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Abstract
The financial crisis showed the importance of measuring, allocating and regulating sys-
temic risk. Recently, the systemic risk measures that can be decomposed into an aggregation
function and a scalar measure of risk, received a lot of attention. In this framework, capi-
tal allocations are added after aggregation and can represent bailout costs. More recently,
a framework has been introduced, where institutions are supplied with capital allocations
before aggregation. This yields an interpretation that is particularly useful for regulatory pur-
poses. In each framework, the set of all feasible capital allocations leads to a multivariate risk
measure. In this paper, we present dual representations for scalar systemic risk measures as
well as for the corresponding multivariate risk measures concerning capital allocations. Our
results cover both frameworks: aggregating after allocating and allocating after aggregation.
As examples, we consider the aggregation mechanisms of the Eisenberg–Noe model as well
as those of the resource allocation and network flow models.

Keywords Systemic risk · Risk measure · Financial network · Dual representation · Convex
duality · Penalty function · Relative entropy · Multivariate risk · Shortfall risk
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1 Introduction

Systemic risk can be regarded as the inability of an interconnected system to function properly.
In the financialmathematics community, defining,measuring and allocating systemic risk has
been of increasing interest especially after the recent financial crisis. This paper is concerned
with the representations and economic interpretations of some recently proposed measures
of systemic risk from a convex duality point of view.
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Canonically, network models are used for the analysis of systemic risk as proposed by the
pioneering work of Eisenberg and Noe [11]. In this model, the institutions of an intercon-
nected financial system are represented by the nodes of a network and the liabilities of these
institutions to each other are represented on the arcs. Under mild nondegeneracy conditions,
it is proved in Eisenberg and Noe [11] that the system can reach an equilibrium by realizing
a unique clearing payment mechanism computed as the solution of a fixed point problem.
The Eisenberg–Noe model is generalized in various directions since then, for instance, by
taking into account illiquidity [10], default costs [24], randomness in liabilities [9], central
clearing [1], to name a few. The reader is refered to Kabanov et al. [20] for a survey of various
clearing mechanisms considered in the literature.

More recently, several authors have considered the question of measuring systemic risk
in relation to the classical framework of monetary risk measures in Artzner et al. [4]. The
following three-step structure can be seen as a blueprint for the systemic riskmeasures defined
in the recent literature [1,3,5,8,9,13,19,21].

• Aggregation function The aggregation function quantifies the impact that the random
shocks of the system have on society by taking into account the interconnectedness
of the institutions. It is a multivariate function that takes as input the random wealths
(shocks) of the individual institutions and gives as output a scalar quantity that represents
the impact of the financial system on society or on real economy. In the Eisenberg–Noe
model, for instance, one can simply add society to the financial network as an additional
node and define the value of the aggregation function as the net equity of society after
clearing payments are realized. More simplistic choices of the aggregation function can
consider total equities and losses, only total losses, or certain utility functions of these
quantities; see Chen et al. [9], Kromer et al. [21].

• Acceptance set As the wealths of the institutions are typically subject to randomness, the
aggregation function outputs a random quantity accordingly. The next step is to test these
random values with respect to a criterion for riskiness, which is formalized by the notion
of the acceptance setA of a monetary risk measure ρ. For instance, one can consider the
acceptance set of the (conditional) value-at-risk at a probability level and check if the
random total loss of the system is an element of this acceptance set.

• Systemic risk measure The last step is to define the systemic risk measure based on the
choices of the aggregation function � and the acceptance setA. Chen et al. [9] proposed
the first axiomatic study for measuring systemic risk based on monetary risk measures,
where the systemic risk measure is defined as

ρins(X) = ρ(�(X)) = inf {k ∈ R | �(X) + k ∈ A} , (1.1)

where the argument X is a d-dimensional random vector denoting the wealths of the
institutions. In a financial network model, the value of this systemic risk measure can
be interpreted as the minimum total endowment needed in order to make the equity of
society acceptable. If one is interested in the individual contributions of the institutions
to systemic risk, ρins(X) needs to be allocated back to these institutions. To be able to
consider the measurement and allocation of systemic risk at the same time, the values of
systemic risk measures are defined in Feinstein et al. [13] as sets of vectors of individual
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capital allocations for the institutions. Hence, the systemic risk measures in Feinstein
et al. [13] map into the power set of Rd , that is, they are set-valued functionals. For
instance, the set-valued counterpart of ρins(X) is defined as

Rins(X) =
{
z ∈ R

d | �(X) +
d∑

i=1

zi ∈ A
}

.

The riskmeasures ρins and Rins are considered insensitive as they do not take into account
the effect of the additional endowments in the aggregation procedure. Thus, they can be
interpreted as bailout costs: the costs of making a system acceptable after the random
shock X of the system has impacted society. In contrast to this, a sensitive version is
proposed in Feinstein et al. [13] (and in Biagini et al. [5] as scalar functionals) where the
aggregation function inputs the augmented wealths of the institutions:

Rsen(X) =
{
z ∈ R

d | �(X + z) ∈ A
}

.

In analogy to (1.1) one can consider the smallest overall addition of capital,

ρsen(X) = inf

{
d∑

i=1

zi | �(X + z) ∈ A
}

, (1.2)

that makes the impact of X on society acceptable. But in contrast to the insensitive case,
the sensitive risk measures Rsen and ρsen can be used for regulation: by enforcing to add
the capital vector z ∈ R

d to the wealths of the banks, the impact on society after capital
regulation, that is �(X + z), is made acceptable. They are called sensitive as they take
the impact of capital regulations on the system into account.

This paper provides dual representation results for the systemic risk measures Rins and
Rsen as well as for their scalarizations ρins and ρsen in terms of three types of dual variables:
probability measures for each of the financial institutions, weights for each of the financial
institutions, and probabilitymeasures for society. The probabilitymeasures can be interpreted
as possible models governing the dynamics of the institutions/society. Each time one makes a
guess for these models, a penalty is incurred according to “how far” these measures are from
the true probability measure of the financial system. Then, the so-called systemic penalty
function (Definition 3.1) is computed as the minimized value of this penalty over all choices
of the probability measure of society. According to the dual representations, the systemic risk
measures Rins and Rsen collect the capital allocation vectors whose certain weighted sums
pass a threshold level determined by the systemic penalty function.

In terms of economic interpretations, a convenient feature of the dual representations is
that (the objective function of) the systemic penalty function has an additive structure in
which the contributions of the network topology (encoded in the conjugate function of �)
and the choice of the regulatory criterion for riskiness (encoded in the penalty function of ρ)
are transparent. Moreover, the first term dealing with the network topology can be regarded
as a multivariate divergence functional, for instance, a multivariate relative entropy, and it
can be written in a simple analytical form in many interesting cases where the aggregation
function � itself, as the primal object, is defined in terms of an optimization problem. For
instance, this is the case for the Eisenberg–Noemodel without (Sect. 4.4) and with (Sect. 4.5)
central clearing, as well as for the classical resource allocation and network flow models of
operations research.

In the general (non-systemic) setting, dual representations for risk measures are well-
studied; see Föllmer and Schied [15] for univariate risk measures, Hamel and Heyde [16] for
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set-valued riskmeasures, and Farkas et al. [12] for scalar multivariate riskmeasures. It should
be noted that the dual representations of the present paper do not follow as consequences of
the dual representations of the general framework. This is because both the insensitive and
the sensitive systemic risk measures are defined in terms of the composition of the univariate
risk measure ρ and the aggregation function �. In contrast to the existing duality results for
general risk measures, the results of the paper “dualize” both ρ and �. In the special case
where � is a linear function, this can be achieved by the well-known Fenchel–Rockafellar
theorem. On the other hand, the general case where � is a concave function is less well-
known. In our arguments, we use two results dealing with the general case: Zalinescu [26,
Theorem 2.8.10], which works under some continuity assumptions and gives a precise result
for the conjugate, and the more recent Boţ et al. [7, Theorem 3.1], which works under very
mild conditions but identifies the conjugate up to a closure operation.

In the more traditional insensitive setting for systemic risk measures, Chen et al. [9,
Theorem 3] provides a dual representation for ρins assuming that the underlying probability
space is finite and�, ρ are positively homogeneous functions. Under these assumptions, ρins

can be computed as the optimal value of a finite-dimensional linear optimization problem
and the corresponding dual problem is regarded as a dual reprensentation for ρins. This result
is generalized by Kromer et al. [21] for general probability spaces, convex ρ and concave �.
It should be noted that the dual representation for ρins given in the present paper provides
a different economic interpretation than the ones in Chen et al. [9], Kromer et al. [21]. In
particular, Chen et al. [9, Theorem 3] is stated in terms of sub-probability measures (sub-
stochastic vectors) and the “remaining” mass to extend such a measure to a probability
measure is interpreted as a probability assigned to an artificial scenario ω0 added to the
underlying probability space. In contrast, Theorem 3.2 and Proposition 3.4 of the present
paper are stated in terms of probability measures corresponding to the institutions as well as
an additional probability measure corresponding to society. Note that society is considered
as an additional node in the network of institutions.

To the best of our knowledge, dual representations of systemic risk measures in the sensi-
tive case (Rsen and ρsen) have not yet been studied in the literature besides a few special cases.
Among the related works, Armenti et al. [3, Theorem 2.10] provides a dual representation
for ρsen in the special case where A = {X | E [−X ] ≤ 0}, that is, ρ is the negative expected
value. More recently, Biagini et al. [6, Section 3] studies the dual representation of a type of
sensitive systemic risk measure which considers random capital allocations (different from
the one in the present paper) where the aggregation function � is a decomposable sum of
univariate utility functions and ρ is the negative expected value.

The rest of the paper is organized as follows. In Sect. 2, the definitions of the systemic
risk measures are recalled along with some basic properties. In Sect. 3, the main results
of the paper are collected in Theorem 3.2 followed by some comments on the economic
interpretation of these results. The form of the dual representations under some canonical
aggregation functions, including that of the Eisenberg–Noemodel, are investigated in Sect. 4.
A model uncertainty representation of the sensitive systemic risk measure is discussed in
Sect. 5. Finally, Sect. 6, the “Appendix”, is devoted to proofs.

2 Insensitive and sensitive systemic risk measures

We consider an interconnected financial system with d institutions. By a realized state of
the system, we mean a vector x = (x1, . . . , xd)T ∈ R

d , where xi denotes the wealth of
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institution i . To compare two possible states x, z ∈ R
d , we use the componentwise ordering

≤ on R
d ; hence, x ≤ z if and only if xi ≤ zi for every i ∈ {1, . . . , d}. We write R

d+ ={
x ∈ R

d | 0 ≤ x
}
.

Given a realized state, the interconnectedness of the system is taken into account through
a single quantity provided by the so-called aggregation function. Formally speaking, this is
a function � : Rd → R satisfying the following properties.

(i) Increasing x ≤ z implies �(x) ≤ �(z) for every x, z ∈ R
d .

(ii) Concave It holds �(γ x + (1 − γ )z) ≥ γ�(x) + (1 − γ )�(z) for every x, z ∈ R
d

and γ ∈ [0, 1].
(iii) Non-constant � has at least two distinct values.

As discussed in Sect. 1, �(x) can be interpreted as the impact of the system on society given
that the state of the system is x ∈ R

d . An overall increase in the wealth of the system is
anticipated to have a positive impact on society, which is reflected by the property that � is
increasing. Similarly, the concavity of � reflects that diversification in wealth has a positive
impact on society. Finally, the last condition eliminates the trivial case that � is a constant,
which ensures that the set �(Rd) := {�(x) | x ∈ R

d
}
has an interior point.

To model the effect of a financial crisis, a catastrophic event, or any sort of uncertainty
affecting the system, we assume that the state of the system is indeed a random vector X
on a probability space (�,F,P). Hence, the impact on society is realized to be �(X(ω))

if the observed scenario for the uncertainty is ω ∈ �. For convenience, we assume that
X ∈ L∞

d , where L∞
d is the space of d-dimensional essentially bounded random vectors

that are distinguished up to almost sure equality. Consequently, the impact on society is a
univariate random variable �(X) ∈ L∞, where L∞ = L∞

1 . Throughout, we call �(X) the
aggregate value of the system.

The systemic risk measures we consider are defined in terms of a measure of risk for the
aggregate values. To that end, we let ρ : L∞ → R be a convex monetary risk measure in the
sense of Artzner et al. [4]. More precisely, ρ satisfies the following properties. (Throughout,
(in)equalities between random variables are understood in the P-almost sure sense.)

(i) Monotonicity Y1 ≥ Y2 implies ρ(Y1) ≤ ρ(Y2) for every Y1, Y2 ∈ L∞.
(ii) Translativity It holds ρ(Y + y) = ρ(Y ) − y for every Y ∈ L∞ and y ∈ R.
(iii) Convexity It holds ρ(γY1 + (1−γ )Y2) ≤ γρ(Y1)+ (1−γ )ρ(Y2) for every Y1, Y2 ∈
L∞ and γ ∈ [0, 1].
(iv) Fatou property If (Yn)n≥1 is a bounded sequence in L∞ converging to some Y ∈ L∞
almost surely, then ρ(Y ) ≤ lim infn→∞ ρ(Yn).

The riskmeasure ρ is characterized by its so-called acceptance setA ⊆ L∞ via the following
relationships

A = {Y ∈ L∞ | ρ(Y ) ≤ 0
}
, ρ(Y ) = inf {y ∈ R | Y + y ∈ A} .

Hence, the aggregate value �(X) is considered acceptable if �(X) ∈ A.
As a well-definedness assumption for the systemic risk measures of interest, we will need

the following, where int�(Rd) denotes the interior of the set �(Rd).

Assumption 2.1 ρ(0) ∈ int�(Rd).

Remark 2.2 Note that Assumption 2.1 can be replaced with the weaker assumption that
int�(Rd) is a nonempty set, which is already satisfied thanks to the assumption that � is
a non-constant function. In that case, by shifting � by a constant, one can easily obtain an
aggregation function that satisfies Assumption 2.1.
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Finally, we recall the definitions of the two systemic risk measures of our interest. As in
Armenti et al. [3], Feinstein et al. [13], we adopt the so-called set-valued approach, namely,
systemic risk is measured as the set of all capital allocation vectors that make the system safe
in the sense that the aggregate value becomes acceptable when the institutions are supplied
with these capital allocations. We consider first the insensitive case, where institutions are
supplied with capital allocations after aggregation, and then consider the sensitive case,
where institutions are supplied with capital allocations before aggregation.

We start by recalling the set-valued analog of the systemic risk measure in Chen et al. [9].
In what follows, 2R

d
denotes the power set of Rd including the empty set.

Definition 2.3 [13, Example 2.1.(i)] The insensitive systemic risk measure is the set-valued
function Rins : L∞

d → 2R
d
defined by

Rins(X) =
{
z ∈ R

d | �(X) +
d∑

i=1

zi ∈ A
}

for every X ∈ L∞
d .

Remark 2.4 Note that

Rins(X) =
{
z ∈ R

d | ρ

(
�(X) +

d∑
i=1

zi

)
≤ 0

}
=
{
z ∈ R

d | ρins(X) ≤
d∑

i=1

zi

}
, (2.1)

where ρins = ρ ◦� is the scalar systemic risk measure in Chen et al. [9], see (1.1). It follows
from (2.1) that

ρins(X) = inf
z∈Rins(X)

d∑
i=1

zi .

Hence, ρins(X) and Rins(X) determine each other.

As motivated in Sect. 1, a more “sensitive” systemic risk measure can be defined by
aggregating the wealths after the institutions are supplied with their capital allocations.

Definition 2.5 [13, Example 2.1.(ii)] The sensitive systemic risk measure is the set-valued
function Rsen : L∞

d → 2R
d
defined by

Rsen(X) =
{
z ∈ R

d | �(X + z) ∈ A
}

for every X ∈ L∞
d .

Remark 2.6 For fixed X ∈ L∞
d , note that

Rsen(X) =
{
z ∈ R

d | ρ(�(X + z)) ≤ 0
}

=
{
z ∈ R

d | ρins(X + z) ≤ 0
}

. (2.2)

However, Rsen(X) cannot be recovered from ρins(X), in general.

Let us denote by L1
d the set of all d-dimensional random vectors X whose expectations

E [X ] := (E [X1] , . . . ,E [Xd ])T exist as points in R
d .

Definition 2.7 [16, Definition 2.1] For a set-valued function R : L∞
d → 2R

d
, consider the

following properties.
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(i) Monotonicity X ≥ Z implies R(X) ⊇ R(Z) for every X , Z ∈ L∞
d .

(ii)Convexity It holds R(γ X+(1−γ )Z) ⊇ γ R(X)+(1−γ )R(Z) for every X , Z ∈ L∞
d

and γ ∈ [0, 1].
(iii)Closedness The set

{
X ∈ L∞

d | z ∈ R(X)
}
is closed with respect to the weak∗ topol-

ogy σ(L∞
d , L1

d) for every z ∈ R
d .

(iv) Finiteness at zero It holds R(0) /∈ {∅,Rd
}
.

(v) Translativity It holds R(X + z) = R(X) − z for every X ∈ L∞
d and z ∈ R

d .
(vi) Positive homogeneity It holds R(γ X) = γ R(X) := {γ z | z ∈ R(X)} for every
X ∈ L∞

d and γ > 0.

Proposition 2.8 1. Rins is a set-valued convex risk measure that is non-translative in
general: it satisfies properties (i)–(iv) above.

2. Rsen is a set-valued convex risk measure: it satisfies all of properties (i)–(v) above.

The proof of Proposition 2.8 is given in Sect. 6.1.

Remark 2.9 Let X ∈ L∞
d . An immediate consequence of Proposition 2.8 is that Rsen(X) is

a closed convex subset of Rd satisfying Rsen(X) = Rsen(X) + R
d+. Hence, we may write

Rsen(X) as the intersection of its supporting halfspaces

Rsen(X) =
⋂

w∈Rd+\{0}

{
z ∈ R

d | wTz ≥ ρsen
w (X)

}
,

where
ρsen

w (X) := inf
z∈Rsen(X)

wTz = inf
z∈Rd

{
wTz | �(X + z) ∈ A

}
,

for eachw ∈ R
d+\{0}. In other words, ρsen

w is the scalarization of the set-valued function Rsen

in direction w ∈ R
d+\{0} and is a scalar measure of systemic risk, see Feinstein et al. [13,

Definition 3.3]. The family (ρsen
w (X))w∈Rd+\{0} determines Rsen(X); compare Remark 2.4 and

Remark 2.6. If one chooses w = (1, . . . , 1)T ∈ R
d , then one obtains the risk measure given

in (1.2).

Weconclude this sectionwith sufficient conditions that guarantee the positive homogeneity
of the systemic risk measures; see (vi) of Definition 2.7.

Proposition 2.10 Suppose that�andρ are positively homogeneous, that is,�(γ x) = γ�(x)
and ρ(γ X) = γρ(X) for every x ∈ R

d , X ∈ L∞
d , λ > 0. Then, Rins and Rsen are positively

homogeneous.

The proof of Proposition 2.10 is given in Sect. 6.1.

3 Dual representations

The main results of this paper provide dual representations for the insensitive (Rins) and
sensitive (Rsen) systemic risk measures and their scalarizations ρins and ρsen.

The dual representations are formulated in terms of probability measures and (weight)
vectors in R

d . Given two finite measures μ1, μ2 on (�,F), we write μ1 � μ2 if μ1 is
absolutely continuous with respect to μ2. We denote by M(P) the set of all probability
measures Q on (�,F) such that Q � P. In addition, we denote by Md(P) the set of all
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vector probability measures Q = (Q1, . . . ,Qd)
T whose components are in M(P). Let 1 be

the vector in Rd whose components are all equal to 1.
Let us denote by g the Legendre–Fenchel conjugate of the convex function x 
→ −�(−x),

that is,

g(z) = sup
x∈Rd

(
�(x) − zTx

)
(3.1)

for each z ∈ R
d . A direct consequence of the monotonicity of � is that g(z) = +∞ for

every z /∈ R
d+, hence we will only consider the values of g for z ∈ R

d+.
In addition, since ρ : L∞ → R is a convex monetary risk measure satisfying the Fatou

property, it has the dual representation

ρ(Y ) = sup
S∈M(P)

(
E
S [−Y ] − α(S)

)

for every Y ∈ L∞, where α is the (minimal) penalty function of ρ defined by

α(S) := sup
Y∈A

E
S [−Y ] = sup

Y∈L∞

(
E
S [−Y ] − ρ(Y )

)
(3.2)

for S ∈ M(P); see Föllmer and Schied [15, Theorem 4.33], for instance.
For two vectors x, z ∈ R

d , their Hadamard product is defined by

x · z := (x1z1, . . . , xd zd)
T .

Definition 3.1 The function αsys : Md(P) × (Rd+\{0})→ R ∪ {+∞} defined by

αsys(Q, w) := inf
S∈M(P) :

∀i : wiQi�S

(
α(S) + E

S

[
g

(
w · dQ

dS

)])

for every Q ∈ Md(P), w ∈ R
d+\{0} is called the systemic penalty function.

In the above definition, for every i ∈ {1, . . . , d}, the condition wiQi � S becomes trivial
when wi = 0 and is equivalent to Qi � S when wi > 0; hence, wiQi � S can be replaced
with the condition

wi > 0 ⇒ Qi � S

equivalently. We make the convention that wi
dQi
dS = 0 when wi = 0 although Qi � S

is not required in this case. On the other hand, g(z) ≥ �(0) for every z ∈ R
d , by (3.1).

Hence, g is bounded from below since � is a real-valued function. These make the quantity

E
S

[
g
(
w · dQ

dS

)]
in Definition 3.1 well-defined.

The following theorem summarizes the main results of the paper. Its proof is given in
Sect. 6.2, the “Appendix”.

Theorem 3.2 The insensitive and sensitive systemic risk measures admit the following dual
representations.

1. For every X ∈ L∞
d ,

Rins(X) =
⋂

Q∈Md (P),w∈Rd+\{0}

{
z ∈ R

d | 1Tz ≥ wT
E
Q [−X ] − αsys(Q, w)

}
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=
⎧⎨
⎩z ∈ R

d | 1Tz ≥ sup
Q∈Md (P),w∈Rd+\{0}

(
wT

E
Q [−X ] − αsys(Q, w)

)⎫⎬
⎭ .

2. For every X ∈ L∞
d ,

Rsen(X) =
⋂

Q∈Md (P),w∈Rd+\{0}

{
z ∈ R

d | wTz ≥ wT
E
Q [−X ] − αsys(Q, w)

}

=
⋂

Q∈Md (P),w∈Rd+\{0}

(
E
Q [−X ] +

{
z ∈ R

d | wTz ≥ −αsys(Q, w)
} )

.

Let us comment on the economic interpretation of the above dual representations. Consider
a financial network with nodes 1, . . . , d denoting the institutions and society (or an external
entity) is added to this network as node 0. The dual representations can be regarded as the
conservative computations of the capital allocations of the institutions in the presence of
model uncertainty and weight ambiguity according to the following procedure.

• Society is assigned a probability measure S, which has the associated penalty α(S).
• Each institution i is assigned a probability measure Qi and a relative weight wi with

respect to society.
• The distance of the network of institutions to society is computed by the multivariate g-

divergence of (Q1, . . . ,Qd) with respect to S as follows. Each density dQi
dS is multiplied

by its associated relative weight wi , and the weighted densities are used as the input of
the divergence function g. The resulting multivariate g-divergence is

E
S

[
g

(
w1

dQ1

dS
, . . . , wd

dQd

dS

)]
,

which can be seen as a weighted sum distance of the vector probability measure Q to
the probability measure S of society. In particular, when the aggregation function � is
in a certain exponential form (see Sect. 4.3 below), the multivariate g-divergence is a
weighted sum of relative entropies with respect to S.

• The systemic penalty function αsys is computed as the minimized sum of the multivariate
g-divergence and the penalty function α over all possible choices of the probability
measure S of society, see Definition 3.1. This is the total penalty incurred for choosing
Q and w as a probabilistic model of the financial system.

• Insensitive case To compute Rins(X), one computes the worst case weighted negative
expectation of the wealth vector X penalized by the systemic penalty function over all
possible choices of the uncertain model Q ∈ Md(P) and the ambigious weight vector
w ∈ R

d+\{0}:
ρins(X) = sup

Q∈Md (P),w∈Rd+\{0}

(
wT

E
Q [−X ] − αsys(Q, w)

)
.

This quantity serves as the minimal total endowment needed for the network of institu-
tions: every capital allocation vector z ∈ R

d whose sum of entries exceeds ρins(X) is
considered as a feasible compensator of systemic risk, and hence, it is included in the set
Rins(X). In particular, Rins(X) is a halfspace with direction vector 1.

• Sensitive case To compute Rsen(X), one computes the negative expectation of the wealth
vector X penalized by the systemic penalty function. This quantity serves as a threshold
for the weighted total endowment of the institutions: a capital allocation vector z ∈ R

d is
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considered feasible with respect to themodelQ ∈ Md(P) andweight vectorw ∈ R
d+\{0}

if its weighted sum exceeds its corresponding threshold, that is, if

wTz ≥ wT
E
Q [−X ] − αsys(Q, w).

Finally, a capital allocation vector z ∈ R
d is considered as a feasible compensator of

systemic risk if it is feasible with respect to all possible choices of the model Q and
weight vector w.

Remark 3.3 Let us consider the special case where the riskmeasure ρ for the aggregate values
is ρ(Y ) = E [−Y ] for every Y ∈ L∞. In this case, we have α(S) = 0 if and only if S = P,
and α(S) = +∞ otherwise. In view of the above economic interpretations, this choice of ρ

corresponds precisely to the case where there is no uncertainty about the probability measure
of society. In particular, the systemic penalty function reduces simply to the multivariate
g-divergence with respect to the true probability measure P, that is,

αsys(Q, w) = E

[
g

(
w · dQ

dP

)]

for every Q ∈ Md(P) and w ∈ R
d+ \{0}. Nevertheless, the model uncertainty (as well as

the weight ambiguity) associated to the banks remains in the picture since one has still to
calculate the intersections over different choices of (Q, w) in Theorem 3.2. This observation
can be seen as a justification of the interpretation that the aggregation function� is a society-
related quantity: as ρ is used to test whether �(X) is acceptable, a simplistic risk-neutral
choice of ρ eliminates only the part of model uncertainty coming from society. Similarly, in
the general case where an arbitrary risk measure ρ is used, the quantity α(S) is the dual object
associated to the acceptability of �(X), which justifies the interpretation of S as society’s
probability measure.

As a follow-up on Theorem 3.2, we state below the dual representations of the so-called
scalarizations of the insensitive and sensitive systemic riskmeasures. Recall fromRemark 2.4
that

ρins(X) = inf
z∈Rins(X)

1Tz

for every X ∈ L∞
d , where ρins = ρ ◦ �. Hence, ρins is the scalarization of the set-valued

function Rins in the direction 1. From (2.1), it is clear that the values of Rins are halfspaces
with normal direction 1. Hence, the scalarizations of Rins in different directions yield trivial
values, that is, for every X ∈ L∞

d ,

inf
z∈Rins(X)

wTz = −∞

provided that w ∈ R
d+\{0} is not of the form w = λ1 for some λ > 0. On the other hand,

this is not the case for Rsen as its values are not halfspaces in general.
For the sensitive case, recall from Remark 2.9 the scalarizations

ρsen
w (X) = inf

z∈Rsen(X)
wTz = inf

z∈Rd

{
wTz | �(X + z) ∈ A

}
,

for X ∈ L∞
d and w ∈ R

d+\{0}. One such scalarization can be used as a scalar measure of
systemic risk if one can fix a priori a weight vector w ∈ R

d+\{0} which implies a ranking

123



Mathematics and Financial Economics (2020) 14:139–174 149

of the importance of the institutions. While ρsen
w is a monotone convex functional, it has the

following form of translativity that depends on the choice of w: for every X ∈ L∞
d , z ∈ R

d ,

ρsen
w (X + z) = ρsen

w (X) − wTz.

Comparing Remark 2.9 and Theorem 3.2, one can ask if we have equality in

ρsen
w (X)

?= sup
Q∈Md (P)

(
wT

E
Q [−X ] − αsys(Q, w)

)
. (3.3)

However, ρsen
w might fail to be a weak* lower semicontinuous function in general, even

though Rsen is a closed set-valued function; see Hamel et al. [17, page 92] for a discussion
about the lower semicontinuity of the scalarizations of set-valued functions. Therefore, one
can only expect to have a dual representation for ρsen

w when it is assumed to be weak*
lower semicontinuous. Furthermore, αsys(Q, ·) may fail to be positively homogeneous in
general while w 
→ ρsen

w (X) and w 
→ wT
E
Q [−X ] are positively homogeneous. For this

reason, αsys(Q, ·) should be replaced in (3.3) with a positively homogeneous alternative. In
Proposition 3.4, under a technical condition, we provide such a version of (3.3) in which
equality is achieved.

As a preparation for Proposition 3.4, we introduce some additional notation. As before,
we denote by L1

d the linear space of all integrable d-dimensional random vectors (dis-
tinguished up to almost sure equality). For p ∈ {1,+∞}, let us also define the cone
L p
d,+ = {

U ∈ L p
d | P {U ≥ 0} = 1

}
; if d = 1, then we write L p = L p

1 , L
p
+ = L p

1,+.
We denote by ρ∗ the conjugate function of ρ defined by

ρ∗(V ) := sup
Y∈L∞

(E [VY ] − ρ(Y ))

for each V ∈ L1.
Let us consider the function m on L1

d defined by

m(U ) := inf
V∈L1+

{
E

[
Vg

(
U

V

)
1{V>0}

]
+ E [V ] ρ∗

( −V

E [V ]

)
| P {V = 0,U �= 0} = 0

}
(3.4)

for eachU ∈ L1
d,+, whereE [V ] ρ∗( −V

E[V ] ) = 0 is understoodwhenV ≡ 0; andm(U ) := +∞
for U /∈ L1

d,+. We denote by clm the closure of m, that is, clm is the unique function on

L1
d whose epigraph is the closure of the epigraph of m; see Sect. 6.2 for the definition of

epigraph. The function m is an essential element of Proposition 3.4 and it gives rise to the
systemic penalty function under additional assumptions. The role of m is discussed further
in the proof of Proposition 3.4 in Sect. 6.2. For the time being, we need it to state the dual
representations of scalarizations.

Proposition 3.4 The scalarizations of the insensitive and sensitive systemic risk measures
admit the following dual representations.

1. For every X ∈ L∞
d ,

ρins(X) = sup
Q∈Md (P),w∈Rd+\{0}

(
wT

E
Q [−X ] − αsys(Q, w)

)
.

2. Let w ∈ R
d+\{0} and assume that ρsen

w is weak* lower semicontinuous. Then, for every
X ∈ L∞

d ,

ρsen
w (X) = sup

Q∈Md (P)

(
wT

E
Q [−X ] − (clm)

(
w · dQ

dP

))
. (3.5)
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Moreover, if m is lower semicontinuous, then

ρsen
w (X) = sup

Q∈Md (P)

(
wT

E
Q [−X ] − α̃sys(Q, w)

)
, (3.6)

where α̃sys(Q, ·) is the positively homogeneous function generated by αsys(Q, ·) (see
Rockafellar [22, Chapter 5]), namely,

α̃sys(Q, w) := inf
λ>0

αsys(Q, λw)

λ
. (3.7)

In particular, if there exist X̂ ∈ L∞
d and a (weak*) neighborhood A of �(X̂) such that

A ⊆ A, then m is lower semicontinuous and thus (3.6) holds.

Consequently, ρins and ρsen
1 do not coincide, in general.

The second part of Proposition 3.4 gives rise to an alternative dual representation for Rsen

under the stated assumptions, which is given in the following corollary.

Corollary 3.5 For every w ∈ R
d+ \{0}, suppose that ρsen

w is a weak* lower semicontinuous
function. In addition, assume that m is lower semicontinuous. Then, for every X ∈ L∞

d ,

Rsen(X) =
⋂

Q∈Md (P),w∈Rd+\{0}

{
z ∈ R

d | wTz ≥ wT
E
Q [−X ] − α̃sys(Q, w)

}
,

where α̃sys is defined as in (3.7).

Proof The result is an immediate consequence of Proposition 3.4 and Remark 2.9. ��
Remark 3.6 Corollary 3.5 can be used to justify the interpretation of the dual variablew ∈ R

d+
as a vector of relativeweights. It can be assumed that the absoluteweight of society isw0 = 1
and the weightsw1, . . . , wd of the institutions are relative to this value ofw0. In an alternative
formulation, one canworkwith absoluteweights w̄0 > 0, w̄ ∈ R

d+\{0} for both the institutions
and society. Then, it follows from (3.7) that

α̃sys(Q, w̄) = inf
w̄0>0,

S∈M(P) :
∀i : wiQi�S

(
ᾱ

(
w̄0

dS

dP

)
+ w̄0E

S

[
g

(
w̄

w̄0
· dQ
dS

)])
, (3.8)

where ᾱ
(
w̄0

dS
dP

)
:= supY∈A w̄0E

S[−Y ] extends the definition of α in (3.2) for the finite

measure w̄0S. In this formulation, for each i ∈ {1, . . . , d}, the fraction w̄i
w̄0

is the relativeweight
of institution i with respect to society. Theorem 3.2 suggests that the sensitive systemic risk
measure Rsen is scale-free in the sense that only relative weights matter for the calculation
of Rsen. Hence, it is enough to consider the case w̄0 = w0 = 1 and write down the dual
representation in terms of the relative weight vector w̄

w̄0
= w. These observations are also in

line with the fact that the systemic penalty function αsys is not positively homogeneous in the
relative weight variable: αsys(Q, λw) and λαsys(Q, w) do not coincide, in general (λ > 0).
On the other hand, the expression in the infimum in (3.8) is positively homogeneous as a
function of the absolute weight vector (w̄0, w̄1, . . . , w̄d) ∈ R

d+1.

We end this section with the dual representation of the systemic risk measures when they
are guaranteed to be positively homogeneous by virtue of Proposition 2.10.
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Corollary 3.7 Suppose that � and ρ are positively homogeneous. Then, there exists a
nonempty closed convex set Z ⊆ R

d+ such that

g(z) =
{
0 if z ∈ Z,

+∞ else.

Besides, there exists a convex set S ⊆ M(P) of probability measures such that

α(S) =
{
0 if S ∈ S,

+∞ else.

Let

D :=
{
(Q, w) ∈ Md (P) × R

d+\{0} | ∃S ∈ S :
(
P

{
w · dQ

dS
∈ Z

}
= 1 ∧ ∀i : wiQi � S

)}
.

Then, the insensitive and sensitive systemic risk measures admit the following dual represen-
tations.

1. For every X ∈ L∞
d ,

Rins(X) =
⋂

(Q,w)∈D

{
z ∈ R

d | 1Tz ≥ wT
E
Q [−X ]

}

and

ρins(X) = sup
(Q,w)∈D

wT
E
Q [−X ] .

2. For every X ∈ L∞
d ,

Rsen(X) =
⋂

(Q,w)∈D

{
z ∈ R

d | wTz ≥ wT
E
Q [−X ]

}

=
⋂

(Q,w)∈D

(
E
Q [−X ] +

{
z ∈ R

d | wTz ≥ 0
} )

.

Proof The existence of the set Z is due to the following well-known facts from convex
analysis; see Rockafellar [22, Theorem 13.2], for instance: a positively homogeneous proper
closed convex function is the support function of a nonempty closed convex set, and the
conjugate of this function is the convex indicator function of the set. The existence of the
set S is by the dual representations of coherent risk measures; see Föllmer and Schied [15,
Corollary 4.37]. From Definition 3.1, it follows that αsys(Q, w) = 0 if (Q, w) ∈ D and
αsys(Q, w) = +∞ otherwise. The rest follows from Theorem 3.2. ��

4 Examples

According to Theorem 3.2, to be able to specify the dual representation of the insensitive
and sensitive systemic risk measures, one needs to compute the penalty function α of the
underlying monetary risk measure ρ as well as the multivariate g-divergence ES[g(w · dQ

dS )]
for dual probability measures S,Q and weight vector w. As the penalty functions of some
canonical riskmeasures (for instance, average value-at-risk, entropic riskmeasure, optimized
certainty equivalents) are quite well known, we focus on the computation of multivariate g-
divergences here. In the following subsections, we consider some canonical examples of
aggregation functions proposed in the systemic risk literature.
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4.1 Total profit-loss model

One of the simplest ways to quantify the impact of the system on society is to aggregate all
profits and losses in the system [9, Example 1]. This amounts to setting

�(x) =
∑

i = 1d xi

for every realized state x ∈ R
d . In this case, it is clear from Definitions 2.3 and 2.5 that

Rins = Rsen.
An elementary calculation using (3.1) yields

g(z) =
{
0 if z = 1,

+∞ else,

for every z ∈ R
d . Hence, given dual variables Q ∈ Md(P), S ∈ M(P), w ∈ R

d+\{0} with
wiQi � S for each i ∈ {1, . . . , d}, we have

E
S

[
g

(
w · dQ

dS

)]
=
{
0 if w = 1,Qi = S for every i ∈ {1, . . . , d} ,

+∞ else.

As a result, once a measure S is chosen for society, the only plausible choice of the measure
Qi of institution i is S, and any other choice would yield infinite g-divergence. Therefore,

αsys(Q, w) =
{

α(S) if w = 1,Q1 = . . . = Qd = S for some S ∈ M(P),

+∞ else,

and one obtains

Rins(X) = Rsen(X) =
{
z ∈ R

d | 1Tz ≥ − inf
S∈M(P)

(
d∑

i=1

E
S [Xi ] + α(S)

)}

for every X ∈ L∞
d .

4.2 Total loss model

The previous example of aggregation function can be modified so as to take into account
only the losses in the system [9, Example 2], that is, we can define

�(x) = −
d∑

i=1

x−
i

for every x ∈ R
d . In this case, the insensitive and sensitive systemic risk measures no longer

coincide.
The conjugate function for the total loss model is given by

g(z) =
{
0 if zi ∈ [0, 1] for every i ∈ {1, . . . , d} ,

+∞ else,
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for every z ∈ R
d . Hence, given Q ∈ Md(P), S ∈ M(P), w ∈ R

d+\{0} with wiQi � S for
each i ∈ {1, . . . , d},

E
S

[
g

(
w · dQ

dS

)]
=
{
0 if P

{
wi

dQi
dS ≤ 1

}
= 1 for every i ∈ {1, . . . , d} ,

+∞ else.

Therefore, the systemic penalty function can be given as

αsys(Q, w) = inf
S∈M(P)

{
α(S) | wiQi � S, P

{
wi

dQi

dS
≤ 1

}
= 1 for every i ∈ {1, . . . , d}

}
.

4.3 Entropic model

As an example of a strictly concave aggregation function, let us suppose that � aggregates
the profits and losses through an exponential utility function [13, Section 5.1(iii)], namely,

�(x) = −
d∑

i=1

e−xi−1

for every x ∈ R
d . Then, for every z ∈ R

d+,

g(z) =
d∑

i=1

zi log(zi ),

where log(0) := −∞ and 0 log(0) := 0 by convention. Hence, for every Q ∈ Md(P),
S ∈ M(P), w ∈ R

d+\{0} with wiQi � S for each i ∈ {1, . . . , d}, the g-divergence is given
by

E
S

[
g

(
w · dQ

dS

)]
=

d∑
i=1

H (wiQi‖S) ,

whereH (wiQi‖S) is the relative entropy of the finite measurewiQi with respect to society’s
probability measure S, that is,

H (wiQi‖S) := E
S

[
wi

dQi

dS
log

(
wi

dQi

dS

)]
.

Since H(wiQi‖S) = wiH(Qi‖S) + wi log(wi ), one can also write

E
S

[
g

(
w · dQ

dS

)]
=

d∑
i=1

wiH (Qi‖S) +
d∑

i=1

wi log(wi ).

Hence, the systemic penalty function has the form

αsys(Q, w) = inf
S∈M(P) :

∀i : wiQi�S

⎛
⎝α(S) +

d∑
i=1

H (wiQi‖S)

⎞
⎠ = inf

S∈M(P) :
∀i : wiQi�S

⎛
⎝α(S) +

d∑
i=1

wiH (Qi‖S)

⎞
⎠+ c(w),

where c(w) :=∑d
i=1 wi log(wi ).

Finally, we consider a special case where the underlying monetary risk measure ρ is the
entropic risk measure, that is,

ρ(Y ) = logE
[
e−Y

]
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for every Y ∈ L∞. In this case, the penalty function of ρ is also a relative entropy:

α(S) = H (S‖P) .

As a result, the systemic penalty function becomes

αsys(Q, w) = inf
S∈M(P) :

∀i : wiQi�S

(
H (S‖P) +

d∑
i=1

wiH (Qi‖S)

)
+ c(w).

As relative entropy is a commonly used quantification of distance between probability mea-
sures, this form of the systemic penalty function provides a geometric insight to the economic
interpretations discussed in Sect. 3. Indeed, the sum H (S‖P) +∑d

i=1 wiH (Qi‖S) can be
seen as the weighted sum distance of the vector probability measure Q to the physical
measure P while passing through the probability measure S of society: as a first step, one
measures the distance from each Qi to S as H (Qi‖S), and computes their weighted sum∑d

i=1 wiH (Qi‖S). Then, this weighted sum is added to the distance H (S‖P) of S to P,
which gives the total distance of Q to P via S. Finally, the systemic penalty function looks
for the minimum possible distance of Q to P (via S) over all choices of S ∈ M(P) with
wiQi � S for every i ∈ {1, . . . , d}.

4.4 Eisenberg–Noemodel

The previous three examples provide general rules for aggregating the wealths of the insti-
tutions. As these rules ignore the precise structure of the financial system, they would be
useful in systemic risk measurement, for instance, in the absence of detailed information
about interbank liabilities.

In this subsection, we consider the network model of Eisenberg and Noe [11], where
the financial institutions (typically banks) are modeled as the nodes of a network and the
liabilities between the institutitons are represented on the arcs. As in Feinstein et al. [13], we
will add society as an additional node to the network and define the aggregation function as
the net equity of society after clearing payments are realized based on the liabilities.

Let us recall the description of the model. We consider a financial network with nodes
0, 1, . . . , d , where nodes 1, . . . , d denote the institutions and node 0 denotes society. For an
arc (i, j) with i, j ∈ {0, 1 . . . , d}, let us denote by 
i j ≥ 0 the nominal liability of node i to
node j . We make the following assumptions.

(i) Society has no liabilities, that is, 
0i = 0 for every i ∈ {1, . . . , d}.
(ii) Every institution has nonzero liability to society, that is, 
i0 > 0 for every i ∈
{1, . . . , d}.
(iii) Self-liabilities are ignored, that is, 
i i = 0 for every i ∈ {0, 1, . . . , d}.

For an arc (i, j) with i �= 0, the corresponding relative liability is defined as

ai j := 
i j

p̄i
,

where p̄i :=∑d
j=0 
i j > 0 is the total liability of institution i .

123



Mathematics and Financial Economics (2020) 14:139–174 155

Given a realized state x ∈ R
d , a vector p(x) := (p1(x), . . . , pd(x))T ∈ R

d+ is called a
clearing payment vector for the system if it solves the fixed point problem

pi (x) = min

⎧⎨
⎩ p̄i , xi +

d∑
j=1

a ji p j (x)

⎫⎬
⎭ , i ∈ {1, . . . , d} .

In this case, the payment pi (x) of an institution i at clearing must be equal either to the total
liability of i (no default) or else to the total income of i coming from other institutions as
well as its realized wealth (default). Clearly, every clearing payment vector p = p(x) is a
feasible solution of the linear programming problem

maximize
d∑

i=1

ai0 pi (P(x))

subject to pi ≤ xi +
d∑
j=1

a ji p j , i ∈ {1, . . . , d} ,

pi ∈ [0, p̄i ], i ∈ {1, . . . , d} .

Let us denote by �(x) the optimal value of problem (P(x)). Note that this problem is
either infeasible, in which case we set �(x) = −∞, or else it has a finite optimal value
�(x) ∈ [0, ¯̄p], where ¯̄p := ∑d

i=0 ai0 p̄i . Let us denote by X the set of all x ∈ R
d for which

(P(x)) is feasible. Clearly,Rd+ ⊆ X . In fact, only the case x ∈ R
d+ is considered by Eisenberg

and Noe [11] and it is shown in Eisenberg and Noe [11, Lemma 4] that every optimal solution
of (P(x)) is a clearing payment vector for the system.We note here that the same result holds
for every x ∈ X since the objective function is strictly increasing with respect to the payment
pi of each institution i .

Therefore, if x ∈ X , then the optimal value �(x) is the equity of society after clearing
payments are realized, and if x /∈ X , then we have �(x) = −∞ in which case there is no
clearing payment vector. Hence, we set � to be the aggregation function for the Eisenberg–
Noe model as it quantifies the impact of the financial network on society.

It is easy to check that � is increasing, concave and non-constant. Hence, it satisfies the
definition of an aggregation function except that it may take the value −∞. Nevertheless, by
Remark 4.2 below, we are able to apply Theorem 3.2 to this choice of �. In Proposition 4.1
below, we provide a simple expression for the conjugate function g defined by (3.1).

Proposition 4.1 For z ∈ R
d+, one has

g(z) =
d∑

i=1

ci (z)
+,

where

ci (z) =
d∑
j=0


i j (z j − zi ),

and z0 := 1. Consequently, for everyQ ∈ Md(P), S ∈ M(P), w ∈ R
d+\{0} with wiQi � S

for each i ∈ {1, . . . , d},

E
S

[
g

(
w · dQ

dS

)]
=

d∑
i=1

E
S

[
ci

(
w · dQ

dS

)+]
=

d∑
i=1

E
S

⎡
⎣
⎛
⎝ d∑

j=0


i j

(
w j

dQ j

dS
− wi

dQi

dS

)⎞⎠
+⎤
⎦ ,
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where w0 := 1,Q0 := S.

Proof Let z ∈ R
d+. We have

g(z) = sup
x∈Rd

(
�(x) − zTx

)

= sup
pi∈[0, p̄i ], i∈{1,...,d}

⎧⎨
⎩

d∑
i=1

ai0 pi − inf
x∈Rd

⎧⎨
⎩zTx | xi ≥ pi −

d∑
j=1

a ji p j , i ∈ {1, . . . , d}
⎫⎬
⎭
⎫⎬
⎭

= sup
pi∈[0, p̄i ], i∈{1,...,d}

⎧⎨
⎩

d∑
i=1

ai0 pi −
d∑

i=1

zi

⎛
⎝pi −

d∑
j=1

a ji p j

⎞
⎠
⎫⎬
⎭

= sup
pi∈[0, p̄i ], i∈{1,...,d}

d∑
i=1

⎛
⎝ai0 +

d∑
j=1

ai j z j − zi

⎞
⎠ pi

=
d∑

i=1

ci (z)
+

since

ci (z) =
d∑
j=0


i j
(
z j − zi

) = p̄i

⎛
⎝ai0 +

d∑
j=1

ai j z j − zi

⎞
⎠ .

Hence, the last statement follows. ��
Therefore, for themultivariate g-divergence of the Eisenberg–Noemodel, the contribution

of institution i is computed as follows. The difference between the weighted density w j
dQ j
dS

of institution j and theweighted densitywi
dQi
dS of institution i is computed and this difference

is multiplied by the corresponding liability 
i j ≥ 0. The positive part of the sum of these
(weighted) differences over all j �= i is the (random) measurement of the incompatibility
of Qi , wi for institution i given the choices of Q j , w j for institutions j �= i as well as the
choice of S for society. Finally, the expected value of this measurement gives the contribution
of institution i to the g-divergence.

Remark 4.2 Note that the aggregation function � in this example takes the value −∞ on
R
d \X , which is not allowed in the general framework of Sect. 2. In particular, �(X) ∈ L∞

may no longer hold true. Nevertheless, Definitions 2.3 and 2.5 of the systemic risk measures
still make sensewith the usual acceptance setA ⊆ L∞ of amonetary riskmeasure ρ : L∞ →
R. One just obtains Rins(X) = ∅ if �(X) /∈ L∞. Equivalently, one can extend ρ to random
variables of the form Z̃ = Z1F − ∞1�\F with Z ∈ L∞ and F ∈ F (1F denotes the
stochastic indicator function of F) by

ρ(Z̃) =
{

ρ(Z) if P(F) = 1,

+∞ if P(F) < 1,

and then define Rins and Rsen by (2.1) and (2.2). Naturally, this extended definition yields
ρins(X) = ρ(�(X)) = +∞ and Rins(X) = ∅ if P {�(X) ∈ R} < 1. In other words, the
insensitive systemic riskmeasure provides no capital allocation vectors in this case. However,
with the sensitive systemic risk measure Rsen, it is always possible to find a nonempty set of
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capital allocation vectors. Indeed, it is easy to check that, for every X ∈ L∞
d , the vector z̄ ∈ R

d

defined by zi = ∥∥X−
i

∥∥∞ for each i ∈ {1, . . . , d} yields �(X + z̄) ∈ L∞ (as X + z̄ ≥ 0), and
moreover, one can find z ∈ R

d with �(X + z̄+ z) ∈ A so that z̄+ z ∈ Rsen(X). Finally, with
the extended definition, Rsen still has the dual representation in Theorem 3.2 with minor and
obvious changes in the proof in Sect. 6.2 and the dual representation of Rins in Theorem 3.2
holds for X with �(X) ∈ L∞, else Rins(X) = ∅.

4.5 Eisenberg–Noemodel with central clearing

When a central clearing counterparty (CCP) is introduced to the financial system, all liabilities
between the institutions are realized through the CCP, which results in a star-shaped structure
in themodified network.On the other hand, the institutions still have their liabilities to society.
In this subsection, we consider the modified Eisenberg–Noe model with the CCP and society
and show that the g-divergence in this model can be written in a similar way as in the model
without the CCP.

Let us consider again the Eisenberg–Noe model without the CCP where the liabilities 
i j ,
i, j ∈ {0, 1, . . . , d}, satisfy the three assumptions of the previous subsection. We add the
CCP to the network as node d+1 and compute the liabilities between the CCP and institution
i ∈ {1, . . . , d} by


i(d+1) :=
⎛
⎝ d∑

j=1


i j −
d∑
j=1


 j i

⎞
⎠

+
, 
(d+1)i :=

⎛
⎝ d∑

j=1


i j −
d∑
j=1


 j i

⎞
⎠

−
.

In other words, if the net interbank liability of institution i is positive in the original network,
then this amount is set as the liability of institution i to the CCP; otherwise, the absolute
value of this amount is set as liability of the CCP to institution i . Once the liabilities of/to
the CCP are set, the liabilities on the arcs (i, j) with i, j ∈ {1, . . . , d} are all set to zero but
the liability 
i0 > 0 of institution i to society remains the same.

In the modified network, a given realized state x has d + 1 components, that is, x =
(x1, . . . , xd+1)

T, and the defining fixed point problem of a clearing payment vector p(x) =
(p1(x), . . . , pd+1(x))T ∈ R

d+1+ can be written as

pi (x) = min

{

i(d+1) + 
i0, xi + pd+1(x)


(d+1)i∑d
j=1 
(d+1) j

}
, i ∈ {1, . . . , d} , (4.1)

pd+1(x) = min

{
d∑

i=1


(d+1)i , xd+1 +
d∑

i=1

pi (x)

i(d+1)


i(d+1) + 
i0

}
. (4.2)

The corresponding linear programming problem becomes

maximize
d∑

i=1


i0


i0 + 
i(d+1)
pi (P̃(x))

subject to pi ≤ xi + 
(d+1)i∑d
j=1 
(d+1) j

pd+1, i ∈ {1, . . . , d} ,

pd+1 ≤ xd+1 +
d∑

i=1


i(d+1)


i(d+1) + 
i0
pi ,
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pi ∈ [0, 
i(d+1) + 
i0], i ∈ {1, . . . , d} ,

pd+1 ∈
[
0,

d∑
i=1


(d+1)i

]
.

Let us denote by �̃(x) the optimal value of problem (P̃(x)) and by X̃ the set of all x ∈ R
d+1

for which (P̃(x)) is feasible. As in the original network, if x /∈ X̃ , then we have �̃(x) = −∞
and there exists no clearing payment vectors. On the other hand, if x ∈ X̃ , then (P̃(x)) has a
finite optimal value �̃(x). However, as the objective function does not depend on the payment
pd+1 of the CCP, an optimal solution of (P̃(x)) may fail to be a clearing payment vector. In
particular, Eisenberg and Noe [11, Lemma 4] does not apply here. Nevertheless, any clearing
payment vector is a solution of (P̃(x)), and we will show in Proposition 4.3 that, for feasible
(P̃(x)), one can always find an optimal solution that is also a clearing payment vector.

Proposition 4.3 Suppose x ∈ X̃ . Then (P̃(x)) has an optimal solution p(x) ∈ R
d+1+ that is

also a clearing payment vector. Moreover, the optimal value �̃(x) equals the equity of society
after clearing payments are realized under any such solution of (P̃(x)).

Proof Let p ∈ R
d+1+ be an optimal solution of (P̃(x)), which exists as (P̃(x)) is a feasible

bounded linear programming problem by supposition. Let us define p(x) ∈ R
d+1+ by

pi (x) := pi , i ∈ {1, . . . , d} ,

pd+1(x) := xd+1 +
d∑

i=1


i(d+1)


i(d+1) + 
i0
pi .

Note that pd+1(x) ≥ pd+1 ≥ 0. On the other hand, p(x) satisfies the first part of the fixed
point problem, namely, the systemof equations in (4.1). This is due to the fact that the objective
function has a strictly positive coefficient for pi (x) for each i ∈ {1, . . . , d} and the conclusion
can be checked in the same way as in the proof of Eisenberg and Noe [11, Lemma 4]. Hence,
it is clear from (4.1), (4.2) that p(x) is a clearing payment vector. Therefore, p(x) is also
a feasible solution of (P̃(x)). Finally, the objective function values of p(x) and p coincide.
Therefore, p(x) is an optimal solution of (P̃(x)). The second statement follows from the
optimality of p(x). ��

With Proposition 4.3, the computations of the conjugate function g̃ and the corresponding
multivariate g̃-divergence function can be seen as a special case of the computations in the
original model in Sect. 4.4.

Corollary 4.4 For every z ∈ R
d+1+ ,

g̃(z) =
d∑

i=1

[

i0(1 − zi ) + 
i(d+1)(zd+1 − zi )

]+ +
(

d∑
i=1


(d+1)i (zi − zd+1)

)+
.

Consequently, for everyQ ∈ Md+1(P), S ∈ M(P), w ∈ R
d+1+ \{0} with wiQi � S for each

i ∈ {1, . . . , d + 1},

E
S

[
g̃

(
w · dQ

dS

)]
=

d∑
i=1

E

[

i0

(
1 − wi

dQi

dS

)
+ 
i(d+1)

(
wd+1

Qd+1

dS
− wi

dQi

dS

)]+

+ E

[
d∑

i=1


(d+1)i

(
wi

dQi

dS
− wd+1

dQd+1

dS

)]+
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Proof This is a special case of Proposition 4.1 for a network with d + 1 nodes and society. ��

4.6 Resource allocationmodel

The resource allocation problem is a classical operations research problem where the aim is
to allocate d limited resources for m different tasks so as to maximize the profit made from
these tasks. In the systemic risk context, this problem is discussed in Chen et al. [9] as well.

To be precise, let us fix the problem data p ∈ R
m+, A ∈ R

d×m+ where p j denotes the unit
profit made from task j and Ai j denotes the utilization rate of resource i by task j , for each
i ∈ {1, . . . , d} , j ∈ {1, . . . ,m}. We also denote by u ∈ R

m an allocation vector where u j

quantifies the production in task j ∈ {1, . . . ,m}. In addition, the realized state of the system
is a vector x ∈ R

d where xi denotes the capacity of resource i ∈ {1, . . . , d}. Then, the
aggregation function is defined as the profit made from allocating the capacities optimally
for the tasks, namely,�(x) is the optimal value of the following linear programming problem.

maximize pTu

subject to Au ≤ x,

u ≥ 0.

As in Remark 4.2 of the Eisenberg–Noe model, it can be argued that the infeasible case
�(x) = −∞ creates noproblems for the application of the general duality result Theorem3.2.
The following proposition provides the special form of the multivariate g-divergence and the
systemic penalty function.

Proposition 4.5 For every z ∈ R
d+,

g(z) =
{
0 if ATz ≥ p,

+∞ else.

Consequently, for every Q ∈ Md(P), S ∈ M(P), w ∈ R
d+ \{0} with wiQi � S for each

i ∈ {1, . . . , d},

E
S

[
g

(
w · dQ

dS

)]
=
{
0 if P

{
AT
(
w · dQ

dS

)
≥ p

}
= 1,

+∞ else,

and

αsys(Q, w) = inf
S∈M(P)

{
α(S) | P

{
AT
(

w · dQ
dS

)
≥ p

}
= 1, wiQi � S for every i ∈ {1, . . . , d}

}
.

Proof Note that

g(z) = sup
x∈Rd

(
�(x) − zTx

)

= sup
u∈Rm+

(
pTu − inf{x∈Rd |x≥Au} z

Tx

)

= sup
u∈Rm+

(
pTu − zTAu

)

= sup
u∈Rm+

(p − ATz)Tu,

123



160 Mathematics and Financial Economics (2020) 14:139–174

which is the value of the support function of the cone Rm+ in the direction p − ATz. Hence,

g(z) =
{
0 if ATz − p ∈ R

m+,

+∞ else,

which proves the first claim. The rest follows directly from the definitions of the multivariate
g-divergence and the systemic penalty function. ��

In light of Proposition 4.5, let us comment on the interpretation of the dual variables. To
each resource i , we assign a probability measure Qi and a weight wi . In addition, we assign
a probability measure S to the economy. Then, the weighted density wi

dQi
dS can be seen as

the unit profit made from using resource i . Given S, we say that the choices of Q, w are
compatible with S if, for each j , the total profit made out of a unit activity in task j exceeds
the original unit profit for task j (with probability one), that is, if

d∑
i=1

Ai jwi
dQi

dS
≥ p j .

4.7 Network flowmodel

The maximum flow problem aims to maximize the total flow from a source node to a sink
node in a capacitated network [18,25]. In the systemic risk context, this problem is discussed
in Chen et al. [9] as well.

Let us formally recall the problem. We consider a network (N , E), where N is the set of
nodes and E ⊆ N × N is the nonempty set of arcs with d := |E|. On this network, each arc
(a, b) has some capacity x(a,b) ∈ R for carrying flow. Then, x = (x(a,b))(a,b)∈E ∈ R

d is a
realized state of this system. We are interested in maximizing the flow from a fixed source
node s ∈ N to a fixed sink node t ∈ N \{s}.

In this example, we will consider the so-called path formulation of the maximum flow
problem as a linear programming problem. To that end, let us recall that a (simple) path p is
a finite sequence of arcs where no node is visited more than once. Let P be the set of all paths
starting from s and ending at t , and let m := |P|. For each p ∈ P , we will denote by u p ∈ R

a flow carried over path p. Then, the aggregation function is defined as the maximum total
flow carried over the paths in P , that is, �(x) is the optimal value of the following linear
programming problem.

maximize
∑
p∈P

u p

subject to
∑

{p∈P|(a,b)∈p}
u p ≤ x(a,b), (a, b) ∈ E .

As in Remark 4.2, it can be argued that the infeasible case �(x) = −∞ creates no
problems for the application of the general duality results. The following proposition provides
the special form of the multivariate g-divergence and the systemic penalty function.

Proposition 4.6 For every z = (z(a,b))(a,b)∈E ∈ R
d+,

g(z) =
{
0 if

∑
(a,b)∈pz(a,b) = 1 for every p ∈ P,

+∞ else.
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Consequently, for every Q = (Q(a,b))(a,b)∈E ∈ Md(P), S ∈ M(P), w = (w(a,b))(a,b)∈E ∈
R
d+\{0} with w(a,b)Q(a,b) � S for every (a, b) ∈ E ,

E
S

[
g

(
w · dQ

dS

)]
=
{
0 if P

{∑
(a,b)∈pw(a,b)

dQ(a,b)
dS = 1

}
= 1 for every p ∈ P,

+∞ else,

and

αsys(Q, w) = inf
S∈M(P) :

∀(a,b)∈E : w(a,b)Q(a,b)�S

⎧⎨
⎩α(S) | P

⎧⎨
⎩
∑

(a,b)∈p

w(a,b)
dQ(a,b)

dS
= 1

⎫⎬
⎭ = 1 for every p ∈ P

⎫⎬
⎭ .

Proof Let z ∈ R
d+. We have

g(z) = sup
x∈Rd

(
�(x) − zTx

)

= sup
u∈Rm

⎛
⎝∑

p∈P

u p − inf
x∈Rd

⎧⎨
⎩zTx |

∑
{p∈P|(a,b)∈p}

u p ≤ x(a,b) for every (a, b) ∈ E
⎫⎬
⎭
⎞
⎠

= sup
u∈Rm

∑
p∈P

⎛
⎝1 −

∑
(a,b)∈p

z(a,b)

⎞
⎠ u p

=
{
0 if

∑
(a,b)∈pz(a,b) = 1 for every p ∈ P,

+∞ else.

The rest followsdirectly from the definitions of themultivariate g-divergence and the systemic
penalty function. ��

Note that the sensitive systemic risk measure Rsen provides a quantification of the risk
resulting from a random shock X = (X(a,b))(a,b)∈E that affects the capacities of the arcs. In
light of Proposition 4.6, we assign a probability measure Q(a,b) and a weight w(a,b) to each
arc (a, b). In addition, we assign a probability measure S to the (possibly hypothetical) arc
(s, t), which provides a direct connection from the source to the sink. We also assume that

the weight of this arc is w(s,t) = 1. Then, the weighted density w(a,b)
dQ(a,b)
dS can be seen as

the unit cost of carrying a unit flow on arc (a, b) and the unit cost of carrying a unit flow on
arc (s, t) is 1. Therefore, given S, we say that the choices of Q, w are compatible with S if,
for each path p ∈ P , the total cost of carrying a unit flow along p coincides with the cost of
carrying a unit flow directly from the source to the sink (with probability one), that is, if

∑
(a,b)∈p

w(a,b)
dQ(a,b)

dS
= 1 = w(s,t)

dS

dS
.

5 Model uncertainty interpretation

We finish the main part of the paper by pointing out an observation that bridges the sensi-
tive systemic risk measure Rsen with the so-called multivariate utility-based shortfall risk
measures of recent interest in the literature.
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5.1 Multivariate shortfall risk measure

As the aggregation function � : Rd → R is assumed to be increasing and concave, it can
be seen as a multivariate utility function. Motivated by its univariate counterpart introduced
in Föllmer and Schied [14], a multivariate shortfall risk measure with respect to � can be
defined as follows.

Definition 5.1 Let λ0 ∈ − int�(Rd). The set-valued function R(·;P, λ0) : L∞
d → 2R

d

defined by

R(X;P, λ0) =
{
z ∈ R

d | E [−�(X + z)] ≤ λ0
}

for X ∈ L∞
d is called the shortfall risk measure with threshold level λ0 and model P.

The financial interpretation of the shortfall risk measure is that, for a multivariate financial
position X , it collects the set of all deterministic porfolios z ∈ R

d for which the expected loss
of X+z does not exceed the fixed threshold levelλ0. (The use ofP in the notation R(X;P, λ0)

will become clear when this risk measure is considered under model uncertainty in Sect. 5.2
below.) Such risk measures based on multivariate utility functions have been studied recently
in Ararat et al. [2], Armenti et al. [3].

The shortfall risk measure R(·;P, λ0) defined above is an example of a sensitive systemic
riskmeasurewhere the riskmeasure for aggregate values is chosen to be a shifted expectation,
namely,

ρ(Y ) = E [−Y ] − λ0 (5.1)

for every Y ∈ L∞. A direct application of Theorem 3.2 yields the following dual represen-
tation. As this representation suggests when compared to Theorem 3.2, using R(·;P, λ0) as
a systemic risk measure amounts to assuming that the probability measure (the model) for
society is known with certainty and is equal to P.

Proposition 5.2 In the setting of Definition 5.1, it holds

R(X;P, λ0) =
⋂

Q∈Md (P),w∈Rd+\{0}

{
z ∈ R

d | wTz ≥ wT
E
Q [−X ] − λ0 − E

[
g

(
w · dQ

dP

)]}

for every X ∈ L∞
d .

Proof This is immediate from Theorem 3.2 once we realize that the penalty function of the
risk measure defined in (5.1) is given by

α(S) =
{

λ0 if S = P,

+∞ else,

for S ∈ M(P). ��
Example 5.3 Consider the Eisenberg–Noe model without central clearing as in Sect. 4.4. In
this case, the shortfall risk measure R(·;P.λ0) takes the form

R(X;P, λ0)

=
⎧⎨
⎩z ∈ R

d | E
⎡
⎣sup

⎧⎨
⎩

d∑
i=1

ai0 pi | pi ≤ Xi + zi +
d∑
j=1

a ji p j , pi ∈ [0, p̄i ], i ∈ {1, . . . , d}
⎫⎬
⎭
⎤
⎦ ≥ −λ0

⎫⎬
⎭
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=
⋂

Q∈Md (P),w∈Rd+\{0}

⎧⎨
⎩z ∈ R

d | wTz ≥ wT
E
Q [−X ] − λ0 −

d∑
i=1

E

⎡
⎣
⎛
⎝ d∑

j=0


i j

(
w j

dQ j

dP
− wi

dQi

dP

)⎞⎠
+⎤
⎦
⎫⎬
⎭

for X ∈ L∞
d , by Propositions 4.1 and 5.2.

5.2 Amodel uncertainty representation

The connection between shortfall risk measures and the sensitive systemic risk measure
Rsen can be exploited further by rearranging the order of intersections/suprema in the dual
representation given by Theorem 3.2. In what follows, we show that any sensitive systemic
risk measure Rsen (i.e. for an arbitrary choice of ρ) can be seen as a shortfall risk measure
under model uncertainty.

Proposition 5.4 Suppose that �(Rd) = R. It holds

Rsen(X) =
⋂

{S∈M(P) | α(S)∈R}
R(X; S, α(S)) =

⋂
{S∈M(P) | α(S)∈R}

{
z ∈ R

d | ES [−�(X + z)] ≤ α(S)
}

for every X ∈ L∞
d .

In otherwords, regardless of the choice ofρ, the sensitive systemic riskmeasure can always
be seen as a shortfall risk measure subject to an uncertainty in the probability measure S of
society. To measure systemic risk, one makes a conservative computation (intersection) of
the shortfall risk over all sensible choices of S. Moreover, in each shortfall risk measure
R(·;S, α(S)), the penalty α(S) for choosing S serves as a maximum allowable expected loss
under S.

Proof of Proposition 5.4 For fixed X ∈ L∞
d , we have

Rsen(X) =
⋂

Q∈Md (P),w∈Rd+\{0}

{
z ∈ R

d | wTz ≥ wT
E
Q [−X ] − αsys(Q, w)

}

=
⋂

S∈M(P)

⋂
Q∈Md (P),w∈Rd+\{0} :

∀i : wiQi�S

{
z ∈ R

d | wTz ≥ wT
E
Q [−X ] − α(S) − E

S

[
g

(
w · dQ

dS

)]}

=
⋂

S∈M(P)

⋂
Q∈Md (P),w∈Rd+\{0} :

∀i : Qi�S

{
z ∈ R

d | wTz ≥ wT
E
Q [−X ] − α(S) − E

S

[
g

(
w · dQ

dS

)]}

=
⋂

S∈M(P)

⋂
Q∈Md (S),w∈Rd+\{0}

{
z ∈ R

d | wTz ≥ wT
E
Q [−X ] − α(S) − E

S

[
g

(
w · dQ

dS

)]}

=
⋂

{S∈M(P) | α(S)∈R}
R(X; S, α(S)).

The following arguments make the above computation valid. The first two equalities are by
Theorem 3.2. The third equality follows from the basic observation that the halfspace inside
the intersections is not affected by the choice of Qi ∈ Md(P) whenever wi = 0; hence we
may impose Qi � S in this case as well. The fourth equality is trivial. The fifth equality
follows since the inner intersection in the penultimate line is the dual representation of the
shortfall risk measure with threshold level α(S) ∈ R and model S; see Proposition 5.2. Here,
we need to exclude the cases where S ∈ M(P) is such that α(S) = +∞. In such cases, the
inner intersection in the penultimate line simply gives Rd , which does not change the outer
intersection in the same line. Hence, the result follows. ��
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6 Appendix: Proofs

6.1 Proofs of the results in Sect. 2

Proof of Proposition 2.8

1. Let X , Z ∈ L∞
d . To show monotonicity, suppose that X ≥ Z . Since � is increasing

and ρ is monotone, it holds ρ(�(X)) ≤ ρ(�(Z)). By (2.1), it follows that Rins(X) ⊇
Rins(Z). To show convexity, let x ∈ Rins(X), z ∈ Rins(Z) and γ ∈ [0, 1]. By (2.1), it
holds ρ(�(X)) ≤∑d

i=1 xi and ρ(�(Z)) ≤∑d
i=1 zi . Then,

ρ(�(γ X + (1 − γ )Z)) ≤ ρ (γ�(X) + (1 − γ )�(Z))

≤ γρ(�(X)) + (1 − γ )ρ(�(Z))

≤
d∑

i=1

(γ xi + (1 − γ )zi ) ,

where the first inequality follows by the concavity of � and the monotonicity of ρ,
the second inequality follows by the convexity of ρ, and the last inequality is by the
supposition. Therefore, γ x + (1− γ )z ∈ Rins(γ X + (1− γ )Z) and convexity follows.
To show closedness, let z ∈ R

d . As a result of the convexity of Rins, the set Lz :={
X ∈ L∞

d | z ∈ Rins(X)
}
is convex. Hence, by Föllmer and Schied [15, Lemma A.65],

it suffices to show that Lr ,z := {X ∈ Lz | ‖X‖∞ ≤ r} is closed in L1
d for every r > 0.

(Here, ‖X‖∞ := ess sup |X | is the essential supremum norm on L∞
d with respect to

some fixed norm |·| on Rd .) To that end, let z ∈ R
d , r > 0, and (Xn)n≥1 be a sequence

in Lr ,z converging to some X ∈ L1
d in L1

d . Then, there exists a subsequence (Xnk )k≥1

converging to X almost surely. Since

|X | ≤ ∣∣Xnk − X
∣∣+ ∣∣Xnk

∣∣ ≤ ∣∣Xnk − X
∣∣+ r

for every k ≥ 1, it follows that ‖X‖∞ ≤ r . On the other hand, (�(Xnk ))k≥1 converges
to �(X) almost surely since � is a continuous function as a finite concave function on
R
d . As (�(Xnk ))k≥1 is also a bounded sequence in L∞, by the Fatou property of ρ,

ρ(�(X)) ≤ lim inf
n→∞ ρ(�(Xnk )) ≤

d∑
i=1

zi .

so that z ∈ Rins(X). Hence, X ∈ Lr ,z and closedness follows. Finiteness at zero is
trivial from (2.1) since ρ(�(X)) ∈ R.

2. Let X , Z ∈ L∞
d . To show monotonicity, suppose that X ≥ Z . Since � is increasing

and ρ is monotone, it holds ρ(�(X + z)) ≤ ρ(�(Z + z)) for every z ∈ R
d . By (2.2),

it follows that Rsen(X) ⊇ Rsen(Z). To show convexity, let x ∈ Rsen(X), z ∈ Rsen(Z)

and γ ∈ [0, 1]. By (2.2), it holds ρ(�(X + x)) ≤ 0 and ρ(�(Z + z)) ≤ 0. Similar to
the proof for the insensitive case,

ρ(�(γ X + (1 − γ )Z + γ x + (1 − γ )z))

≤ γρ(�(X + x)) + (1 − γ )ρ(�(Z + z)) ≤ 0.

Hence, γ x + (1 − γ )z ∈ Rsen(γ X + (1 − γ )Z) and convexity follows. To show
closedness, similar to the proof for the insensitive case, it suffices to show that the set
{X ∈ L∞

d | z ∈ Rsen(X), ‖X‖∞ ≤ r} is closed in L1
d for arbitrarily fixed r > 0
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and z ∈ R
d . Let (Xn)n≥1 be a sequence in this set that converges to some X ∈ L1

d in
L1
d . Using the Fatou property of ρ as above, it can be checked that ρ(�(X + z)) ≤

lim infn→∞ ρ(�(Xnk + z)) ≤ 0 for a subsequence (Xnk )k≥1. Hence, z ∈ Rsen(X) and
closedness follows. To show finiteness at zero, note that

Rsen(0) =
{
z ∈ R

d | ρ(�(z)) ≤ 0
}

=
{
z ∈ R

d | ρ(0) ≤ �(z)
}

= �−1([ρ(0),+∞)),

where the first equality is by (2.2) and the second equality is by the translativity of ρ.
Since ρ(0) ∈ int�(Rd) by Assumption 2.1, it follows that Rsen(0) /∈ {∅,Rd

}
. Finally,

translativity follows since

Rsen(X + z) =
{
x ∈ R

d | ρ(�(X + z + x)) ≤ 0
}

=
{
x ∈ R

d | ρ(�(X + x)) ≤ 0
}

− z

= Rsen(X) − z

for every z ∈ R
d .

��
Proof of Proposition 2.10 We have

Rins(γ X) =
{
z ∈ R

d | ρ

(
�(γ X) +

d∑
i=1

zi

)
≤ 0

}

=
{
z ∈ R

d | ρ

(
γ�(X) +

d∑
i=1

zi

)
≤ 0

}

=
{
z ∈ R

d | γρ

(
�(X) +

d∑
i=1

zi
γ

)
≤ 0

}

=
{
z ∈ R

d | ρ

(
�(X) +

d∑
i=1

zi
γ

)
≤ 0

}

= γ

{
u ∈ R

d | ρ

(
�(X) +

d∑
i=1

ui

)
≤ 0

}

= γ Rins(X).

The proof for Rsen is similar. ��

6.2 Proofs of Theorem 3.2 and Proposition 3.4

The proof of Theorem 3.2 is preceded by the three lemmata below.
First, let us recall a fundamental result in convex duality. For a function h : X → R∪{+∞}

on a locally convex topological linear space X , we define its epigraph as the set

epi h := {(x, r) ∈ X × R | h(x) ≤ r} ,

and the conjugate function h∗ : X ∗ → R ∪ {+∞} on the topological dual space X ∗ by

h∗(x∗) := sup
x∈X

(〈
x∗, x

〉− h(x)
)
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for every x∗ ∈ X ∗, where 〈·, ·〉 is the natural bilinear mapping of the dual pair (X ∗,X ).
The epigraph epi h∗ of h∗ is defined similarly as a subset of X ∗ × R. According to the
Fenchel–Moreau biconjugation theorem [26, Theorem 2.3.3], if h is a proper convex lower
semicontinuous function, then h = (h∗)∗, that is,

h(x) = sup
x∗∈X ∗

(〈
x∗, x

〉− h∗(x∗)
)

(6.1)

for every x ∈ X . Moreover, if η : X ∗ → R̄ is another function whose closure is h∗, that is,
epi h∗ = cl epi η, then we also have h = η∗, that is,

h(x) = sup
x∗∈X ∗

(〈
x∗, x

〉− η(x∗)
)

(6.2)

for evey x ∈ X . This is an immediate consequence of Zalinescu [26, Theorem 2.3.1]. The
next lemma provides a slight variation of (6.2) that will be useful in the proof of Theorem 3.2.

Lemma 6.1 Let h : X → R∪ {+∞} be a proper convex lower semicontinuous function and
η : X ∗ → R̄ a function whose closure is h∗. Then, for every x ∈ X ,

sup
x∗∈X ∗\{0}

(〈
x∗, x

〉− h∗(x∗)
) = sup

x∗∈X ∗\{0}
(〈
x∗, x

〉− η(x∗)
)
.

Proof Let x ∈ X . It is easy to see that

sup
x∗∈X ∗\{0}

(〈
x∗, x

〉− h∗(x∗)
) = sup

x∗∈X ∗\{0}
〈
(x∗, h∗(x∗)), (x,−1)

〉
= sup

(x∗,s)∈epi h∗,x∗ �=0

〈
(x∗, s), (x,−1)

〉
,

where, with a slight abuse of notation, 〈(·, ·), (·, ·)〉 denotes the natural bilinear mapping of
the dual pair (X ∗ × R,X × R) of product spaces. We claim that

sup
(x∗,s)∈epi h∗ :

x∗ �=0

〈
(x∗, s), (x,−1)

〉 = sup
(x∗,s)∈epi η :

x∗ �=0

〈
(x∗, s), (x,−1)

〉
. (6.3)

The ≥ part is clear since epi h∗ = cl epi η ⊇ epi η. To show the ≤ part, let (x∗, s) ∈ epi h∗
with x∗ �= 0. So there exists a net (x∗

θ , sθ )θ∈
 in epi η that converges to (x∗, s). (
 denotes
the directed index set of the net.) Moreover, since x∗ �= 0, we can have x∗

θ = 0 only for
finitely many θ ∈ 
. Excluding such indices and passing to a subnet, we can assume without
loss of generality that x∗

θ �= 0 for every θ ∈ 
. Hence, by the continuity of the bilinear
mapping,

sup
(x∗,s)∈epi η :

x∗ �=0

〈
(x∗, s), (x,−1)

〉 ≥ lim
θ∈


〈
(x∗

θ , sθ ), (x,−1)
〉 = 〈(x∗, s), (x,−1)

〉
.

Since (x∗, s) ∈ epi h∗ with x∗ �= 0 is arbitrary, the ≤ part of (6.3) follows. Therefore,

sup
x∗∈X ∗\{0}

(〈
x∗, x

〉− h∗(x∗)
) = sup

(x∗,s)∈epi η :
x∗ �=0

〈
(x∗, s), (x,−1)

〉

= sup
x∗∈X ∗\{0}

〈
(x∗, η(x∗)), (x,−1)

〉
= sup

x∗∈X ∗\{0}
(〈
x∗, x

〉− η(x∗)
)
,

which finishes the proof. ��
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Consider the function f : L1
d → R̄ defined by

f (U ) := inf
V∈−L1+

{
−E

[
Vg

(
U

V

)
1{V<0}

]
+ ρ∗ (V ) | E [V ] = −1, P {V = 0,U �= 0} = 0

}
(6.4)

for U ∈ −L1
d,+, and by f (U ) = +∞ for U /∈ −L1

d,+.

Lemma 6.2 The function (ρ ◦ �)∗ is the closure of f , that is, epi (ρ ◦ �)∗ = cl epi f .

Proof The proof is based on a general conjugation theorem for the composition of an increas-
ing convex function with a convex function, see Boţ et al. [7, Theorem 3.1]. To that end, let us
consider � as a function on L∞

d with values in L∞, which is a convex function when L∞ is
partially ordered by the cone−L∞+ :�(γ Z1+ (1−γ )Z2) ∈ γ�(Z1)+ (1−γ )�(Z2)− L∞+
for every Z1, Z2 ∈ L∞

d , γ ∈ [0, 1]. Similarly, ρ is increasing with respect to this partial
order on L∞: Y 1 ∈ Y 2 − L∞+ implies ρ(Y 1) ≥ ρ(Y 2) for every Y 1, Y 2 ∈ L∞. Let us define
hV (Z) = E [V�(Z)] for every V ∈ L1 and Z ∈ L∞

d . By Boţ et al. [7, Theorem 3.1], using
Assumption 2.1, (λρ ◦ �)∗ is the closure of the function f̄ defined by

f̄ (U ) = inf
V∈−L1+

(
h∗
V (U ) + ρ∗(V )

)

for every U ∈ L1
d . Let us fix U ∈ L1

d and V ∈ −L1+. We have

h∗
V (U ) = sup

X∈L∞
d

(
E

[
U TX

]
− E [V�(X)]

)

= sup
X∈L∞

d

E

[
U TX − V�(X)

]

= E

[
sup
x∈Rd

(
U Tx − V�(x)

)]
,

where the last line follows by the general rule for the optimization of integral functionals;
see Rockafellar and Wets [23, Theorem 14.60]. For u ∈ R

d , v ∈ (−∞, 0], note that

sup
x∈Rd

(
uTx − v�(x)

)
=

⎧⎪⎨
⎪⎩
0 if v = 0, u = 0,

+∞ if v = 0, u �= 0,

−vg
( u

v

)
if v < 0.

Recalling that g(z) = +∞ for every z /∈ R
d+, we may write

sup
x∈Rd

(
uTx − v�(x)

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if v = 0, u = 0,

+∞ if v = 0, u �= 0,

+∞ if v < 0, u /∈ −R
d+,

−vg
( u

v

)
if v < 0, u ∈ −R

d+.

In particular, if u /∈ −R
d+, then

sup
x∈Rd

(
uTx − v�(x)

)
= +∞
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for every v ≤ 0. Hence, if U /∈ −L1
d,+, then h∗

V (U ) = +∞ for every V ∈ −L1+ so that

f̄ (U ) = f (U ) = +∞. Let us assume that U ∈ −L1
d,+ and take V ∈ −L1+. Then,

h∗
V (U ) =

{
+∞ if P {V = 0,U �= 0} > 0,

−E
[
Vg
(U
V

)
1{V<0}

]
if P {V = 0,U �= 0} = 0.

On the other hand, using the monotonicity and translativity of ρ, it can be checked that
ρ∗ (V ) < +∞ impliesE [V ] = −1; see Föllmer and Schied [15, Remark 4.18], for instance.
Hence, f̄ (U ) = f (U ) when U ∈ −L1

d,+; see (6.4). Therefore, the functions f and f̄
coincide, and the result follows. ��

Before the proof of Theorem 3.2, we provide a lemma of independent interest. It should
be a known result, the proof is included for completeness.

Lemma 6.3 Let μ1, μ2 be two finite measures on (�,F) such that μ1 � P and μ2 � P.
Then, μ1 � μ2 if and only if

P

{
dμ2

dP
= 0,

dμ1

dP
> 0

}
= 0. (6.5)

Proof Suppose thatμ1 � μ2. Then, by a corollary of Radon–Nikodym theorem, see Föllmer
and Schied [15, Exercise A.2.1], for instance, we may write

dμ1

dP
= dμ1

dμ2
· dμ2

dP
,

where the equality is understood in the P-almost sure sense. Hence, with P-probability one,
dμ2
dP = 0 implies that dμ1

dP = 0 so that (6.5) holds. Conversely, suppose that (6.5) holds. Let
A ∈ F be an event such that

μ2(A) = E

[
1A

dμ2

dP

]
= 0.

Hence, 1A
dμ2
dP = 0 P-almost surely so that P(A∩{ dμ2

dP > 0}) = 0. This and (6.5) imply that

μ1(A) = E

[
1A

dμ1

dP

]
= E

[
1A

dμ1

dP
1{ dμ2

dP >0
}]+ E

[
1A

dμ1

dP
1{ dμ2

dP =0
}] = 0.

This shows that μ1 � μ2. ��
Proof of Theorem 3.2 1. By the arguments in the proof of Proposition 2.8, it follows that

ρ ◦ � is a proper convex weak∗ lower semicontinuous function on L∞
d . It is also a

decreasing function so that (ρ ◦ �)∗ (U ) = +∞ forU /∈ −L1
d,+. Let X ∈ L∞

d . By the
Fenchel–Moreau biconjugation theorem,

ρ (�(X)) = sup
U∈−L1

d,+

(
E

[
U TX

]
− (ρ ◦ �)∗ (U )

)
. (6.6)

Moreover, we can indeed exclude U ≡ 0 in this computation and write

ρ (�(X)) = sup
U∈−L1

d,+\{0}

(
E

[
U TX

]
− (ρ ◦ �)∗ (U )

)
. (6.7)

To see this, we first claim that there exists Ū ∈ −L1
d,+\{0} with (ρ ◦ �)∗ (Ū ) ∈ R.

Suppose otherwise. Since (ρ ◦ �)∗ is a proper function as the conjugate of a proper
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function, we must have (ρ ◦ �)∗ (Ū ) < +∞ if and only if Ū = 0. By (6.6), this would
imply ρ(�(X)) = − (ρ ◦ �)∗ (0) = inf Z∈L∞

d
ρ(�(Z)) for every X ∈ L∞

d so that
ρ ◦ � is a constant function. This is a contradiction to the assumption that � is non-
constant; see Sect. 2. Hence, the claim holds. Let us defineUn := 1

n Ū ∈ −L1
d,+\{0} for

each n ∈ N so that (Un)n∈N converges to 0 in L1
d . Using the concavity of the function

U 
→ ζ(U ) := E
[
U TX

]− (ρ ◦ �)∗ (U ), it holds

sup
U∈−L1

d,+\{0}
ζ(U ) ≥ ζ(Un) ≥ 1

n
ζ(Ū ) +

(
1 − 1

n

)
ζ(0) (6.8)

for every n ∈ N. Since we have −∞ < ζ(Ū ) ≤ ρ (�(X)) < +∞ by (6.6) and the
finite-valuedness of ρ, we obtain

sup
U∈−L1

d,+\{0}
ζ(U ) ≥ ζ(0)

by passing to the limit in (6.8) as n → ∞. It follows that (6.7) holds.
Next, by (6.7), Lemmata 6.1 and 6.2, we obtain

ρ (�(X)) = sup
U∈−L1

d,+\{0}

(
E

[
U TX

]
− f (U )

)

= sup
U∈−L1

d,+\{0}
sup

V∈−L1+ : E[V ]=−1,
P{V=0,U �=0}=0

(
E

[
U TX

]
+ E

[
Vg

(
U

V

)
1{V<0}

]
− ρ∗(V )

)
.

Note that every U ∈ −L1
d,+ \{0} can be identified by a vector probability measure

Q ∈ Md(P) and a weight vector w ∈ R
d+\{0} (and vice versa) by the relationship

wi = −E [Ui ] , wi
dQi

dP
= −Ui , i ∈ {1, . . . , d} .

(Note that Qi is defined arbitrarily when wi = 0.) Similarly, every V ∈ −L1+ with
E [V ] = −1 can be identified by a probability measure S ∈ M(P) by setting

dS

dP
= −V . (6.9)

In this case, ρ∗(V ) = α(S); see Föllmer and Schied [15, Remark 4.18], for instance.
With these changes of variables, the condition P {V = 0,U �= 0} = 0 becomes

P

{
dS

dP
= 0, w · dQ

dP
�= 0

}
= P

(
d⋃

i=1

{
dS

dP
= 0,

d(wiQi )

dP
> 0

})
= 0,

which is equivalent to having

P

{
dS

dP
= 0,

d(wiQi )

dP
> 0

}
= 0

for every i ∈ {1, . . . , d}. By Lemma 6.3, we conclude that P {V = 0,U �= 0} = 0 is
equivalent to that wiQi � S for every i ∈ {1, . . . , d}. In particular, we may write

U

V
= w · dQ

dP
dS
dP

=
(
d(w1Q1)

dS
, . . . ,

d(wdQd)

dS

)
= w · dQ

dS
.
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(When wi = 0 for some i ∈ {1, . . . , d}, Qi is defined arbitrarily and wi
dQi
dS = 0 is

understood.) As a result, we may write

ρ (�(X)) = sup
Q∈Md (P),

w∈Rd+\{0}

sup
S∈M(P) :

∀i : wiQi�S

(
wT

E
Q [−X ] − E

S

[
g

(
w · dQ

dS

)
1{ dS

dP>0
}]− α(S)

)

= sup
Q∈Md (P),

w∈Rd+\{0}

⎛
⎝wT

E
Q [−X ] − inf

S∈M(P) :
∀i : wiQi�S

(
E
S

[
g

(
w · dQ

dS

)]
+ α(S)

)⎞⎠

= sup
Q∈Md (P),

w∈Rd+\{0}

(
wT

E
Q [−X ] − αsys(Q, w)

)
. (6.10)

Finally, recalling (2.1), we obtain

Rins(X) =
{
z ∈ R

d | 1Tz ≥ ρ (�(X))
}

=
⎧⎨
⎩z ∈ R

d | 1Tz ≥ sup
Q∈Md (P),w∈Rd+\{0}

(
wT

E
Q [−X ] − αsys(Q, w)

)⎫⎬
⎭

=
⋂

Q∈Md (P),w∈Rd+\{0}

{
z ∈ R

d | 1Tz ≥ wT
E
Q [−X ] − αsys(Q, w)

}
,

which finishes the proof of the dual representation for Rins.
2. Using (6.10), we obtain

Rsen(X) =
{
z ∈ R

d | ρ (� (X + z)) ≤ 0
}

=
{
z ∈ R

d | sup
Q∈Md (P),

w∈Rd+\{0}

(
wT

E
Q [− (X + z)] − αsys(Q, w)

)
≤ 0
}

=
⋂

Q∈Md (P),w∈Rd+\{0}
E
Q [−X ] +

{
z ∈ R

d | wTz ≥ −αsys(Q, w)
}

,

which finishes the proof of the dual representation for Rsen.
��

Recall that, for a linear space X and a set A ⊆ X , the convex-analytic indicator function
IA : X → R∪{+∞} of A is defined by IA(x) = 0 for x ∈ A and IA(x) = +∞ for x ∈ X\A.
Proof of Proposition 3.4 The dual representation of ρins follows as a direct consequence of
the first part of Theorem 3.2 since Rins is a halfspace-valued function.

We prove the dual representation of ρsen
w for a given weight vector w ∈ R

d+\{0}. Using
the properties of the set-valued risk measure Rsen in Proposition 2.8, it can be checked that
ρsen

w is a decreasing proper convex function. Moreover, we assume that it is weak* lower
semicontinuous. Let us compute its conjugate function (ρsen

w )∗ atU ∈ L1
d . Note that, as ρsen

w

is a decreasing function, it holds (ρsen
w )∗(U ) = +∞ if U /∈ −L1

d,+. Let U ∈ −L1
d,+. Since

ρsen
w (X) = inf

z∈Rd

{
wTz | �(X + z) ∈ A

}
= inf

z∈Rd

(
wTz + IA(�(X + z))

)
,
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we have

(ρsen
w )∗(U ) = sup

X̄∈L∞
d

(
E

[
U T X̄

]
− ρsen

w (X̄)
)

= sup
z∈Rd

sup
X̄∈L∞

d

(
E

[
U T X̄

]
− wTz − IA(�(X̄ + z))

)

= sup
z∈Rd

sup
X∈L∞

d

(
E

[
U T(X − z)

]
− wTz − IA(�(X))

)

= sup
X∈L∞

d

(
E

[
U TX

]
− IA ◦ �(X)

)
+ sup

z∈Rd
(E [−U ] − w)Tz.

Hence, (ρsen
w )∗(U ) = +∞ if E [U ] �= −w. On the other hand, if E [U ] = −w, then

(ρsen
w )∗(U ) = sup

X∈L∞
d

(
E

[
U TX

]
− IA ◦ �(X)

)
= (IA ◦ �)∗ (U ).

So

(ρsen
w )∗(U ) = (IA ◦ �)∗ (U ) + I{E[·]+w=0}(U ).

We calculate the conjugate (IA ◦ �)∗ as the closure of a function following a similar route as
in the proof of Lemma 6.2 (for (ρ ◦�)∗ there). Using hV (Z) = E [V�(Z)] for V ∈ L1, Z ∈
L∞
d as before, by Boţ et al. [7, Theorem 3.1], (IA ◦ �)∗ is the closure of the function m̄

defined by

m̄(U ) = inf
V∈−L1+

(
h∗
V (U ) + (IA)∗(V )

)

for every U ∈ L1
d . As in the proof of Lemma 6.2, we have

h∗
V (U ) =

{
+∞ if P {V = 0,U �= 0} > 0,

−E
[
Vg
(U
V

)
1{V<0}

]
if P {V = 0,U �= 0} = 0.

In particular, similar to the proof of Lemma 6.2, it can be checked that m̄(U ) = +∞ if
U /∈ −L1

d,+.
Let V ∈ −L1+. If V ≡ 0, then (IA)∗(V ) = 0. Suppose that P {V < 0} > 0. We have

E [−V ] > 0 and

(IA)∗(V ) = sup
Y∈A

E [VY ] = E [−V ] sup
Y∈A

E

[
V

E [−V ]
Y

]
= E [−V ] ρ∗

(
V

E [−V ]

)
.

Consequently, for every U ∈ −L1
d,+, we have

m̄(U ) = inf
V∈−L1+

{
−E

[
Vg

(
U

V

)
1{V<0}

]
+ E [−V ] ρ∗

(
V

E [−V ]

)
| P {V = 0,U �= 0} = 0

}
,

where E [−V ] ρ∗( V
E[−V ] ) = 0 is understood when V ≡ 0. We also have m̄(U ) = +∞ for

every U /∈ −L1
d,+; that is, m̄(U ) = m(−U ) for every U ∈ L1

d , where m is the function
defined in (3.4).

We have

(ρsen
w )∗(U ) = (cl m̄)(U ) + I{E[·]+w=0}(U )
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for every U ∈ L1
d . Since we assume that ρsen

w is weak* lower semicontinuous, by Fenchel–
Moreau theorem,

ρsen
w (X) = sup

U∈−L1
d,+ :

E[U ]=−w

(
E

[
U TX

]
− (cl m̄)(U )

)
.

Note that every U ∈ −L1
d,+ with E [U ] = −w can be identified by a vector probability

measure Q ∈ Md(P) (and vice versa) by the relationship

wi
dQi

dP
= −Ui , i ∈ {1, . . . , d}

so that

ρsen
w (X) = sup

Q∈Md (P)

(
wT

E
Q [−X ] − (cl m̄)

(
−w · dQ

dP

))
. (6.11)

Since m̄(−U ) = m(U ) for everyU ∈ L1
d , it follows that (cl m̄)(−U ) = (clm)(U ) for every

U ∈ L1
d . This and (6.11) finish the proof of (3.5):

ρsen
w (X) = sup

Q∈Md (P)

(
wT

E
Q [−X ] − (clm)

(
w · dQ

dP

))
.

Next, suppose further that m is a lower semicontinuous function so that

(clm)(U ) = m(U )

for every U ∈ L1
d . Let U ∈ −L1

d,+ with E [U ] = −w. Then, for V ≡ 0, we have
P {V = 0,U �= 0} = P {U �= 0} > 0 so that h∗

V (U ) = +∞. Hence, we may write

m(−U ) = m̄(U ) = inf
V∈−L1+\{0}

(
h∗
V (U ) + (IA)∗(V )

)
(6.12)

in this case. In particular, for Q ∈ Md(P), thanks to (6.12), we have

(clm)

(
w · dQ

dP

)
= m

(
w · dQ

dP

)

= inf
V∈−L1+\{0}

{
−E

[
Vg

(
−w · dQ

dP
V

)
1{V<0}

]
+ E [−V ] ρ∗

(
V

E [−V ]

)
| P
{
V = 0, w · dQ

dP
�= 0

}
= 0

}
.

Following a similar variable transform as in the proof of Theorem 3.2, we may write every
V ∈ −L1+\{0} as

−V = λ
dS

dP
,

where λ = E [−V ] > 0 and S ∈ M(P) is such that dS
dP = − V

λ
(and vice versa). This

calculation yields

m

(
w · dQ

dP

)
= inf

λ>0
inf

S∈M(P) :
∀i : wiQi�S

(
λES

[
g

(
w

λ
· dQ
dS

)
1{ dS

dP>0
}]+ λρ∗

(
dS

dP

))

= inf
λ>0

inf
S∈M(P) :

∀i : wiQi�S

(
λES

[
g

(
w

λ
· dQ
dS

)]
+ λα(S)

)
.
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Using (6.11), we have

ρsen
w (X) = sup

Q∈Md (P)

(
wT

E
Q [−X ] − m

(
w · dQ

dP

))

= sup
Q∈Md (P)

sup
λ>0

⎛
⎝wT

E
Q [−X ] − λ inf

S∈M(P) :
∀i : wiQi�S

(
E
S

[
g

(
w

λ
· dQ
dS

)]
+ α(S)

)⎞⎠
= sup

Q∈Md (P)

sup
λ>0

(
wT

E
Q [−X ] − λαsys(Q,

w

λ
)
)

= sup
Q∈Md (P)

(
wT

E
Q [−X ] − α̃sys(Q, w)

)
,

which yields (3.6).
Finally, suppose that there exist X̂ ∈ L∞

d and a weak* neighborhood A of �(X̂) with
A ⊆ A. Then, IA is bounded from above (by zero) on A. By Zalinescu [26, Theorem 2.2.9],
IA is weak* continuous at �(X̂). By the stronger conjugation result Zalinescu [26, Theo-
rem 2.8.10(iii)] (together with the weaker one Boţ et al. [7, Theorem 3.1]), we precisely have
(IA ◦ �)∗ = m̄ = cl(m̄). Hence, m is lower semicontinuous and (3.6) holds in this special
case. ��
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