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Abstract
Risk-averse mixed-integer multi-stage stochastic programming problems are challenging,
large scale and non-convex optimization problems. In this study, we propose an exact solution
algorithm for a type of these problemswith an objective of dynamicmean-CVaR riskmeasure
and binary first stage decision variables. The proposed algorithm is based on an evaluate-and-
cut procedure and uses lower bounds obtained from a scenario tree decomposition method
called as group subproblem approach. We also show that, under the assumption that the
first stage integer variables are bounded, our algorithm solves problems with mixed-integer
variables in all stages.Computational experiments on risk-aversemulti-stage stochastic server
location and generation expansion problems reveal that the proposed algorithm is able to solve
problem instanceswithmore than onemillion binary variableswithin a reasonable time under
a modest computational setting.

Keywords Mixed-integer stochastic programming · Risk-averse multi-stage stochastic
optimization · Dynamic mean-CVaR · Group subproblem

1 Introduction and literature review

In their seminal work, Artzner et al. (1999) establish the theory of coherent risk mea-
sures in order to reflect risk-averse preferences in stochastic optimization problems. Later,
Ruszczyński and Shapiro (2006b, c) provide theoretical properties of risk-averse stochastic
optimization problems where the objective function is a coherent measure of risk. The the-
ory of coherent risk measures is also extended to multi-stage problems where dynamic risk
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measures are used to quantify the risk of a cost sequence. Risk-averse multi-stage stochastic
optimization problems are discussed by Shapiro et al. (2009) with theoretical results and
example models.

Risk-aversemulti-stage stochasticmodels require higher computational effort compared to
their risk-neutral counterpartswhere the objective is tominimize expected cost. Scenario-wise
(Carøe and Schultz 1999) and stage-wise (Pereira and Pinto 1991; Shapiro 2011) decompo-
sition methods are available for risk-neutral multi-stage stochastic programming problems.
Although thesemethods are not applicable to risk-aversemulti-stage problems directly, recent
works extend decomposition methods to these problems as well. Collado et al. (2012) use
dual representation of coherent risk measures in order to employ a scenario decomposition
algorithm for risk-aversemulti-stage problems. Shapiro et al. (2013) and Philpott et al. (2013)
extend a stage-wise decomposition approach, namely stochastic dual dynamic programming,
to risk-aversemulti-stage problemswith dynamic coherent riskmeasures. Convergence of the
aforementioned methods relies on some assumptions. One of these assumptions is convexity,
that is, the problems are convex. In mixed-integer case, where some of the variables are
assumed to be integer valued, these methods can be extended to serve as heuristics. Schultz
(2003) also points out that, in risk-averse multi-stage problems, the complex structure of
non-anticipativity constraints prohibits efficient solution methods for these problems. There-
fore, risk-averse mixed-integer multi-stage stochastic programming problems are in a class
of challenging problems for which, to the best of our knowledge, no exact solution method
is available.

Another stream of research focuses on group subproblem approach to obtain bounds for
risk-neutral (Sandıkçı et al. 2013; Maggioni et al. 2014, 2016; Sandıkçı and Özaltın 2017)
and risk-averse (see Maggioni and Pflug 2016; Mahmutoğulları et al. 2018) mixed-integer
multi-stage stochastic programming problems. The method is based on solving the problem
for subsets of scenarios instead of the original set of scenarios in order to obtain bounds on
the optimal value of the problem. Computational experiments on group subproblem approach
show that the obtained bounds are reasonably tight even for large scale instances.

Recent studies reveal that it is possible to come up with exact solution methods for
risk-neutral and risk-averse two-stage mixed-integer stochastic programming problems by
exploiting the nature of binary variables. Ahmed (2013) uses no-good cuts in an evaluate-
and-cut procedure for risk-neutral two-stage mixed-integer models with binary first stage
decisions. The proposed procedure is a scenario decomposition algorithm which iteratively
evaluates the objective value for a set of binary first stage solutions and cuts these solutions
from the feasible set. Deng et al. (2017) extend the procedure to risk-averse two-stage prob-
lems with binary first stage variables. They consider three different exact solution algorithms
using dual representations of coherent riskmeasures, scenario decomposition, cutting planes,
subgradient method and no-good cuts. The computational experiments presented by Ahmed
(2013) and Deng et al. (2017) reveal that risk-neutral and risk-averse two-stage stochastic
programing problems with binary first stage variables can be solved optimally within rea-
sonable computation times. On the other hand, no exact solution method is available for the
risk-averse mixed-integer multi-stage stochastic programming problems since these prob-
lems form a class of large scale and non-convex optimization problems. In this study, we
show that a combination of an evaluate-and-cut procedure and group subproblem approach
yields an easily implementable solution algorithm for these problems.

The contribution of this study is as follows: In this paper, we propose an exact solu-
tion algorithm for risk-averse mixed-integer multi-stage stochastic programming problems
with an objective of dynamic mean-CVaR risk measure and binary first stage variables. The
proposed method is based on an evaluate-and-cut procedure where the lower bounds are
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Fig. 1 Decision process in a multi-stage stochastic programming problem

obtained from group subproblems. Moreover, we show that, under the assumption that the
first stage integer variables are bounded, the problem with mixed-integer variables in all
stages can be solved with the proposed algorithm. In order to observe the performance of the
proposed algorithm, we conduct a set of computational experiments on risk-averse mixed-
integer multi-stage problems. In our experiments, we consider large instances of risk-averse
multi-stage stochastic server location and generation expansion problems. We also inves-
tigate some implementation details of the algorithm such as scenario partitioning choices
and group sizes and then analyze their effects on the performance of the algorithm. As the
computational experiments reveal, under modest computational settings, the proposed algo-
rithm is able to solve large problem instances with over one million binary variables within
a reasonable time.

The organization of the rest of the paper is as follows: In Sect. 2, we define risk-averse
mixed-integer multi-stage stochastic programing problems. In Sect. 3, we present the bounds
obtained by scenario grouping. The proposed algorithm is presented in Sect. 4. In Sect. 5,
we show that our algorithm can also be used for the problems with mixed-integer variables
in all stages. The computational experiments are given in Sect. 6. The concluding remarks
are presented Sect. 7.

2 Risk-averse mixed-integer multi-stage stochastic programming

We consider a T -stage decision environment, where decisions at each stage result in a random
cost forwhich smaller realizations are preferable. Let (Ω,F , P) be a probability spacewhere
Ω is a sample space,F is the set of all events defined onΩ , and P is the reference probability
distribution. Also, let {∅,Ω} = F1 ⊂ · · · ⊂ FT = F be a filtration representing increasing
information through stages 1 to T and Zt := Lp(Ω,Ft , P), t ∈ {1, . . . , T } be the space
of Ft -measurable and p-integrable random variables for p ≥ 1. The collection of problem
parameters at stage t is denoted by ξt , which is random and adopted to the filtration, i.e.
ξt ∈ Zt for t ∈ {1, . . . , T }. Since F1 is trivial, ξ1 is deterministic. An element ω of Ω is
called as a scenario. A scenario ω ∈ Ω corresponds to a realization ξ1, ξ2(ω), . . . , ξT (ω) of
random problem parameters.

Decisions at stage t ∈ {1, . . . , T } are made based on the available information up to stage
t . This requirement is called as non-anticipativity. Moreover, for any state of the system at
stage t , optimal decisions should not involve possible future realizations that cannot happen.
This principle is called as time consistency (see Shapiro 2009). Let xt represent the collection
of all decisions at stage t ∈ {1, . . . , T }. Then, the decision process in a multi-stage stochastic
problem is given in Fig. 1.

Since ξ1 is deterministic, x1 is deterministic as well. The decision xt is, however, Ft -
measurable for t ∈ {2, . . . , T }. Our interest is to minimize the risk of the cost sequence
f1(x1), f2(x2, ξ2), . . . , fT (xT , ξT ) through stages 1 to T where f1(·) is a deterministic cost
function and ft (·, ξt ) is an Ft -measurable cost function for t ∈ {2, . . . , T }. Due to time
consistency requirement [see Shapiro (2009) for a detailed discussion], we can write risk-
averse mixed-integer multi-stage stochastic programming problem as
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min
x1∈X 1

f1(x1) + ρF2|F1

(
min

x2∈X 2(x1,ξ2)
f2(x2, ξ2) + · · ·

+ρFT |FT−1

(
min

xT ∈X T (xT−1,ξT )
fT (xT , ξT )

)
· · ·

)
, (1)

where X1 ⊆ R
K1+ × Z

L1+ × {0, 1}M1 is a mixed-integer deterministic set and Xt : RKt−1+ ×
Z
Lt−1+ × {0, 1}Mt−1 × Ω ⇒ R

Kt+ × Z
Lt+ × {0, 1}Mt is the point-to-set mapping representing

mixed-integer Ft -measurable decisions at stage t ∈ {2, . . . , T }.
The function ρF t+1|F t : Zt+1 → Zt is a conditional coherent measure of risk which

quantifies the risk at stage t+1 based on the available information at stage t ∈ {1, . . . , T −1}.
As presented by Shapiro et al. (2009) and Ruszczyński and Shapiro (2006a), a conditional
coherent measure of risk ρF t+1|F t (·) satisfies the following axioms:

(A1) Convexity: ρF t+1|F t (αZ+(1−α)W ) � αρF t+1|F t (Z)+(1−α)ρF t+1|F t (W ) for all
Z ,W ∈ Zt+1 and α ∈ [0, 1],

(A2) Monotonicity: Z � W implies ρF t+1|F t (Z) � ρF t+1|F t (W ) for all Z ,W ∈ Zt+1,
(A3) Translational Equivariance: ρF t+1|F t (Z + W ) = ρF t+1|F t (Z) + W for all W ∈

Zt and Z ∈ Zt+1,
(A4) Positive Homogeneity: ρF t+1|F t (t Z) = tρF t+1|F t (Z) for all t > 0 and Z ∈ Zt+1,

where � is the partial ordering defined on the corresponding space of random variables. The
axioms (A1)–(A4) are first proposed byArtzner et al. (1999) for coherentmeasures of risk and
later extended to conditional coherent measures of risk (see, for example, Ruszczyński and
Shapiro (2006a) and references therein). As discussed by Ruszczyński and Shapiro (2006a),
in order to quantify the risk involved in a cost sequence, a dynamic coherent risk measure
ρ1,T : Z1 × Z2 × · · · × ZT → R is defined as

ρ1,T (Z1, Z2, . . . , ZT ) := Z1 + ρF2|F1

(
Z2 + · · · + ρFT |FT−1(ZT ) · · · ) , (2)

and hence the problem defined in (1) can be written as

min ρ1,T ( f1(x1), f2(x2, ξ2), . . . , fT (xT , ξT ))

s.t. x1 ∈ X1,

xt ∈ Xt (xt−1, ξt ), ∀t ∈ {2, . . . , T } . (3)

In this paper, we focus on the case where ρF t+1|F t is a conditional mean-CVaR risk
measure for t ∈ {1, . . . , T − 1}. The conditional mean-CVaR is defined as

ρF t+1|F t (Zt+1) = (1 − ε)E[Zt+1|Ft ] + εCVaRα(Zt+1|Ft ), (4)

where

CVaRα(Zt+1|Ft ) = inf
η∈Z t

{
η + 1

1 − α
E[(Zt+1 − η)+|Ft ]

}
,

is conditional CVaR defined with parameter α ∈ [0, 1) and ε ∈ [0, 1]. In (4), mean-CVaR
value of a random variable Zt+1 ∈ Zt+1 can be interpreted as a convex combination of its
conditional expectation and conditional CVaR values. CVaR is first defined in Rockafellar
and Uryasev (2000). A detailed discussion on mean-CVaR risk measure can be found in
Ruszczyński and Shapiro (2006c).

If the sequence ξ1, . . . , ξT evolves as a discrete time stochastic process with finite support,
then the whole process can be represented by a scenario tree with T stages. LetN and E be
the set of nodes and edges of the scenario tree, respectively. Nodes at stage t ∈ {1, . . . , T }
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Fig. 2 A four-stage scenario tree

correspond to possible realizations of the history until that stage. Let Ωt be the set of nodes
at stage t ∈ {1, . . . , T } and hence N = ⋃

t∈{1,...,T } Ωt . At the first stage, there is only one
node r called as the root node.

A scenario can also be defined as a unique path from the root node to a node in ΩT . Let
pω be the probability of scenario ω ∈ Ω . Then, probability associated with node n ∈ N is
pn = ∑

ω∈P n
pω where Pn is the set of scenarios passing through node n ∈ N . For the

root node, we naturally have pr = 1.
In the scenario tree representation, the sigma algebra FT consists of all subsets of ΩT .

For every node n ∈ N \ {r} at stage t , there exists a unique ancestor node A (n) ∈ Ωt−1

such that the edge (A (n), n) is in E . For each node n ∈ N \ ΩT , there exists a set of
children nodes C (n) = {m ∈ Ωt+1 : A (m) = n} such that Ωt+1 = ⋃

n∈Ωt
C (n). For

t ∈ {1, . . . , T − 1}, letFt be the subalgebra ofFt+1 generated by sets C (n) for all n ∈ Ωt .
Hence, there is a one-to-one correspondence between elementary events ofFt and nodes in
the set Ωt , for t ∈ {1, . . . , T }. By construction, we get the filtration F1 ⊂ F2 · · · ⊂ FT .
The aforementioned notation is depicted on an example of four-stage scenario tree in Fig. 2.

The number of decision variables in Problem (3) is proportional to the number of nodes
|N | in the scenario tree. Since |N | grows exponentially with the number of stages for any
non-trivial scenario tree, solving Problem (3) is computationally demanding for even small
number of stages.

3 Lower bounds via scenario grouping

In this section, we present a lower bound for our problem by using scenario grouping.
The scenario grouping idea is previously considered by Sandıkçı and Özaltın (2017) and
Mahmutoğulları et al. (2018) inmixed-integermulti-stage stochastic problems. The proposed
lower bound is used in the algorithm presented in the next section.

Recall the probability space (Ω,F , P)whereΩ is the sample space.A subset of scenarios
S ⊆ Ω is called as a group. LetS = {S j }Jj=1 be a collection of groups that forms a partition

of Ω , that is,
⋃J

j=1 S j = Ω and S j
⋂

S j ′ = ∅ for all j, j ′ ∈ {1, 2, . . . , J } such that j �= j ′.
The empty intersection requirement can be relaxed (see, Sandıkçı and Özaltın (2017), for
example).

The total probability of scenarios in group S j is p j = ∑
ω∈S j pω for j ∈ {1, . . . , J }. We

also define conditional probability of scenario ω given that ω ∈ S j as p̃ω = pω/p j and P̃
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as the probability distribution defined by these conditional probabilities on the sample space
S j .

We define j th group subproblem as problem (3) which is defined on the probability space
(S j , F̃ , P̃) where F̃ is the sigma algebra generated by S j .

Proposition 1 Let z j be the optimal value of j th group subproblem. Then,
∑J

j=1 p j z j is a
lower bound for the optimal value of (3).

Proof See Theorem 1 in Mahmutoğulları et al. (2018). �

In this paper, we develop another lower bound obtained from scenario grouping.

Proposition 2 Let z̃ j be the optimal value of j th group subproblem in which integral-
ity requirements for the decision variables at stages t ∈ {2, 3, . . . , T } are relaxed. Then∑J

j=1 p j z̃ j is a lower bound for the optimal value z of (3).

Proof Due to Proposition 1, we have z ≥ ∑J
j=1 p j z j . Since, z j ≥ z̃ j for all j ∈

{1, 2, . . . , J }, we get z ≥ ∑J
j=1 p j z j ≥ ∑J

j=1 p j z̃ j . �

Note that the lower bound in Proposition 2 is no stronger than the lower bound in Propo-

sition 1. However, calculating the lower bound in Proposition 2 is computationally easier
since it requires solving group problems without integrality requirements for the decision
variables at stages t ∈ {2, 3, . . . , T }. Hence, the latter lower bound is used in the proposed
algorithm.

Scenario grouping significantly reduces the computational effort required to solve the risk-
averse mixed-integer multi-stage programming problem (3). Figure 3 illustrates the scenario
trees of group subproblems obtained via scenario grouping. The scenarios of the original
problem are placed in groups S1, S2 and S3 and indicated by colors red, green and blue,
respectively.

4 An exact solution algorithm for the problems with binary first stage
variables

In this section, extending the idea in Ahmed (2013), we propose an exact solution algorithm
for the risk-aversemixed-integermulti-stage stochastic programming problem (3)with binary
first stage variables, that is, X1 ⊆ {0, 1}M1 and K1 = L1 = 0.

The proposed algorithm stores a set D ⊆ X1 of candidate first stage solutions and an
incumbent first stage solution x∗

1 ∈ D through execution. If a candidate first stage solution
x ′
1 ∈ D is a feasible first stage solution for problem (3), then solving (3) with constraint
x1 = x ′

1 gives an upper bound for the optimal value of (3). The incumbent solution x∗
1 is the

first stage solutionwhich yields the smallest upper bound value among all candidate solutions
in D .

For a given scenario partition, a socalled lower bound is obtained on the optimal value of
(3) by applying scenario grouping for (3) with first stage feasibility set X1 \ D . Note that,
this is not necessarily a lower bound for the original problem (3) since some feasible first
stage solutions are eliminated fromX1. At each iteration, if this lower bound is smaller than
the objective value given by x∗

1 , then the algorithm adds the new candidate solutions to set
D ; otherwise, the algorithm terminates.

123



Annals of Operations Research

Fig. 3 A four-stage scenario tree and the new scenario trees used in group subproblems

Sincewe assume that all first stage decision variables are binary, extraction of the candidate
first stage solutions in D from X1, that is obtaining the set X1 \ D , can be done by using
no-good cuts. A no-good cut separates a specific binary vector from a set. Specifically, a
no-good cut for binary vector x ′

1 is of the form∑
i :x ′

1i=1

(1 − x1i ) +
∑

i :x ′
1i=0

x1i ≥ 1,

where x1i and x ′
1i correspond to the i th component of vectors x1 and x ′

1, respectively (see,
for example, DAmbrosio et al. 2010). Then we have,

X1 \ D =
⎧⎨
⎩x1 ∈ X1 :

∑
i :x ′

1i=1

(1 − x1i ) +
∑

i :x ′
1i=0

x1i ≥ 1, ∀x ′
1 ∈ D

⎫⎬
⎭ .

The overall scheme of the proposed algorithm is an evaluate-and-cut procedure presented
in Algorithm 1.

Proposition 3 Algorithm 1 terminates after a finite number of iterations finding an opti-
mal solution if problem (3) is feasible and has finite optimal value or with declaration of
infeasibility if (3) is infeasible.

Proof At the lower bounding phase of each iteration of the algorithm, at least one first stage
solution is removed fromX1 and added toD or the algorithm terminates directly. Also since
X1 ⊆ {0, 1}M1 , the cardinality of X1 is finite. Therefore, the algorithm terminates after a
finite number of iterations. Consider the following two cases:
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Algorithm 1 An exact solution algorithm for problem (3).
1: Input: An instance of problem (3) and a partitionS of scenarios.
2: Initialize:
3: Incumbent solution x∗ ← null,
4: Set of candidate first stage solutions D ← ∅,
5: LB ← −∞, UB ← +∞.
6: while UB > LB andX1 \ D �= ∅ do
7: Lower Bounding
8: for all j ∈ {1, 2, . . . , J } do
9: Solve the j th group subproblem with first stage feasible setX1 \ D by relaxing integrality require-

ments at stages {2, 3, . . . , T }.
10: if The group subproblem is infeasible then
11: Terminate and go to line 27
12: else
13: Let z̃ j be the optimal value of the group subproblem.
14: Let x ′

1 be an optimal first stage solution of the group subproblem.
15: D ← D

⋃{x ′
1}

16: end if
17: end for
18: LB ← ∑J

j=1 p j z̃ j
19: Upper Bounding
20: for all x ′

1 ∈ D do
21: Solve problem (3) with first stage decision x ′

1 i.e. x1 = x ′
1. Let x and z be an optimal solution and

the optimal value, respectively. If the problem is infeasible z ← ∞.
22: if z < UB then
23: UB ← z and x∗ ← x
24: end if
25: end for
26: end while
27: Return: x∗ and UB.

(a) Problem (3) is feasible and has finite optimal value: Let z∗(X1) be the optimal value of
problem (3) as a function of the first stage feasibility setX1. Since, the cardinality ofX1

is finite, we have

z∗(X1) = min
{
z∗(D), z∗(X1 \ D)

}
(5)

at any iteration of the algorithm. For an incumbent solution x∗
1 ∈ D , we also have

UB = z∗({x∗
1 }) = z∗(D) and LB ≤ z∗(X1 \ D) due to definitions of upper and

lower bounds used in the algorithm. When the algorithm terminates withUB ≤ LB, the
incumbent first stage solution guarantees z∗({x∗

1 }) = z∗(D) = UB ≤ LB ≤ z∗(X1\D).
Hence, using (5), we get z∗(X1) = z∗({x∗

1 }) and therefore x∗
1 is an optimal first stage

solution of problem (3).
(b) Problem (3) is infeasible: If the problem is infeasible, UB never takes a finite value

since none of the problems in upper bounding phase is feasible. Then, at the end of the
algorithm, the incumbent is null and UB is positive infinity.

�

If each group includes only one scenario, the proposed algorithm is a scenario decompo-

sition algorithm where the non-anticipativity in all stages is completely relaxed. However,
the proposed algorithm allows to obtain stronger lower bounds by partially maintaining non-
anticipativity due to scenario grouping.

Another important property of Algorithm 1 is decomposition of the problem in the upper
bounding phase. When the first stage decisions are fixed to x ′

1 in the original problem, the
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resulting problem decomposes into |Ω2| smaller problems. These smaller problems are risk-
averse mixed-integer multi-stage problems with T − 1 stages. Therefore, we benefit from
decomposition of the original problem in both lower and upper bounding phases ofAlgorithm
1.

In the next section,we show that the proposed algorithmcanbe used to solve the risk-averse
mixed-integer multi-stage stochastic programming problems where the first stage decisions
are mixed-integer as well.

5 Extension to the general risk-averse mixed-integer multi-stage
stochastic programming problems

Although the proposed algorithm guarantees an exact solution for risk-averse mixed-integer
multi-stage stochastic programming problemswith a dynamicmean-CVaRobjective function
andbinaryfirst stage variables, it can be used for the general case,where thefirst stage decision
variables are not necessarily pure binary. Let Q(x1) be the risk adjusted cost-to-go function
depending on the first stage solution x1, that is,

Q(x1) := ρF2|F1

(
min

x2∈X 2(x1,ξ2)
f2(x2, ξ2) + · · ·

+ρFT |FT−1

(
min

xT ∈X T (xT−1,ξT )
fT (xT , ξT )

)
· · ·

)
. (6)

Then, the general risk-averse mixed-integer multi-stage stochastic programming problem
can be written as

min f1(x1) + Q(x1)

s.t. x1 = (r1; y1; b1) ∈ X1,

r1 = (r11, r12, . . . , r1K1) ∈ R ⊆ R
K1+ ,

y1 = (y11, y12, . . . , y1L1) ∈ Z ⊆ Z
L1+ ,

b1 = (b11, b12, . . . , b1M1) ∈ B ⊆ {0, 1}M1 , (7)

where r1, y1, and b1 represent continuous, integer and binary decision vectors in the first
stage, respectively and x1 represents the concatenate vector of first stage variables. Recall
that we have already assumed the decisions at stages 2, 3, . . . , T are mixed-integer.

Recently, Zou et al. (2017) show that, under some reasonable assumptions, any risk-neutral
mixed-integer stochastic problems with mixed-integer state variables can be approximated
by binarizing the state variables. In our context, we only consider binarizing the first stage
integer variables. Following the similar arguments presented by Glover (1975) and Zou et al.
(2017), we can solve the general mixed-integer problem (7) by using binary representation
of the integer first stage variables y1.

Assumption 1 The first stage integer variables in the general mixed-integer problem (7) are
bounded.

Assumption 1 holds for themost real life problems and ensures that there exists a non-negative
real numberU such that y1l ≤ U for all l ∈ {1, 2, . . . , L1}. For each l ∈ {1, 2, . . . , L1}, y1l =∑τ

i=0 2
iγ1li is an exact representation of y1l with binary variables γ1li , i ∈ {0, 1, . . . , τ } and

τ = ⌊
log2U

⌋
. Thus, the general mixed-integer problem (7) can be written as
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min f1(x1) + Q(x1)

s.t. x1 = (r1; A(Γ ); b1) ∈ X1,

r1 ∈ R, A(Γ ) ∈ Z, Γ ∈ {0, 1}L1×(τ+1), b1 ∈ B, (8)

where A : {0, 1}L1×(τ+1) → Z
L1+ is a linear mapping that restores y1 from binary variables

Γ .
We can employ Algorithm 1 to solve (8) where the evaluate-and-cut procedure is applied

only to the first stage binary variables. Unlike the case where the first stage variables are
pure binary, the continuous variables in the first stage prohibit decomposition in the upper
bounding phase of the algorithm. However, the computational results in Sect. 6.2 reveal
that the proposed algorithm efficiently solves the general mixed-integer problem though
decomposition is possible only in the lower bounding phase.

6 Computational experiments

In this section, we present the results of the computational experiments conducted on risk-
averse multi-stage stochastic server location problem (SSLP) and generation expansion
problem (GEP). In risk-averse multi-stage SSLP, the first stage decision variables are pure
binary. Therefore, Algorithm 1 is directly applied to the problem. However, in risk-averse
GEP, the first stage variables are mixed-integer and hence we use the extension presented in
Sect. 5 to solve these problems.

In our experiments, we use different degrees of risk aversion (DRA) by changing the values
of the parameters of conditional mean-CVaR risk measure (4). These values are presented in
Table 1.

Table 1 The degrees of risk
aversion used in computational
experiments

DRA ε α

I 0.4 0.7

II 0.6 0.8

III 0.8 0.9

The computational experiments are performed on an Intel(R) Core(TM) i7-4790
CPU@3.60 GHz computer with 8.00 GB of RAM. The algorithm is implemented on Java
1.8.0.31 where IBM ILOG CPLEX version 12.6 with default settings is used to solve opti-
mization problems. For each test problem, five instances are generated randomly and average
values are reported. The performance of the proposed algorithm is compared to deterministic
equivalent problem (DEP) of same instances.

6.1 Stochastic server location problem

SSLP is a popular two-stage risk-neutral stochastic programming problem in the literature.
The motivation and detailed discussion on SSLP can be found in Ntaimo and Sen (2005). An
instance of SSLP is available in SIPLIB library at http://www2.isye.gatech.edu/~sahmed/
siplib. In our experiments, we use a risk-averse and multi-stage version of SSLP.

The statement of risk-aversemulti-stage SSLP is as follows: In a T -stage decision horizon,
the objective is to determine the location of servers on a set of potential nodes of a given
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network so as to minimize the dynamic coherent risk defined in (2) where we use conditional
mean-CVaR risk measure with parameters ε and α at each stage.

Servers can be located on M different potential server location nodes. There is a fixed
cost cm of locating a server at node m ∈ {1, 2, . . . , M}. There are V different clients, whose
demands at stage t ∈ {2, 3, . . . , T } should be satisfied by one of the located servers. Let
dtvm be the demand of client v if it is served by the server located at m at stage t . One unit
of profit is obtained for each unit of served demand. The service capacity of a server is u.
If the capacity is not enough to serve all demands, a unit of demand can be served by the
server located at m by an overcapacity serving cost qtm at stage t . A client may or may not
appear under each scenario independently from other clients. Under each scenario, a client
may appear at a stage with probability 0.5. Let htv(ω) = 1 if client v appears at stage t under
scenario ω, and 0, otherwise. Let ht be anFt -measurable random vector whose components
are htv with P{htv = 1} = P{htv = 0} = 0.5.

Location decisions are made at the first stage. Therefore, fixed cost due to server location
decisions is incurred in the first stage. The allocation decisions are made at subsequent stages
t ∈ {2, 3, . . . , T }. At stage t , the random cost is the total service cost at stage t . The DEP of
risk-averse multi-stage SSLP can be modeled by using parameters and decision variables for
each node of the scenario tree.Moreover, linearization ofmean-CVaR riskmeasure is possible
by defining additional auxiliary variables and constraints (see, for example, Mahmutoğulları
et al. 2018).

As an example, the DEP of the risk-averse three-stage SSLP is given below which can
be extended for larger number of stages easily. In the below model, a superscript n or n′
indicates that the corresponding parameter or decision variable is defined for node n ∈ Ω2

or n′ ∈ Ω3 of the scenario tree, respectively.

min
M∑

m=1

cmzm + (1 − ε)
∑
n∈Ω2

pn Z̃
n
2

+ ε

⎛
⎝η1 + 1

1 − α

∑
n∈Ω2

pnϕ
n
2

⎞
⎠ , (9)

s.t. Z̃ n
2 =

M∑
m=1

(
V∑

v=1

−d2nvm y
2n
vm + q2nm o2nm

)
+ (1 − ε)

∑
n′∈C (n)

pn′

pn
Z̃n′
3

+ ε

⎛
⎝ηn2 + 1

1 − α

∑
n′∈C (n)

pn′

pn
ϕn′
3

⎞
⎠ , ∀n ∈ Ω2, (10)

Z̃ n′
3 =

M∑
m=1

(
V∑

v=1

−d3n
′

vm y3n
′

vm + q3n
′

m o3n
′

m

)
, ∀n′ ∈ Ω3, (11)

ϕn
2 ≥ Z̃ n

2 − η1, ∀n ∈ Ω2, (12)

ϕn′
3 ≥ Z̃ n′

3 − ηn2 , ∀n ∈ Ω2, n
′ ∈ C (n), (13)

V∑
v=1

dtnvm y
tn
vm ≤ uzm + otnm , ∀m ∈ {1, 2, . . . , M}, n ∈ Ωt , t ∈ {2, 3}, (14)

M∑
m=1

ytnvm = htnv , ∀v ∈ {1, 2, . . . , V }, n ∈ Ωt , t ∈ {2, 3}, (15)
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zm ∈ {0, 1}, ytnvm ∈ {0, 1}, otnm ≥ 0,

∀m ∈ {1, 2, . . . , M}, v ∈ {1, 2, . . . , V }, n ∈ Ωt , t ∈ {2, 3}, (16)

Z̃ n
t , ϕ

n
t ≥ 0, ∀n ∈ Ωt , t ∈ {2, 3}, (17)

η1, η
n
2 ∈ R, ∀n ∈ Ω2, (18)

where zm takes value 1 if a server is located on node m and 0 otherwise, ytnvm takes value 1 if
client v is served by a server located on node m for n ∈ Ωt at stage t and 0 otherwise, and
otnm is the over capacity used by server m for the node n ∈ Ωt at stage t .

Table 2 Problem statistics for risk-averse multi-stage SSLP instances

Number of of stages Test problem Number of
scenarios

Number of
constraints

Number of binary
variables

2 2-SSLP-5-25-50 50 1601 6255

2-SSLP-5-25-100 100 3201 12,505

2-SSLP-10-50-50 50 3101 25,010

2-SSLP-10-50-100 100 6201 50,010

2-SSLP-10-50-500 500 31,001 250,010

2-SSLP-10-50-1000 1000 62,001 500,010

2-SSLP-10-50-2000 2000 124,001 1,000,010

3 3-SSLP-5-25-10 100 3531 13,755

3-SSLP-5-25-20 400 13,461 52,505

3-SSLP-5-25-50 2500 81,651 318,755

3-SSLP-5-25-100 10,000 323,301 1,262,505

3-SSLP-10-50-10 100 6831 55,010

3-SSLP-10-50-20 400 26,061 210,010

3-SSLP-10-50-50 2500 158,151 1,275,010

4 4-SSLP-5-25-10 1000 35,631 138,755

4-SSLP-5-25-20 8000 269,861 1,052,505

4-SSLP-10-50-10 1000 68,931 555,010

The objective function (9) and constraints (10)–(13) linearize the dynamic coherent risk
measure (2) defined by mean-CVaR at each stage. The constraints (14) and (15) are capac-
ity and allocation constraints, respectively. The variables in (16) are the original problem
variables. The auxiliary variables in (17) are used to linearize the mean-CVaR risk measure.
Finally, variables in (18) are due to definition of mean-CVaR.

A test problem of risk-averse multi-stage SSLP is represented as T -SSLP-M-V -b where
T is the number of stages,M is the number of potential server location nodes, V is the number
of clients and b is the number of different values that the random vector ht can take at stage
t . Therefore, the number of scenarios in T -SSLP-M-V -b is bT−1. Similar to Ntaimo and
Sen (2005), the problem parameters are selected as cm ∼ U [40, 80], dtvm ∼ U [0, 25], u =
2

∑V
v=1 maxm,n,t dtnvm

M , and qtm = 1000. Here, U [a, b] indicates that the respective value is
sampled form the uniform distribution with range [a, b]. Problem statistics for risk-averse
multi-stage SSLP instances used in the experiments are presented in Table 2.

In the proposed algorithm, for each instance of all problems presented in Table 2, we
consider a partition with two groups with equal cardinalities, that is, S = {S1, S2} with
|S1| = |S2|. The partitions are constructed in three different ways by using the scenario tree
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Fig. 4 The partitions similar, different and random (from left to right, respectively) for a three-stage scenario
tree where each color represents a group

structure or randomly. In similar partition, the groups are generated by placing the scenarios
with large number of common nodes in the scenario tree into the same group. However, in
different partition, we place the scenarios with small number of common nodes into the same
group. Finally, in random partition, the scenarios are assigned to the groups randomly. Note
that for two-stage problems, all partitioning strategies are equivalent since the locations of
nodes in the second stage of the scenario tree are interchangeable. For a deeper discussion
on the construction of partitions and their impact on the quality of bounds, we refer to Bakır
et al. (2016) andMahmutoğulları et al. (2018) where various extensions on scenario grouping
are considered. However, as seen in the results of our computational experiments, using a
simple scenario grouping strategy is adequate for the proposed algorithm. Figure 4 depicts
the three different scenario partitions we consider on a three-stage scenario tree.

In Table 3, we report the number of instances solved optimally (# opt out of five), average
optimality gap (Gap) and solution time in seconds (Time) for DEP. Two hours of time limit is
imposed when solving DEP of each instance. We also report the average number of iterations
(# iter) and running time in seconds (Time) for the proposed algorithmwith the three different
partitions we consider. Note that, all reported values are averages for five instances of each
problem.

The computational experiments reveal that as problem size grows, CPLEX fails to solve
DEPs of the problem instances. For example, the problems 2-SSLP-10-50-2000 and 3-SSLP-
10-50-50 have over one million binary variables, none of the DEPs are solved optimally
within two hours of time limit for any value of DRA. Especially, 3-SSLP-10-50-50 instances
terminate with large optimality gap values (59.11%, 85.64% and 27.91%, for DRA I, II, and
III, respectively). However, the proposed algorithm solves all of these instances optimally in
less than two hours with at least one of the three partitions we consider.

In Table 3, the bold entries are the smallest running times among the three different
partitions for each problem. Moreover, in the last row of the table, for each partitioning
strategy, we present the percentage of test problems in which this strategy performs better
than the other ones. When the three partitioning strategies are compared in the two-stage
problems, no significant difference is observed as expected. However, for three- and four-
stage problems, the similar partition performs better than different and random partitions.
Since each group subproblems obtained by the similar partition includes scenarios with
many common nodes of the scenario tree, these group subproblems have less complicated
structure than the ones obtained by other partitions. Hence, in the lower bounding phase
of the proposed algorithm, the similar partition yields group subproblems that are easier to
solve. On the other hand, the lower bounds and candidate solutions provided by different
partition are expected to be better than the ones given by similar partition. Overall, similar is
the best scenario partition choice among all partitions in 47.06% of all instances. This value
is 37.25% and 15.69% for different and random partitions, respectively.
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Fig. 5 Average running time (in seconds) of the proposed algorithmwith respect to different number of groups
for five instances of 3-SSLP-5-25-16 problem with different degrees of risk-aversion and partitions

When we analyze the test problem 4-SSLP-5-25-20 at DRA I, it is observed that CPLEX
could only solve 2 out of 5 DEP instances optimally within the time limit and the average
optimality gap is 10.36%.On the other hand, our algorithm could solve all of the five instances
optimally and the average computation time of our proposed algorithm is 1830.9, 2539.3 and
2795.1 s for the similar, different and random partitions, respectively. We observe similar
results for the test problem 4-SSLP-5-25-20 at DRA II as well. CPLEX could only solve
3 out of 5 DEP optimally within the time limit of 7200 s. The average gap is 3.37% for
those instances. We again could solve all of the five instances optimally and the average
computation time of our proposed algorithm is 1205.5, 1849.1 and 1957.0 s for the similar,
different and random partitions, respectively.

Although the proposed algorithm with the simplest choice of the number of groups J = 2
enables us to solve the large scale instances efficiently, we also investigate the performance of
the algorithm by changing the value of J . As the number of groups J increases, the number
of scenarios per group subproblem decreases. In that case, it can be expected that the group
subproblems are easier to solve and hence the running time of Algorithm 1 decreases with
the number of groups J .

In Fig. 5, we present the average running time of the proposed algorithm in seconds with
respect to different number of groups J ∈ {2, 4, 8, 16, 32, 64, 128, 256} for five instances of
3-SSLP-5-25-16 problem with different degrees of risk-aversion and partitions.

Since the total number of scenarios in 3-SSLP-5-25-16 instances is 256, the number of
scenarios in a group subproblem is 128, 64, 32, 16, 8, 4, 2 and 1 for the respective values
2, 4, 8, 16, 32, 64, 128 and 256 of J . Although it may be expected that the running time of
Algorithm 1 decreases with increasing number of groups J , we observe the contrary in the
results of our experiments in general. There can be two reasons of this. First, in the upper
bounding phase, the algorithm requires evaluation of each candidate solution in D . When
the number of group subproblems is large, we can expect the cardinality of the set D to be
large as well. Therefore, large values of J may yield evaluation of upper bound values for
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large number of candidate solutions. The second reason is that a larger number of groups J
yields looser lower bounds and therefore the running time of the algorithm increases. In the
extreme case of J = 256, the performance of the proposed algorithm is the worst compared
to the other values of J . Note that this result motivates to use scenario grouping instead of
pure scenario decomposition. Nonetheless, increasing the J value can still be beneficial for
some instances as shown in Fig. 5. For example, for the instances with DRA I and different
partition, the running time decreases as J increases from 2 through 8.

6.2 Generation expansion problem

The generation expansion problem (GEP) is an optimization problem that appears in power
systems. The objective of GEP is tominimize the total cost due to construction and generation
decisions for different types of generators over a fixed-length decision horizon. We use the
mathematical model used in Zou et al. (2017) where the problem data are adopted from Jin
et al. (2011).

In the deterministic version of the problem, the power demand at stage t ∈ {1, . . . , T }
is given as dt and it is assumed that I types of power generators are available.The fixed
construction and unit production costs of a type i ∈ {1, . . . , I } generator are ai and bi ,
respectively. There is a limit ui on the total number of type i generators constructed over the
decision horizon. Moreover, the production amount of a type i generator cannot exceed Ui .
The deterministic GEP is given as

min
T∑
t=1

I∑
i=1

(ai zti + bi yti ) , (19)

s.t. yti ≤
(

t∑
τ=1

zτ i

)
Ui , ∀i ∈ {1, . . . , I }, t ∈ {1, . . . , T }, (20)

T∑
t=1

zti ≤ ui , ∀i ∈ {1, . . . , I }, (21)

I∑
i=1

yti ≥ dt , ∀i ∈ {1, . . . , I }, (22)

yti ≥ 0, zti ∈ Z+, ∀i ∈ {1, . . . , I }, t ∈ {1, . . . , T }, (23)

where zti is the number of generators of type i ∈ {1, . . . , I } constructed at stage t ∈
{1, . . . , T } and yti is the total production amount of type i generators at stage t . The objective
function (19) is the sum of construction and production costs over T stages. Constraints (20)
and (21) ensure that the production schedule is feasible. The demand satisfaction is ensured
in constraint (22). Domain restrictions are given in constraint (23).

We consider a risk-averse version of GEP where the demand at stages t = 2, . . . , T
is random. The objective of risk-averse GEP is to determine the number of generators to
be constructed and production amounts for each type of generators so as to minimize the
dynamic coherent risk defined in (2) with conditional mean-CVaR at each stage. The DEP
of risk-averse GEP can be obtained easily by defining additional variables and constraints
similar to DEP (9)–(18) of SSLP.

A test problem of risk-averse GEP is represented as T -GEP-b where T is the number
of stages and b is the number of different values that the random demand dt can take at
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Table 4 Problem statistics for risk-averse GEP instances

Number of stages Test problem Number of scenarios Number of constraints Number of integer
variables

3 3-GEP-10 100 1608 666

3-GEP-20 400 6208 2526

3-GEP-40 1600 24,408 9,846

3-GEP-100 10,000 151,008 60,606

3-GEP-200 40,000 602,008 241,206

4 4-GEP-10 1000 16,708 6,666

4-GEP-20 8000 126,608 50,526

4-GEP-50 125,000 1,915,508 765,306

Table 5 Parameters of GEP instances

Type (i) 1 2 3 4 5 6

Fixed cost (ai ) 1,446,000 795,000 575,000 1,613,000 1,650,000 1,671,000

Unit production cost (bi ) 16.62 38.82 43.17 0.51 5.00 16.91

Capacity (Ui ) 412,450 142,350 138,700 430,700 63,875 204,400

Maximum number of generators (ui ) 1 2 2 1 3 1

each stage t ∈ {2, . . . , T }. Problem statistics for the risk-averse GEP instances used in the
experiments are given in Table 4.

The deterministic problem parameters are given in Table 5. We assume that the first stage
demand is d1 = D/2 and the demand at stages t ∈ {2, . . . , T } is dt ∼ U [D/4, 3D/4] where
D is the total production capacity, that is, D = ∑I

i=1Uiui .
Since both integer and continuous variables appear in all stages of GEP, we can use the

extension of the proposed method presented in Sect. 5 to solve risk-averse GEP. Therefore,
we binarize the integer variables in the first stage of GEP and perform the evaluate-and-cut
procedure in Algorithm 1 for only these variables. In this case, the problem in the upper
bounding phase of the algorithm does not enjoy decomposition.

In computational experiments on GEP instances, we consider similar partition with J = 2
and 4 where cardinalities of the groups of a partition are the same. In Table 6, we report the
number of instances solved optimally (# opt out of five) and solution time in seconds (Time)
for DEP. Four hours of time limit is imposed when solving DEP of each instance. We also
report the average number of iterations (# iter) and running time in seconds (Time) of the
proposed algorithm for J = 2 and 4. As before, all reported values are averages of five
instances of each test problem.

For small instances such as 3-GEP-10, 3-GEP-20, 3-GEP-40, 4-GEP-10 and 4-GEP-20
solution time of DEP is less than the running time of the algorithm for all degrees of risk
aversion. For a moderate instance 3-GEP-100, the algorithmwith J = 2 outperforms solving
DEP for DRA I and II. For the largest instance, namely 4-GEP-50, CPLEX either does not
report any feasible solution of DEP within the time limit or terminates with memory error
before four hours. The algorithm with J = 2 also does not terminate for these instances in
four hours. However, the algorithm with J = 4 solves all 4-GEP-50 instances in 11,089.7,
11,188.5 and 12,850.2 s for DRA I, II and III, respectively. Although J = 2 is a better choice
for small and moderate instances, for larger instances J = 4 yields better results.
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Table 6 Computational study
results for risk-averse GEP

Test problem DEP Proposed algorithm

J = 2 J = 4

#opt Time #iter Time #iter Time

DRA I

3-GEP-10 5 0.1 6.8 1.7 8.6 3.6

3-GEP-20 5 0.5 5.2 3.6 7 7.9

3-GEP-40 5 8.4 2.8 15.2 3.2 19.6

3-GEP-100 5 176.0 2 65.8 2.8 108.0

3-GEP-200 5 6227.0 2.2 2115.4 2.4 718.9

4-GEP-10 5 3.2 6.6 14.4 8.6 28.8

4-GEP-20 5 81.1 5.2 161.9 8.6 336.5

4-GEP-50 0 14,400 *** *** 11.6 11,089.7

DRA II

3-GEP-10 5 0.1 6.6 1.6 12.8 4.6

3-GEP-20 5 0.5 5.6 5.6 14 15.3

3-GEP-40 5 8.5 4.4 25.0 5.8 43.9

3-GEP-100 5 146.1 3 101.1 4 170.3

3-GEP-200 5 5617.7 3 3106.1 3.2 909.9

4-GEP-10 5 2.8 7.4 16.0 14.6 48.3

4-GEP-20 5 70.5 8.8 277.3 15 592.7

4-GEP-50 0 14,400 *** *** 16.6 11,188.5

DRA III

3-GEP-10 5 1.4 7.6 1.9 21.8 8.1

3-GEP-20 5 6.3 8.8 6.7 27.8 31.1

3-GEP-40 5 8.1 7 40.3 11 88.5

3-GEP-100 5 95.7 4.2 143.9 7 276.9

3-GEP-200 5 5246.5 4.6 4712.6 5.8 1670.3

4-GEP-10 5 7.9 14.2 31.3 24.6 83.7

4-GEP-20 5 74.0 10.4 342.2 35.2 1361.4

4-GEP-50 0 14,400 *** *** 36.4 12,850.2

The results of the computational experiments on risk-averse multi-stage SSLP and GEP
demonstrate the effectiveness of our proposed algorithm. They also verify our initial claim
that it is an easily implementable exact solution algorithm for risk-aversemixed-integermulti-
stage stochastic problems with an objective of dynamic mean-CVaR and binary first stage
decisions. Although, in GEP, we partially binarize the first stage variables and do not benefit
decomposition in the upper bounding phase, the algorithm is able to solve large instances of
this problem.

7 Conclusion and possible future extensions

Risk-averse mixed-integer multi-stage stochastic programming problems form a class of
challenging large scale and non-convex optimization problems. Moreover, no exact solution
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algorithm is available for these problems in the literature. In this paper, we propose an
exact solution algorithm for risk-averse mixed-integer multi-stage stochastic programming
problems with an objective of dynamic mean-CVaR risk measure and binary first stage
decisions. Later, we prove that the algorithm can be used to solve the general risk-averse
mixed-integer multi-stage stochastic programming problems.

The proposed algorithm is based on an evaluate-and-cut procedure and a simple scenario
tree decomposition method. The computational experiments on large instances of risk-averse
multi-stage SSLP reveal that the proposed algorithm requires significantly less computational
effort than solving the deterministic equivalent problemwithCPLEX.Moreover, an extension
of the proposed method is used to solve large instances of risk-averse GEP where mixed-
integer decisions appear in all stages. We also discuss the effect of implementation details,
such as partitioning strategy and number of groups in a partition, on the performance of the
algorithm.

Since we did not make any structural assumptions on the problem structure such as com-
plete or relative recourse, stage-wise independency, convexity, and linearity of feasibility
constraints, our proposed algorithm could be applied to a wide range of problems.

A parallel implementation of the proposed algorithm may decrease computation time
significantly. In lower bounding phase of the algorithm, group subproblems can be solved
in parallel since they share no information. Similarly, candidate first stage solutions can be
evaluated in the upper bounding phase in parallel. Therefore, it can be possible to solve
existing instances in smaller computation time or larger instances can be solved.
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