Computers and Operations Research 106 (2019) 102-118

Computers and Operations Research

Contents lists available at ScienceDirect

mputers &
Operations Research

journal homepage: www.elsevier.com/locate/cor

Shelter site location under multi-hazard scenarios )

Eren Ozbay®!, Ozlem Cavus®* Bahar Y. Kara®

Check for
updates

2 College of Business Administration, University of Illinois at Chicago, Chicago, IL 60607, USA
b Department of Industrial Engineering, Bilkent University, Ankara 06800, Turkey

ARTICLE INFO

Article history:

Received 8 September 2017
Revised 3 January 2019

Accepted 17 February 2019
Available online 21 February 2019

Keywords:

Shelter site location

Secondary disasters

Multi-stage stochastic programming
Conditional value-at-risk

ABSTRACT

Natural disasters may happen successively in close proximity of each other. This study locates shelter
sites and allocates the affected population to the established set of shelters in cases of secondary dis-
aster(s) following the main earthquake, via a three-stage stochastic mixed-integer programming model.
In each stage, before the uncertainty in that stage, that is the number of victims seeking a shelter, is
resolved, shelters are established, and after the uncertainty is resolved, affected population is allocated
to the established set of shelters. The assumption on nearest allocation of victims to the shelter sites
implies that the allocation decisions are finalized immediately after the location decisions, hence both
location and allocation decisions can be considered simultaneously. And, when victims are allocated to
the nearest established shelter sites, the site capacities may be exceeded. To manage the risk inherit to
the demand uncertainty and capacities, conditional value-at-risk is utilized in modeling the risk involved
in allocating victims to the established shelter sites. Computational results on Istanbul dataset are pre-
sented to emphasize the necessity of considering secondary disaster(s), along with a heuristic solution
methodology to improve the solution qualities and times.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

From the beginning of 20" century, more than the current pop-
ulation of the world has been affected by various natural disas-
ters (EM-DAT, 2008). In the recent years, the literature on disas-
ter operations management (DOM) has grown bigger. The reader
is referred to Altay and Green (2006), Caunhye et al. (2012),
Galindo and Batta (2013), Hoyos et al. (2015), and the references
therein for the details.

The DOM literature is classified into four main phases: (i)
mitigation, (ii) preparedness, (iii) response, and (iv) recovery
(McLoughlin, 1985). Phases (i) and (ii) refer to pre-disaster, while
phases (iii) and (iv) refer to post-disaster operations. The miti-
gation phase involves the actions taken in order to prevent and
mitigate the consequences of a possible disaster. The prepared-
ness phase includes plans for specific cases and provides effec-
tive responses to disasters. After a disaster occurs, the response
phase deals with providing the affected population with relief
goods and primary needs, such as water, food, medical care, shel-
ter, etc. Lastly, the recovery phase aims to recover all the damaged
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(infra)structure in order to ensure the normal functioning of the
affected population.

In this study, the emphasis is on the people who cannot stay
their homes after an earthquake has occurred and seek accommo-
dation in temporary shelters. To accommodate the disaster victims,
one has to devote certain safe areas to establish temporary shel-
ters. Usually, this decision of choosing candidate shelter locations
is made before a disaster occurs, and the decision of establishing
some combination of them is made after the disaster but before
the observation of the actual demand. The demand uncertainty and
the importance of choosing the best locations for shelters make
this problem one of the fundamental facility location problems in
the preparedness phase of DOM. This problem is known in the lit-
erature as the shelter site location problem (Kilci et al., 2015).

It is important to consider the features of the network while
creating a methodology to locate shelter sites to host disaster vic-
tims, e.g. the distance between the potentially affected population
and the shelter sites or the capacity of shelter sites. 1999 Marmara
Earthquake provides an example for the case where the popula-
tion hosted in the shelters exceeds the shelter capacities as much
as 40% (Kilct et al., 2015). The problems that were observed in 1999
Marmara Earthquake motivated several studies, such as JICA report
(Cavdur et al., 2016; Gormez et al., 2011; JICA, 2002; Kilc et al.,
2015).

Although it was not as apparent in 1999 Marmara Earthquake,
in some cases of disasters, the size of the displaced population
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may grow larger because of the secondary disaster(s) following
the main shock. For 1999 Marmara Earthquake, secondary disasters
were a disastrous fire at the Tiipras petroleum refinery, tsunami in
the Marmara sea, and the strong earthquake in Diizce (Al Jazeera
Turk, 2013). Similarly, the destructive aftershock in Van-Edremit,
which took place 17 days after the Van-Ercis Earthquake, is an an-
other example of secondary disasters (Al Jazeera Turk, 2013). When
the nature of consecutive disasters are analyzed, it can be observed
that the main and secondary disasters might be of same types (e.g.
aftershocks following an earthquake as in Illapel Earthquake, 2015)
or of different types (e.g. tsunamis coupled with nuclear meltdown
following an earthquake as in Tohoku Earthquake, 2011). In the lit-
erature, this phenomenon of having consecutive disasters is called
multi-hazard, which is defined as the combination of various haz-
ards in a defined area (Kappes et al. (2010, 2012)).

In this study, we consider the multi-hazard phenomenon in the
context of the shelter site location problem. We focus only on the
earthquakes, namely the main shocks and the aftershocks. There-
fore, for the rest of the study, we will use aftershock and secondary
disaster interchangeably.

For the purpose of our study, the magnitudes of the aftershocks
and the time between two shocks are two important questions
to be answered. In the related literature, there is a handful of
well-established empirical laws relating the magnitudes of after-
shocks and rate to time after the main shock, most eminent ones
being Omori’'s (1894), Bath’s (1965), and Gutenberg and Richter
(1954) laws. Omori’s law states that the number of aftershocks
decreases nearly hyperbolically with time. Bath’s law concludes
that the largest aftershock is usually about one magnitude unit
smaller than the main shock. Gutenberg-Richter law mainly points
out that more small and fewer large magnitude aftershocks occur.
Therefore, in this study, we only consider destructive aftershocks
and assume that at most one destructive aftershock can occur af-
ter the main shock and it affects a smaller percentage of people
with respect to the main shock. One may question the time be-
tween the main earthquake and the largest aftershock. According
to Utsu (1970), for a main earthquake with a magnitude of 7, the
time difference is generally in the range 0.01-100 days and the
range gets larger with the magnitude of main shock. To give ex-
amples, for 1999 Marmara Earthquake, the largest aftershock is 27
days later than the main shock (Orgiilii and Aktar, 2001), and this
time is 17 and 32 days for 2015 Nepal (Wikipedia, 2018) and 2016
Ecuador (Wu et al., 2017) earthquakes, respectively.

The decision of establishing some combination of the candidate
shelter sites becomes more complicated as the demand uncertainty
created by the main shock couples with the demand uncertainty
created by the possible aftershock. We investigate the effect of this
kind of stochasticity on the shelter site location problem. As it is in
the real setting, we assume that the decision maker (DM) locates
the shelter sites in the first stage, that is after the main earthquake
and before the realization of the actual demand. After the realiza-
tion of the demand, in the second stage, the allocation of disaster
victims to the shelter sites are made. Then, again in the second
stage, we consider that in case of an aftershock hitting the area,
the DM is required to decide whether or not to establish new shel-
ter sites to meet the new (aftershock) demand. Finally, in the third
stage, after whole uncertainty is resolved, the allocation of disas-
ter victims affected by the aftershock to the shelter sites are made
and utilization of shelter sites are observed. We assume that in the
preparedness phase, the candidate shelter site locations have al-
ready been determined and the shelters, which usually are tents,
are ready to be established promptly after the earthquake. Shelters
can be established within a few days after the earthquake; for ex-
ample, it was two days in the 2011 Van Earthquake (Milliyet, 2011).
Based on the discussion on time difference between main shock
and the largest aftershock, we assume that the largest aftershock

occurs after the shelter sites due to main earthquake are estab-
lished.

In order to model the behavior of the disaster victims in a more
realistic manner, we assume that the disaster victims in the same
neighborhood will always travel to the same nearest shelter site. In
this setting, the allocation decision of victims to the shelter sites
can be made as soon as the shelter sites are located. Hence, the
allocation decisions are made implicitly and they follow the lo-
cation decisions. So, in our setting, we can discuss that the loca-
tion and allocation decisions regarding the main earthquake are
made in the first stage and the location and allocation decisions
regarding the aftershock are made in the second stage, after the
main earthquake demand is realized. In the third stage, after the
whole uncertainty is resolved, the utilizations of shelter sites are
observed.

Note that, from a psychological point of view, it is possible that
a certain portion of the disaster victims -who are to reside in
the shelters after the aftershock- may choose to travel to a far-
ther shelter site, that has been established in the first stage, to be
with their neighbors. Since this approach would require parametric
analysis on the portion of population that embraces such a choice,
we preserve the nearest assignment idea throughout this study.

When the disaster victims are always assigned to the nearest
shelter site without demand division, the shelter site capacities
may be exceeded. So, we define the risk in this setting as the
capacity of a shelter site being exceeded. We utilize the condi-
tional value-at-risk (CVaR, as introduced by Rockafellar and Urya-
sev (2000)) as the risk measure to quantitatively represent the risk
and experiment with varying quantile levels to observe the behav-
ior of the model. The analyses presented later in the study sug-
gest that it is in fact important to consider the secondary disasters
while locating the shelter sites.

The remainder of this paper is organized as follows: in
Section 2, the relevant literature related to this study is reviewed.
In Section 3, the proposed three-stage stochastic mixed-integer
programming (MIP) model is presented. Section 4 is devoted to the
details of the dataset creation for a district of Istanbul. The results
of the problem instances are presented and discussed in Section 5.
A heuristic solution methodology to improve the solution qualities
and times is proposed in Section 6. In Section 7, we present the
value of using the three-stage model. The paper is concluded with
an overview of the study and future research directions.

2. Literature review

Facility location decisions are often costly and almost always
irreversible, and since the parameters, such as demand, that
they abide may fluctuate, stochastic modeling is very relevant
(Snyder, 2006). While reviews by Owen and Daskin (1998) and
Current et al. (2002) examine both deterministic and stochastic fa-
cility location models, Snyder (2006) and Caunhye et al. (2012) dis-
cuss only stochastic nature of facility location problems and all
agree that the complexity of location problems are captured best
by stochastic modeling.

With an enormous literature on facility location, the applica-
tion of those models to humanitarian logistics is abundant (see,
e.g. Altay and Green, 2006; Simpson and Hancock, 2009; Galindo
and Batta, 2013), especially with an emphasis on humanitarian
logistics, as can be seen in Ozdamar et al. (2004), Kovacs and
Spens (2007), and Leiras et al. (2014).

The review papers by Ortufio et al. (2013), Liberatore et al.
(2013), and Grass and Fischer (2016) indicate the essence of the
effects that stochasticity creates in humanitarian logistics. The re-
view by Liberatore et al. (2013) defines the risks and uncertain-
ties associated with disasters in depth, and furthermore, discusses
the sources of uncertainties in disasters and how to model them.
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Table 1
Deterministic location studies in humanitarian logistics.

Article Single/Multi Objective Objective(s)

Decision(s)

Solution Methodology

Kilcr et al. (2015)
Bayram et al. (2015)
Kongsomsaksakul et al. (2005)

S Shelter weight
S
S
Chanta and Sangsawang (2012) M
M
M

Evacuation time
Evacuation time

Location, Allocation MIP solver
Location, Allocation, Evacuation

Location, Allocation, Evacuation

2" order cone programming
Genetic algorithm

Weighted distance, maximum cover Location, Allocation MIP solver
Algada-Almeida et al. (2009) Distance, risk, evacuation time Location, Allocation, Evacuation MIP solver
Coutinho-Rodrigues et al. (2012) Distance, risk, evacuation time Location, Allocation, Evacuation MIP solver
Table 2
Stochastic shelter site location studies in humanitarian logistics.
# of Solution
Article Stages Objective(s) Decision(s) Uncertainty Method
Bayram and 2 Expected evacuation time F: Location Demand, disruption in transport network and MIP solver
Yaman (2018) S: Evacuation shelter sites
Li et al. (2011) 2 LC, TC,, IC,, PC,, AC, F: Location, Capacity Demand, commodity transportation and evacuee L-Shaped
S: Allocation allocation cost method
Li et al. (2012) 2 S: Expected unmet demand, Expected travel time F: Location Demand, shelter, accessibility, time Heuristic
S: Evacuation
Our Model 3 Number of expected-weighted shelter sites F: Location, Allocation =~ Demand Heuristic
S: Location, Allocation
T: Utilization

Grass and Fischer (2016), on the other hand, survey only two-stage
stochastic models in disaster management in depth and provide
details on the general framework. These surveys provide a basis
for the significance of the proposed problem and help in finding
crucial and essential research directions to pursue.

The above brief literature shows that the location problem is
an emerging problem for DOM (see Rawls and Turnquist, 2010;
Rawls and Turnquist, 2011). These problems may be classified as:
(i) emergency medical location problem; (ii) relief material (ware-
house) location problem; (iii) shelter site location problem (Kilci
et al., 2015). Existing literature covers categories (i) and (ii) ex-
tensively, leaving category (iii) fairly unexplored. In this work, we
focus on category (iii). So, we survey the related literature by di-
viding it into two main parts; deterministic and stochastic studies
in humanitarian logistics, focused primarily on shelter site location
problems.

The relevant deterministic studies are summarized in Table 1.
The first column introduces the article; the second column states
if the study is single-objective or multi-objective (denoted as S/M);
the third and fourth columns denote the objective(s) and deci-
sion(s) of the study, respectively; lastly the fifth column denotes
if the proposed model is solved directly with a commercial solver
or the author(s) devise a methodology.

Kilcr et al. (2015) address the problem of locating shelter sites
for an earthquake case for Istanbul, Turkey. Using predetermined
set of weights for shelter sites (weight of a shelter site is simply an
indicator for its overall service level), they maximize the minimum
weight of the established shelter sites. Bayram et al. (2015) and
Kongsomsaksakul et al. (2005) propose models to minimize the
total evacuation time by locating shelters and assigning evac-
uees to shelters. While Bayram et al. (2015) assign evacuees
to the nearest shelter sites, within a given degree of tolerance,
Kongsomsaksakul et al. (2005) propose a bi-level program with the
upper level deciding on the shelter locations and the lower level
deciding on the assignment of evacuees to shelters.

Alcada-Almeida et al. (2009) propose a multi-objective location-
evacuation model to locate emergency shelter sites and iden-
tify evacuation routes with lower and upper limits on shelter
site utilizations and predefined number of shelter sites. Coutinho-
Rodrigues et al. (2012) extend Alcada-Almeida et al. (2009) by in-
troducing varying objectives and not limiting the number of shel-
ter sites to be opened. Chanta and Sangsawang (2012) investigate a
bi-objective model which determines the locations of shelter sites
to serve a region suffering from a flood disaster.

Table 2 summarizes the relevant stochastic studies, using the
same classification methodology as above. The first column intro-
duces the article; the second column states if the model is two-
stage or three-stage; the third and fourth columns denote the ob-
jective(s) and decision(s) of the study, respectively, where F stands
for the first stage, S for the second stage, and T for the third
stage; the fifth column indicates the uncertain parameters; lastly
the sixth column denotes if the proposed model is solved directly
with a commercial solver or the author(s) devise a methodology.

In humanitarian logistics studies, various types of costs are con-
sidered, so we use following abbreviations in Table 2: TC, is the
expected relief material transportation cost; LC is the facility lo-
cation cost; IC, is the expected inventory holding cost; AC. is the
expected cost of transporting disaster victims to shelters; and PC,
is the expected penalty cost of unsatisfied demand.

Bayram and Yaman (2018), Li et al. (2011), and Li et al.
(2012) propose shelter location models. Li et al. (2011) look at
cases where the relief supplies are transported from an already
existing set of depots to located shelters along with shelter ca-
pacities, where Bayram and Yaman (2018); Li et al. (2012) con-
sider evacuation of victims from disaster points to shelter sites.
Bayram and Yaman (2018), extending Bayram et al. (2015), assign
evacuees to the nearest shelter sites, within a given degree of tol-
erance, while Li et al. (2012) deal with the distance traveled by
evacuees in the objective function and allow evacuees to be unas-
signed.

The above literature reveals that shelter site location, especially
a study that considers secondary earthquakes, is a research di-
rection still to be explored. To the best of our knowledge, only
Zhang et al. (2012) consider secondary disasters directly. But the
method they propose is fairly inefficient as they have to repeat
their algorithm for each disaster scenario (see Su et al. (2016) for
a discussion). While Zhang et al. (2012) allocate relief supplies to
disaster nodes, we locate shelter sites and allocate disaster victims
so that they receive acceptable levels of service in terms of shel-
tering. We also manage the risk of exceeding capacities of shelter
sites due to uncertain demands of main earthquake and aftershock.

3. Shelter site location under multi-hazard scenarios

Earthquakes are among the disasters of which we do not know
the time or magnitude in advance. We do not know if any after-
shock will follow the main earthquake, and if it does, again we
do not know the time, exact epicenter or magnitude of it. All of
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this uncertainty leads to stochastic modeling where both the main
earthquake and the aftershock, namely the multi-hazard, involve
uncertainty. When this multi-hazard phenomenon does occur, the
population at risk will be the disaster victims who seek shelters.
We assume that the number of victims seeking a shelter is ran-
dom. Some proportion of the population at risk will seek shelter
after the main earthquake and some others will seek after the af-
tershock. To model this, we introduce multi-hazard methodology
into shelter site location problem via a multi-stage stochastic MIP
model.

In this setting, after an earthquake has hit, disaster victims
sharing the same neighborhood (used interchangeably with dis-
trict) always travel to the nearest shelter site. So, the shelter site
demand cannot be divided to state that certain victims are to re-
side in another shelter site. In a multi-hazard setting, this behavior
reflects to both the main earthquake and the aftershock. When ev-
ery district travels to the nearest shelter site in any disaster stage,
the capacity of the established shelter sites may be exceeded. As
it is apparent in 1999 Marmara Earthquake, having shelter site uti-
lizations as high as 140% reduces the quality of services received by
the disaster victims (Kilc1 et al., 2015) (here utilization of a shelter
site is defined as the total number of victims staying in the shelter
site divided by the capacity of that shelter site).

To manage the risk of exceeding the shelter site capacities, we
utilize CVaR constraints. CVaR is first introduced by Rockafellar and
Uryasev (2000). Presented as an approach to optimize or hedge
a portfolio of financial instruments to reduce risk, CVaR is also
used in humanitarian logistics literature to mitigate possible risks
(e.g. Noyan, 2012). CVaR, in our setting, provides the DM a way
of controlling the risk-aversion level, aiding in management of the
over-utilization of shelter sites. As Rockafellar and Uryasev (2000,
2002) discuss, value-at-risk (VaR), another measure of risk, may
provide poor quality solutions with respect to CVaR as VaR disre-
gards the distribution of the tail, i.e. may regard higher and smaller
violations of the shelter site utilizations as the same and therefore
may perform worse.

Having described the problem setting, the proposed model lo-
cates shelter sites after a main earthquake and a possible after-
shock. It is assumed that the DM decides on the location of the
shelter sites after an earthquake has happened and before the ac-
tual demand is observed. This is same for the first and second
stages. After the demand of the main earthquake and the after-
shock are realized in second and third stages, respectively, the al-
location decisions are finalized. Lastly, in the third stage, the uti-
lizations of shelter sites are observed.

In our mathematical model, we incorporate nearest assignment,
or nearest allocation, constraints to reflect the real life choices of
the disaster victims. When the disaster victims travel to the near-
est established shelter site, the location decisions imply allocation
decisions, i.e. allocation decisions can be made automatically once
location decisions are finalized. Therefore, in this case, it does not
matter to allocate victims before or after the uncertainty is re-
solved. So, the allocation decisions regarding the main earthquake
can be made in the first stage and the allocation decisions regard-
ing the aftershock can be made in the second stage. We provide
our mathematical model under this simplifying observation.

We can illustrate the problem setting using Figs. 1a-le. The
red squares represent the shelter sites, the blue circles represent
the demand points (districts) and the yellow star represents the
epicenter of the main earthquake. As it is described further in
Section 4, all of the possible main earthquakes share the same epi-
center. All the demand points in Kartal, Istanbul and the epicenter
of the main earthquake can be observed in Fig. 1a.

Once the main earthquake occurs in the first stage, the DM es-
tablishes the shelter sites, red squares, before observing the actual
demand, as in Fig. 1b, in the first stage. Then, in the same (first)
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Fig. 1e. Allocation of demand points after the aftershock and the final result of a problem instance.

stage, the allocation of disaster victims to the nearest open shelter
sites is as in Fig. 1c¢ - lines represent the allocation of the districts
to the open shelter sites. After the disaster victims have traveled
to the nearest open shelter site, an aftershock may hit Kartal and
may require new shelter sites, additional red squares, to be estab-
lished, as in Fig. 1d. For this particular instance, three new shelter
sites are established. Note that, under some main earthquake de-
mand realizations, some of these three shelter sites may not be
established. In the same (second) stage, the allocation of disaster
victims to the nearest open shelter site is as in Fig. 1e - dashed
lines represent the allocation of the districts to the open shelter
sites. As under different disaster scenarios, different shelter sites
can be established in the second stage and hence second stage al-
location of districts vary among different main earthquake demand
realizations. This fact can be observed in Fig. 1e. Districts 4 and 13
have two dashed lines, depending on which shelter site is opened
in the second stage.

Throughout this study, we assume that the demand after the
main earthquake and the aftershock is uncertain. To the best of
our knowledge, in the humanitarian logistics studies, there is not
any dataset that considers secondary disasters, although many do
consider main disasters (see e.g. Balcik and Beamon, 2008; Gunnec
and Salman, 2007; Kilci et al., 2015; Noyan et al., 2015; Verma and
Gaukler, 2015). Therefore, we create a new dataset based on the
network provided by Kilci et al. (2015). We assume that an after-
shock may follow a main earthquake. We provide a dataset where
a scenario corresponds to a main earthquake-aftershock demand
realization pair.

After preliminary tests with the proposed mathematical model
using the proposed dataset, we seek to improve the quality of solu-
tions as victims are assigned to farther shelter sites and some shel-
ter sites have utilizations as low as 3% in some instances. To rem-
edy this, we consider including two additional set of constraints to
the formulation: an upper limit on the distance between disaster
victims and the assigned shelter sites and a minimum utilization
for open shelter sites. These constraints provide solutions that are
preferable by both the victims and the DM (e.g. government au-
thorities), respectively.

To be in accordance with the dataset provided by Kilc
et al. (2015), we assume that the set of candidate shelter site lo-
cations is known in advance, all shelter sites have predetermined
capacities and have previously assigned weights that denote their
level of performance. Kilc1 et al. (2015) defines eligible shelter site
locations, identifies the attributes of these shelter sites using ten
different criteria, scales the values of respective criteria to com-
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Fig. 2. Visualization of scenario structure.

mon units and finally calculates the weights of shelter sites as a
convex combination of the scaled values.

We also assume that the population of each district is concen-
trated in its centroid. A significant assumption is on the capacity
of the shelter sites - we assume that under no circumstances the
capacity of a shelter site changes, i.e. the risk of losing convenience
of any shelter site is non-existent.

In the formulation, we consider a finite set S of scenarios.
Here, a scenario is a main earthquake-aftershock demand realiza-
tion pair. Each scenario s €S occurs with a probability of ps. This is
visualized in Fig. 2. Each leaf, when traced back to root node, rep-
resents a scenario, i.e. main earthquake-aftershock scenario pair.

We use the following notation for the sets:

set of districts
J: set of candidate shelter sites
S: set of scenarios
S2: set of scenarios sharing the same history as scenario
s € S up to second stage,
and for parameters:
w;:  weight of candidate shelter site j € J; w; € (0, 1]
ps : probability of scenario s € S
7;: allowed tolerance for exceeding capacity of shelter site
jel
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g : number of people affected in district i e I under scenario
s € S after the main earthquake

ql-zs : number of people affected in district i € I under scenario
s € S after the aftershock

dij : distance between district i € I and candidate shelter site
jel

o : risk-aversion parameter of CVaR

cj: capacity of shelter site j € J.

For each district iel, the distances d; can be sorted non-
decreasingly, thus providing an ordered sequence for the candidate
shelter sites in terms of their distances to each district. We de-
note it by j;(r), the r-th closest candidate shelter site to district iel,

re{l,.... ]}
Then we define the decision variables as:
1 if shelter site j is established
in first stage
0 otherwise

Vje]

if district i is assigned to
shelter site j in first stage
0 otherwise

Viel je]

if shelter site j is established
in second stage under scenario s
0 otherwise

VielseS

if district i is assigned to
shelter site j under scenario s
in second stage

0 otherwise

yl-zjsz Viel,jeJseS

]35 = overall utilization of shelter site

Jj under scenario s Vje]seSs.

Recall the construction of this problem using the nearest as-
signment constraints. The definition of decision variables follows
the same discussion. Since nearest assignment constraints are uti-
lized, once the shelter sites are located, the assignment decisions
are immediate. Therefore, the assignment decisions will be the
same whether they are made before observing the demand or af-
ter observing the demand. But, to decide on the utilization of a
shelter site, it is required to realize the uncertain demand for the
whole process, which is in turn realized finally in the third stage.
Hence follows the above definition of variables.

Additionally, for jeJ, we define random variables X].2 and Fj3.

Let x?s, seS be the realizations of the random variable ij where
ij (s) = x?s for all je], seS. And let f3, s<S be the realizations of
the random variable Fj3 where Fj3 (s) = ffs for all jej, seS. Then,
we have the following three-stage stochastic MIP model:

. 1
PS)=min 3> Py, K (1)

seS jef J

S.t.

Yylh=1 Viel (2)

il

i

S Vb txley <=1 VielLre{l,... .lI-1} 3)

k=r+1

Vi <X Viel je] (4)

VielseS (5)

2 V=1

i€l

107
Ul
Zyl?ji(,()s+x]2-i(r)351 Yiel,seSref{l,....|J]|-1}
k=r+1

(6)
injSEX?S Viel,je]seS (7)
x} gx?s VjelseS (8)
X3, = X5 Vje)seSs eS? 9)
CVaRy(F -X?) <7,  Vje] (10)

D Vi + )4

3 = iel 3 iel VielseS (11)
’ )
x; €{0,1} Vie] (12)
yl-lje{O,l} Viel,je] (13)
xfse{O,l} VjelseS (14)
v €{0,1} Viel je]sesS. (15)

The objective function (1) minimizes the expected weighted
number of established shelter sites while aiming to establish shel-
ter sites with higher weights. We achieve this goal using recipro-
cates of the shelter site weights. Constraints (2) make sure that
every district is allocated to only one shelter site in the first stage.
Constraints (3) are the nearest allocation constraints for the first
stage as presented by Wagner and Falkson. Constraints (4) assure
that, in the first stage, a district is assigned to a shelter site if
this shelter site is established. For ease of representation, we de-
note constraints (2)—(4) as the “first stage allocation constraints”,
so that constraints (5)-(7), which are only the projections of the
same decisions, can be denoted as the “second stage allocation
constraints”. Constraints (8) are to make sure that if shelter site
je] is established in the first stage, it should be kept open for any
scenario at the second stage (i.e. a located shelter site cannot be
closed). Constraints (9) are the non-anticipativity constraints. Con-
straints (10) are the CVaR constraints which check the utilizations
of shelter sites and make sure that the configuration of established
shelter sites meet the risk-aversion criterion. Constraints (11) de-
fine the overall utilization of a shelter site in the corresponding
scenario. Lastly, constraints (12)-(15) are the domain constraints.

We introduce a more precise description of CVaR for continu-
ous loss variables, as presented in Rockafellar and Uryasev (2000,
2002). Given that Z is a random cost:

CVaRy (Z2) = E[Z | Z = VaRu (2)],
where
VaRy (Z) = min{n : P{Z < n} = o},
ne
and o €(0, 1) is a preselected confidence level to tune the risk-

aversion. So, CVaRy(Z) is the conditional expected value of the
losses exceeding the VaR(Z) at the confidence level .
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Fig. 3. Structure of the decision process.

A more general version of CVaR, which is defined for
any random cost Z, discrete or continuous, is as follows (see
Rockafellar and Uryasev, 2000):

CVaRy (Z) = %gng{n + ﬁE([Z— nlo)} (16)

where [a]; = max{0, a}, aeR.

In this setting, we wish to control the risk of having over-
utilized shelter sites. To do so, we introduce the discrete random
variable F3 — X2 as the random cost (or loss). The realization of
this difference under scenario s is positive (non-positive) when
the realization of the utilization of shelter site j under scenario
s is above (below) 100%. As the aim is to keep this loss, over-
utilization when positive, as small as possible, we measure the risk
of this loss using CVaR. We limit CVaRy (Fj3 —ij) from above with
Tj, a parameter tuned by the DM as a secondary measure of risk-
aversion - also a bound to control the upper tail of the loss distri-
bution, and formally introduce the CVaR constraints (10).

To linearize the CVaR constraints (10), using the representation
(16) and referring to Rockafellar and Uryasev (2000), we define
two new types of continuous decision variables, z;; and 7;, jeJ,
se S, and replace constraints (10) with constraints (17)-(20) in P(S):

1 .
Mt g P ST viel a
seS
202 f - - Viclses ©
zjs >0 Vie]seS (19)
n; is free Vje]l (20)

In multi-stage stochastic models, for the scenarios having the
same history up to a given stage, the decisions made at that stage
must be the same. This is called non-anticipativity (see Birge and
Louveaux, 2011 for details). In the proposed model, this means that
scenarios having the same history up to second stage should share
the same decisions at stage two. In other words, the assignment
of districts to shelter sites and establishment of new shelter sites
in the second stage cannot differ for scenarios sharing the same
main earthquake demand realization. To force this on the proposed
model, we utilize non-anticipativity constraints. Note that this type
of constraints is not necessary for our first stage decisions as they
do not depend on scenarios. Also note that we do not consider
non-anticipativity constraints for the second stage allocation deci-
sions, namely yizjs variables, since they are imposed by the nearest
assignment constraints and non-anticipativity constraints on sec-
ond stage shelter site establishment decisions.

To discuss the structure of non-anticipativity constraints in this
context, in Fig. 3, we first visualize the decision process. Recall that
a main earthquake triggers x' decisions and an aftershock trig-
gers x2 decisions (the indices are dropped for ease of notation).
Also observe that assignment decisions are implicitly made with
respect to location decisions and the utilization of shelter sites are
finalized in the third stage. Since second stage shelter site location
decisions are made after observing the main earthquake demand
realization but before observing the realization of aftershock de-
mand, these decisions should be the same for the scenarios shar-
ing the same main earthquake demand realization. To force this,

we define set S2, which is the set of scenarios sharing the same
history as scenario seS up to second stage and use constraints (9).

In Fig. 3, location and allocation decisions in the first stage are
followed by location and allocation decisions in the second stage,
after the demand regarding the main shock is realized. Finally, af-
ter the demand regarding the aftershock is realized, the third stage
decisions, shelter site utilizations, are finalized.

As discussed earlier in this section, we also add constraints to
limit the maximum distance between the districts and assigned
shelter sites and the minimum utilizations of open shelter sites
to improve the solution qualities further. Constraints (21) and
(22) limit the maximum distance between the districts and as-
signed shelter sites, stating that no district can be forced to travel
a distance more than p:

y}jdij <p Viel,je] (21)

yidij<p Viel,jeJseS. (22)

Constraints (23) and (24) limit the minimum utilizations of
open shelter sites, stating that if at least one district is assigned
to a shelter site, then that shelter site should be utilized at a level
of at least v:

2=y Viel,je]seS (23)
jizuyizjs Viel,je]seS. (24)
Then P(S) is:
min (1)
st (2) - (9), (11) - (15), (17) - (24).
4. Dataset

We model the demand uncertainty in this setting using a
dataset consisting of scenarios for earthquake-aftershock pair. To
the best of our knowledge, in the humanitarian logistics literature,
even though there are many studies providing datasets on single
(main -in the context of this study-) disasters (see e.g. Balcik and
Beamon, 2008; Gunnec and Salman, 2007; Kilc et al., 2015; Li
et al,, 2011; Noyan et al.,, 2015; Verma and Gaukler, 2015) there
is not any study that provides a dataset for both main and sec-
ondary disasters. Therefore, we devise a methodology for creating
scenarios for a district of Istanbul, Turkey.

Throughout this study, we use the network of Kartal provided
by Kilct et al. (2015) (see Figs. 4 and 5). Kartal has 25 candi-
date shelter site locations with corresponding capacities provided
in Table 3. We create the dataset in accordance with the JICA study
(JICA, 2002), where we assume that each main earthquake will be
followed by 10 different aftershocks and all of the main earth-
quakes share the same epicenter, varying in magnitude. We pro-
pose 50 distinct main earthquakes and therefore a total of 500
disaster scenarios. We differentiate the earthquakes in this setting
according to three features: epicenter, effect radius and percent af-
fected ratio (PAR). The proposed methodology regards these fea-
tures and, as discussed above, uses the same epicenter for every
main earthquakes. For main earthquakes, we only decide on the
effect radius and the proportion of the population in a district it
affects, namely PAR. We assume that with a probability of 20%, the
main earthquake will affect the districts in 3 km radius, and with
a probability of 40% (40%), the main earthquake will affect the dis-
tricts in 4 (5) km radius.

The corresponding PAR values along with their probabilities for
the main earthquakes can be found in Table 4a, where ¢/[a, b] de-
notes a continuous uniform distribution on the interval [a, b] for
which a <b. It is important to note that the districts are affected
inversely proportional to their distances to the epicenter in the
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Fig. 4. Blue circles represent the demand points (districts) and red squares represent the candidate shelter site locations in Kartal. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Location of Kartal in Istanbul.

cases of both main earthquakes and aftershocks. The same idea
applies to the generation of aftershocks. But since aftershocks, as
in the real setting, may depend on the main earthquake, we use
the features of the main earthquake. We assume that the epicen-
ter of the aftershock is within a circle, which is centered at the
epicenter of the main earthquake and has a radius equal to the
half of the effect radius of the main earthquake. The aftershock’s
effect radius is greater than the main earthquake’s effect radius
by a factor generated from 7/[0.3, 0.4], i.e. we multiply the effect
radius of the main earthquake by ¢/[1.3, 1.4] and obtain the inter-
val for the effect radius of the aftershock. Note that also the PAR
value of an aftershock is 20% lower than the main earthquake’s
PAR value. For example, if a main earthquake has an effect radius
of 3km, as in the first row of Table 4a, the aftershock’s epicenter is
within 1.5 km radius of the main earthquake’s epicenter (see Fig. 6
for a visualization). The aftershock’s effect radius is 3 x ¢[1.3,1.4]
= U[3.9,4.2], occurrence probabilities and PAR values are as in the
first row of Table 4b. Note that this selection of parameters, for

Table 4a
Effect radius, occurrence probability and PAR values of main
earthquakes.

Effect radius (km)  Occurrence probability =~ PAR

3 16% u[04, 0.5]
50% u[0.5, 0.6]
34% u[0.6, 0.7]
4 16% u[0.5, 0.6]
50% u[0.6, 0.7]
34% u[0.7, 0.8]
5 16% u[0.6, 0.7]
50% u[0.7, 0.8]
34% u[0.8, 0.9]

Table 4b
Effect radius, occurrence probability and PAR values of aftershocks.
Effect radius (km) Occurrence probability PAR
u[3.9, 4.2] 16% 1[0.32, 0.40]
50% 1[0.40, 0.48]
34% 14[0.48, 0.56]
u[5.2, 5.6] 16% 1[0.40, 0.48]
50% 1[0.48, 0.56]
34% U[0.56, 0.64]
u[6.5, 7.0] 16% 1[0.48, 0.56]
50% 1[0.56, 0.64]
34% U[0.64, 0.72]

magnitudes and effect radii, is data specific. We do not propose
any empirical or theoretical relationship between characteristics of
the aftershocks and the main shocks.

5. Multi-stage stochastic MIP results

In this section, we present the computational experiments con-
ducted with the proposed mathematical model using the dataset

Table 3

Capacities of shelter sites.
Shelter site # 1 2 3 4
Capacity 24,000 45,000 25,000 60,000
Shelter site # 10 1 12 13
Capacity 100,000 30,000 62,500
Shelter site # 19 20 21

Capacity

60,000 30,000 25,000

5 6 7 8 9
60,000 25,000 30,000 75,000 25,600
14 15 16 17 18
50,000 30,625 30,000 75,000 45,000
22 23 24 25

25,000 150,000 30,000 60,000
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Fig. 6. Visualization of scenario generation methodology.

Table 5

Parameter settings for corresponding instance IDs.
(o, V) T ID
(0.90, 0.10) 0.05,..., 0.25 10 5
(0.90, 0.15) 0.05,..., 0.25 6,..., 10
(0.95, 0.10) 0.05...., 0.25 11,.., 15
(0.95, 0.15) 0.05,..., 0.25 16...., 20

described in Section 4. The proposed model is coded in JAVA and
solved using IBM CPLEX 12.7.1. All tests are run on a Linux OS with
Dual Intel Xeon E5-2690 v4 14 Core 2.6GHz processor with 128 GB
of RAM.

As discussed in previous sections, some of the parameters are
left to be tuned by the DM. Two of these are risk-aversion level,
namely «, and allowed tolerance for excess of capacity for each
shelter site, namely 7;, jej. Note that VjeJ, we take 7; the same
and we will use T to denote values of all 7; in this section.

Minimum utilization of established shelter sites, namely v, pro-
vides the DM with the control of the overall utilizations of estab-
lished shelter sites. The upper limit on the distance between dis-
aster victims and the shelter sites is p = 4 (km) for all instances
throughout this study. The parameter settings along with respec-
tive instance IDs are presented in Table 5. Note that T values differ
by 5%, e.g. Instance ID 3 has T = 15% and («, v) = (0.90, 0.10).

For each test instance, we put a 6-hour time limit on CPLEX.
The results are presented in Table 6. Note that the number of main
earthquake-aftershock scenarios considered is 500.

In Table 6, the first column refers to the instance ID. The second
column is the solution time of the corresponding instance in hours.
If the corresponding instance cannot be solved to optimality in 6
hours, CPU time is denoted as “ > 6”. The third column denotes the
optimality gap of the corresponding instance if it is not solved to
optimality in 6 hours. Third and fourth columns refer to the con-
figuration of the established shelter sites in first and second stages,
respectively. Note that in the fourth column, the shelter sites estab-
lished in the second stage are presented in their entirety, i.e. not
all of them are established in every scenario but a subset of them
are. The fifth column is the best objective value and is the optimal
value of the corresponding test instance if it is solved to optimal-
ity. The last column is the average walk of the disaster victims to
their allocated shelter site.

As seen in Table 6, most of the test instances are not solved
to optimality in 6 hours. Two of the test instances, Instances 9

and 19, cannot be solved due to memory errors, denoted by “*” in
the table. Those which are solved to optimality and used in com-
parative analyses are summarized in Tables 7a-7f. We present de-
tails on the locations of established shelter sites in each stage and
their utilizations. Observe that we do not consider all of the test
instances which are solved to optimality in this comparative anal-
ysis since we discuss the effect of different parameter settings and
not all of the test instances are required for this.

In Tables 7a-7f, the leftmost column is the open shelter site’s
number. The second column states if the corresponding shelter site
is established in the first or the second stage - the same note as
previous table applies here, a subset of these second stage shel-
ter sites is established in each scenario. The third, fourth and fifth
columns denote the minimum, maximum and average utilizations
of corresponding shelter site, respectively. Note that the minimum
(maximum) utilization of a shelter site is its minimum (maximum)
utilization over all scenarios. Lastly, the sixth column denotes the
number of scenarios where the utilization of the corresponding
shelter site has exceeded 100%.

To see the effect of minimum utilization, namely v, on the so-
lutions, we compare Instances 2 and 7, provided in Tables 7a and
7b, respectively. In Instance 2; v = 10% and in Instance 7; v =
15%. Remaining two parameters, namely « and 7, are the same in
both instances. As the minimum utilization increases, for this par-
ticular case, configuration of first stage shelter sites differs only by
one shelter site, a bigger shelter site is opened instead of a smaller
one, and its effect can be observed as a decrease in the average
utilizations of unchanged set of open shelter sites. In the second
stage, the model chooses to establish another shelter site under
some scenarios.

The change in the set of open shelter sites in the first stage can
be explained by the higher minimum utilization constraint. Uti-
lizations of shelter sites 14 and 15 in Instance 2 are both smaller
than 15%. Opening shelter site 13 instead of shelter site 14 in the
first stage changes the nearest allocation configuration and pro-
vides even more districts to be allocated to shelter site 15 in the
second stage so that its minimum utilization is more than 15%.

If we compare Instances 2 and 7 in terms of optimal value and
average walk (see Table 6), we can say that Instance 2 provides
a better quality solution than Instance 7 as its optimal value and
average walk are smaller than those of Instance 7, in addition to
the fact that the average utilizations of first stage shelter sites are
higher. But, the solution time of Instance 2 is almost five times of
the solution time of Instance 7.
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Test instances for 500 scenarios .

ID CPU (hours)  Gap (%) First stage shelter sites  Second stage shelter sites  Objective value  Average walk (m)
1 > 6 15.37 4,10, 12, 14, 25 5,15, 17, 21, 22 5.962 2203
2 5.6 opt. 4,10, 12, 14, 25 15 5.761 2213
3 > 6 23.88 10, 12, 14, 25 1,2, 4,5, 15, 16, 24 5.466 2290
4 > 6 0.27 10, 13, 19, 25 5, 16, 24 5.001 2368
5 > 6 25.02 8, 10, 13, 25 16 4.960 2265
6 4.8 opt. 4,10, 12, 13, 25 5, 15, 17, 22 6.067 2279
7 11 opt. 4,10, 12, 13, 25 5,15 5.866 2288
8 > 6 18.03 4,10, 12, 13, 25 515 5.866 2288
9 > 6 * - - - -

10 > 6 0.37 10, 14, 19, 25 3,5, 16 4.972 2230
1 > 6 10.50 4,10, 12, 14, 25 5,15, 17, 21 6.003 2202
12 14 opt. 4,10, 12, 14, 25 15, 17 5.801 2212
13 5 opt. 4,10, 12, 14, 25 15 5.761 2213
14 > 6 6.81 10, 13, 19, 25 5, 16, 24 5.060 2362
15 > 6 6.58 10, 13, 19, 25 16, 24 4,934 2371
16 23 opt. 4,10, 12, 13, 25 5, 15, 17, 21 6.108 2277
17 05 opt. 4,10, 12, 13, 25 5,15, 20 5.912 2287
18 06 opt. 4,10, 12, 13, 25 515 5.866 2288
19 > 6 * - - - -
20 > 6 0.88 10, 14, 19, 25 3,5, 16 5.095 2224

Table 7a

Instance ID 2, 500 scenarios.

Shelter site  Stage Minimum util (%)  Maximum util (%)  Average util (%)  Above 100% util
4 First 39.27 116.87 81 115

10 First 40.89 96.64 70.73 0

12 First 67.19 112 93.72 142

14 First 10.42 100.44 70.56 1

25 First 32.64 64.85 53.90 0

15 Second 1151 48.85 29.05 0

Table 7b

Instance ID 7, 500 scenarios.

Shelter site  Stage Minimum util (%)  Maximum util (%)  Average util (%)  Above 100% util
4 First 39.27 116.87 81 115

10 First 40.89 96.64 70.50 0

12 First 66.78 112 93.03 142

13 First 19.89 83.70 61.45 0

25 First 32.64 64.85 53.65 0

5 Second  16.80 60.35 32.74 0

15 Second  15.25 91.80 49.85 0

Table 7c

Instance ID 17, 500 scenarios.

Shelter site  Stage Minimum util (%) Maximum util (%)  Average util (%)  Above 100% util
4 First 39.27 113.93 80.80 114

10 First 40.89 94.27 70.35 0

12 First 66.78 112 93.03 142

13 First 19.89 83.70 61.45 0

25 First 32.64 64.85 53.65 0

5 Second  16.80 60.35 32.74 0

15 Second  15.25 91.80 49.85 0

20 Second  16.63 26.74 22.28 0

Table 7d

Instance ID 16, 500 scenarios.

Shelter site  Stage Minimum util (%)  Maximum util (%)  Average util (%)  Above 100% util
4 First 39.27 112.66 79.32 43

10 First 40.89 92.27 69.05 0

12 First 66.78 107.35 91.71 87

13 First 19.89 83.70 61.32 0

25 First 32.64 63.53 53.40 0

5 Second  15.40 60.35 31.03 0

15 Second  15.25 91.80 49.85 0

17 Second 1719 24.76 20.96 0

21 Second  58.65 7726 65.83 0

m
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Table 7e

Instance ID 18, 500 scenarios.

Shelter site  Stage Minimum util (%) Maximum util (%)  Average util (%)  Above 100% util
4 First 39.27 116.87 81 115

10 First 40.89 96.64 70.50 0

12 First 66.78 112 93.03 142

13 First 19.89 83.70 54.57 0

25 First 32.64 64.85 53.65 0

5 Second  16.80 60.35 32.74 0

15 Second  15.25 91.80 49.85 0

Table 7f

Instance ID 13, 500 scenarios.

Shelter site  Stage Minimum util (%) Maximum util (%)  Average util (%)  Above 100% util
4 First 39.27 116.87 81 115

10 First 40.89 96.64 70.73 0

12 First 67.19 112 93.72 142

14 First 1042 100.44 70.56 1

25 First 32.64 64.85 53.90 0

15 Second  11.51 48.85 29.05 0

To see the effect of risk-aversion parameter, namely «, on
the solutions, we compare Instances 7 and 17, provided in
Tables 7b and 7c, respectively. In Instance 7; o = 90% and in In-
stance 17; « = 95%, and the remaining two parameters, namely v
and 7, are the same for both instances. As the DM becomes more
risk-averse (as « increases), the number of established shelter sites
in the second stage increases to lower the higher utilizations of the
established shelter sites of Instance 7, since we define the risk in
this setting as the capacities of shelter sites being significantly ex-
ceeded.

It can be observed that the statistics on the utilizations do not
differ in Instance 17 with respect to Instance 7 for shelter sites 12,
13 and 25 in the first stage and shelter sites 5 and 15 in the second
stage. This is due to the nearest allocation constraints. In addition
to Instance 7, only shelter site 20 is established in Instance 17 in
the second stage. For districts allocated to shelter sites 12, 13 and
25 in the first stage and to shelter sites 5 and 15 in the second
stage, opening shelter site 20 does not alter the nearest allocation
configuration and therefore has no effect on the utilization statis-
tics of aforementioned shelter sites. But some of the districts allo-
cated to shelter sites 4 and 10 in the second stage can be allocated
to shelter site 20 and thus it changes utilization statistics of shelter
sites 4 and 10.

To see the effect of allowed tolerance parameter, namely T,
on the solutions, we compare Instances 17 and 16, provided in
Tables 7c and 7d, respectively. In Instance 17; T = 10% and in In-
stance 16; T = 5%. Remaining two parameters, namely « and v,
are the same for both instances. As discussed previously, T is used
as a secondary measure of risk-aversion in this setting. But in con-
trast to «, increasing 7 decreases risk-aversion. First indicator of
this fact is the decrease in the number of established shelter sites
and the optimal value of Instance 17. Also, as a result of higher
risk-aversion, the utilizations exceed 100% in less scenarios in In-
stance 16 with respect to Instance 17. Note that the Fig. 1a-1e in
Section 3 are the visualizations of Instance 17.

Lastly, as an interesting observation, we present Instances 7
and 18, provided in Tables 7b and 7e, respectively. In both of the
instances v = 15%. With respect to «, Instance 18 is more risk-
averse than Instance 7 as its « is bigger, but with respect to
7, Instance 7 is more risk-averse than Instance 18 as its T is
smaller. And both instances have the same solution. The same phe-
nomenon can also be observed in Instances 2 and 13, presented in
Tables 7a and 7f, respectively. Instances 2 and 13 also share the
same v = 10% and the same solutions.

As we cannot solve all of the instances to optimality within the
specified time bound using 500 scenarios, in order to experiment,
we decrease the cardinality of the scenario set and solve the model
with smaller scenario sets. Since we propose that 10 different af-
tershocks may follow a main earthquake, to create smaller scenario
sets, we first choose a smaller set of main earthquakes from the
original set of main earthquakes and include the corresponding af-
tershocks to generate the whole scenario set. For example, for a set
of 250 scenarios, we choose 25 main earthquakes out of 50 main
earthquakes randomly, and include the aftershocks corresponding
to those main earthquakes. The same methodology applies to gen-
erating a scenario set of cardinality 100. Table 8 presents the re-
sults of the test instances for a scenario set of cardinality 250.

We observe that as the cardinality of the scenario set decreases,
the solution times decrease drastically and all of the instances can
be solved to optimality. The longest solution time in the test runs
with a scenario set of cardinality 250 is around 2.5 hours and the
smallest solution time is 10 minutes.

In Tables 8 and 9, for most of the instances, it can be observed
that the first stage shelter sites do not vary much but the second
stage shelter sites do. In Table 8, Instances 3 and 13; 5 and 10; 8,
18 and 19; and 15 and 20 share the same solutions, respectively.
In Table 9, Instances 2 and 12; 3 and 8; 5 and 15; 6 and 16; 9
and 19; and 10 and 20 share the same solutions, respectively. So
as we decrease the size of the scenario set, varying nature of the
earthquakes and the aftershocks cannot be represented thoroughly,
and therefore we prefer to use larger datasets.

6. Solution methodology

As discussed previously, the solution times exceed 6-hour limit
for most of the presented test instances with 500 scenarios. For in-
stances solved to optimality in 6 hours, the average solution time
is 2.7 hours where the average gap for test instances that cannot
be solved to optimality in 6 hours is 10.77%, excluding the two in-
stances that cannot be solved due to memory errors.

Since we need as many different scenarios as possible to rep-
resent the varying nature of earthquakes and aftershocks, we wish
to solve the proposed model with a larger dataset and as we ob-
serve in Tables 8 and 9, the solution times significantly improve
as the cardinality of the scenario set decreases. We utilize this fact
in the construction of the proposed heuristic. We define R to be a
reduced set of the original scenario set S, such that RcS.
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Table 8
Test instances for 250 scenarios .

ID CPU (sec)  First stage shelter sites  Second stage shelter sites  Objective value  Average walk (m)
1 4212 4,10, 12, 13, 25 5,17, 21 6.090 2285
2 1364 4,10, 12, 13, 25 5,17 5.786 2299
3 1086 4,10, 12, 13, 25 5 5.745 2300
4 4035 10, 13, 19, 25 2,5, 16, 24 5.194 2371
5 9263 10, 13, 19, 25 16 5.015 2380
6 1863 4,10, 12, 13, 25 5, 15, 17, 20, 22 6.192 2284
7 684 4,10, 12, 13, 25 5,15, 20 5.888 2297
8 960 4,10, 12, 13, 25 5,15 5.842 2298
9 9247 4,10, 13, 23 3,5, 11, 15, 16, 17 5.503 2277
10 676 10, 13, 19, 25 16 5.015 2380
1 3186 4,10, 12, 13, 25 5,17, 21 6.149 2281
12 1112 4,10, 12, 13, 25 5,17 5.827 2298
13 880 4,10, 12, 13, 25 5 5.745 2300
14 3229 10, 12, 13, 25 2,4,5, 16, 24 5.279 2383
15 1613 10, 13, 19, 25 5,16 5.057 2377
16 1429 4,10, 12, 13, 25 5,15, 17, 21, 22 6.246 2280
17 602 4,10, 12, 13, 25 5, 15, 20, 22 5.946 2294
18 739 4,10, 12, 13, 25 5,15 5.842 2298
19 2495 4,10, 12, 13, 25 5, 15 5.842 2298
20 2286 10, 13, 19, 25 5, 16 5.057 2377
Table 9

Test instances for 100 scenarios.

ID CPU (sec)  First stage shelter sites  Second stage shelter sites  Objective value  Average walk (m)
1 161 4,10, 12, 13, 25 5,22 6.165 2236
2 139 4,10, 12, 13, 25 5,17 6.016 2247
3 145 4,10, 13, 19, 25 21 5.848 2276
4 118 10, 13, 19, 25 5, 16, 24 4.961 2337
5 84 10, 13, 19, 25 16, 24 4.855 2346
6 63 4,10, 12, 13, 25 5,15, 21 6.195 2247
7 64 4,10, 12, 13, 25 15, 20 6.060 2258
8 81 4, 10, 13, 19, 25 21 5.848 2276
9 122 4,10, 13, 19, 25 17 5.805 2279
10 55 10, 13, 19, 25 5,16 4.855 2339
1 209 4,10, 12, 13, 25 5,21 6.165 2236
12 148 4,10, 12, 13, 25 5,17 6.016 2247
13 106 4,10, 12, 13, 25 5 5.914 2250
14 113 8, 10, 13, 25 4,5, 16 5130 2284
15 86 10, 13, 19, 25 16, 24 4.855 2346
16 47 4,10, 12, 13, 25 5, 15, 21 6.195 2247
17 64 4,10, 12, 13, 25 15, 21 6.090 2253
18 68 4,10, 12, 13, 25 15 5.945 2261
19 79 4,10, 13, 19, 25 17 5.805 2279
20 53 10, 13, 19, 25 5, 16 4.855 2339

The proposed heuristic blends different approaches used in
stochastic optimization. In each iteration of the proposed heuris-
tic, we randomly create R, then solve P(R) and obtain a first stage
solution, namely x'*. Then we fix the first stage variables in P(S),
namely x!, to x'* and check for feasibility. Note that P(R) is de-
fined as a group subproblem with adjusted probabilities as Sandikci
et al. (2013) propose. In P(S), the probability of each scenario is
equal to 1/|S|, in P(R), the probability of each scenario is equal to
1/IR].

Checking feasibility of x!*, we should not obtain it in the next
iterations. For this purpose, Ahmed (2013) suggests using no-good
cuts to eliminate a solution from a solution pool. This is another
approach we utilize in this heuristic. We perform this elimination
by adding no-good cut constraint (25) to P(R) in each iteration:

doxj+ Y (A-xp)=1.
0

Ve Feyle
Jixjr= Jixj =1

(25)

We store all no-good cuts in a cut pool C. After we conclude
that x!* is not feasible for P(S), we add its no-good cut to the cut
pool C. So in each iteration, we solve P(R) with cut pool C, there-
fore, obtain a new set of open first stage shelter sites. The heuristic

stops when we find a set of open first stage shelter sites that is
feasible for the original problem, i.e. x'* is feasible for P(S).

A more formal representation of the proposed heuristic is pro-
vided in Algorithm 1. Note that, hereafter, opt[ - ] implies the op-
timization of problem - and gives the optimal value of it.

Algorithm 1. Heuristic methodology.
Require: S.

1: Cut pool C + 0. Let x be the cardinality of the reduced set. bool <~ TRUE.

2: while bool do

3: Create R C S randomly, with |R| = k.
Solve P(R) regarding C. Let 2'* be an optimal first stage decision of P(R).
Solve P(S) by fixing x = z'*.
if P(S) is feasible then

V = opt[P(S)]. bool «~ FALSE.
end if
if bool then
Add no-good cut Z ,'r} + Z (1- :r}) >1toC.

ol
jerlr=0

© 23T

—
=

jialr=1
11: end if

12: end while

13: return V

The results of our heuristic are presented in Tables 10a - 10j.
We report the solution time, optimality gap and iteration numbers
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Table 10a Table 10f
Configuration Set #1. Configuration Set #6.
ID Solution time (sec)  Gap (%)  # of iterations ID Solution time (sec)  Gap (%)  # of iterations
2 539 0.1 3 2 195 0.1 1
6 653 0 3 6 191 0.1 1
7 581 0 3 7 167 0 1
12 658 0.1 3 12 201 0.3 1
13 621 0.1 3 13 210 0.1 1
16 621 0 3 16 173 0 1
17 582 0 3 17 170 0.1 1
18 441 0 3 18 139 0 1
Avg 587 0.038 3 Avg 181 0.088 1
Table 10b Table 10g
Configuration Set #2. Configuration Set #7.
ID Solution time (sec)  Gap (%)  # of iterations ID Solution time (sec)  Gap (%)  # of iterations
2 1657 9 1 2 687 0.09 3
6 841 0 4 6 152 0 1
7 686 0 4 7 491 0 3
12 802 0.1 4 12 354 0.26 2
13 1929 7 1 13 920 0.09 4
16 610 0 4 16 155 0 1
17 538 0 4 17 185 0.05 1
18 551 0 4 18 912 0 4
Avg 952 2.01 3.25 Avg 482 0.061 2.38
Table 10c Table 10h
Configuration Set #3. Configuration Set #8.
D Solution time (sec)  Gap (%)  # of iterations ID Solution time (sec) ~ Gap (%)  # of iterations
2 413 0.1 2 2 818 0.09 4
6 421 0 2 6 338 0 2
7 276 0 2 7 476 0 3
12 487 0.1 2 12 1303 0.26 4
13 445 0.1 2 13 468 6.72 2
16 271 0 2 16 310 0 2
17 260 0 2 17 555 0.05 3
18 292 0 2 18 550 0 4
Avg 358 0.038 2 Avg 602 0.89 3
Table 10d Table 10i
Configuration Set #4. Configuration Set #9.
ID Solution time (sec)  Gap (%)  # of iterations ID Solution time (sec) ~ Gap (%)  # of iterations
2 220 0.1 1 2 161 0.09 1
6 482 0 2 6 144 0 1
357 0 3 137 0 1
12 210 0.1 1 12 167 0.26 1
13 185 0.1 1 13 1454 5.76 3
16 295 0 2 16 142 0 1
17 396 0 3 17 133 0.05 1
18 411 0 3 18 121 0 1
Avg 320 0.038 2 Avg 307 0.68 1.25
Table 10e Table 10j
Configuration Set #5. Configuration Set #10.
ID Solution time (sec)  Gap (%)  # of iterations ID Solution time (sec)  Gap (%)  # of iterations
2 207 0.1 1 2 1306 418 2
6 337 0 1 6 378 0 2
7 545 0 4 754 0 5
12 204 0.1 1 12 1436 0.26 5
13 2151 5 7 13 403 5.26 2
16 196 0 1 16 311 0 2
17 182 0 1 17 740 0.05 5
18 587 0 4 18 956 0 7
Avg 552 0.65 2.5 Avg 786 1.22 3.75

for the instances that are solved to optimality in Table 6. As we last rows of Tables 10a - 10j, we report the average value of each
choose set R randomly in each iteration, to discuss the effect of column.

randomness and perform analyses on the selection of R, we per- In Tables 10a - 10j, the first column provides the instance IDs.
form the tests under 10 different configuration sets. Each config- Their corresponding solution times, optimality gaps, and number
uration set includes a stream of random R sets. Note that in the of iterations are provided in the second, third and fourth columns,
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Table 11

Summary of results for k = 100 and 500 scenarios with the proposed heuristic.

ID Solution time (sec)  Gap (%) # of iterations  First stage shelter sites  Second stage shelter sites  Objective value  Average walk (m)
1 708 — 0.06 1 4,10, 12, 13, 25 5,7, 21 5.958 2281
2 413 0.09 2 4,10, 12, 13, 25 5 5.766 2289
3 906 0.40 1 4,10, 13, 23 5,15, 17 5.488 2253
4 200 0 1 10, 13, 19, 25 4,5, 16, 24 5.001 2366
5 411 - 132 2 10, 13, 19, 25 16, 24 4.895 2370
6 421 0 2 4,10, 12, 13, 25 5,15, 17, 21 6.067 2279
7 276 0 2 4,10, 12, 13, 25 515 5.866 2288
8 372 0 2 4,10, 12, 13, 25 5,15 5.866 2288
9 371 * 2 4,10, 13, 23 3,5, 11, 15,17 5.287 2274
10 759 0 4 10, 14, 19, 25 3,5,16 4972 2230
1 339 0.09 1 4,10, 12, 13, 25 5,17, 22 6.008 2278
12 487 0.10 2 4,10, 12, 13, 25 5,17 5.807 2288
13 445 0.09 2 4,10, 12, 13, 25 5 5.766 2289
14 385 — 0.01 1 10, 13, 19, 25 5,16, 24 5.060 2364
15 448 0 2 10, 13, 19, 25 16, 24 4.934 2371
16 271 0 2 4,10, 12, 13, 25 5, 15, 17, 21 6.108 2277
17 260 0 2 4,10, 12, 13, 25 5,15, 20 5.912 2287
18 292 0 2 4,10, 12, 13, 25 515 5.866 2288
19 334 * 2 4,10, 13, 23 3,5, 11, 15,17 5.382 2271
20 506 0.03 3 10, 12, 13, 25 5,15, 16 5.097 2379

respectively. Iteration number in a test corresponds to the number
of times the smaller problem is solved. Note that x = 100 and |S| =
500.

In Tables 10a - 10j, it is observed that generally the optimal-
ity gaps and the solution times for the instances are positively
correlated. This is the main reason we present the results of the
proposed heuristic with different configuration sets. The combina-
tion of scenarios in set R affects the performance of the proposed
heuristic. But again, performing the proposed heuristic for 10 dif-
ferent random configuration sets - for Instances 2, 12 and 13, i.e.
the instances for which we cannot find the optimal solution with
any of the configuration sets - still has lower solution times with
respect to the results in Table 6. So the proposed heuristic can be
performed numerous times and the best solution it provides can
be chosen as a near-optimal solution. Nonetheless, it should be
kept in mind that it is costly to perform the heuristic methodol-
ogy numerous times for the fine tuning.

In terms of performance among the 10 different configuration
sets, it can be observed that configuration sets 1, 3 and 4 have the
smallest average optimality gaps. We choose third configuration set
to solve the remaining instances, namely the instances that cannot
be solved to optimality in 6 hours. Note that the average compu-
tational time of third configuration set is between the other two
sets, namely first and fourth configuration sets.

Table 11 provides the solution times, gaps — with respect to the
solutions provided in Table 6, i.e. the best objective value - and
the number of iterations along with the information on the solu-
tions as in Table 6. A negative gap value states that the proposed
heuristic provides a better objective value than the best objective
value in Table 6, whereas a positive gap value states that the pro-
posed heuristic provides a worse solution. Note that * denotes that
the corresponding gap value cannot be calculated as CPLEX cannot
find a feasible solution for those instances due to memory errors.

The objective values in Table 11 are similar to those in
Table 6 and the proposed heuristic performs better in terms of
solution times. The proposed heuristic also provides solutions for
the instances where CPLEX cannot solve due to memory errors. Al-
though we do not know the optimal solutions for some of the in-
stances presented in Table 11, comparing with the results of CPLEX
provided in 6 hours, we can say that the proposed heuristic per-
forms well in terms of solution times as the maximum solution
time is 15 minutes, averaging around 7 minutes. The reader should
note that we disregard the time it takes to choose the configura-

tion set that will be used to solve the model, since it is up to the
DM to choose the number of configuration sets to perform the ini-
tial comparison, and the cost of preprocessing changes accordingly.

7. Value of the three-stage model

To reiterate the value of using the proposed model in cases
of consecutive disasters, we compare it with its common counter-
part, where we separate the main earthquake and the aftershock
in the decision making process, i.e without relating the aftershocks
to main earthquakes. We model this problem using two two-stage
stochastic MIPs. The first program, namely F1, includes the deci-
sions for the main earthquakes, and the second program, namely
F2, includes the decisions for the aftershocks.

To solve this common counterpart problem, we first solve F1
considering only the main earthquake demand scenarios (realiza-
tions), i.e. we assume that the DM disregards the probability of
having aftershocks while deciding for the locations of the shel-
ter sites for the main earthquake. We then solve F2 for each set
of possible aftershock demand realizations following each main
earthquake demand realization.

Note that there are 50 different main earthquake demand re-
alizations and 10 aftershock demand realizations following each
main earthquake realization in the dataset. Therefore, we solve F1
once considering 50 different main earthquake demand realiza-
tions. We solve F2 50 times, each time with a different set of 10
aftershock demand realizations.

Here, we define new scenario sets, S; and S, s€S;. S; is the
set of main earthquake demand scenarios (realizations) and |S;| =
50 by construction of the proposed dataset. S is the set of after-
shock demand scenarios (realizations) following the main earth-
quake scenario seS; and |Ss| = 10 for each s€S; by construction.
For each je<J, we also define a discrete uniform random variable
sz and let szs, se Sy be the realizations of the random variable sz,

where sz(s) = sz, seS;. Also, for each seS; and jeJ, we define

a discrete uniform random variable Ffs and let ffss §e S be the

realizations of it, where F]3s () =f.5eSs

As the CVaR constraints (10) consider the losses resulting at
the third stage, we cannot directly use the same t; values for the
decomposed common counterpart problems. Therefore, we decom-
pose the 7; values as rjf for F1 and as rj’g seS; for F2 in a given
test using the optimal solutions in Table 6.
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Referring to the original model and the definitions in
Section 3:
. 1
F1(S;) = min )" WX}

jeg

s.t.
(2) - (4), (12), (13), (21)

CVaR, (F? —x}) < 7 Vjel

qugyi]j
jZS:ldT Vielse$
jstUYilj Viel,je]seS,

and F2(S;) is:

F2($s) =min %xi
i

Jjel
s.t.
jel
Ul
Zyl?ji(k)s+xi(r)551 VielLre{l,...,]J|-1}
k=r+1
Yizjsijz‘s Viel je]
XJ* < X5 Vel
CVaRy (F} —x3%) < 7}, Vie]
S awlh +Y akvi
’ l . - —
j355.: S - = Vje]SeSs
j
J/izjsdijfp Viel,je]
3= vyl Viel jel5esS;
x5 €{0,1} Vje]
yizjsE{O’l} Viel,je]

Note that, both F1 and F2 are two-stage stochastic programming
problems. In both formulations, location and allocation decisions
are first stage decisions whereas utilization decisions are second
stage decisions.

Note that we feed the solution provided from F1 to F2, so we
denote x} and y}j as x}* and y}j* in F2, respectively, to indicate that

Table 12

they are optimal decisions of F1. Also note that, we first solve F1
considering all the main earthquake demand realizations, i.e. for
S;. Then, we solve F2(Ss) for the set of aftershock demand real-
izations corresponding to the main earthquake scenario s<S;. Ob-
tained solutions are presented in Table 12.

The first column in Table 12 refers to the ID of the correspond-
ing test instance. In the first row of the second column, we present
the optimal value of the corresponding test instance, and in the
second row of the second column we present the average of the
optimal values of F2 problems, one F2 problem for each main
earthquake demand realization. In the third and fourth columns,
we present the maximum and average walk values of the proposed
model and the common counterpart problem, respectively. In the
last column, we denote the number of F2 problems that are infea-
sible, out of 50 problems.

As it can be observed in Table 12, there are some cases of
infeasibilities caused by decomposing 7; to r]f and 7, se$;. In
other words, in the proposed model, we consider all of the main
earthquake-aftershock scenarios simultaneously and can meet the
risk-aversion level for the whole planning horizon. But, we may
fail to achieve the same level of risk-aversion using the common
counterpart model even though more shelter sites are established
overall.

In all of the instances, the proposed model dominates the com-
mon counterpart model in terms of the objective value but is
sometimes dominated in terms of the average walks. This is mainly
due to the large number of shelter sites established in the common
counterpart model. Regardless, we can easily state that the pro-
posed model performs better than the common counterpart model
as the excess amount of established shelter sites does not seem to
improve the average walk values considerably.

We present details of the comparison using Instance 16 as an
example in Table 13. In the first column in Table 13, we average the
number of shelter sites established over all scenarios. In the sec-
ond column, we present the maximum utilization observed among
all shelter sites over all scenarios. In the third column, we average
the average shelter utilizations. And lastly, in the fourth column we
present the number of scenarios where the utilization of a shelter
site is above 100%.

As it is apparent from Table 13, it is more costly for the DM
not to incorporate the aftershocks in the decision making process.
In terms of the objective function and the number of established
shelter sites, the proposed model outperforms the common coun-
terpart model. The proposed model has a higher average utiliza-
tion with smaller maximum utilization and smaller number of sce-
narios where a shelter site is utilized more than 100%. All these

Comparison of objective values and walks of the proposed model and its common counterpart.

Optimal value
ID Average objective

Maximum walk (m

Average walk (m)  # of infeasibilities

2 5.761 3571
8.679 3903
6 6.067 3903
8.699 3903
7 5.866 3903
8.741 3903
12 5.801 3571
8.778 3903
13 5.761 3571
7.919 3903
16 6.108 3903
8.348 3903
17 5.912 3903
8.396 3903
18 5.866 3903
7.746 3903

2213 0
2251
2279 3
2228
2288 0
2245
2212 0
2250
2213 0
2272
2277 5
2228
2287 1
2251
2288 1
2273
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Table 13

Comparison of the proposed model with the common counterpart model for Instance 16.

Average # of overall shelter sites

Maximum util (%)

Average util (%)  # of scenarios above 100% util

Proposed model 534
Common 7.93
counterpart model

112.66
120.63

58.05 130
54.67 146

statistics emphasize that the proposed model performs better than
the common counterpart model.

8. Conclusion

In this study, we introduce a new modeling methodology to dis-
aster operations management literature. We incorporate secondary
disasters, e.g. aftershocks, to the shelter site location decisions af-
ter an earthquake has occurred and the demand is uncertain for
both of the disasters. We devise a three-stage stochastic MIP model
to mimic the real setting of an earthquake. In the first stage, be-
fore observing the actual demand of the main earthquake, we lo-
cate shelter sites. After the earthquake demand is realized in the
second stage, the disaster victims travel to the nearest open shel-
ter site. Note that we do not assign victims to the shelter sites,
they choose the closest open shelter site and travel there without
demand division. After the victims are located in the shelter sites,
an aftershock might hit the area and create more disaster victims
that require sheltering. Again, before observing the actual demand
of the aftershock, we locate shelter sites in the second stage. Then,
in the third stage, after the aftershock demand is realized, the af-
tershock victims travel to the nearest open shelter site.

We create a set of earthquake and aftershock scenarios for Kar-
tal, Istanbul. We use the network of Kartal introduced in Kilc
et al. (2015). We assume that 10 different aftershocks will follow
each main earthquake and create a scenario set of cardinality 500,
with 50 different main earthquake demand realizations.

As the solution times of the model with CPLEX are high, we
propose a heuristic methodology. We improve the solution times
drastically with the heuristic method while having small deviations
from the optimal values of the instances for which we know the
optimal solutions.

Comparing the proposed model with a common counterpart
model, where we decompose the main earthquake and the after-
shock and conduct the decision making without relating the after-
shocks to main earthquakes, we show that it is important to con-
sider secondary disasters while locating shelter sites for disaster
operations management.

For future research, we believe that one can explore the risk
of losing a shelter site, i.e. having its capacity decreased or having
it destroyed, and can search for solutions that minimize the risk
of such occurrences. Having the risk redefined, the mathematical
model can be implemented for different problems in different dis-
aster contexts, man-made or natural.
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