.

function 7 ({f;}M,, %, 53, £, x)
Output: New step size A
Set the step size as

A=ag" 43)
where
m = min{m € Z> |
F(GE (%) < fi(x)(1— Bre™), Vi€ {1,2,..., M}}
(44)

end function

C. lIterative Projection Based Algorithms

In this work, two classes of gradient projections algorithms,
namely, sequential (i.e., cyclic) [62] and simultaneous (i.e., par-
allel) [70] projections, are considered for the QFP described
in Problem 1. The proposed algorithm for cyclic projections,
namely, the cooperative cyclic gradient projections (CCGP) al-
gorithm, for cooperative localization of VLC units is provided
in Algorithm 3. In the proposed cyclic projections, the current
iterate, which signifies the location of the given VLC unit, is
first projected onto the intersection of halfspaces corresponding
to the LEDs on the ceiling via Algorithm 1. Then, the resulting
point is projected onto the noncooperative Lambertian set that
leads to the highest function value, i.e., the most violated con-
straint set [37]. Similarly, projection onto the most violated con-
straint set among the cooperative Lambertian sets is performed
and the projections obtained by noncooperative and cooperative
sets are weighted to obtain the next iterate.

The cooperative simultaneous gradient projections (CSGP)
algorithm is proposed as detailed in Algorithm 4. Simultaneous
projections are based on projecting the current point onto each
noncooperative and cooperative Lambertian set separately and
then averaging all the resulting points to obtain the next iterate.
At each iteration, the parallel projection stage is preceded by
projection onto the intersection of halfspaces, which aims to
ensure that the current iterate resides in the region where all the
Lambertian functions corresponding to the fixed anchors (i.e.,
the LEDs on the ceiling) are quasiconvex. It should be noted that
for both cyclic and simultaneous projections, the cooperative
Lambertian sets are determined by the latest estimates of the
VLC unit locations [29], which are updated in the ascending
order of their indices. In addition, the step sizes are updated
using the Armijo rule in Algorithm 2.

Remark 4: Both Algorithm 3 and Algorithm 4 can be im-
plemented in a distributed manner by employing a gossip-like
procedure among the VLC units [71]. After refining its loca-
tion estimate via projection methods, each VLC unit broadcasts
the resulting updated location to other VLC units to which it
is connected. In order to save computation time, a synchronous
counterpart of this asynchronous/sequential algorithm can be
devised, where VLC units work in parallel to update their loca-
tions based on the most recent broadcast information. Hence, the

Algorithm 3: Cooperative Cyclic Gradient Projections
(CCGP).
Initialization: Choose an arbitrary initial point

(Xgo), .. ,x(\(,)\) ) c R4Nv
Iterative Step: Given the nth iterate (x§”>, . ,xf(;v? )
€ RNV
forj=1,..., Ny do
Projection Onto Intersection of Halfspaces I'; by
Algorithm 1:

i(.’n,) _ PFj (X<«”))

J J

(45)

Most Violated Constraint Control for Noncooperative

Projections:
(Fuc, bue) = arg max gl &My (46)
Most Violated Constraint Control for Cooperative
Projections:
(l;:(.,, e, lZ) = argmax gj.”) 47)
where
g 2 {gli & ™) [ =" e i} 48)
Qif,j) £ {x e R? ’ (xgﬁ’) +biy—aj, — X)Tng > 0}
(49)
withn =nfori > j,n=n+1fori < j.
Averaging:
(n ) n)
(Y =0, G (RY) 406 ;,; s ()
énp knec Yic ke (’Xl )
(50)
where ¥, + Y. = 1 and ¥, > 0, 9. > 0.
end for
n+1 (n)12
Stopping Criterion: > id H —x;"||” < 4 for
some & > 0.
Relaxation Parameters: Initialize A( IzL = )L(70L) = Ag and
update using Algorithm 2 as
(n) (7) (n—1) (n
)\’jﬁnc - j <g( ue ) ] nc 7/8 57 ] ) (51)

(ic.d) (n) n-1) (n ce (n)
)»(»n)— J(gé(fc( ('7X7', )7 j,c vﬁga ] )7 lfg]‘ 7&(2)

jsc )"Enc ~1) otherwise
(52)
forj e {1,2,..., Ny }.

synchronous/parallel implementation trades off the localization
accuracy for faster convergence to the desired solution.

D. Complexity Analysis

In this part, we provide the complexity analysis of
Algorithm 3, Algorithm 4, and the MLE in (9).
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Algorithm 4: Cooperative Simultaneous Gradient Projec-
tions (CSGP).

Initialization: Choose an arbitrary initial point
XSU)’ ce 7X5\(,]3, € R,
Iterative Step: Given the nth iterate
(X(ln)7 o 7){5\?3 ) c ]Rde,,
forj=1,..., Ny do
Projection Onto Intersection of Halfspaces I'; by
Algorithm 1:

2 = Py (x)

| (53)

Parallel Projection Onto Lambertian Sets:

(n+1) & (7) 2 (n)
%j = ’N‘WlkG]m (5‘]‘ )
k=1 | g o
- (i.3) " (n)
+ Z Z (k‘] GY(‘/)( X(")) (:>~< )
i=1,i#j pegliv
(54)
where 1 = n fori > j,n =n+ 1 for¢ < j and the
weights satisfy
K, ' Ny N
>oEn+ > 2 s =1 69
k=1

(€5 i=Li#j gegliD)
and 7Y) > 0, k') > 0,Vi, 4, k.
end for '

Stopping Criterion: S e H (n+1)
some ¢ > 0.

Relaxation Parameters: Initialize )L(j
using Algorithm 2 as

) _ 7(F g
W= g (F U8 A

— x§-"> HZ < § for
0= Ao and update
w0

forj € {1,2,..., Ny}, where ]?] and F; are given by
(S10) and (S11) in the supplementary material,
respectively, and

(56)

2Lfer|fEM) <AL (57)

1) Complexity Analysis for Algorithm 3: We first analyze
the complexity of Algorithm 3 for the jth VLC unit at each
iteration. Each sub-step in the iterative step of Algorithm 3 is
investigated as follows:

Assume that Algorithm 1 requires O(V;) iterations for con-
vergence. Then, the computational complexity of (45) is given
by O(M, 2221 S ,(6'7 ) ). Since the number of functions g[(f,g ()
in (46) is equal to Z?':’I ‘gl(f)
plexity (9( Zf:’ 1 |§ ,i] ) |) Similar to the case of noncooperative
projections in (46), evaluating (47) requires a computational

|, evaluating (46) has the com-

complexity of O(3,2, SV ., 1SU]). To analyze (51)
and (52), assume that Algorithm 2 requires O(Ns) trials for
determining a non-negative integer m. At each trial, (44) re-
quires O(M) operations, where M is the number of functions
at the input of Algorithm 2. Then, the computational com-
plexity of step size selection in (51) and (52) is computed as

O<N Sy {|5 |+ Lt |S,({i"7)\}). Since the evalua-
tion of the gradient projection operator in (39) requires O(1) op-

erations, the averaging step in (50) has the complexity of O(1).
Therefore, the overall complexity for the jth VLC unit is given

by O( i, [V + No)ISE |+ Vo 2 151 ) A
suming that the number of iterations for the convergence of
Algorithm 3 is on the order of O(N3), the overall complexity
of Algorithm 3 can be expressed as

(N, + N2) S + Ny Z B D
_,_/

i=1,i#j

cooperative

nuncooperdtlve

(58)
where we can observe the contribution of the terms correspond-
ing to noncooperative and cooperative projections separately.

2) Complexity Analysis for Algorithm 4: Following a similar
approach to that in Algorithm 3, the complexity of Algorithm 4
can be obtained as

o<NZZ

j=1k=1

Ny
(M + NS [+ N, |5;§-1"7)|D-
—_—

. i=1,i#]
noncooperative 17

cooperative

(59)

3) Complexity Analysis for MLE in (9): Due to the noncon-
vexity of the MLE, we evaluate the complexity by assuming the
use of the exhaustive search method over a bounded region. Sup-
pose that each VLC unit can take Ng,,,, different values in each
of the three axes. Then, the number of possible locations for Ny
VLC units is on the order of (9( gmpd Nv ). At each search lo-

cation, weneedO(Z Zk 1 [|S |+ it |S’(“”)|D
operations for evaluating the cost function in (9). Hence, the
overall complexity of the MLE can be computed as

|D (0

As observed from (58) and (59), the complexity of the pro-
posed algorithms depends on the number of iterations and the
size of the connectivity sets. On the other hand, the complex-
ity of the MLE, expressed in (60), is exponential in the num-
ber of VLC units, which limits its scalability, as discussed in
Section III-A. Hence, the proposed projection based algorithms
provide low-complexity alternatives to the MLE in cooperative
VLP scenarios.

Nv ..
+ Z |S]5L]>

i=1,i#j

cooperative

Ny K
¢ (Nsmp?’“ > [ 15|

j=1k=1 )
noncooperauve
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V. CONVERGENCE ANALYSIS

In this section, the convergence analysis of the proposed
algorithms in Algorithm 3 and Algorithm 4 is performed
in the consistent case. To that aim, it is assumed that for
each j € {1,2,..., Ny }, the intersection of the noncoopera-
tive and cooperative Lambertian sets in (24) is nonempty; that
is, A; VT, # 0, where A; and T; are given by (25) and (26),
respectively. In the following, we present the definitions of qua-
siconvexity and quasi-Fejér convergence, which will be used for
the convergence proofs.

Definition 2 (Quasiconvexity [72]): A differentiable func-
tion f:R" — R is quasiconvex if and only if f(x) < f(y)
implies Vf(y)? (x —y) < 0vx,y € R".

Definition 3 (Quasi-Fejér Convergence [38]): A sequence
{y*} C R" is quasi-Fejér convergent to a nonempty set V if
for each y € V, there exists a non-negative integer M and a
sequence {€"} C R such that 3% € < oo and

k+1

Iy ' =yl <|ly* —y|’ + e, vk>M (6D

For the convergence analysis, we make the following assump-
tions:
* Al Consideringanyx; € A; N Y;andX; ¢ A; N'Y;, th
inequality géf’,’fj)(xj7 )y < g(L ’)( - x\")) holds for ev-
ery iteration index n and Vvl k,i, 7.

e A2. The sequence of path lengths taken by the itera-
tions of the proposed algorithms are square summable,
e, 3 () x4 =) < oo
forj € {1,2,...,NV}.

Assumption Al is valid especially when the cooperative al-
gorithms can be initialized at some x = (x,...,Xy, ) with
x; € Aj,Vj€{1,2,...,Ny}. Assumption Al implies that
any point inside the intersection of the noncooperative and co-
operative constraint sets is closer, in terms of the function value
(whose zero-sublevel sets are the constraint sets), to the coop-
erative constraint sets than any point outside the intersection.
When the iterations in the cooperative case start from coarse
location estimates obtained in the absence of cooperation, the
corresponding cooperative sets, which are dynamically chang-
ing at each iteration, may involve the set A; NY;, but exclude

(x5, %; x(™ ) <0<
(i.5)

9ok (Xj, %, x\" )) On the other hand, Assumption A2 represents
a realistic scenario through the Armijo rule in (43) and (44),
which ensures a certain level of decline in the Lambertian func-
tions at each iteration and generates a nonincreasing sequence
of step sizes.

the points outside A; N Y;, which yields géivi‘

A. Quasi-Fejér Convergence

In the convergence analysis, the proof of convergence is based
on the concept of quasi-Fejér convergent sequences, which pos-
sess nice properties that facilitate further investigation, as will
be presented in Lemma 2. The following proposition estab-
lishes the quasi-Fejér convergence of the sequences generated by
Algorithm 4 to the set A; N Y.

Proposition 1: Assume Al and A2 hold. Let {x(")}> ,
be any sequence generated by Algorithm 4, where x(") £

Ny }, the se-

()

quence {x }” o 1s quasi-Fejér convergent to the set A; N'Y;.
Proof: Please see Section S-II in the supplementary
material. |
The following proposition states the quasi-Fejér convergence
of the sequences generated by Algorithm 3.
Proposition 2: Assume Al and A2 hold. Let {x(")
be any sequence generated by Algorithm 3, where x(" ")

YL), o E\‘) ) Then, for each j € {1,2,..., Ny}, the se-

quence { (7”)

Proof: Please see Section S-III in the supplementary
material. |

As the quasi-Fejér convergence of the sequences generated by
the proposed algorithms is stated, the following lemma presents
the properties of quasi-Fejér convergent sequences.

Lemma 2 (Theorem 4.1 in [38]): If a sequence {y*}
quasi-Fejér convergent to a nonempty set 1/, the following con-
ditions hold:

(1) {y*} is bounded.

(2) If V contains an accumulation point of {y*}, then {y*}

converges to a pointy € V.

W) Then, for each j € {1,2,...,

O
A

is quasi-Fejér convergent tothe set A; N'Y;.

B. Limiting Behavior of Step Size Sequences

In this part, we investigate the limiting behavior of the step
size sequences, which are updated according to the procedure
in Algorithm 2. The following two lemmas prove that the step
size sequences generated by Algorithm 4 and Algorithm 3 have
positive limits.

Lemma 3. Any step size sequence A;m
Algorithm 4 has a positive limit, i.e.,

generated by

lim A" > 0. (62)

Proof: Please see Section S-IV in the supplementary
material. |
Lemma 4: Any step size sequences k;”lf‘, and )é"(,) generated
by Algorithm 3 have positive limits, i.e.,
lim A( " 0.

n—oo

lim )L<"

n—00 J,nc

>0 and (63)
Proof: Please see Section S-V in the supplementary
material. |
Lemma 3 and Lemma 4 will prove to be useful for deriving the
fundamental convergence properties of the proposed algorithms,
as investigated next.

C. Main Convergence Results

In this part, we present the main convergence results for
the proposed algorithms, i.e., convergence to a solution of
Problem 1.

Proposition 3: Let {x(")}>°_, be any sequence generated by

Algorithm 4, where x(") £ ( (n ) ,xﬁ\?‘? ) Then, for each

je€{1,2,..., Ny}, the sequence {x;")}ff:o converges to a
pointx; € A; N'Y;, i.e., a solution of Problem 1.
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Fig.3.  VLP network configuration in the simulations. Each VLC unit contains
two PDs and one LED. PD 1 of the VLC units is used to obtain measurements
from the LEDs on the ceiling while PD 2 of the VLC units communicates with
the LED of the other VLC unit for cooperative localization. The squares and
the triangles show the projections of the LEDs and the VLC units on the floor,
respectively.

Proof: Please see Section S-VI in the supplementary

material. |
Proposition 4: Let {x(”> 1>, be any sequence generated by
Algorithm 3, where x(") £ (xgn), . ,xxlg ) Then, for each

j€{1,2,..., Ny}, the sequence {xgn) %, converges to a
pointx; € A; N'Y},i.e., a solution of Problem 1.

Proof: Please see Section S-VII in the supplementary
material. |

VI. NUMERICAL RESULTS

In this section, numerical examples are provided to inves-
tigate the theoretical bounds on cooperative localization in
VLP networks and to evaluate the performance of the proposed
projection-based algorithms. The VLP network parameters are
determined in a similar manner to the work in [12] and [13].
The area of each PD is set to 1 cm? and the Lambertian order of
all the LEDs is selected as m = 1. In addition, the noise vari-
ances are calculated using [73, Eq. 6]. The parameters for noise
variance calculation are set to be the same as those used in [73]
(see Table I in [73]).

The VLP network considered in the simulations is illustrated
inFig. 3. Aroom of size 10 m x 10 m x 5 mis considered, where
there exist N, = 4 LED transmitters on the ceiling which are lo-
catedaty; =[1 1 5/Tm,y, =[1 9 5/Tm,y3 =09 1 5/"m,
andy; = [9 9 5]”m. The LEDs on the ceiling have perpendic-
ular orientations, i.e., ny; = [0 0 — 1]7 for j € {1,2,3,4}.
In addition, there exist Ny = 2 VLC units whose locations
are given by x; = [2 5 1]Tm and x, = [6 6 1.5]" m. Each
VLC unit consists of two PDs and one LED, with off-
sets with respect to the center of the VLC unit being set
toa;;=[0 —0.10"m, aj,=1[0 0.1 0"m, and b;, =
[0.1 0 0]"m for j = 1, 2. The orientation vectors of the PDs
and the LEDs on the VLC units are obtained as the normalized

108
102
10!
€ 10°
m
-
& o
O 10
102
= = =VLC 1 (Coop.)
103 F VLC 1 (Noncoop.)
VLC 2 (Coop.)
VLC 2 (Noncoop.)
10.4 L L L L L
10°° 102 107 100 10° 102 10°
Transmit Power of LEDs on Ceiling (W)
Fig.4. Individual CRLBs forlocalization of VLC units in both noncooperative

and cooperative cases with respect to the transmit power of LEDs on ceiling,
where the transmit power of VLC units is taken as 1 W.

versions (the orientation vectors are unit-norm) of the following
i) =[0.3 011", n§) =1[0.2041)7, n}), =
[0.80.60.1]7, 0y, = [0.70.20.1]7, n'} = [0.90.40.1]7, and

ng )1 = [~0.80.10.1]"". Furthermore, the connectivity sets are

defined as S{i’” =0, Séi'j) = {1} for ¢,j € {1,2},i # j for
the cooperative measurements and §£1) ={1,2,3}, 552) =

{2,3,4} and §§j> = () for j € {1,2} for the noncooperative
measurements.

vectors:

A. Theoretical Bounds

In this part, the CRLB expression derived in Section II is
investigated to illustrate the effects of cooperation on the local-
ization performance of VLP networks.

1) Performance With Respect to Transmit Power of LEDs
on Ceiling: In order to analyze the localization performance of
the VLC units with respect to the transmit powers of the LEDs
on the ceiling (equivalently, anchors), individual CRLBs for lo-
calization of the VLC units in noncooperative and cooperative
scenarios are plotted against the transmit powers of LEDs on
the ceiling in Fig. 4, where the transmit powers of the VLC units
are fixed to 1 W. As observed from Fig. 4, cooperation among
VLC units can provide substantial improvements in localization
accuracy (about 43cm and 14 cm improvement, respectively,
for VLC 1 and VLC 2 for the LED transmit power of 300 mW).
We note that the improvement gained by employing cooperation
is higher for VLC 1 as compared to that for VLC 2. This is an
intuitive result since the localization of VLC 1 depends mostly
on LED 1 and LED 2 (the other LEDs are not sufficiently close
to facilitate the localization process), and incorporating coop-
erative measurements for VLC 1 provides an enhancement in
localization performance that is much greater than that for VLC
2, which can obtain informative measurements from the LEDs
on the ceiling even in the absence of cooperation as seen from
the network geometry in Fig. 3. In addition, the CRLBS in the
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cooperative scenario converge to those in the noncooperative
scenario as the transmit powers of the LEDs increase. Since the
first (second) summand in the FIM expression in (12) corre-
sponds to the noncooperative (cooperative) localization, higher
transmit powers of the LEDs on the ceiling cause the first sum-
mand to be much greater than the second one, which makes
the contribution of cooperation to the FIM negligible. Hence,
the effect of cooperation on localization performance becomes
more significant as the transmit power decreases, which is in
compliance with the results obtained for RF based cooperative
localization networks [20].

2) Performance With Respect to Transmit Power of VLC
Units: Secondly, the localization performance of the VLC units
is investigated with respect to the transmit powers of the VLC
units when the transmit powers of the LEDs on the ceiling are
fixed to 1 W. Fig. 5 illustrates the CRLBs for localization of the
VLC units against the transmit powers of the VLC units in the
noncooperative and cooperative cases. As observed from Fig. 5,
cooperation leads to a higher improvement in the performance
of VLC 1, similar to Fig. 4. In addition, via the FIM expression
in (12), it can be noted that the contribution of cooperation to
localization performance gets higher as the transmit powers of
the VLC units increase, which is also observed from Fig. 5.
However, the CRLB reaches a saturation level above a certain
power threshold, as opposed to Fig. 4, where the CRLB con-
tinues to decrease as the power increases. The main reason for
this distinction between the effects of the transmit powers of
the LEDs on the ceiling and those of the VLC units can be ex-
plained as follows: For a fixed transmit power of the VLC units,
the localization error by using three anchors (i.e., three LEDs on
the ceiling that are connected to the corresponding VLC unit)
converges to zero as the transmit powers of the anchors increase
regardless of the existence of cooperation. On the other hand, for
a fixed transmit power of the LEDs on the ceiling, increasing the
transmit power of the VLC unit (i.e., one of the anchors) cannot
reduce the localization error below a certain level. Therefore,

the saturation level represents the localization accuracy that can
be attained by four anchors with three anchors leading to noisy
RSS measurements and one anchor generating noise-free RSS
measurements.

B. Performance of the Proposed Algorithms

In this part, the proposed algorithms in Algorithm 3 (CCGP)
and Algorithm 4 (CSGP) are evaluated in terms of localization
performance and convergence speed. For both algorithms, the
initial step size is selected as Ay = 1, the step size shrinkage
factor and the degree of decline in the Armijo rule in Algorithm 2
are set to £ = 0.5 and [ = 0.001, respectively. The VLC units
are initialized at the positions of the closest LEDs on the ceiling
which are connected to the corresponding VLC units.

Localization performances of the algorithms are presented
in both the absence and the presence of cooperation and com-
pared against those of the ML estimator in (9) and the CRLBs
derived in Section II. In order to ensure convergence to the
global minimum, the ML estimator is implemented using a
multi-start optimization algorithm with 100 initial points ran-
domly selected from the interval [0 10 Jm at each axis.!” In ad-
dition, two different measurement noise distributions, namely,
Gaussian and exponential, are considered while evaluating the
proposed algorithms as in [28]. The Gaussian noise is used
to model the case in which the RSS measurement noise can be
both positive and negative, whereas the exponentially distributed
noise (subtracted from the true value) represents the scenario
in which the RSS measurements are negatively biased, which
leads to the feasibility modeling of the localization problem in
Section III-B. Furthermore, the average residuals at each it-
eration are calculated to assess the convergence speed of the
proposed algorithms [29]:

1 M
i Z ”X(n,m) 7X(n71,m)”

on = (64)

m=1

where x("™) = (xgn mo x%’;m)) denotes the position vec-

tor of all the VLC units at the nth iteration for the mth Monte
Carlo realization of measurement noises and M is the number
of Monte Carlo realizations.

In the simulations, two-dimensional localization is performed
by assuming that the VLC units have known heights. Therefore,
with the knowledge of perpendicular LED orientations, Case 2
type Lambertian sets in Section III-D2 are utilized for localiza-
tion based on the measurements from the LEDs on the ceiling.
The cooperation among the VLC units is modeled by Case 1
type Lambertian sets in Section III-D1.

1) Gaussian Noise: In Fig. 6, the average localization er-
rors of the VLC units for the different algorithms are plotted
against the transmit power of the LEDs on the ceiling for the
case of the Gaussian measurement noise by fixing the transmit

10The implemented estimator is effectively a maximum a posteriori probabil-
ity (MAP) estimator with a uniform prior distribution over the interval [0 10] m,
based on the prior information that VLC units are inside the room. Hence,
the implemented ML estimator may achieve smaller RMSEs than the CRLB in
the low SNR regime, where the prior information becomes more significant as
the measurements are very noisy.
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Fig. 6. Average localization error of VLC units with respect to the transmit

power of LEDs on ceiling for the proposed algorithms in Algorithm 3 (CCGP)
and Algorithm 4 (CSGP) along with the MLE and CRLB for the case of Gaussian
measurement noise.

powers of the LEDs at the VLC units to 1 W. From Fig. 6, it is
observed that the cooperative approach can significantly reduce
the localization errors, especially in the low SNR regime (about
60 cm and 70 cm reduction for CSGP and CCGP algorithms,
respectively, for 100 mW LED transmit power). In addition,
both Algorithm 3 (CCGP) and Algorithm 4 (CSGP) can attain
the localization error levels that asymptotically converge to zero
at the same rate as that of the CRLB. Moreover, it can be in-
ferred from Fig. 6 that the proposed iterative methods achieve
higher localization performance than the ML estimator in the
low SNR regime for both the noncooperative and the coopera-
tive scenarios. Although the ML estimator is forced to converge
to the global minimum via the multi-start optimization proce-
dure involving 100 different executions of a local solver, whose
complexity may be prohibitive for practical implementations, it
has lower performance than the proposed approaches, which de-
pend on low-complexity iterative gradient projections. Hence,
at low SNRs, the proposed algorithms are superior to the MLE
in terms of both the localization performance and the compu-
tational complexity. Furthermore, the simultaneous projections
outperforms the cyclic projections at low SNRs at the cost of a
higher number of set projections, but the two approaches con-
verge asymptotically as the SNR increases.

Fig. 7(a) and Fig. 7(b) report the average residuals calculated
by (64) corresponding to the proposed algorithms versus the
number of iterations for 100 mW and 1 W of transmit powers
of the LEDs on the ceiling, respectively. CSGP in the absence
of cooperation has the fastest convergence rate and exhibits
an almost monotonic convergence behavior. However, CSGP
in the cooperative scenario shows relatively slow convergence
in general and a locally nonmonotonic behavior when several
consecutive iterations are taken into account. This is due to the
cooperative Lambertian sets being involved in the simultane-
ous projection operations. In addition, cyclic projections tend to
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Fig. 7. Convergence rate of the average residuals in (64) for the proposed
algorithms in Algorithm 3 and Algorithm 4 for the case of Gaussian measure-
ment noise, where the transmit power of LEDs on ceiling is (a) 100 mW and
(b) 1 W.

settle into limit cycle oscillations!! after few iterations, thus im-
plying that the sequence itself does not converge to a point, but
it has several subsequences that converge [44]. This behavior,
called cyclic convergence, is encountered in cyclic (sequential)
projections if the feasibility problem is inconsistent [44], [74].
Furthermore, by comparing Fig. 7(a) and Fig. 7(b), it is observed
that the magnitude of limit cycle oscillations in the CCGP al-
gorithm gets smaller as the SNR increases since the region of

"1 inconsistent feasibility problems (i.e., those with empty region of inter-
section), the sequence of points obtained by cyclic projections does not converge
[44]. However, it has convergent subsequences each of which converges to a
different point [44]. In the limit, the cyclic projections based algorithm (i.e.,
CCGP) visits each of these limiting points in a sequential fashion, leading to
a cyclic behavior called limit cycle. In this case, average residuals in (64) (i.e.,
distances between consecutive iteration points) can be regarded as limit cycle
oscillations.
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uncertainty becomes narrower at higher SNR values, thereby
making the convergent subsequences close to each other.

2) Exponential Noise: To investigate the performance of the
algorithms under exponentially distributed measurement noise,
the average localization errors are plotted against the transmit
power of the LEDs on the ceiling for the case of the subtractive
exponential noise in Fig. 8. Similar to the case of the Gaus-
sian noise, the proposed algorithms succeed in converging to
the true VLC unit positions as the SNR increases. Since the
projection based methods rely on the assumption of negatively
biased measurements, they perform slightly better at low SNRs
as compared to the case of the Gaussian noise. On the other
hand, the MLE produces larger errors at low SNRs for the ex-
ponentially distributed noise since its derivation is based on the
assumption of Gaussian noise.

The average residuals in the case of the exponentially dis-
tributed noise are illustrated in Fig. 9(a) and Fig. 9(b) for two
different LED power levels. In contrary to the case of Gaus-
sian noise, cyclic projections do not fall into limit cycles and
provide globally monotonic convergence results as the feasi-
bility problem is consistent, which complies with the results
presented in the literature pertaining to the study of CFPs [44].
In addition, it is observed that both the cyclic and the sequen-
tial projection methods have faster convergence for lower SNR
values since it takes fewer iterations to get inside the intersec-
tion of the constraint sets, which becomes larger as the SNR
decreases.'?

12Since the measured RSS is always smaller than the true RSS value in the
case of negative exponential noise (see (16)), the Lambertian sets become larger
at lower SNR values (as the size of a Lambertian set £ in (19) is inversely
proportional to the corresponding RSS measurement P, or, equivalently ~y
in (18)).
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Fig. 9. Convergence rate of the average residuals in (64) for the proposed
algorithms in Algorithm 3 and Algorithm 4 for the case of exponentially dis-
tributed measurement noise, where the transmit power of LEDs on ceiling is
(a) 100mW and (b) 1 W.

VII. CONCLUDING REMARKS

In this paper, a cooperative VLP network has been proposed
based on a generic system model consisting of LED transmit-
ters at known locations and VLC units with multiple LEDs and
PDs. First, the CRLB on the overall localization error of the
VLC units has been derived to quantify the effects of coopera-
tion on the localization accuracy of VLP networks. Then, due
to the nonconvex nature of the corresponding ML expression,
the problem of cooperative localization has been formulated
as a QFP, which facilitates the development of low-complexity
decentralized feasibility-seeking methods. In order to solve the
feasibility problem, iterative gradient projections based algo-
rithms have been proposed. Furthermore, based on the no-
tion of quasi-Fejér convergent sequences, formal convergence
proofs have been provided for the proposed algorithms in the
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consistent case. Finally, numerical examples have been
presented to illustrate the significance of cooperation in VLP
networks and to investigate the performance of the proposed
algorithms in terms of localization accuracy and convergence
speed. It has been verified that the proposed iterative methods
asymptotically converge to the true positions of VLC units at
high SNR and exhibit superior performance over the ML esti-
mator at low SNRs in terms of both implementation complexity
and localization accuracy.

Animportant research direction for future studies is to explore
the convergence properties of Algorithm 3 and Algorithm 4
when the proposed QFP is inconsistent. In the inconsistent case,
simultaneous projection algorithms tend to converge to a mini-
mizer of a proximity function that specifies the distance to con-
straint sets [44], [75]. For the implicit CFP (ICFP) considered in
TOA-based wireless network localization, the POCS based si-
multaneous algorithm is shown to converge to the minimizer of
a convex function, which is the sum of squares of the distances
to the constraint sets [29]. Therefore, finding proximity func-
tions characterizing the behavior of simultaneous projections
(e.g., Algorithm 4) for the inconsistent QFPs [37] would be a
significant extension for the set-theoretic estimation literature.
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