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a b s t r a c t 

Natural disasters may happen successively in close proximity of each other. This study locates shelter 

sites and allocates the affected population to the established set of shelters in cases of secondary dis- 

aster(s) following the main earthquake, via a three-stage stochastic mixed-integer programming model. 

In each stage, before the uncertainty in that stage, that is the number of victims seeking a shelter, is 

resolved, shelters are established, and after the uncertainty is resolved, affected population is allocated 

to the established set of shelters. The assumption on nearest allocation of victims to the shelter sites 

implies that the allocation decisions are finalized immediately after the location decisions, hence both 

location and allocation decisions can be considered simultaneously. And, when victims are allocated to 

the nearest established shelter sites, the site capacities may be exceeded. To manage the risk inherit to 

the demand uncertainty and capacities, conditional value-at-risk is utilized in modeling the risk involved 

in allocating victims to the established shelter sites. Computational results on Istanbul dataset are pre- 

sented to emphasize the necessity of considering secondary disaster(s), along with a heuristic solution 

methodology to improve the solution qualities and times. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

From the beginning of 20 th century, more than the current pop-

ulation of the world has been affected by various natural disas-

ters ( EM-DAT, 2008 ). In the recent years, the literature on disas-

ter operations management (DOM) has grown bigger. The reader

is referred to Altay and Green (2006) , Caunhye et al. (2012) ,

Galindo and Batta (2013) , Hoyos et al. (2015) , and the references

therein for the details. 

The DOM literature is classified into four main phases: (i)

mitigation, (ii) preparedness, (iii) response, and (iv) recovery

( McLoughlin, 1985 ). Phases (i) and (ii) refer to pre-disaster, while

phases (iii) and (iv) refer to post-disaster operations. The miti-

gation phase involves the actions taken in order to prevent and

mitigate the consequences of a possible disaster. The prepared-

ness phase includes plans for specific cases and provides effec-

tive responses to disasters. After a disaster occurs, the response

phase deals with providing the affected population with relief

goods and primary needs, such as water, food, medical care, shel-

ter, etc. Lastly, the recovery phase aims to recover all the damaged
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infra)structure in order to ensure the normal functioning of the

ffected population. 

In this study, the emphasis is on the people who cannot stay

heir homes after an earthquake has occurred and seek accommo-

ation in temporary shelters. To accommodate the disaster victims,

ne has to devote certain safe areas to establish temporary shel-

ers. Usually, this decision of choosing candidate shelter locations

s made before a disaster occurs, and the decision of establishing

ome combination of them is made after the disaster but before

he observation of the actual demand. The demand uncertainty and

he importance of choosing the best locations for shelters make

his problem one of the fundamental facility location problems in

he preparedness phase of DOM. This problem is known in the lit-

rature as the shelter site location problem ( Kılcı et al., 2015 ). 

It is important to consider the features of the network while

reating a methodology to locate shelter sites to host disaster vic-

ims, e.g. the distance between the potentially affected population

nd the shelter sites or the capacity of shelter sites. 1999 Marmara

arthquake provides an example for the case where the popula-

ion hosted in the shelters exceeds the shelter capacities as much

s 40% ( Kılcı et al., 2015 ). The problems that were observed in 1999

armara Earthquake motivated several studies, such as JICA report

 Cavdur et al., 2016; Görmez et al., 2011; JICA, 2002; Kılcı et al.,

015 ). 

Although it was not as apparent in 1999 Marmara Earthquake,

n some cases of disasters, the size of the displaced population
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ay grow larger because of the secondary disaster(s) following

he main shock. For 1999 Marmara Earthquake, secondary disasters

ere a disastrous fire at the Tüpra ̧s petroleum refinery, tsunami in

he Marmara sea, and the strong earthquake in Düzce ( Al Jazeera

urk, 2013 ). Similarly, the destructive aftershock in Van-Edremit,

hich took place 17 days after the Van-Erci ̧s Earthquake, is an an-

ther example of secondary disasters ( Al Jazeera Turk, 2013 ). When

he nature of consecutive disasters are analyzed, it can be observed

hat the main and secondary disasters might be of same types (e.g.

ftershocks following an earthquake as in Illapel Earthquake, 2015)

r of different types (e.g. tsunamis coupled with nuclear meltdown

ollowing an earthquake as in T ̄ohoku Earthquake, 2011). In the lit-

rature, this phenomenon of having consecutive disasters is called

ulti-hazard, which is defined as the combination of various haz-

rds in a defined area ( Kappes et al. (2010, 2012) ). 

In this study, we consider the multi-hazard phenomenon in the

ontext of the shelter site location problem. We focus only on the

arthquakes, namely the main shocks and the aftershocks. There-

ore, for the rest of the study, we will use aftershock and secondary

isaster interchangeably. 

For the purpose of our study, the magnitudes of the aftershocks

nd the time between two shocks are two important questions

o be answered. In the related literature, there is a handful of

ell-established empirical laws relating the magnitudes of after-

hocks and rate to time after the main shock, most eminent ones

eing Omori’s (1894), Båth’s (1965) , and Gutenberg and Richter

1954) laws. Omori’s law states that the number of aftershocks

ecreases nearly hyperbolically with time. Båth’s law concludes

hat the largest aftershock is usually about one magnitude unit

maller than the main shock. Gutenberg-Richter law mainly points

ut that more small and fewer large magnitude aftershocks occur.

herefore, in this study, we only consider destructive aftershocks

nd assume that at most one destructive aftershock can occur af-

er the main shock and it affects a smaller percentage of people

ith respect to the main shock. One may question the time be-

ween the main earthquake and the largest aftershock. According

o Utsu (1970) , for a main earthquake with a magnitude of 7, the

ime difference is generally in the range 0.01–100 days and the

ange gets larger with the magnitude of main shock. To give ex-

mples, for 1999 Marmara Earthquake, the largest aftershock is 27

ays later than the main shock ( Örgülü and Aktar, 2001 ), and this

ime is 17 and 32 days for 2015 Nepal ( Wikipedia, 2018 ) and 2016

cuador ( Wu et al., 2017 ) earthquakes, respectively. 

The decision of establishing some combination of the candidate

helter sites becomes more complicated as the demand uncertainty

reated by the main shock couples with the demand uncertainty

reated by the possible aftershock. We investigate the effect of this

ind of stochasticity on the shelter site location problem. As it is in

he real setting, we assume that the decision maker (DM) locates

he shelter sites in the first stage, that is after the main earthquake

nd before the realization of the actual demand. After the realiza-

ion of the demand, in the second stage, the allocation of disaster

ictims to the shelter sites are made. Then, again in the second

tage, we consider that in case of an aftershock hitting the area,

he DM is required to decide whether or not to establish new shel-

er sites to meet the new (aftershock) demand. Finally, in the third

tage, after whole uncertainty is resolved, the allocation of disas-

er victims affected by the aftershock to the shelter sites are made

nd utilization of shelter sites are observed. We assume that in the

reparedness phase, the candidate shelter site locations have al-

eady been determined and the shelters, which usually are tents,

re ready to be established promptly after the earthquake. Shelters

an be established within a few days after the earthquake; for ex-

mple, it was two days in the 2011 Van Earthquake ( Milliyet, 2011 ).

ased on the discussion on time difference between main shock

nd the largest aftershock, we assume that the largest aftershock
ccurs after the shelter sites due to main earthquake are estab-

ished. 

In order to model the behavior of the disaster victims in a more

ealistic manner, we assume that the disaster victims in the same

eighborhood will always travel to the same nearest shelter site. In

his setting, the allocation decision of victims to the shelter sites

an be made as soon as the shelter sites are located. Hence, the

llocation decisions are made implicitly and they follow the lo-

ation decisions. So, in our setting, we can discuss that the loca-

ion and allocation decisions regarding the main earthquake are

ade in the first stage and the location and allocation decisions

egarding the aftershock are made in the second stage, after the

ain earthquake demand is realized. In the third stage, after the

hole uncertainty is resolved, the utilizations of shelter sites are

bserved. 

Note that, from a psychological point of view, it is possible that

 certain portion of the disaster victims –who are to reside in

he shelters after the aftershock– may choose to travel to a far-

her shelter site, that has been established in the first stage, to be

ith their neighbors. Since this approach would require parametric

nalysis on the portion of population that embraces such a choice,

e preserve the nearest assignment idea throughout this study. 

When the disaster victims are always assigned to the nearest

helter site without demand division, the shelter site capacities

ay be exceeded. So, we define the risk in this setting as the

apacity of a shelter site being exceeded. We utilize the condi-

ional value-at-risk (CVaR, as introduced by Rockafellar and Urya-

ev (20 0 0) ) as the risk measure to quantitatively represent the risk

nd experiment with varying quantile levels to observe the behav-

or of the model. The analyses presented later in the study sug-

est that it is in fact important to consider the secondary disasters

hile locating the shelter sites. 

The remainder of this paper is organized as follows: in

ection 2 , the relevant literature related to this study is reviewed.

n Section 3 , the proposed three-stage stochastic mixed-integer

rogramming (MIP) model is presented. Section 4 is devoted to the

etails of the dataset creation for a district of Istanbul. The results

f the problem instances are presented and discussed in Section 5 .

 heuristic solution methodology to improve the solution qualities

nd times is proposed in Section 6 . In Section 7 , we present the

alue of using the three-stage model. The paper is concluded with

n overview of the study and future research directions. 

. Literature review 

Facility location decisions are often costly and almost always

rreversible, and since the parameters, such as demand, that

hey abide may fluctuate, stochastic modeling is very relevant

 Snyder, 2006 ). While reviews by Owen and Daskin (1998) and

urrent et al. (2002) examine both deterministic and stochastic fa-

ility location models, Snyder (2006) and Caunhye et al. (2012) dis-

uss only stochastic nature of facility location problems and all

gree that the complexity of location problems are captured best

y stochastic modeling. 

With an enormous literature on facility location, the applica-

ion of those models to humanitarian logistics is abundant (see,

.g. Altay and Green, 2006; Simpson and Hancock, 2009; Galindo

nd Batta, 2013 ), especially with an emphasis on humanitarian

ogistics, as can be seen in Özdamar et al. (2004) , Kovács and

pens (2007) , and Leiras et al. (2014) . 

The review papers by Ortuño et al. (2013) , Liberatore et al.

2013) , and Grass and Fischer (2016) indicate the essence of the

ffects that stochasticity creates in humanitarian logistics. The re-

iew by Liberatore et al. (2013) defines the risks and uncertain-

ies associated with disasters in depth, and furthermore, discusses

he sources of uncertainties in disasters and how to model them.
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Table 1 

Deterministic location studies in humanitarian logistics. 

Article Single/Multi Objective Objective(s) Decision(s) Solution Methodology 

Kılcı et al. (2015) S Shelter weight Location, Allocation MIP solver 

Bayram et al. (2015) S Evacuation time Location, Allocation, Evacuation 2 nd order cone programming 

Kongsomsaksakul et al. (2005) S Evacuation time Location, Allocation, Evacuation Genetic algorithm 

Chanta and Sangsawang (2012) M Weighted distance, maximum cover Location, Allocation MIP solver 

Alçada-Almeida et al. (2009) M Distance, risk, evacuation time Location, Allocation, Evacuation MIP solver 

Coutinho-Rodrigues et al. (2012) M Distance, risk, evacuation time Location, Allocation, Evacuation MIP solver 

Table 2 

Stochastic shelter site location studies in humanitarian logistics. 

Article 

# of 

Stages Objective(s) Decision(s) Uncertainty 

Solution 

Method 

Bayram and 

Yaman (2018) 

2 Expected evacuation time F: Location 

S: Evacuation 

Demand, disruption in transport network and 

shelter sites 

MIP solver 

Li et al. (2011) 2 LC, TC e , IC e , PC e , AC e F: Location, Capacity 

S: Allocation 

Demand, commodity transportation and evacuee 

allocation cost 

L-Shaped 

method 

Li et al. (2012) 2 S: Expected unmet demand, Expected travel time F: Location 

S: Evacuation 

Demand, shelter, accessibility, time Heuristic 

Our Model 3 Number of expected-weighted shelter sites F: Location, Allocation 

S: Location, Allocation 

T: Utilization 

Demand Heuristic 
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Grass and Fischer (2016) , on the other hand, survey only two-stage

stochastic models in disaster management in depth and provide

details on the general framework. These surveys provide a basis

for the significance of the proposed problem and help in finding

crucial and essential research directions to pursue. 

The above brief literature shows that the location problem is

an emerging problem for DOM (see Rawls and Turnquist, 2010;

Rawls and Turnquist, 2011 ). These problems may be classified as:

(i) emergency medical location problem; (ii) relief material (ware-

house) location problem; (iii) shelter site location problem ( Kılcı

et al., 2015 ). Existing literature covers categories (i) and (ii) ex-

tensively, leaving category (iii) fairly unexplored. In this work, we

focus on category (iii). So, we survey the related literature by di-

viding it into two main parts; deterministic and stochastic studies

in humanitarian logistics, focused primarily on shelter site location

problems. 

The relevant deterministic studies are summarized in Table 1 .

The first column introduces the article; the second column states

if the study is single-objective or multi-objective (denoted as S/M);

the third and fourth columns denote the objective(s) and deci-

sion(s) of the study, respectively; lastly the fifth column denotes

if the proposed model is solved directly with a commercial solver

or the author(s) devise a methodology. 

Kılcı et al. (2015) address the problem of locating shelter sites

for an earthquake case for Istanbul, Turkey. Using predetermined

set of weights for shelter sites (weight of a shelter site is simply an

indicator for its overall service level), they maximize the minimum

weight of the established shelter sites. Bayram et al. (2015) and

Kongsomsaksakul et al. (2005) propose models to minimize the

total evacuation time by locating shelters and assigning evac-

uees to shelters. While Bayram et al. (2015) assign evacuees

to the nearest shelter sites, within a given degree of tolerance,

Kongsomsaksakul et al. (2005) propose a bi-level program with the

upper level deciding on the shelter locations and the lower level

deciding on the assignment of evacuees to shelters. 

Alçada-Almeida et al. (2009) propose a multi-objective location-

evacuation model to locate emergency shelter sites and iden-

tify evacuation routes with lower and upper limits on shelter

site utilizations and predefined number of shelter sites. Coutinho-

Rodrigues et al. (2012) extend Alçada-Almeida et al. (2009) by in-

troducing varying objectives and not limiting the number of shel-

ter sites to be opened. Chanta and Sangsawang (2012) investigate a

bi-objective model which determines the locations of shelter sites

to serve a region suffering from a flood disaster. 
Table 2 summarizes the relevant stochastic studies, using the

ame classification methodology as above. The first column intro-

uces the article; the second column states if the model is two-

tage or three-stage; the third and fourth columns denote the ob-

ective(s) and decision(s) of the study, respectively, where F stands

or the first stage, S for the second stage, and T for the third

tage; the fifth column indicates the uncertain parameters; lastly

he sixth column denotes if the proposed model is solved directly

ith a commercial solver or the author(s) devise a methodology. 

In humanitarian logistics studies, various types of costs are con-

idered, so we use following abbreviations in Table 2 : TC e is the

xpected relief material transportation cost; LC is the facility lo-

ation cost; IC e is the expected inventory holding cost; AC e is the

xpected cost of transporting disaster victims to shelters; and PC e 

s the expected penalty cost of unsatisfied demand. 

Bayram and Yaman (2018) , Li et al. (2011) , and Li et al.

2012) propose shelter location models. Li et al. (2011) look at

ases where the relief supplies are transported from an already

xisting set of depots to located shelters along with shelter ca-

acities, where Bayram and Yaman (2018); Li et al. (2012) con-

ider evacuation of victims from disaster points to shelter sites.

ayram and Yaman (2018) , extending Bayram et al. (2015) , assign

vacuees to the nearest shelter sites, within a given degree of tol-

rance, while Li et al. (2012) deal with the distance traveled by

vacuees in the objective function and allow evacuees to be unas-

igned. 

The above literature reveals that shelter site location, especially

 study that considers secondary earthquakes, is a research di-

ection still to be explored. To the best of our knowledge, only

hang et al. (2012) consider secondary disasters directly. But the

ethod they propose is fairly inefficient as they have to repeat

heir algorithm for each disaster scenario (see Su et al. (2016) for

 discussion). While Zhang et al. (2012) allocate relief supplies to

isaster nodes, we locate shelter sites and allocate disaster victims

o that they receive acceptable levels of service in terms of shel-

ering. We also manage the risk of exceeding capacities of shelter

ites due to uncertain demands of main earthquake and aftershock.

. Shelter site location under multi-hazard scenarios 

Earthquakes are among the disasters of which we do not know

he time or magnitude in advance. We do not know if any after-

hock will follow the main earthquake, and if it does, again we

o not know the time, exact epicenter or magnitude of it. All of
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Fig. 1a. Demand points and the epicenter of the main earthquake. 

Fig. 1b. Open shelter sites after the main earthquake has occurred. 

Fig. 1c. Allocation of demand points after the main earthquake has occurred. 

Fig. 1d. Open shelter sites after the aftershock, note that some shelter sites were 

already open. 
his uncertainty leads to stochastic modeling where both the main

arthquake and the aftershock, namely the multi-hazard, involve

ncertainty. When this multi-hazard phenomenon does occur, the

opulation at risk will be the disaster victims who seek shelters.

e assume that the number of victims seeking a shelter is ran-

om. Some proportion of the population at risk will seek shelter

fter the main earthquake and some others will seek after the af-

ershock. To model this, we introduce multi-hazard methodology

nto shelter site location problem via a multi-stage stochastic MIP

odel. 

In this setting, after an earthquake has hit, disaster victims

haring the same neighborhood (used interchangeably with dis-

rict) always travel to the nearest shelter site. So, the shelter site

emand cannot be divided to state that certain victims are to re-

ide in another shelter site. In a multi-hazard setting, this behavior

eflects to both the main earthquake and the aftershock. When ev-

ry district travels to the nearest shelter site in any disaster stage,

he capacity of the established shelter sites may be exceeded. As

t is apparent in 1999 Marmara Earthquake, having shelter site uti-

izations as high as 140% reduces the quality of services received by

he disaster victims ( Kılcı et al., 2015 ) (here utilization of a shelter

ite is defined as the total number of victims staying in the shelter

ite divided by the capacity of that shelter site). 

To manage the risk of exceeding the shelter site capacities, we

tilize CVaR constraints. CVaR is first introduced by Rockafellar and

ryasev (20 0 0) . Presented as an approach to optimize or hedge

 portfolio of financial instruments to reduce risk, CVaR is also

sed in humanitarian logistics literature to mitigate possible risks

e.g. Noyan, 2012 ). CVaR, in our setting, provides the DM a way

f controlling the risk-aversion level, aiding in management of the

ver-utilization of shelter sites. As Rockafellar and Uryasev (20 0 0,

002) discuss, value-at-risk (VaR), another measure of risk, may

rovide poor quality solutions with respect to CVaR as VaR disre-

ards the distribution of the tail, i.e. may regard higher and smaller

iolations of the shelter site utilizations as the same and therefore

ay perform worse. 

Having described the problem setting, the proposed model lo-

ates shelter sites after a main earthquake and a possible after-

hock. It is assumed that the DM decides on the location of the

helter sites after an earthquake has happened and before the ac-

ual demand is observed. This is same for the first and second

tages. After the demand of the main earthquake and the after-

hock are realized in second and third stages, respectively, the al-

ocation decisions are finalized. Lastly, in the third stage, the uti-

izations of shelter sites are observed. 

In our mathematical model, we incorporate nearest assignment,

r nearest allocation, constraints to reflect the real life choices of

he disaster victims. When the disaster victims travel to the near-

st established shelter site, the location decisions imply allocation

ecisions, i.e. allocation decisions can be made automatically once

ocation decisions are finalized. Therefore, in this case, it does not

atter to allocate victims before or after the uncertainty is re-

olved. So, the allocation decisions regarding the main earthquake

an be made in the first stage and the allocation decisions regard-

ng the aftershock can be made in the second stage. We provide

ur mathematical model under this simplifying observation. 

We can illustrate the problem setting using Figs. 1a –1e . The

ed squares represent the shelter sites, the blue circles represent

he demand points (districts) and the yellow star represents the

picenter of the main earthquake. As it is described further in

ection 4 , all of the possible main earthquakes share the same epi-

enter. All the demand points in Kartal, Istanbul and the epicenter

f the main earthquake can be observed in Fig. 1a . 

Once the main earthquake occurs in the first stage, the DM es-

ablishes the shelter sites, red squares, before observing the actual

emand, as in Fig. 1b , in the first stage. Then, in the same (first)
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Fig. 1e. Allocation of demand points after the aftershock and the final result of a problem instance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Visualization of scenario structure. 
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stage, the allocation of disaster victims to the nearest open shelter

sites is as in Fig. 1c – lines represent the allocation of the districts

to the open shelter sites. After the disaster victims have traveled

to the nearest open shelter site, an aftershock may hit Kartal and

may require new shelter sites, additional red squares, to be estab-

lished, as in Fig. 1d . For this particular instance, three new shelter

sites are established. Note that, under some main earthquake de-

mand realizations, some of these three shelter sites may not be

established. In the same (second) stage, the allocation of disaster

victims to the nearest open shelter site is as in Fig. 1e – dashed

lines represent the allocation of the districts to the open shelter

sites. As under different disaster scenarios, different shelter sites

can be established in the second stage and hence second stage al-

location of districts vary among different main earthquake demand

realizations. This fact can be observed in Fig. 1e . Districts 4 and 13

have two dashed lines, depending on which shelter site is opened

in the second stage. 

Throughout this study, we assume that the demand after the

main earthquake and the aftershock is uncertain. To the best of

our knowledge, in the humanitarian logistics studies, there is not

any dataset that considers secondary disasters, although many do

consider main disasters (see e.g. Balcik and Beamon, 2008; Gunnec

and Salman, 2007; Kılcı et al., 2015; Noyan et al., 2015; Verma and

Gaukler, 2015 ). Therefore, we create a new dataset based on the

network provided by Kılcı et al. (2015) . We assume that an after-

shock may follow a main earthquake. We provide a dataset where

a scenario corresponds to a main earthquake-aftershock demand

realization pair. 

After preliminary tests with the proposed mathematical model

using the proposed dataset, we seek to improve the quality of solu-

tions as victims are assigned to farther shelter sites and some shel-

ter sites have utilizations as low as 3% in some instances. To rem-

edy this, we consider including two additional set of constraints to

the formulation: an upper limit on the distance between disaster

victims and the assigned shelter sites and a minimum utilization

for open shelter sites. These constraints provide solutions that are

preferable by both the victims and the DM (e.g. government au-

thorities), respectively. 

To be in accordance with the dataset provided by Kılcı

et al. (2015) , we assume that the set of candidate shelter site lo-

cations is known in advance, all shelter sites have predetermined

capacities and have previously assigned weights that denote their

level of performance. Kılcı et al. (2015) defines eligible shelter site

locations, identifies the attributes of these shelter sites using ten

different criteria, scales the values of respective criteria to com-
on units and finally calculates the weights of shelter sites as a

onvex combination of the scaled values. 

We also assume that the population of each district is concen-

rated in its centroid. A significant assumption is on the capacity

f the shelter sites - we assume that under no circumstances the

apacity of a shelter site changes, i.e. the risk of losing convenience

f any shelter site is non-existent. 

In the formulation, we consider a finite set S of scenarios.

ere, a scenario is a main earthquake-aftershock demand realiza-

ion pair. Each scenario s ∈ S occurs with a probability of p s . This is

isualized in Fig. 2 . Each leaf, when traced back to root node, rep-

esents a scenario, i.e. main earthquake-aftershock scenario pair. 

We use the following notation for the sets: 

I : set of districts 

J : set of candidate shelter sites 

S : set of scenarios 

S 2 s : set of scenarios sharing the same history as scenario 

s ∈ S up to second stage, 

nd for parameters: 

w j : weight of candidate shelter site j ∈ J; w j ∈ ( 0 , 1] 

p s : probability of scenario s ∈ S 

τ j : allowed tolerance for exceeding capacity of shelter site 

j ∈ J 
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q 1 is : number of people affected in district i ∈ I under scenario

s ∈ S after the main earthquake 

q 2 is : number of people affected in district i ∈ I under scenario

s ∈ S after the aftershock 

d i j : distance between district i ∈ I and candidate shelter site 

j ∈ J 

α : risk-aversion parameter of CVaR 

c j : capacity of shelter site j ∈ J. 

For each district i ∈ I , the distances d ij can be sorted non-

ecreasingly, thus providing an ordered sequence for the candidate

helter sites in terms of their distances to each district. We de-

ote it by j i ( r ), the r -th closest candidate shelter site to district i ∈ I ,

 ∈ { 1 , . . . , | J|} . 
Then we define the decision variables as: 

x 1 j = 

{ 

1 if shelter site j is established 

in first stage 
0 otherwise 

∀ j ∈ J 

y 1 i j = 

{ 

1 if district i is assigned to 

shelter site j in first stage 
0 otherwise 

∀ i ∈ I, j ∈ J 

x 2 js = 

{ 

1 if shelter site j is established 

in second stage under scenario s 
0 otherwise 

∀ j ∈ J, s ∈ S 

 

2 
i js = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 if district i is assigned to 

shelter site j under scenario s 
in second stage 

0 otherwise 

∀ i ∈ I, j ∈ J, s ∈ S

f 3 js = overall utilization of shelter site 

j under scenario s ∀ j ∈ J, s ∈ S. 

Recall the construction of this problem using the nearest as-

ignment constraints. The definition of decision variables follows

he same discussion. Since nearest assignment constraints are uti-

ized, once the shelter sites are located, the assignment decisions

re immediate. Therefore, the assignment decisions will be the

ame whether they are made before observing the demand or af-

er observing the demand. But, to decide on the utilization of a

helter site, it is required to realize the uncertain demand for the

hole process, which is in turn realized finally in the third stage.

ence follows the above definition of variables. 

Additionally, for j ∈ J , we define random variables X 2 
j 

and F 3 
j 

.

et x 2 
js 
, s ∈ S be the realizations of the random variable X 2 

j 
where

 

2 
j 
(s ) = x 2 

js 
for all j ∈ J, s ∈ S . And let f 3 

js 
, s ∈ S be the realizations of

he random variable F 3 
j 

where F 3 
j 
(s ) = f 3 

js 
for all j ∈ J, s ∈ S . Then,

e have the following three-stage stochastic MIP model: 

( S) = min 

∑ 

s ∈ S 

∑ 

j∈ J 
p s 

1 

w j 

x 2 js (1) 

s.t. ∑ 

j∈ J 
y 1 i j = 1 ∀ i ∈ I (2) 

| J| ∑ 

k = r+1 

y 1 i j i (k ) + x 1 j i (r) ≤ 1 ∀ i ∈ I, r ∈ { 1 , . . . , | J| − 1 } (3)

y 1 i j ≤ x 1 j ∀ i ∈ I, j ∈ J (4)

∑ 

j∈ J 
y 2 i js = 1 ∀ i ∈ I, s ∈ S (5)
| J| ∑ 

k = r+1 

y 2 i j i (k ) s + x 2 j i (r) s ≤ 1 ∀ i ∈ I, s ∈ S, r ∈ { 1 , . . . , | J| − 1}

(6) 

y 2 i js ≤ x 2 js ∀ i ∈ I, j ∈ J, s ∈ S (7)

x 1 j ≤ x 2 js ∀ j ∈ J, s ∈ S (8)

x 2 js ′ = x 2 js ∀ j ∈ J, s ∈ S, s ′ ∈ S 2 s (9) 

CVaR α

(
F 3 j − X 

2 
j 

)
≤ τ j ∀ j ∈ J (10) 

f 3 js = 

∑ 

i ∈ I 
q 1 is y 

1 
i j + 

∑ 

i ∈ I 
q 2 is y 

2 
i js 

c j 
∀ j ∈ J, s ∈ S (11)

x 1 j ∈ { 0 , 1 } ∀ j ∈ J (12)

y 1 i j ∈ { 0 , 1 } ∀ i ∈ I, j ∈ J (13)

x 2 js ∈ { 0 , 1 } ∀ j ∈ J, s ∈ S (14)

y 2 i js ∈ { 0 , 1 } ∀ i ∈ I, j ∈ J, s ∈ S. (15)

The objective function (1) minimizes the expected weighted

umber of established shelter sites while aiming to establish shel-

er sites with higher weights. We achieve this goal using recipro-

ates of the shelter site weights. Constraints (2) make sure that

very district is allocated to only one shelter site in the first stage.

onstraints (3) are the nearest allocation constraints for the first

tage as presented by Wagner and Falkson. Constraints (4) assure

hat, in the first stage, a district is assigned to a shelter site if

his shelter site is established. For ease of representation, we de-

ote constraints (2) –(4) as the “first stage allocation constraints”,

o that constraints (5) –(7) , which are only the projections of the

ame decisions, can be denoted as the “second stage allocation

onstraints”. Constraints (8) are to make sure that if shelter site

 ∈ J is established in the first stage, it should be kept open for any

cenario at the second stage (i.e. a located shelter site cannot be

losed). Constraints (9) are the non-anticipativity constraints. Con-

traints (10) are the CVaR constraints which check the utilizations

f shelter sites and make sure that the configuration of established

helter sites meet the risk-aversion criterion. Constraints (11) de-

ne the overall utilization of a shelter site in the corresponding

cenario. Lastly, constraints (12) –(15) are the domain constraints. 

We introduce a more precise description of CVaR for continu-

us loss variables, as presented in Rockafellar and Uryasev (20 0 0,

002) . Given that Z is a random cost: 

VaR α(Z) = E [ Z | Z ≥ VaR α(Z)] , 

here 

aR α(Z) = min 

η∈ R 
{ η : P { Z ≤ η} ≥ α} , 

nd α ∈ (0, 1) is a preselected confidence level to tune the risk-

version. So, CVaR α( Z ) is the conditional expected value of the

osses exceeding the VaR α( Z ) at the confidence level α. 
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Fig. 3. Structure of the decision process. 
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A more general version of CVaR, which is defined for

any random cost Z , discrete or continuous, is as follows (see

Rockafellar and Uryasev, 20 0 0 ): 

CVaR α(Z) = inf 
η∈ R 

{
η + 

1 

1 − α
E ([ Z − η] + ) 

}
(16)

where [ a ] + = max 
{

0, a 
}
, a ∈ R . 

In this setting, we wish to control the risk of having over-

utilized shelter sites. To do so, we introduce the discrete random

variable F 3 
j 

− X 2 
j 

as the random cost (or loss). The realization of

this difference under scenario s is positive (non-positive) when

the realization of the utilization of shelter site j under scenario

s is above (below) 100%. As the aim is to keep this loss, over-

utilization when positive, as small as possible, we measure the risk

of this loss using CVaR. We limit CVaR α(F 3 
j 

− X 2 
j 

) from above with

τ j , a parameter tuned by the DM as a secondary measure of risk-

aversion – also a bound to control the upper tail of the loss distri-

bution, and formally introduce the CVaR constraints (10) . 

To linearize the CVaR constraints (10) , using the representation

(16) and referring to Rockafellar and Uryasev (20 0 0) , we define

two new types of continuous decision variables, z js and ηj , j ∈ J,

s ∈ S , and replace constraints (10) with constraints (17) –(20) in P( S ):

η j + 

1 

1 − α

∑ 

s ∈ S 
p s z js ≤ τ j ∀ j ∈ J (17)

z js ≥ f 3 js − x 2 js − η j ∀ j ∈ J, s ∈ S (18)

z js ≥ 0 ∀ j ∈ J, s ∈ S (19)

η j is free ∀ j ∈ J. (20)

In multi-stage stochastic models, for the scenarios having the

same history up to a given stage, the decisions made at that stage

must be the same. This is called non-anticipativity (see Birge and

Louveaux, 2011 for details). In the proposed model, this means that

scenarios having the same history up to second stage should share

the same decisions at stage two. In other words, the assignment

of districts to shelter sites and establishment of new shelter sites

in the second stage cannot differ for scenarios sharing the same

main earthquake demand realization. To force this on the proposed

model, we utilize non-anticipativity constraints. Note that this type

of constraints is not necessary for our first stage decisions as they

do not depend on scenarios. Also note that we do not consider

non-anticipativity constraints for the second stage allocation deci-

sions, namely y 2 
i js 

variables, since they are imposed by the nearest

assignment constraints and non-anticipativity constraints on sec-

ond stage shelter site establishment decisions. 

To discuss the structure of non-anticipativity constraints in this

context, in Fig. 3 , we first visualize the decision process. Recall that

a main earthquake triggers x 1 decisions and an aftershock trig-

gers x 2 decisions (the indices are dropped for ease of notation).

Also observe that assignment decisions are implicitly made with

respect to location decisions and the utilization of shelter sites are

finalized in the third stage. Since second stage shelter site location

decisions are made after observing the main earthquake demand

realization but before observing the realization of aftershock de-

mand, these decisions should be the same for the scenarios shar-

ing the same main earthquake demand realization. To force this,
e define set S 2 s , which is the set of scenarios sharing the same

istory as scenario s ∈ S up to second stage and use constraints (9) .

In Fig. 3 , location and allocation decisions in the first stage are

ollowed by location and allocation decisions in the second stage,

fter the demand regarding the main shock is realized. Finally, af-

er the demand regarding the aftershock is realized, the third stage

ecisions, shelter site utilizations, are finalized. 

As discussed earlier in this section, we also add constraints to

imit the maximum distance between the districts and assigned

helter sites and the minimum utilizations of open shelter sites

o improve the solution qualities further. Constraints (21) and

22) limit the maximum distance between the districts and as-

igned shelter sites, stating that no district can be forced to travel

 distance more than ρ: 

 

1 
i j d i j ≤ ρ ∀ i ∈ I, j ∈ J (21)

 

2 
i js d i j ≤ ρ ∀ i ∈ I, j ∈ J, s ∈ S. (22)

Constraints (23) and (24) limit the minimum utilizations of

pen shelter sites, stating that if at least one district is assigned

o a shelter site, then that shelter site should be utilized at a level

f at least υ: 

f 3 js ≥ υy 1 i j ∀ i ∈ I, j ∈ J, s ∈ S (23)

f 3 js ≥ υy 2 i js ∀ i ∈ I, j ∈ J, s ∈ S. (24)

Then P( S ) is: 

min (1) 

s.t. (2) – (9), (11) – (15), (17) – (24) . 

. Dataset 

We model the demand uncertainty in this setting using a

ataset consisting of scenarios for earthquake-aftershock pair. To

he best of our knowledge, in the humanitarian logistics literature,

ven though there are many studies providing datasets on single

main –in the context of this study–) disasters (see e.g. Balcik and

eamon, 2008; Gunnec and Salman, 2007; Kılcı et al., 2015; Li

t al., 2011; Noyan et al., 2015; Verma and Gaukler, 2015 ) there

s not any study that provides a dataset for both main and sec-

ndary disasters. Therefore, we devise a methodology for creating

cenarios for a district of Istanbul, Turkey. 

Throughout this study, we use the network of Kartal provided

y Kılcı et al. (2015) (see Figs. 4 and 5 ). Kartal has 25 candi-

ate shelter site locations with corresponding capacities provided

n Table 3 . We create the dataset in accordance with the JICA study

 JICA, 2002 ), where we assume that each main earthquake will be

ollowed by 10 different aftershocks and all of the main earth-

uakes share the same epicenter, varying in magnitude. We pro-

ose 50 distinct main earthquakes and therefore a total of 500

isaster scenarios. We differentiate the earthquakes in this setting

ccording to three features: epicenter, effect radius and percent af-

ected ratio ( PAR ). The proposed methodology regards these fea-

ures and, as discussed above, uses the same epicenter for every

ain earthquakes. For main earthquakes, we only decide on the

ffect radius and the proportion of the population in a district it

ffects, namely PAR . We assume that with a probability of 20%, the

ain earthquake will affect the districts in 3 km radius, and with

 probability of 40% (40%), the main earthquake will affect the dis-

ricts in 4 (5) km radius. 

The corresponding PAR values along with their probabilities for

he main earthquakes can be found in Table 4a , where U[ a, b] de-

otes a continuous uniform distribution on the interval [ a, b ] for

hich a < b . It is important to note that the districts are affected

nversely proportional to their distances to the epicenter in the
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Fig. 4. Blue circles represent the demand points (districts) and red squares represent the candidate shelter site locations in Kartal. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Location of Kartal in Istanbul. 
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Table 4a 

Effect radius, occurrence probability and PAR values of main 

earthquakes. 

Effect radius (km) Occurrence probability PAR 

3 16% U[0.4, 0.5] 

50% U[0.5, 0.6] 

34% U[0.6, 0.7] 

4 16% U[0.5, 0.6] 

50% U[0.6, 0.7] 

34% U[0.7, 0.8] 

5 16% U[0.6, 0.7] 

50% U[0.7, 0.8] 

34% U[0.8, 0.9] 

Table 4b 

Effect radius, occurrence probability and PAR values of aftershocks. 

Effect radius (km) Occurrence probability PAR 

U[3.9, 4.2] 16% U[0.32, 0.40] 

50% U[0.40, 0.48] 

34% U[0.48, 0.56] 

U[5.2, 5.6] 16% U[0.40, 0.48] 

50% U[0.48, 0.56] 

34% U[0.56, 0.64] 

U[6.5, 7.0] 16% U[0.48, 0.56] 

50% U[0.56, 0.64] 

34% U[0.64, 0.72] 

m  

a  

t

5

 

d  
ases of both main earthquakes and aftershocks. The same idea

pplies to the generation of aftershocks. But since aftershocks, as

n the real setting, may depend on the main earthquake, we use

he features of the main earthquake. We assume that the epicen-

er of the aftershock is within a circle, which is centered at the

picenter of the main earthquake and has a radius equal to the

alf of the effect radius of the main earthquake. The aftershock’s

ffect radius is greater than the main earthquake’s effect radius

y a factor generated from U[0 . 3 , 0 . 4] , i.e. we multiply the effect

adius of the main earthquake by U[1 . 3 , 1 . 4] and obtain the inter-

al for the effect radius of the aftershock. Note that also the PAR

alue of an aftershock is 20% lower than the main earthquake’s

AR value. For example, if a main earthquake has an effect radius

f 3 km, as in the first row of Table 4a , the aftershock’s epicenter is

ithin 1.5 km radius of the main earthquake’s epicenter (see Fig. 6

or a visualization). The aftershock’s effect radius is 3 × U[1 . 3 , 1 . 4]

 U[3 . 9 , 4 . 2] , occurrence probabilities and PAR values are as in the

rst row of Table 4b . Note that this selection of parameters, for
Table 3 

Capacities of shelter sites. 

Shelter site # 1 2 3 4 

Capacity 24,0 0 0 45,0 0 0 25,0 0 0 60,0 0 0 

Shelter site # 10 11 12 13 

Capacity 10 0,0 0 0 30,0 0 0 62,500 60,0 0 0 

Shelter site # 19 20 21 

Capacity 60,0 0 0 30,0 0 0 25,0 0 0 
agnitudes and effect radii, is data specific. We do not propose

ny empirical or theoretical relationship between characteristics of

he aftershocks and the main shocks. 

. Multi-stage stochastic MIP results 

In this section, we present the computational experiments con-

ucted with the proposed mathematical model using the dataset
5 6 7 8 9 

60,0 0 0 25,0 0 0 30,0 0 0 75,0 0 0 25,600 

14 15 16 17 18 

50,0 0 0 30,625 30,0 0 0 75,0 0 0 45,0 0 0 

22 23 24 25 

25,0 0 0 150,0 0 0 30,0 0 0 60,0 0 0 
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Fig. 6. Visualization of scenario generation methodology. 

Table 5 

Parameter settings for corresponding instance IDs. 

( α, υ) τ̄ ID 

(0.90, 0.10) 0.05,..., 0.25 1,..., 5 

(0.90, 0.15) 0.05,..., 0.25 6,..., 10 

(0.95, 0.10) 0.05,..., 0.25 11,..., 15 

(0.95, 0.15) 0.05,..., 0.25 16,..., 20 
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described in Section 4 . The proposed model is coded in JAVA and

solved using IBM CPLEX 12.7.1. All tests are run on a Linux OS with

Dual Intel Xeon E5-2690 v4 14 Core 2.6GHz processor with 128 GB

of RAM. 

As discussed in previous sections, some of the parameters are

left to be tuned by the DM. Two of these are risk-aversion level,

namely α, and allowed tolerance for excess of capacity for each

shelter site, namely τ j , j ∈ J . Note that ∀ j ∈ J , we take τ j the same

and we will use τ̄ to denote values of all τ j in this section. 

Minimum utilization of established shelter sites, namely υ, pro-

vides the DM with the control of the overall utilizations of estab-

lished shelter sites. The upper limit on the distance between dis-

aster victims and the shelter sites is ρ = 4 (km) for all instances

throughout this study. The parameter settings along with respec-

tive instance IDs are presented in Table 5 . Note that τ̄ values differ

by 5%, e.g. Instance ID 3 has τ̄ = 15% and ( α, υ) = (0.90, 0.10). 

For each test instance, we put a 6-hour time limit on CPLEX.

The results are presented in Table 6 . Note that the number of main

earthquake-aftershock scenarios considered is 500. 

In Table 6 , the first column refers to the instance ID. The second

column is the solution time of the corresponding instance in hours.

If the corresponding instance cannot be solved to optimality in 6

hours, CPU time is denoted as “ > 6”. The third column denotes the

optimality gap of the corresponding instance if it is not solved to

optimality in 6 hours. Third and fourth columns refer to the con-

figuration of the established shelter sites in first and second stages,

respectively. Note that in the fourth column, the shelter sites estab-

lished in the second stage are presented in their entirety, i.e. not

all of them are established in every scenario but a subset of them

are. The fifth column is the best objective value and is the optimal

value of the corresponding test instance if it is solved to optimal-

ity. The last column is the average walk of the disaster victims to

their allocated shelter site. 

As seen in Table 6 , most of the test instances are not solved

to optimality in 6 hours. Two of the test instances, Instances 9
nd 19, cannot be solved due to memory errors, denoted by “∗” in

he table. Those which are solved to optimality and used in com-

arative analyses are summarized in Tables 7a –7f . We present de-

ails on the locations of established shelter sites in each stage and

heir utilizations. Observe that we do not consider all of the test

nstances which are solved to optimality in this comparative anal-

sis since we discuss the effect of different parameter settings and

ot all of the test instances are required for this. 

In Tables 7a –7f , the leftmost column is the open shelter site’s

umber. The second column states if the corresponding shelter site

s established in the first or the second stage – the same note as

revious table applies here, a subset of these second stage shel-

er sites is established in each scenario. The third, fourth and fifth

olumns denote the minimum, maximum and average utilizations

f corresponding shelter site, respectively. Note that the minimum

maximum) utilization of a shelter site is its minimum (maximum)

tilization over all scenarios. Lastly, the sixth column denotes the

umber of scenarios where the utilization of the corresponding

helter site has exceeded 100%. 

To see the effect of minimum utilization, namely ν , on the so-

utions, we compare Instances 2 and 7, provided in Tables 7a and

b , respectively. In Instance 2; ν = 10% and in Instance 7; ν =
5%. Remaining two parameters, namely α and τ̄ , are the same in

oth instances. As the minimum utilization increases, for this par-

icular case, configuration of first stage shelter sites differs only by

ne shelter site, a bigger shelter site is opened instead of a smaller

ne, and its effect can be observed as a decrease in the average

tilizations of unchanged set of open shelter sites. In the second

tage, the model chooses to establish another shelter site under

ome scenarios. 

The change in the set of open shelter sites in the first stage can

e explained by the higher minimum utilization constraint. Uti-

izations of shelter sites 14 and 15 in Instance 2 are both smaller

han 15%. Opening shelter site 13 instead of shelter site 14 in the

rst stage changes the nearest allocation configuration and pro-

ides even more districts to be allocated to shelter site 15 in the

econd stage so that its minimum utilization is more than 15%. 

If we compare Instances 2 and 7 in terms of optimal value and

verage walk (see Table 6 ), we can say that Instance 2 provides

 better quality solution than Instance 7 as its optimal value and

verage walk are smaller than those of Instance 7, in addition to

he fact that the average utilizations of first stage shelter sites are

igher. But, the solution time of Instance 2 is almost five times of

he solution time of Instance 7. 
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Table 6 

Test instances for 500 scenarios . 

ID CPU (hours) Gap (%) First stage shelter sites Second stage shelter sites Objective value Average walk (m) 

1 > 6 15.37 4, 10, 12, 14, 25 5, 15, 17, 21, 22 5.962 2203 

2 5.6 opt. 4, 10, 12, 14, 25 15 5.761 2213 

3 > 6 23.88 10, 12, 14, 25 1, 2, 4, 5, 15, 16, 24 5.466 2290 

4 > 6 0.27 10, 13, 19, 25 5, 16, 24 5.001 2368 

5 > 6 25.02 8, 10, 13, 25 16 4.960 2265 

6 4.8 opt. 4, 10, 12, 13, 25 5, 15, 17, 22 6.067 2279 

7 1.1 opt. 4, 10, 12, 13, 25 5, 15 5.866 2288 

8 > 6 18.03 4, 10, 12, 13, 25 5, 15 5.866 2288 

9 > 6 ∗ – – – –

10 > 6 0.37 10, 14, 19, 25 3, 5, 16 4.972 2230 

11 > 6 10.50 4, 10, 12, 14, 25 5, 15, 17, 21 6.003 2202 

12 1.4 opt. 4, 10, 12, 14, 25 15, 17 5.801 2212 

13 5 opt. 4, 10, 12, 14, 25 15 5.761 2213 

14 > 6 6.81 10, 13, 19, 25 5, 16, 24 5.060 2362 

15 > 6 6.58 10, 13, 19, 25 16, 24 4.934 2371 

16 2.3 opt. 4, 10, 12, 13, 25 5, 15, 17, 21 6.108 2277 

17 0.5 opt. 4, 10, 12, 13, 25 5, 15, 20 5.912 2287 

18 0.6 opt. 4, 10, 12, 13, 25 5, 15 5.866 2288 

19 > 6 ∗ – – – –

20 > 6 0.88 10, 14, 19, 25 3, 5, 16 5.095 2224 

Table 7a 

Instance ID 2, 500 scenarios. 

Shelter site Stage Minimum util (%) Maximum util (%) Average util (%) Above 100% util 

4 First 39.27 116.87 81 115 

10 First 40.89 96.64 70.73 0 

12 First 67.19 112 93.72 142 

14 First 10.42 100.44 70.56 1 

25 First 32.64 64.85 53.90 0 

15 Second 11.51 48.85 29.05 0 

Table 7b 

Instance ID 7, 500 scenarios. 

Shelter site Stage Minimum util (%) Maximum util (%) Average util (%) Above 100% util 

4 First 39.27 116.87 81 115 

10 First 40.89 96.64 70.50 0 

12 First 66.78 112 93.03 142 

13 First 19.89 83.70 61.45 0 

25 First 32.64 64.85 53.65 0 

5 Second 16.80 60.35 32.74 0 

15 Second 15.25 91.80 49.85 0 

Table 7c 

Instance ID 17, 500 scenarios. 

Shelter site Stage Minimum util (%) Maximum util (%) Average util (%) Above 100% util 

4 First 39.27 113.93 80.80 114 

10 First 40.89 94.27 70.35 0 

12 First 66.78 112 93.03 142 

13 First 19.89 83.70 61.45 0 

25 First 32.64 64.85 53.65 0 

5 Second 16.80 60.35 32.74 0 

15 Second 15.25 91.80 49.85 0 

20 Second 16.63 26.74 22.28 0 

Table 7d 

Instance ID 16, 500 scenarios. 

Shelter site Stage Minimum util (%) Maximum util (%) Average util (%) Above 100% util 

4 First 39.27 112.66 79.32 43 

10 First 40.89 92.27 69.05 0 

12 First 66.78 107.35 91.71 87 

13 First 19.89 83.70 61.32 0 

25 First 32.64 63.53 53.40 0 

5 Second 15.40 60.35 31.03 0 

15 Second 15.25 91.80 49.85 0 

17 Second 17.19 24.76 20.96 0 

21 Second 58.65 77.26 65.83 0 



112 E. Ozbay, Ö. Çavu ̧s and B.Y. Kara / Computers and Operations Research 106 (2019) 102–118 

Table 7e 

Instance ID 18, 500 scenarios. 

Shelter site Stage Minimum util (%) Maximum util (%) Average util (%) Above 100% util 

4 First 39.27 116.87 81 115 

10 First 40.89 96.64 70.50 0 

12 First 66.78 112 93.03 142 

13 First 19.89 83.70 54.57 0 

25 First 32.64 64.85 53.65 0 

5 Second 16.80 60.35 32.74 0 

15 Second 15.25 91.80 49.85 0 

Table 7f 

Instance ID 13, 500 scenarios. 

Shelter site Stage Minimum util (%) Maximum util (%) Average util (%) Above 100% util 

4 First 39.27 116.87 81 115 

10 First 40.89 96.64 70.73 0 

12 First 67.19 112 93.72 142 

14 First 10.42 100.44 70.56 1 

25 First 32.64 64.85 53.90 0 

15 Second 11.51 48.85 29.05 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

w  

w  

t  

s  

o  

t  

o  

e  

t  

e  

s

 

t  

b  

w  

s

 

t  

s  

1  

I  

a  

a  

e  

a

6

 

f  

s  

i  

b  

s

 

r  

t  

s  

a  

i  
To see the effect of risk-aversion parameter, namely α, on

the solutions, we compare Instances 7 and 17, provided in

Tables 7b and 7c , respectively. In Instance 7; α = 90% and in In-

stance 17; α = 95%, and the remaining two parameters, namely ν
and τ̄ , are the same for both instances. As the DM becomes more

risk-averse (as α increases), the number of established shelter sites

in the second stage increases to lower the higher utilizations of the

established shelter sites of Instance 7, since we define the risk in

this setting as the capacities of shelter sites being significantly ex-

ceeded. 

It can be observed that the statistics on the utilizations do not

differ in Instance 17 with respect to Instance 7 for shelter sites 12,

13 and 25 in the first stage and shelter sites 5 and 15 in the second

stage. This is due to the nearest allocation constraints. In addition

to Instance 7, only shelter site 20 is established in Instance 17 in

the second stage. For districts allocated to shelter sites 12, 13 and

25 in the first stage and to shelter sites 5 and 15 in the second

stage, opening shelter site 20 does not alter the nearest allocation

configuration and therefore has no effect on the utilization statis-

tics of aforementioned shelter sites. But some of the districts allo-

cated to shelter sites 4 and 10 in the second stage can be allocated

to shelter site 20 and thus it changes utilization statistics of shelter

sites 4 and 10. 

To see the effect of allowed tolerance parameter, namely τ̄ ,

on the solutions, we compare Instances 17 and 16, provided in

Tables 7c and 7d , respectively. In Instance 17; τ̄ = 10% and in In-

stance 16; τ̄ = 5%. Remaining two parameters, namely α and ν ,

are the same for both instances. As discussed previously, τ̄ is used

as a secondary measure of risk-aversion in this setting. But in con-

trast to α, increasing τ̄ decreases risk-aversion. First indicator of

this fact is the decrease in the number of established shelter sites

and the optimal value of Instance 17. Also, as a result of higher

risk-aversion, the utilizations exceed 100% in less scenarios in In-

stance 16 with respect to Instance 17. Note that the Fig. 1a –1e in

Section 3 are the visualizations of Instance 17. 

Lastly, as an interesting observation, we present Instances 7

and 18, provided in Tables 7b and 7e , respectively. In both of the

instances ν = 15%. With respect to α, Instance 18 is more risk-

averse than Instance 7 as its α is bigger, but with respect to

τ̄ , Instance 7 is more risk-averse than Instance 18 as its τ̄ is

smaller. And both instances have the same solution. The same phe-

nomenon can also be observed in Instances 2 and 13, presented in

Tables 7a and 7f , respectively. Instances 2 and 13 also share the
same ν = 10% and the same solutions. r
As we cannot solve all of the instances to optimality within the

pecified time bound using 500 scenarios, in order to experiment,

e decrease the cardinality of the scenario set and solve the model

ith smaller scenario sets. Since we propose that 10 different af-

ershocks may follow a main earthquake, to create smaller scenario

ets, we first choose a smaller set of main earthquakes from the

riginal set of main earthquakes and include the corresponding af-

ershocks to generate the whole scenario set. For example, for a set

f 250 scenarios, we choose 25 main earthquakes out of 50 main

arthquakes randomly, and include the aftershocks corresponding

o those main earthquakes. The same methodology applies to gen-

rating a scenario set of cardinality 100. Table 8 presents the re-

ults of the test instances for a scenario set of cardinality 250. 

We observe that as the cardinality of the scenario set decreases,

he solution times decrease drastically and all of the instances can

e solved to optimality. The longest solution time in the test runs

ith a scenario set of cardinality 250 is around 2.5 hours and the

mallest solution time is 10 minutes. 

In Tables 8 and 9 , for most of the instances, it can be observed

hat the first stage shelter sites do not vary much but the second

tage shelter sites do. In Table 8 , Instances 3 and 13; 5 and 10; 8,

8 and 19; and 15 and 20 share the same solutions, respectively.

n Table 9 , Instances 2 and 12; 3 and 8; 5 and 15; 6 and 16; 9

nd 19; and 10 and 20 share the same solutions, respectively. So

s we decrease the size of the scenario set, varying nature of the

arthquakes and the aftershocks cannot be represented thoroughly,

nd therefore we prefer to use larger datasets. 

. Solution methodology 

As discussed previously, the solution times exceed 6-hour limit

or most of the presented test instances with 500 scenarios. For in-

tances solved to optimality in 6 hours, the average solution time

s 2.7 hours where the average gap for test instances that cannot

e solved to optimality in 6 hours is 10.77%, excluding the two in-

tances that cannot be solved due to memory errors. 

Since we need as many different scenarios as possible to rep-

esent the varying nature of earthquakes and aftershocks, we wish

o solve the proposed model with a larger dataset and as we ob-

erve in Tables 8 and 9 , the solution times significantly improve

s the cardinality of the scenario set decreases. We utilize this fact

n the construction of the proposed heuristic. We define R to be a

educed set of the original scenario set S , such that R ⊂ S . 
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Table 8 

Test instances for 250 scenarios . 

ID CPU (sec) First stage shelter sites Second stage shelter sites Objective value Average walk (m) 

1 4212 4, 10, 12, 13, 25 5, 17, 21 6.090 2285 

2 1364 4, 10, 12, 13, 25 5, 17 5.786 2299 

3 1086 4, 10, 12, 13, 25 5 5.745 2300 

4 4035 10, 13, 19, 25 2, 5, 16, 24 5.194 2371 

5 9263 10, 13, 19, 25 16 5.015 2380 

6 1863 4, 10, 12, 13, 25 5, 15, 17, 20, 22 6.192 2284 

7 684 4, 10, 12, 13, 25 5, 15, 20 5.888 2297 

8 960 4, 10, 12, 13, 25 5, 15 5.842 2298 

9 9247 4, 10, 13, 23 3, 5, 11, 15, 16, 17 5.503 2277 

10 676 10, 13, 19, 25 16 5.015 2380 

11 3186 4, 10, 12, 13, 25 5, 17, 21 6.149 2281 

12 1112 4, 10, 12, 13, 25 5, 17 5.827 2298 

13 880 4, 10, 12, 13, 25 5 5.745 2300 

14 3229 10, 12, 13, 25 2, 4, 5, 16, 24 5.279 2383 

15 1613 10, 13, 19, 25 5, 16 5.057 2377 

16 1429 4, 10, 12, 13, 25 5, 15, 17, 21, 22 6.246 2280 

17 602 4, 10, 12, 13, 25 5, 15, 20, 22 5.946 2294 

18 739 4, 10, 12, 13, 25 5, 15 5.842 2298 

19 2495 4, 10, 12, 13, 25 5, 15 5.842 2298 

20 2286 10, 13, 19, 25 5, 16 5.057 2377 

Table 9 

Test instances for 100 scenarios. 

ID CPU (sec) First stage shelter sites Second stage shelter sites Objective value Average walk (m) 

1 161 4, 10, 12, 13, 25 5, 22 6.165 2236 

2 139 4, 10, 12, 13, 25 5, 17 6.016 2247 

3 145 4, 10, 13, 19, 25 21 5.848 2276 

4 118 10, 13, 19, 25 5, 16, 24 4.961 2337 

5 84 10, 13, 19, 25 16, 24 4.855 2346 

6 63 4, 10, 12, 13, 25 5, 15, 21 6.195 2247 

7 64 4, 10, 12, 13, 25 15, 20 6.060 2258 

8 81 4, 10, 13, 19, 25 21 5.848 2276 

9 122 4, 10, 13, 19, 25 17 5.805 2279 

10 55 10, 13, 19, 25 5, 16 4.855 2339 

11 209 4, 10, 12, 13, 25 5, 21 6.165 2236 

12 148 4, 10, 12, 13, 25 5, 17 6.016 2247 

13 106 4, 10, 12, 13, 25 5 5.914 2250 

14 113 8, 10, 13, 25 4, 5, 16 5.130 2284 

15 86 10, 13, 19, 25 16, 24 4.855 2346 

16 47 4, 10, 12, 13, 25 5, 15, 21 6.195 2247 

17 64 4, 10, 12, 13, 25 15, 21 6.090 2253 

18 68 4, 10, 12, 13, 25 15 5.945 2261 

19 79 4, 10, 13, 19, 25 17 5.805 2279 

20 53 10, 13, 19, 25 5, 16 4.855 2339 
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The proposed heuristic blends different approaches used in

tochastic optimization. In each iteration of the proposed heuris-

ic, we randomly create R , then solve P( R ) and obtain a first stage

olution, namely x 1 ∗. Then we fix the first stage variables in P( S ),

amely x 1 , to x 1 ∗ and check for feasibility. Note that P( R ) is de-

ned as a group subproblem with adjusted probabilities as Sandıkçı

t al. (2013) propose. In P( S ), the probability of each scenario is

qual to 1/| S |, in P( R ), the probability of each scenario is equal to

/| R |. 

Checking feasibility of x 1 ∗, we should not obtain it in the next

terations. For this purpose, Ahmed (2013) suggests using no-good

uts to eliminate a solution from a solution pool. This is another

pproach we utilize in this heuristic. We perform this elimination

y adding no-good cut constraint (25) to P( R ) in each iteration: 

∑ 

j: x 1 ∗
j 

=0 

x 1 j + 

∑ 

j: x 1 ∗
j 

=1 

(1 − x 1 j ) ≥ 1 . (25)

We store all no-good cuts in a cut pool C. After we conclude

hat x 1 ∗ is not feasible for P( S ), we add its no-good cut to the cut

ool C. So in each iteration, we solve P( R ) with cut pool C, there-

ore, obtain a new set of open first stage shelter sites. The heuristic
tops when we find a set of open first stage shelter sites that is

easible for the original problem, i.e. x 1 ∗ is feasible for P( S ). 

A more formal representation of the proposed heuristic is pro-

ided in Algorithm 1 . Note that, hereafter, opt [ · ] implies the op-

imization of problem · and gives the optimal value of it. 

Algorithm 1. Heuristic methodology. 

The results of our heuristic are presented in Tables 10a – 10j .

e report the solution time, optimality gap and iteration numbers
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Table 10a 

Configuration Set #1. 

ID Solution time (sec) Gap (%) # of iterations 

2 539 0.1 3 

6 653 0 3 

7 581 0 3 

12 658 0.1 3 

13 621 0.1 3 

16 621 0 3 

17 582 0 3 

18 441 0 3 

Avg 587 0.038 3 

Table 10b 

Configuration Set #2. 

ID Solution time (sec) Gap (%) # of iterations 

2 1657 9 1 

6 841 0 4 

7 686 0 4 

12 802 0.1 4 

13 1929 7 1 

16 610 0 4 

17 538 0 4 

18 551 0 4 

Avg 952 2.01 3.25 

Table 10c 

Configuration Set #3. 

ID Solution time (sec) Gap (%) # of iterations 

2 413 0.1 2 

6 421 0 2 

7 276 0 2 

12 487 0.1 2 

13 445 0.1 2 

16 271 0 2 

17 260 0 2 

18 292 0 2 

Avg 358 0.038 2 

Table 10d 

Configuration Set #4. 

ID Solution time (sec) Gap (%) # of iterations 

2 220 0.1 1 

6 482 0 2 

7 357 0 3 

12 210 0.1 1 

13 185 0.1 1 

16 295 0 2 

17 396 0 3 

18 411 0 3 

Avg 320 0.038 2 

Table 10e 

Configuration Set #5. 

ID Solution time (sec) Gap (%) # of iterations 

2 207 0.1 1 

6 337 0 1 

7 545 0 4 

12 204 0.1 1 

13 2151 5 7 

16 196 0 1 

17 182 0 1 

18 587 0 4 

Avg 552 0.65 2.5 

 

 

 

 

 

Table 10f 

Configuration Set #6. 

ID Solution time (sec) Gap (%) # of iterations 

2 195 0.1 1 

6 191 0.1 1 

7 167 0 1 

12 201 0.3 1 

13 210 0.1 1 

16 173 0 1 

17 170 0.1 1 

18 139 0 1 

Avg 181 0.088 1 

Table 10g 

Configuration Set #7. 

ID Solution time (sec) Gap (%) # of iterations 

2 687 0.09 3 

6 152 0 1 

7 491 0 3 

12 354 0.26 2 

13 920 0.09 4 

16 155 0 1 

17 185 0.05 1 

18 912 0 4 

Avg 482 0.061 2.38 

Table 10h 

Configuration Set #8. 

ID Solution time (sec) Gap (%) # of iterations 

2 818 0.09 4 

6 338 0 2 

7 476 0 3 

12 1303 0.26 4 

13 468 6.72 2 

16 310 0 2 

17 555 0.05 3 

18 550 0 4 

Avg 602 0.89 3 

Table 10i 

Configuration Set #9. 

ID Solution time (sec) Gap (%) # of iterations 

2 161 0.09 1 

6 144 0 1 

7 137 0 1 

12 167 0.26 1 

13 1454 5.76 3 

16 142 0 1 

17 133 0.05 1 

18 121 0 1 

Avg 307 0.68 1.25 

Table 10j 

Configuration Set #10. 

ID Solution time (sec) Gap (%) # of iterations 

2 1306 4.18 2 

6 378 0 2 

7 754 0 5 

12 1436 0.26 5 

13 403 5.26 2 

16 311 0 2 

17 740 0.05 5 

18 956 0 7 

Avg 786 1.22 3.75 

l  

c

 

T  

o  
for the instances that are solved to optimality in Table 6 . As we

choose set R randomly in each iteration, to discuss the effect of

randomness and perform analyses on the selection of R , we per-

form the tests under 10 different configuration sets. Each config-

uration set includes a stream of random R sets. Note that in the
ast rows of Tables 10a – 10j , we report the average value of each

olumn. 

In Tables 10a – 10j , the first column provides the instance IDs.

heir corresponding solution times, optimality gaps, and number

f iterations are provided in the second, third and fourth columns,
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Table 11 

Summary of results for κ = 100 and 500 scenarios with the proposed heuristic. 

ID Solution time (sec) Gap (%) # of iterations First stage shelter sites Second stage shelter sites Objective value Average walk (m) 

1 708 − 0.06 1 4, 10, 12, 13, 25 5, 7, 21 5.958 2281 

2 413 0.09 2 4, 10, 12, 13, 25 5 5.766 2289 

3 906 0.40 1 4, 10, 13, 23 5, 15, 17 5.488 2253 

4 200 0 1 10, 13, 19, 25 4, 5, 16, 24 5.001 2366 

5 411 − 1.32 2 10, 13, 19, 25 16, 24 4.895 2370 

6 421 0 2 4, 10, 12, 13, 25 5, 15, 17, 21 6.067 2279 

7 276 0 2 4, 10, 12, 13, 25 5, 15 5.866 2288 

8 372 0 2 4, 10, 12, 13, 25 5, 15 5.866 2288 

9 371 ∗ 2 4, 10, 13, 23 3, 5, 11, 15, 17 5.287 2274 

10 759 0 4 10, 14, 19, 25 3, 5, 16 4.972 2230 

11 339 0.09 1 4, 10, 12, 13, 25 5, 17, 22 6.008 2278 

12 487 0.10 2 4, 10, 12, 13, 25 5, 17 5.807 2288 

13 445 0.09 2 4, 10, 12, 13, 25 5 5.766 2289 

14 385 − 0.01 1 10, 13, 19, 25 5, 16, 24 5.060 2364 

15 448 0 2 10, 13, 19, 25 16, 24 4.934 2371 

16 271 0 2 4, 10, 12, 13, 25 5, 15, 17, 21 6.108 2277 

17 260 0 2 4, 10, 12, 13, 25 5, 15, 20 5.912 2287 

18 292 0 2 4, 10, 12, 13, 25 5, 15 5.866 2288 

19 334 ∗ 2 4, 10, 13, 23 3, 5, 11, 15, 17 5.382 2271 

20 506 0.03 3 10, 12, 13, 25 5, 15, 16 5.097 2379 
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espectively. Iteration number in a test corresponds to the number

f times the smaller problem is solved. Note that κ = 100 and | S| =
00 . 

In Tables 10a – 10j , it is observed that generally the optimal-

ty gaps and the solution times for the instances are positively

orrelated. This is the main reason we present the results of the

roposed heuristic with different configuration sets. The combina-

ion of scenarios in set R affects the performance of the proposed

euristic. But again, performing the proposed heuristic for 10 dif-

erent random configuration sets – for Instances 2, 12 and 13, i.e.

he instances for which we cannot find the optimal solution with

ny of the configuration sets – still has lower solution times with

espect to the results in Table 6 . So the proposed heuristic can be

erformed numerous times and the best solution it provides can

e chosen as a near-optimal solution. Nonetheless, it should be

ept in mind that it is costly to perform the heuristic methodol-

gy numerous times for the fine tuning. 

In terms of performance among the 10 different configuration

ets, it can be observed that configuration sets 1, 3 and 4 have the

mallest average optimality gaps. We choose third configuration set

o solve the remaining instances, namely the instances that cannot

e solved to optimality in 6 hours. Note that the average compu-

ational time of third configuration set is between the other two

ets, namely first and fourth configuration sets. 

Table 11 provides the solution times, gaps – with respect to the

olutions provided in Table 6 , i.e. the best objective value – and

he number of iterations along with the information on the solu-

ions as in Table 6 . A negative gap value states that the proposed

euristic provides a better objective value than the best objective

alue in Table 6 , whereas a positive gap value states that the pro-

osed heuristic provides a worse solution. Note that ∗ denotes that

he corresponding gap value cannot be calculated as CPLEX cannot

nd a feasible solution for those instances due to memory errors. 

The objective values in Table 11 are similar to those in

able 6 and the proposed heuristic performs better in terms of

olution times. The proposed heuristic also provides solutions for

he instances where CPLEX cannot solve due to memory errors. Al-

hough we do not know the optimal solutions for some of the in-

tances presented in Table 11 , comparing with the results of CPLEX

rovided in 6 hours, we can say that the proposed heuristic per-

orms well in terms of solution times as the maximum solution

ime is 15 minutes, averaging around 7 minutes. The reader should

ote that we disregard the time it takes to choose the configura-
 t
ion set that will be used to solve the model, since it is up to the

M to choose the number of configuration sets to perform the ini-

ial comparison, and the cost of preprocessing changes accordingly.

. Value of the three-stage model 

To reiterate the value of using the proposed model in cases

f consecutive disasters, we compare it with its common counter-

art, where we separate the main earthquake and the aftershock

n the decision making process, i.e without relating the aftershocks

o main earthquakes. We model this problem using two two-stage

tochastic MIPs. The first program, namely F1, includes the deci-

ions for the main earthquakes, and the second program, namely

2, includes the decisions for the aftershocks. 

To solve this common counterpart problem, we first solve F1

onsidering only the main earthquake demand scenarios (realiza-

ions), i.e. we assume that the DM disregards the probability of

aving aftershocks while deciding for the locations of the shel-

er sites for the main earthquake. We then solve F2 for each set

f possible aftershock demand realizations following each main

arthquake demand realization. 

Note that there are 50 different main earthquake demand re-

lizations and 10 aftershock demand realizations following each

ain earthquake realization in the dataset. Therefore, we solve F1

nce considering 50 different main earthquake demand realiza-

ions. We solve F2 50 times, each time with a different set of 10

ftershock demand realizations. 

Here, we define new scenario sets, S 1 and S̄ s , s ∈ S 1 . S 1 is the

et of main earthquake demand scenarios (realizations) and | S 1 | =
0 by construction of the proposed dataset. S̄ s is the set of after-

hock demand scenarios (realizations) following the main earth-

uake scenario s ∈ S 1 and | ̄S s | = 10 for each s ∈ S 1 by construction.

or each j ∈ J , we also define a discrete uniform random variable

 

2 
j 

and let f 2 
js 
, s ∈ S 1 be the realizations of the random variable F 2 

j 
,

here F 2 
j 
(s ) = f 2 

js 
, s ∈ S 1 . Also, for each s ∈ S 1 and j ∈ J , we define

 discrete uniform random variable F 3 
js 

and let f 3 
js ̄s 

, s̄ ∈ S̄ s be the

ealizations of it, where F 3 
js 
( ̄s ) = f 3 

js ̄s 
, s̄ ∈ S̄ s . 

As the CVaR constraints (10) consider the losses resulting at

he third stage, we cannot directly use the same τ j values for the

ecomposed common counterpart problems. Therefore, we decom-

ose the τ j values as τ ′ 
j 

for F1 and as τ ′′ 
js 
, s ∈ S 1 for F2 in a given

est using the optimal solutions in Table 6 . 
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Referring to the original model and the definitions in

Section 3 : 

F1 (S 1 ) = min 

∑ 

j∈ J 

1 

w j 

x 1 j 

s.t. 

(2) – (4), (12), (13), (21) 

CVaR α

(
F 2 j − x 1 j 

)
≤ τ ′ 

j ∀ j ∈ J 

f 2 js = 

∑ 

i ∈ I 
q 1 is y 

1 
i j 

c j 
∀ j ∈ J, s ∈ S 1 

f 2 js ≥ υy 1 i j ∀ i ∈ I, j ∈ J, s ∈ S 1 , 

and F2( ̄S s ) is: 

F2 ( ̄S s ) = min 

∑ 

j∈ J 

1 

w j 

x 2 js 

s.t. ∑ 

j∈ J 
y 2 i js = 1 ∀ i ∈ I 

| J| ∑ 

k = r+1 

y 2 i j i (k ) s + x 2 j i (r) s ≤ 1 ∀ i ∈ I, r ∈ { 1 , . . . , | J| −1

y 2 i js ≤ x 2 js ∀ i ∈ I, j ∈ J 

x 1 ∗j ≤ x 2 js ∀ j ∈ J 

CVaR α

(
F 3 js − x 2 js 

)
≤ τ ′′ 

js ∀ j ∈ J 

f 3 js ̄s = 

∑ 

i ∈ I 
q 1 is y 

1 ∗
i j + 

∑ 

i ∈ I 
q 2 i ̄s y 

2 
i js 

c j 
∀ j ∈ J, ̄s ∈ S̄ s 

y 2 i js d i j ≤ ρ ∀ i ∈ I, j ∈ J 

f 3 js ̄s ≥ υy 2 i js ∀ i ∈ I, j ∈ J, ̄s ∈ S̄ s 

x 2 js ∈ { 0 , 1 } ∀ j ∈ J 

y 2 i js ∈ { 0 , 1 } ∀ i ∈ I, j ∈ J. 

Note that, both F1 and F2 are two-stage stochastic programming

problems. In both formulations, location and allocation decisions

are first stage decisions whereas utilization decisions are second

stage decisions. 

Note that we feed the solution provided from F1 to F2, so we

denote x 1 
j 

and y 1 
i j 

as x 1 ∗
j 

and y 1 ∗
i j 

in F2, respectively, to indicate that
Table 12 

Comparison of objective values and walks of the pr

ID 

Optimal value 

Average objective Maximum walk (m) 

2 5.761 3571 

8.679 3903 

6 6.067 3903 

8.699 3903 

7 5.866 3903 

8.741 3903 

12 5.801 3571 

8.778 3903 

13 5.761 3571 

7.919 3903 

16 6.108 3903 

8.348 3903 

17 5.912 3903 

8.396 3903 

18 5.866 3903 

7.746 3903 
hey are optimal decisions of F1. Also note that, we first solve F1

onsidering all the main earthquake demand realizations, i.e. for

 1 . Then, we solve F2( ̄S s ) for the set of aftershock demand real-

zations corresponding to the main earthquake scenario s ∈ S 1 . Ob-

ained solutions are presented in Table 12 . 

The first column in Table 12 refers to the ID of the correspond-

ng test instance. In the first row of the second column, we present

he optimal value of the corresponding test instance, and in the

econd row of the second column we present the average of the

ptimal values of F2 problems, one F2 problem for each main

arthquake demand realization. In the third and fourth columns,

e present the maximum and average walk values of the proposed

odel and the common counterpart problem, respectively. In the

ast column, we denote the number of F2 problems that are infea-

ible, out of 50 problems. 

As it can be observed in Table 12 , there are some cases of

nfeasibilities caused by decomposing τ j to τ ′ 
j 

and τ ′′ 
js 
, s ∈ S 1 . In

ther words, in the proposed model, we consider all of the main

arthquake-aftershock scenarios simultaneously and can meet the

isk-aversion level for the whole planning horizon. But, we may

ail to achieve the same level of risk-aversion using the common

ounterpart model even though more shelter sites are established

verall. 

In all of the instances, the proposed model dominates the com-

on counterpart model in terms of the objective value but is

ometimes dominated in terms of the average walks. This is mainly

ue to the large number of shelter sites established in the common

ounterpart model. Regardless, we can easily state that the pro-

osed model performs better than the common counterpart model

s the excess amount of established shelter sites does not seem to

mprove the average walk values considerably. 

We present details of the comparison using Instance 16 as an

xample in Table 13 . In the first column in Table 13 , we average the

umber of shelter sites established over all scenarios. In the sec-

nd column, we present the maximum utilization observed among

ll shelter sites over all scenarios. In the third column, we average

he average shelter utilizations. And lastly, in the fourth column we

resent the number of scenarios where the utilization of a shelter

ite is above 100%. 

As it is apparent from Table 13 , it is more costly for the DM

ot to incorporate the aftershocks in the decision making process.

n terms of the objective function and the number of established

helter sites, the proposed model outperforms the common coun-

erpart model. The proposed model has a higher average utiliza-

ion with smaller maximum utilization and smaller number of sce-

arios where a shelter site is utilized more than 100%. All these
oposed model and its common counterpart. 

Average walk (m) # of infeasibilities 

2213 0 

2251 

2279 3 

2228 

2288 0 

2245 

2212 0 

2250 

2213 0 

2272 

2277 5 

2228 

2287 1 

2251 

2288 1 

2273 
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Table 13 

Comparison of the proposed model with the common counterpart model for Instance 16. 

Average # of overall shelter sites Maximum util (%) Average util (%) # of scenarios above 100% util 

Proposed model 5.34 112.66 58.05 130 

Common 7.93 120.63 54.67 146 

counterpart model 
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t
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tatistics emphasize that the proposed model performs better than

he common counterpart model. 

. Conclusion 

In this study, we introduce a new modeling methodology to dis-

ster operations management literature. We incorporate secondary

isasters, e.g. aftershocks, to the shelter site location decisions af-

er an earthquake has occurred and the demand is uncertain for

oth of the disasters. We devise a three-stage stochastic MIP model

o mimic the real setting of an earthquake. In the first stage, be-

ore observing the actual demand of the main earthquake, we lo-

ate shelter sites. After the earthquake demand is realized in the

econd stage, the disaster victims travel to the nearest open shel-

er site. Note that we do not assign victims to the shelter sites,

hey choose the closest open shelter site and travel there without

emand division. After the victims are located in the shelter sites,

n aftershock might hit the area and create more disaster victims

hat require sheltering. Again, before observing the actual demand

f the aftershock, we locate shelter sites in the second stage. Then,

n the third stage, after the aftershock demand is realized, the af-

ershock victims travel to the nearest open shelter site. 

We create a set of earthquake and aftershock scenarios for Kar-

al, Istanbul. We use the network of Kartal introduced in Kılcı

t al. (2015) . We assume that 10 different aftershocks will follow

ach main earthquake and create a scenario set of cardinality 500,

ith 50 different main earthquake demand realizations. 

As the solution times of the model with CPLEX are high, we

ropose a heuristic methodology. We improve the solution times

rastically with the heuristic method while having small deviations

rom the optimal values of the instances for which we know the

ptimal solutions. 

Comparing the proposed model with a common counterpart

odel, where we decompose the main earthquake and the after-

hock and conduct the decision making without relating the after-

hocks to main earthquakes, we show that it is important to con-

ider secondary disasters while locating shelter sites for disaster

perations management. 

For future research, we believe that one can explore the risk

f losing a shelter site, i.e. having its capacity decreased or having

t destroyed, and can search for solutions that minimize the risk

f such occurrences. Having the risk redefined, the mathematical

odel can be implemented for different problems in different dis-

ster contexts, man-made or natural. 
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