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Abstract
In this study, we address safety stock positioning when demand per period is a known 
constant but supply is uncertain. The supply is either available or not available, while 
the setting is that of a periodically reviewed, serial system following a base stock pol-
icy. Each stage is allowed to operate according to the guaranteed or stochastic service 
model. We use a Discrete Time Markov Chain model for expressing the expected on-
hand inventories for each stage, along with other terms of interest, as a function of 
policy parameters determined by a given service level requirement for the end product. 
Exact models are constructed for single-stage and two-stage systems. As the number 
of states for a two-stage system grows exponentially, we propose an approximation for 
expressing the effect of the input stage using a single parameter. A generalization for 
the approximation is provided for a multi-stage problem. Computational evaluations of 
the approximation, as well as numerical comparisons of different cases, are presented.

Keywords  Inventory management · Safety stock positioning · Supply uncertainty · 
Serial systems

1  Introduction

The safety stock placement problem involves determining the right amount of base 
stock in each stage, to ensure the required service level or the lowest expected cost. 
A stage may have a stock of finished goods as well as work-in-process inventory to 
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enable possible production realization. There are many approaches to solve the stock 
placement problem: Song and Zipkin (2003) and Atan et  al. (2017) present com-
prehensive reviews of undertaken studies, especially on assembly systems; Axsäter 
(2003) examines divergent systems; Inderfurth and Minner (1998) study service 
concepts in such systems; and Graves and Willems (2003) investigate more general 
multi-echelon systems. Among safety stock placement approaches, we use the two 
regimes presented by Graves and Willems (2003); namely, the stochastic service 
model (SSM) and the guaranteed service model (GSM). In the SSM, stock place-
ments at each stage are performed according to a function of the stochastic delay 
from upstream stages. In the GSM, each stage ensures that it can meet its require-
ment for the next stage by committing to a maximum service time (Graves and Wil-
lems 2003). In these models, it is assumed that supply is always available at each 
stage and at each period of operation.

Supply uncertainty refers to supply disruptions, which may be due to operational 
inefficiencies as well as intentional or unintentional human actions; hence, it has sev-
eral forms, as described in Snyder et al. (2016). Yield uncertainty covers the cases 
where the quantity delivered by a supplier or the amount produced by a manufac-
turing process is a random variable that depends on the order quantity. Capacity 
uncertainty, in contrast, covers the cases where the supplier’s delivery capacity or the 
company’s manufacturing capacity is a random variable that is generally independ-
ent of the order quantity. Transportation time uncertainty occurs due to the stochastic 
nature of transportation time. Finally, process uncertainty considers the variability 
of the production processes. In a way, it is similar to yield uncertainty, but one may 
end up with no production as a result of process variability. There are many studies 
on delineating supply uncertainty structures. Silver (1976) defines supply uncertainty 
by allowing the quantity received to be a random variable and a random proportion 
of the quantity ordered. Shih (1980), Ehrhardt and Taube (1987), and Henig and Ger-
chak (1990) also regard uncertain supply as a random multiple of the quantity req-
uisitioned. Parlar and Berkin (1991) view supply uncertainty as a situation in which 
supply is either available or unavailable for a random duration in a continuous review 
environment. Similarly to our base model, Güllü et al. (1997) define supply uncer-
tainty as supply being either fully available or completely unavailable according to 
some probabilities, in a periodic review setting. Güllü et al. (1999) extend the same 
idea and regard supply uncertainty as supply being fully available, partially available, 
or completely unavailable according to some probabilities. Other pertinent models 
are described in two review articles by Yano and Lee (1995) and Snyder et al. (2016).

Another related research area is the analysis of tandem queues with finite buff-
ers and unreliable machines. In this area, most of the traditional literature has been 
devoted to modeling and analysis of such production systems, with the central 
issues being performance analysis and computability. More recently, studies have 
considered an objective function that incorporates system performance and the cost 
of buffers between stages (usually of an automated production system). There is an 
analogy between this set of problems and the stock positioning problem: Position-
ing stocks can be considered as holding buffers in tandem queues with finite buff-
ers. The distinction in the literature usually comes in the environmental description 
of the problem (e.g., type of processes, demand distribution, service distribution, 
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etc.), as well as in the objective function. The objective function of a typical serial 
inventory system considers holding costs which are functions of the stage, whereas 
in the majority of the tandem queue literature only a constraint on the total buffer 
usage is considered, assuming equal cost buffers. Nevertheless, there are important 
overlaps in the analytic approaches, especially when the distributions in question are 
identical. A recent review of the so-called buffer allocation problem can be found in 
Weiss et al. (2019). As stated in that review, one area authors claim is “insufficiently 
captured” by the literature is when there is uncertainty in the supply process, and 
this is the aspect we aim to study in our current work. There are numerous stud-
ies on tandem queues, but here, we refer to a more related and recent set of studies 
that consider solution algorithms for the buffer space allocation problem (Gershwin 
and Schor 2000); lines operated with given policies (Wu et  al. 2017; Liberopou-
los 2018); and, lines with tandem queues and unreliable machines (Lee et al. 2017, 
2018).

The main purpose of this research is to consider supply uncertainty for the safety 
stock placement problem. Our main motivation stems from serial systems, repre-
senting an important special case of assembly systems. Serial systems usually oper-
ate on a just-in-time basis, meaning that suppliers are expected to deliver in small 
lots to the next stage and finally to the equipment manufacturer, every day or even 
more frequently. The equipment manufacturer performs final assembly, which is 
well-planned, and practically there is no uncertainty in the desired throughput of 
the assembly line. Moreover, one can claim that the quantity produced per day is 
a constant, as a result of the assembly line balancing efforts. It is quite common to 
observe certain suppliers’ inability to ship every day, motivating an all-or-nothing 
type of supply uncertainty. We call this type of uncertainty “process uncertainty”, 
usually resulting from an equipment failure or failure of the second-tier suppliers 
to supply the necessary input. Note that this structure of process uncertainty is also 
well studied in tandem queue literature (for examples, see Lee et al. 2017, 2018). 
What is interesting about the problem is that process uncertainty structure brings 
in the necessity of safety stock placement in different stages, although demand is 
not stochastic. A limited number of studies incorporate both supply and demand 
uncertainty in the same modeling environment. Bollapragada et al. (2004a, b) model 
the supply process allowing for backlogs but limiting their duration, similar to a 
restricted GSM approach.

We consider a periodic review system in which each stage has an order-up-to 
point. Demand per period is Q units, deterministic and known. We assume a supply 
uncertainty structure where supply is either available or not available, as described 
by Güllü et  al. (1997). The structure, depicted by Bernoulli-type stages, has been 
considered by the tandem queues literature as well. For example, Diamantidis and 
Papadopoulos (2004) offer a dynamic programming approach for buffer allocation, 
and Naebulharam and Zhang (2014), Lee et al. (2017, 2018), address waiting time-
restricted products for performance evaluation. Hence, a stage may have sufficient 
work-in-process to work on, but as a result of process uncertainty, it may not be able 
to produce. Additionally, if no work-in-process is available, the stage will not be able 
to produce, following the “starvation” characteristic described mostly by the tandem 
queue literature. If there is sufficient work-in-process and production is realized, 
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then any quantity to bring the stocks to the order-up-to point can be produced. In 
other words, there is no capacity restriction. Hence, following these characteristics, 
a stochastic delay term can be defined for items to be available for the next stage. 
Therefore, the core of the problem is to reflect the stochastic characteristics of the 
supply uncertainty problem combined with the characteristics of the safety stock 
placement models.

To fulfill our research purpose, we restrict our analysis to serial systems. Graves 
and Willems (2005), Hua and Willems (2016a, b) present evidence for the impor-
tance of analyzing a two-stage serial system. Gavirneni (2004) describes a chip 
manufacturer with a four-stage serial system. Although the supply chain of the chip 
manufacturer is far more complex, the author identify a small number of suppli-
ers responsible for inefficiencies in the operations, and hence it can be reduced to 
a serial system. Our objective in this research is to obtain exact (and if possible 
explicit) terms for the considered serial system. We use the two regimes introduced 
(SSM and GSM) as possible stock placement models, in addition to implementing a 
supply uncertainty structure in which supply is either fully available or not available 
at all. Then, we model the system as a Discrete Time Markov Chain (DTMC).

Our main contribution is modeling the stock placement problem in serial sys-
tems with supply uncertainty given the presumed structure. Contrary to the avail-
able literature, we allow different stages to operate with different service regimes, 
each stage following either the SSM or the GSM. We compare two-stage systems 
based on expected safety stock costs, and further compare SSM and GSM regimes. 
We propose an approximation method as the number of states in the DTMC model 
grows exponentially.

The paper is organized as follows. Section  2 provides necessary background 
information. In Sect.  3, we consider single-stage and two-stage problems, operat-
ing with the GSM or the SSM. In Sect. 4, we present the approximation scheme and 
generalization of the approximation to a multi-stage problem. Our computational 
experiments for the two-stage models and comparisons appear in Sect.  5. Finally, 
in Sect. 6 we conclude and offer possible generalizations and other extensions for 
future work.

2 � Background

2.1 � Supply uncertainty

In Güllü et  al. (1997), an inequality that provides the optimal number of periods 
(K) to consider during which the cumulative demand is equal to optimal order-up-to 
level is derived. In our research, we focus on the special case of a similar problem 
with infinite time horizon. Note that K stands for the number of periods of demand 
and in our case the order-up-to level is KQ. Additionally, the right side of the ine-
quality is represented by a service level definition rather than costs, following the 
service-level definition made by Silver (1976), and used by Graves and Willems 
(2003). As a complementary explanation, we can say that each value of K corre-
sponds to a service level.
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2.2 � Approaches to safety stock placement

Graves and Willems (2003), consider two regimes of the safety stock placement 
problem, referred as the guaranteed service model (GSM) and the stochastic 
service model (SSM). They consider the general environment shown in Fig.  1. 
Note that the aim is to characterize the replenishment times, given that a stage 
might have multiple unreliable upstream suppliers that might also have unreliable 
suppliers.

Each regime structure allows for writing an approximate expression of the 
expected replenishment times. The system operates according to an order-up-to 
policy where the base stock is given in Graves and Willems (2003). Using these 
replenishment times, safety stocks can be computed. The total expected safety 
stock cost can be found and used for performance evaluation for a given set of 
service level targets (or safety factors) in each stage in an optimization context. 
Finally, for any regime the purpose is to eventually come up with safety stock 
terms for each stage to minimize total expected cost of safety stock of the system 
to satisfy a service level target of the end-product. Note that the safety factors of 
all stages are decision variables.

Under the SSM regime, Graves and Willems (2003) assume that at most one 
supplier is allowed to stock out per period, and delay is equal to this supplier’s 
processing time. Thus, they represent replenishment time for a stage as a func-
tion of the processing time of the current stage added to the expected value of the 
processing time from the predecessor stage, causing a stock-out. The probabilities 
used to compute expectations are not exact and are taken from Ettl et al. (2000). 
Moreover, demand over the net replenishment time is assumed to be normally dis-
tributed with a mean and a standard deviation, that are derived once the expected 
replenishment time is determined. Note that if we follow the supply uncertainty 
structure specified in the previous subsection, the implementation of the SSM at 
Stage j corresponds to finding Kj , and hence the order-up-to level is KjQ.

When it comes to the GSM, the challenge is to determine the maximum ser-
vice time given a safety factor and a demand upper bound. Service times are 

Fig. 1   Representation of multi-
echelon supply chain
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decision variables for internal customers and exogenous input for external custom-
ers. Demand is again assumed to be normally distributed and the demand upper 
bound can be arbitrarily set. In this case, the maximum service times of inbound and 
outbound stages affect the replenishment time.

In the GSM, if demand exceeds the upper bound, the available safety stock in 
the system will not be enough to satisfy the service time promise. Graves and Wil-
lems (2003) assume that in the case of excess demand, the amount that is above the 
upper bound can be regarded as loss or outsourced to satisfy customer requirements. 
However, there is no additional term that represents the outsourced amount in their 
objective function. An approach to model the case when these assumptions are vio-
lated can be found in Rambau and Schade (2014).

Note that if we follow the specified supply uncertainty structure, the implementa-
tion of the GSM for any Stage j corresponds to finding order-up-to level KjQ , and a 
maximum service time (in units of periods) promised to satisfy requirements, call it 
Mj . Note that Mj > Kj because the order-up-to level economically should not exceed 
the maximum number of periods designated for the guaranteed service time. Fur-
thermore, Mj = Kj means that there will be no backlog.

2.3 � Statement of the problem

Following the standard literature, we can state our problem as:

Minimize total expected safety stock cost over all stages
subject to: service level constraint for the end product

Given the supply uncertainty structure presumed and supporting two regimes of ser-
vice (the SSM and the GSM), in the rest of the subsection we detail the above prob-
lem statement.

Stages are numbered in a decreasing way, Stage 1 defines the final stage. For each 
stage we have at most two variables to decide: Kj is the order-up-to level, and Mj is 
maximum service time defined in Graves and Willems (2003) (note that if Stage j is 
operated by the SSM regime, Mj becomes infinity).

We depict the order-of-events in Fig. 2 and present the description below. Note 
that all quantities are integer multiples of Q.

•	 We start any period for Stage j by receiving whatever was sent by Stage j + 1 
lead-time periods ago. Anything received is added to RMj,“raw material” for 
Stage j (the input needed to produce at Stage j).

•	 Stage j observes its finished goods inventory, FGj.
•	 If FGj > 0,

–	 demand for Stage j − 1 is satisfied from stock and arrives at the downstream 
stage after the appropriate lead time.

–	 FGj is reduced by one.
–	 Stage j applies order-up-to production using Kj . Maximum production is 

limited by the amount of raw material inventory on hand, RMj.
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•	 If RMj > 0 and production is successful, update RMj and FGj.
•	 Otherwise, no change.

•	 If FGj ≤ 0,

–	 demand cannot be satisfied from stock.
–	 FGj is reduced by one.
–	 Stage j applies order-up-to production. Maximum production is limited by 

the amount of raw material inventory on hand, RMj.

•	 If RMj > 0 and production is successful, check RMj − Kj.

	 – � If RMj − Kj > 0 , RMj − Kj units of FGj are sent to Stage j − 1 to sat-
isfy accumulated backlogs.

	 – � Otherwise if RMj − Kj ≤ 0 , RMj units of FGj are sent to Stage j − 1 , 
to partially satisfy accumulated backlogs.

	 – � Update RMj and FGj.

•	 If RMj = 0 or production is not successful: If Stage j operates according 
to the GSM regime and a delay of Mj periods has occurred, then Stage 
j outsources and sends the unit to Stage j − 1 . To account for the out-
sourced amount, the finished goods inventory is increased by one and 
the raw material inventory is decreased by one as it is not needed any-
more. If the raw material inventory is zero, the finished goods inventory 
level of Stage j + 1 is increased by one (note that the finished goods 
inventory level of Stage j + 1 should be negative, and by subcontracting 
one unit we are eliminating the need for that unit).

The initial stage (the one with the largest index) is assumed to have an uninter-
rupted infinite supply. Define hj as the holding cost for one finished item in Stage 
j. Define E[INj] as the expected ending on-hand inventory for the finished item of 
Stage j (note that part of the inventory can be located at Stage j − 1 as raw mate-
rial waiting for production in Stage j − 1).

Fig. 2   Order of events for Stage j 



	 B. Urlu, N. K. Erkip 

1 3

Hence we can now rewrite the problem statement:

subject to:
Probability of not satisfying the demand at Stage 1 ≤ 1 - service level desired

It is important to point out that expected ending on-hand inventory is safety stock 
plus expected demand in a period. In the next two sections, we show how we can 
derive the above expected ending on-hand inventory and the probability terms 
exactly, given Kj and Mj for all j, for single-stage and serial two-stage systems using 
DTMC models. Note that these terms are exact, contrary to the available literature. 
We also derive certain quantities of interest, expected number of backlogs, expected 
number of subcontracted units (0 if the stage is following the SSM regime), and 
expected work-in-process inventory (for Stage 1, only for the two-stage system) to 
be used for computational study. Furthermore, we derive the probability of Stage j 
satisfying the demand of Stage j − 1 on time, which we call the probability of supply 
( �Sj ). This parameter is instrumental for decomposing the stages, and characterizing 
service level. Note that Stage 1’s (the most downstream stage) probability of supply 
is equal to the service level faced by the end customer: hence it is the system’s ser-
vice level. Therefore, probability of not satisfying the demand at Stage 1 is the term 
for the left-hand side of the constraint for the model represented by Eq. (1).

3 � Single‑stage and two‑stage problems

3.1 � Single‑stage problem

To correctly reflect the characteristics of the safety stock placement models and 
the supply uncertainty model, we start with the simplest model, single-stage when 
demand is stationary and production is uncertain. We assume that the predecessor 
stage always supplies the needed raw-material, and hence the single-stage consid-
ered is operating to satisfy the next stage. We assume that transportation time (L) is 
deterministic. To simplify the exposition, in the next two subsections it is presumed 
that transportation time is zero. Following the subsections, we generalize our results 
for any L.

If there is sufficient inventory at the beginning of a period, the next stage’s 
demand is satisfied immediately. However, if there is no inventory and production 
cannot be realized, there is a delay. Hence, the delivery delay faced by the lower 
stage is reflected as the replenishment time. Note that having no inventory implies 
that there have been some consecutive periods of unsuccessful production.

Therefore, the replenishment time is a random variable, � . Using the all-or-nothing 
supply, � follows a geometric distribution for the SSM regime (or a truncated geometric 

(1)min
Kj,Mj,∀j

∑

j

hjE[INj]
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distribution for the GSM), where p is the probability of no production and i period 
delay is faced with probability pi(1 − p).

3.1.1 � Stochastic service model

The demand during replenishment time also follows a geometric distribution with 
parameter p. The expressions for the distribution of the replenishment time, distribu-
tion of demand during replenishment time, expected demand, and standard deviation of 
demand during replenishment time are presented in Table 1.

To obtain the terms of the model, a DTMC model is used. The states of the Markov 
Chain are defined as the net inventory levels at the end of a period, following the order 
of events structure in Fig. 2. Hence, at the beginning of the period, if possible, demand 
is satisfied. After demand is satisfied, production order is placed up to the order-up-to 
level. For a given probability of no production, suppose the order-up-to level is given 
as KQ. Hence, when the replenishment time is realized as zero, the ending inventory 
of period t will be positive, let us say (K − n)Q . Inventory level after satisfying the 
demand will be (K − n − 1)Q and ending inventory of period t will again be KQ if 
the production is successful, since it produces up to the order-up-to level. If not, the 
state will remain as (K − n − 1)Q . Replenishment time will take positive values if the 
inventory level at the end of a period is not positive, and production is not successful 
for some periods. This setting is a special case of the standard birth and death process. 
The transition matrix is given in “Appendix 1”, when Q is assumed to be 1 to ease the 
notation.

One can obtain steady-state probabilities using standard analysis where �j indicates 
the long-term probability that there will be j units of inventory at the end of a period. 
As a result, steady-state probabilities are given by

Expected ending on-hand inventory and expected number of backlogs in the system 
can be written as

�K−n = pn(1 − p) for n = 0,… ,∞

(2)E[INj] = Q

K−1
∑

i=0

(K − i)�K−i = Q

[

K −
p(1 − pK)

1 − p

]

Table 1   Details of the SSM for single-stage model

SSM

Replenishment Time ( �) � =
{

i with probability pi(1 − p), where i = 0, 1, 2, 3,…
}

Demand during � D =
{

iQ with probability pi(1 − p), where i = 0, 1, 2, 3,…
}

E[D
�
] Q

p

1 − p

�
�

Q

√

p

1 − p
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3.1.2 � Guaranteed service model

Similar to the SSM, replenishment time definition for the GSM is characterized by 
the delay. Delay follows a truncated geometric distribution, where M is the maxi-
mum delay to satisfy guaranteed service time.

The demand during replenishment time also follows a truncated geometric distri-
bution with parameter p. The expressions for the distribution of the replenishment 
time, distribution of demand during replenishment time, expected demand and vari-
ance of demand during replenishment time are presented in Table 2.

The DTMC model used is similar to the one in the SSM. The only difference is 
that, if there are M consecutive periods of no production, outsourcing is performed 
so that the guarantee given can be realized. For the same state definition as in the 
SSM (net inventory at the end of a period), a probability transition matrix is speci-
fied and presented in “Appendix 2”. However, in the case of the GSM, the number 
of states is finite. As an operational decision, outsourcing is done when there are 
M periods of delay (at state (−M + K)Q ), by satisfying only Q backlogs (i.e. the 
demand received M periods ago). Then, if production is realized, it produces up to 
KQ, otherwise the state will be (−M + K)Q rather than (−1 −M + K)Q . Thus, when 
production is not realized for consecutive M periods, demand is outsourced. Steady-
state probabilities are,

Performance measures we are interested—expected ending on-hand inventory, 
expected number of backlogs and expected number of outsourced units- can be writ-
ten as

(3)E[Backlog] = p

(

Q

∞
∑

i=0

i�−i

)

= Q
pK+2

1 − p

�K−n = pn(1 − p) for n = 0,… ,M − 1

�−M+K = pM

Table 2   Details of the GSM for single-stage model

GSM

Replenishment Time
� =

�

i with probability pi(1 − p)

M with probability 1 −
∑M−1

i=0
[pi(1 − p)]

�

                  where i= 0,1,2,..., M-1
Demand during �

D =

�

iQ with probability pi(1 − p)

MQ with probability 1 −
∑M−1

i=0
[pi(1 − p)]

�

                  where i= 0,1,2,..., M-1
E[D

�
] (1 − p)

∑M−1

i=0
iQpi +MQ(1 −

∑M−1

i=0
pi(1 − p))

�
2
�

(1 − p)(
∑M−1

i=0
i2Q2pi − (1 − p)(

∑M−1

i=0
iQpi)2) − 2MQ(1 − p)

∑M−1

i=0
iQpi

(1 −
∑M−1

i=0
pi(1 − p)) +M2Q2(1 −

∑M−1

i=0
pi(1 − p))(1 − (1 −

∑M−1

i=0
pi(1 − p)))
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Note that we compute the expected outsourced quantity as given in Eq.  (6). We 
believe this quantity is instrumental for comparing models with the GSM regime to 
models with the SSM regime.

3.1.3 � Generalization for non‑zero lead times

Now consider L + � where L is an integer denoting the transportation time between 
stages and � is the random variable as defined before. L + � stands for the replen-
ishment time random variable in the case of non-zero transportation time. Note 
that when L is different than zero, the order-up-to level will be defined as (K + L)Q 
for integer L values. Hence, the states will start from (K + L − L)Q = KQ , 
(K + L − L − 1)Q = (K − 1)Q and so on. Therefore, the transition matrix remains 
unchanged, and the steady-state probabilities are the same as in the case L = 0 . Then 
all terms computed for the model remain the same, except that there will be a pipe-
line inventory to accommodate L.

3.2 � Two‑stage problem

When the problem has two echelons, Fig. 3 represents the operations. In this setting, 
Stage 2 supplies work-in-process inventory to Stage 1, and each stage has its own 
no production probability as p2 and p1 , given that raw-material inventory is present.

We make two assumptions:

1.	 It is assumed that there is an ample supply for Stage 2. The service model for 
Stage 2 can be the SSM or the GSM.

2.	 Transportation time for a product to reach Stage 1 (L2) , and transportation time 
for a product to reach the customer (L1) are assumed to be zero to ease notation 
and exposition.

Figure  2 provides the order of events structure for two-stage system. Stage 2 
has an order-up-to level K2Q , and if GSM, M2 denotes the number of consecu-
tive periods with no supply needed to invoke subcontracting. Stage 1 can oper-
ate according to the GSM or the SSM. Let K1 denote the multiplier of Q for the 

(4)E[INj] = Q

K−1
∑

i=0

(K − i)�K−i = Q

[

K −
p(1 − pK)

1 − p

]

(5)E[Backlog] = Qp

(

M−K−1
∑

i=0

i�−i + (M − K)�−M+K

)

(6)E[Outsourced] = Qp�−M+K = QpM+1
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order-up-to level and M1 , in the case of the GSM, denote the number of consecu-
tive unsuccessful production attempts needed to invoke subcontracting. Stage 1 
can keep work-in-process inventory received from Stage 2, as well as finished 
goods inventory. Note that in case it has received the supply and cannot produce 
in a period, Stage 1 carries the work-in-process as inventory (in its inbound).

While modeling the two-stage problem, the impact of Stage 2’s operations 
on Stage 1 should be reflected. To do so, operations of both stages should be 
tracked and indicated in the transition matrix by characterizing an aggregate 
state definition for the whole system. (FG2, FG1, RM) is defined as the state of 
DTMC where FG2 represents Stage 2’s net finished goods inventory at the end 
of a period, FG1 represents Stage 1’s net finished goods inventory at the end of a 
period, and RM represents Stage 1’s work-in-process inventory (i.e., raw material 
supplied by Stage 2) on hand at the end of a period (Note that FG2 and FG1 can 
be positive or negative whereas RM is always non-negative.).

Given our problem structure, we can mention four different regimes for a two-
stage problem: Let the notation X/Y denote the regime followed in a two-stage 
problem, where X is the regime for Stage 2 and Y is the regime for Stage 1; X 
and Y can be either SSM or GSM. The analysis below is for a GSM/GSM regime 
when Q = 1 , for simplicity of exposition.

When both stages operate according to the GSM, possible values of the deci-
sion variables are i = 0, 1, 2,… ,M2 , j = 0, 1, 2,… ,M1 and k = 0, 1, 2,… ,M1 . 
k ≤ j because raw material accumulates only when Stage 1 cannot produce. If 
i > K2 then, j ≥ i − K2 as when Stage 2 has negative inventory, it cannot supply 
to Stage 1. If i < M2 then k + K1 − j > 0 . If i = M2 then M1 > k > K1 − j > 0 and 
other k’s are not possible.

Let the state at the end of period t be (K2 − i,K1 − j, k) and at the end of period 
t + 1 be (K2 − i�,K1 − j�, k�) . The following cases can be written:

•	 Case 1 Both stages can realize production with probability (1 − p2)(1 − p1) , 
then (i�, j�, k�) = (0, 0, 0).

•	 Case 2 Stage 2 can realize production but Stage 1 cannot realize production 
with probability (1 − p2)p1 , then Stage 2 supplies all raw material that Stage 1 
needs. If K1 − j > 0 , Stage 1 needs one unit of raw material. Otherwise, Stage 
1 should accumulate enough raw material inventory to raise the finished goods 
inventory up to K1 . In this case, Stage 1 needs K1 − FG1 − RM + 1 (FG1 is 
finished goods inventory at the end of period t at Stage 1, RM is raw material 
inventory at the end of period t at Stage 1, +1 indicates the demand of Stage 

Fig. 3   Two-stage serial system
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1 from Stage 2) units. Note that for this example, FG1 = K1 − j and RM = k . 
Then the supplied amount is j − k + 1 . Hence,

1.	 If K1 − j > 0 , (i�, j�, k�) = (0, j + 1, k + 1)

2.	 If j ≠ M1 and K1 − j ≤ 0 , (i�, j�, k�) = (0, j + 1, j + 1)

3.	 If j = M1 and K1 − j ≤ 0 , (i�, j�, k�) = (0, j, j)

•	 Case 3 Stage 2 cannot realize production but Stage 1 can realize production with 
probability (1 − p1)p2 , then

1.	 If i ≠ M2 and i < K2 , (i�, j�, k�) = (i + 1, j − k − 1, 0)

2.	 If i ≠ M2 and i ≥ K2 , (i�, j�, k�) = (i + 1, j − k + 1, 0)

3.	 If i = M2 , (i�, j�, k�) = (M2, j − k, 0)

•	 Case 4 Both stages cannot realize production with probability p1p2 , then

1.	 If i ≠ M2 and i < K2 , j ≠ M1 ; (i�, j�, k�) = (i + 1, j + 1, k)

2.	 If i ≠ M2 and i ≥ K2 , j ≠ M1 ; (i�, j�, k�) = (i + 1, j + 1, k + 1)

3.	 If i ≠ M2 and i < K2 , j = M1 ; (i�, j�, k�) = (i + 1,M1, k)

4.	 If i ≠ M2 and i ≥ K2 , j = M1 ; (i�, j�, k�) = (i + 1, j, k − 1)

5.	 If i = M2 , j ≠ M1 ; (i�, j�, k�) = (M2, j + 1, k + 1)

6.	 If i = M2 , j = M1 ; (i�, j�, k�) = (M2,M1, k)

Following these possible cases, an example transition matrix when K1 = 1,M1 = 2 
and K2 = 1,M2 = 2 is given in “Appendix 3”. Among all possible service model and 
parameter combinations, this example is the one that has the smallest total number 
of states (8 states). Thus, obtaining the steady-state probabilities is straightforward. 
In general, for a GSM-GSM system we expect that an exact solution can be com-
puted. However, one can observe that solving problem exactly will suffer from the 
curse of dimensionality very rapidly as the parameters of the problem get bigger. 
Furthermore, as the number of states increases and explodes, the accuracy of the 
computations will be questionable. Note also that for other combinations of service 
regimes, obtaining an exact solution will either be impossible or require very long 
computation times.

In the next section, we present an approximation method to obtain the steady-
state probabilities.

4 � An approximation to compute steady‑state probabilities 

4.1 � Two‑stage problem

For a problem of realistic size, the number of states will explode, making the 
computation of the exact solution practically impossible. Hence, we propose an 
approximation. Decomposition and aggregation methods are applied if a huge 
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state space makes the numerical solution of Markov Chains too slow or impossi-
ble. Weiss et al. (2019) review possible approaches. Decomposition methods are 
promising as they can be implemented for larger systems. The classical approach 
of Gershwin (1987) decomposes an N-station line into a set of N − 1 two-station 
lines. The buffer capacities in the subsystems are the same as in the original line. 
However, the station characteristics, such as processing times, inter-failure times 
and repair times are iteratively modified such that the material flow in the sub-
system follows the behavior of the original line, and all two-station lines have the 
same throughput. Hence, conservation of flow is maintained.

Given the special structure of the environment studied, if both stages are oper-
ated according to the SSM, we observe the following:

Observation 1 For the SSM, if Stage 2 does not satisfy the “work-in-process” 
demand of Stage 1 (can be in the form of raw material) in a given period due to 
lack of inventory, the probability that it will satisfy in the next period is always the 
same and equal to (1 − p2) . Hence, by following the work-in-process inventory and 
finished goods inventory − a state vector with two elements –, for Stage 1, we can 
exactly represent the desired structure of the system with the transition probabilities 
affected by a single term, call it supply probability, �Sj . Note that �S2 is the probabil-
ity that Stage 2 is satisfying Stage 1’s demand and can simply be computed as the 
sum of limiting probabilities of those stages that actually supply. Besides, this prob-
ability of having a supply at any state is the same for all inventory levels of Stage 1.

Given Observation 1, we are now ready to implement the approximation pro-
cedure for an arbitrary two-stage model, where each stage is operated accord-
ing to either the SSM or the GSM. The method is exact if the supplying stage is 
operated according to the SSM and approximate for the GSM. Nevertheless, we 
expect the approximation to be quite accurate.

The second stage of the two-stage environment can be modeled as a DTMC. 
The state definition for Stage 2 will be the same as for a single-stage model. Let 
�
S2 be defined as the steady-state probability that there will be a supply from 

Stage 2. It should be noted that supply is possible when the ending inventory 
level is above zero or when the stage started with inventory level below (or equal 
to) zero but production is realized in the period. The first and second terms in 
Eqs.  (7) and (8) indicate these cases, respectively. The third term in the GSM 
reflects satisfying demand via outsourcing. As a result, using the results of the 
one-stage problem, �S2 can be written as

As Stage 1 can keep both finished goods inventory produced and work-in-process 
inventory received from Stage 2, (i, j) is defined as the state of Stage 1, such that i 

(7)SSM: �
S2 =

K2−1
∑

i=0

�(K2−i)
+ (1 − p1)

∞
∑

i=K2

�(K2−i)

(8)and GSM: �
S2 =

K2−1
∑

i=0

�(K2−i)
+ (1 − p1)

M2−1
∑

i=K2

�(K2−i)
+ �(K2−M2)
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represents the finished goods inventory and j represents the work-in-process inven-
tory at the end of a period. General state transitions can be specified as follows:

If the state is (K1 − i, j) at the end of period t and (K1 − i
�

, j
�

) at the end of period 
t + 1:

Case 1 Production is realized and supply is received with probability �S2(1 − p1) , 
then (i� , j� ) = (0, 0).

Case 2 Production is realized but supply is not received with probability 
(1 − �

S2)(1 − p1) when j > 0 then (i� , j� ) = (i − j + 1, 0).
Case 3 Production is not realized but supply is received with probability �S2p1 

then (i� , j� ) = (i + 1, i + 1).
Case 4 Production is not realized and supply is not received with probability 

(1 − �
S2) when j = 0 then (i� , j� ) = (i + 1, 0).

Case 5 Production is not realized and supply is not received with probability 
(1 − �

S2)p1 when j > 0 then (i� , j� ) = (i + 1, j).
As stated in the beginning, there is no capacity restriction, and hence when a 

stage is successful in production, it consumes all the work-in-process inventory 
available and tries to produce up to K1Q units, which is the order-up-to level. Hence, 
to reflect this in transition probabilities, the state definition includes the backlogged 
quantity as well. This can be observed in the transition matrix, given in “Appendix 
5” and “7”. Let us now consider the two possibilities of operation in Stage 1:

Stage 1 operates according to the SSM. We follow the order of events as given in 
Fig. 2. Stage 1 operates according to the SSM and Stage 2 can be either the SSM or 
the GSM, simply represented by the appropriate �S2 . The expressions for the distri-
bution of the replenishment time, distribution of demand during the replenishment 
time, expected demand, and variance of demand during the replenishment time are 
presented in “Appendix 4” for the transition matrix in “Appendix 5”.

We follow the same sequence to derive equations. Define �(i,j) as the steady-state 
probability of being in state (i, j), indicating the probability of ending a period with 
i units of net finished goods inventory and j units of work-in-process inventory. One 
can observe that since the number of states is infinite, some of the steady-state val-
ues include infinite sums. However, we observed that all the terms can be written as 
a function of �(K1−1,0)

 , and approximating infinite sums using truncations, values can 
be computed numerically. This truncated state is named as a dummy state and when 
the steady-state values are found, the dummy state is discarded so that remaining 
steady-state values can be normalized.

Expected ending on-hand inventory is then computed as

Expected work-in-process (WIP) inventory on-hand is derived as

Expected backlog can be found by

(9)E[INj] = Q

K1−1
∑

i=0

i
∑

j=0

(K1 − i)�(K1−i,j)

(10)E[WIP] = Q

∞
∑

i=0

i
∑

j=0

j�(K1−i,j)
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Last, the supply probability of Stage 1 ( �S1 ) can be defined by using the results of 
the two-stage problem as,

Stage 1 operates according to the GSM. Before we proceed, we first need to set a 
detailed outsourcing policy for Stage 1 that considers the WIP issue, similar to the 
exact model described in Sect. 3.2. Once production has not been possible for M1 
consecutive periods and thus finished goods inventory is zero, Q units of finished 
goods inventory are subcontracted. In this way, only the order that should have been 
sent M1 periods ago is satisfied. Hence, rather than subcontracting the accumulated 
backlog during the M1 periods’ delay, we just satisfy the demand for which the max-
imum service delay ( M1 ) has occurred. Then, after outsourcing and satisfying the 
demand, if Stage 1 can perform production and the supply is available, it produces 
up to K1Q . If it cannot realize production, either due to its process uncertainty or 
because supply is not available, its finished goods inventory stays the same in the 
transition matrix, and one period demand is outsourced. If production is not real-
ized although supply is available, the work-in-process inventory level becomes M1Q 
rather than (M1 + 1)Q to avoid keeping unnecessary inventory. This can be regarded 
as Stage 1 giving the extra work-in-process inventory back to the supplier, with zero 
transition cost, and the outsource facility can be regarded as using this work-in-pro-
cess inventory to produce one unit of finished good. The expressions for the distri-
bution of the replenishment time, distribution of demand during the replenishment 
time, expected demand and variance of demand during replenishment time are pre-
sented in “Appendix 6”.

As an illustration, the transition matrix for Stage 1, constructed using these assump-
tions for the GSM, can be found in “Appendix 7” (Q is assumed to be equal to 1, with-
out loss of generality). Steady-state probabilities can be found using this transition 
matrix, where �(i,j) is the probability of being in state (i, j).

Performance measures that interest us (expected ending on-hand inventory, expected 
WIP inventory on-hand, expected number of backlogs and expected number of out-
sourced units for Stage 1) are presented below:

(11)

E[Backlog] =Q[(1 − p1)

∞
∑

i=K1+1

i−K1
∑

j=0

(i − K1 + 1 − j)�(K1−i,j)

+ p1

∞
∑

i=K1

i
∑

j=0

(i − K1 + 1)�(K1−i,j)
]

(12)�
S1 =

K1−1
∑

i=0

i
∑

j=0

�(K1−i,j)
+ (1 − p1)

∞
∑

i=K1

i
∑

j=0

�(K1−i,j)

(13)E[INj] =Q

K1−1
∑

i=0

i
∑

j=0

(K1 − i)�(K1−i,j)
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Finally, the supply probability of Stage 1 ( �S1 ) can be defined by using the results of 
the two-stage problem as

4.2 � Generalization of the approximation to N‑stage problem

Note that we decomposed the two-stage problem by defining the probability of sup-
ply [see Eqs.  (7), (8), (12) and (17)]. One should first use Eqs.  (7) or   (8) for the 
most upstream stage to obtain the supply probability according to the single-stage 
model. Then for the next downstream echelon, Eqs. (12) or (17) from the two-stage 
problem should be used. Once we characterize each stage’s supply probability as �Sj , 
the problem can be sequentially solved for each stage. The number of stages in the 
model can be more than two by using the upstream stage’s supply probability which 
will correspond to its service level and the downstream stage’s state transition prob-
abilities which will be shaped according to supply and process probabilities. The 
states of the downstream stages will be similar to Stage 1 in our model, possibly 
with a different K value. Hence, the problem can be solved separately for all stages 
in a serial network. Once the upstream stage’s service level is set, all the other fac-
tors will be shaped accordingly. Note that this decomposition enables one to utilize 
different service models in different stages. A different decomposition method can 
be found in de Kok and Visschers (1999).

For the computation of the steady-state probabilities of serial N-stage systems 
under the decomposition scheme proposed, the algorithm below is implemented. 
Note that each stage can be operated by either the SSM or the GSM.

(14)E[WIP] =Q

M1
∑

i=0

i
∑

j=0

j�(K1−i,j)

(15)E[Outsourced] =Qp1

M1
∑

j=0

�(K1−M1,j)

(16)

E[Backlog] =Q

[

(1 − p1)

M1−1
∑

i=K1+1

i−K1
∑

j=0

(i − K1 + 1 − j)�(K1−i,j)

+ p1

M1
∑

i=K1

i
∑

j=0

(i − K1 + 1)�(K1−i,j)

+ p1(M1 − K1)

M1
∑

j=0

�(−M1+K1,j)

]

(17)�
S1 =

K1−1
∑

i=0

i
∑

j=0

�(K1−i,j)
+

M1
∑

j=0

�(K1−M1,j)
+ (1 − p1)

M1−1
∑

i=K1

i
∑

j=0

�(K1−i,j)
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Step 1 Solve the N’th stage by using the single-stage problem to compute steady-
state probabilities.

Step 2 Compute �SN and call it the upstream stage’s supply probability by using 
Eqs. (7) or (8).

Step 3 Go to the next downstream stage. By using the upstream stage’s supply 
probability, solve the two-echelon problem and obtain steady-state values.

Step 4 Compute �SN−1 and call it the upstream stage’s supply probability by using 
Eqs. (12) or (17).

Step 5 Repeat step 3 by using the supply probability of the upstream stage, for the 
computations of the next downstream stage until all stages are covered.

5 � Numerical experiments and evaluation of results 

In the next subsection, we numerically investigate the quality of the approximation 
proposed in Sect. 4. In Sect. 5.2, we present the results of a numerical experiment 
we conducted, in which we enumerate all decision variables and compute perfor-
mance measures.

5.1 � Quality of approximation

The main motivation of the proposed approximation is to avoid the curse of 
dimensionality. To test the quality of the approximation, we make the following 
observations.

Observation 2 As K increases the probability of supply is going to increase, and 
hence the relative effect of an error in computing will have a tendency to decrease.

Observation 3 As M for the GSM increases, the system looks more like the SSM. 
The approximation proposed is exact when the SSM is used; hence, we expect the 
relative error in the approximation to have a decreasing tendency as M increases.

Observation 4 Following Observation 2 and Observation 3, a two-stage system 
where both stages are operated according to the GSM, with smallest possible K 
and M values, is expected to yield the largest error for the proposed approximation. 
Hence, we set K1 = K2 = 1 and M1 = M2 = 2 for our numerical experiments.

Note that we analyze the exact solution described in Sect. 3.2 and the approxima-
tion described in Sect. 4.1. Thus, we compare the exact solution for Stage 1 with the 
approximation computed by the algorithm given in Sect. 4.2.

Table 3 presents the results for various p1 , p2 combinations. As can be observed, 
the approximation performs quite well. When the probability of no production 
increases, the gap between the results of the exact solution and the approxima-
tion increases. However, even in that case the approximation is accurate up to two 
digits. More important, quantities that are likely to be used as parts of any perfor-
mance measure, which are listed in the last four columns of Table 3, indicate that the 
approximation seems to be almost perfect.
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5.2 � Computational results via enumeration

In Sect. 4.2 we present an algorithm to compute steady-state probabilities for each 
stage given K and M values for different stages. We restrict our computations to 
two-stage systems only. We approach the problem by stating a service level for 
Stage 1. Note that we enumerate all possible decisions (in this case K’s, and M’s 
if a stage is GSM) that will yield the desired service level for Stage 1. Here, the 
service level the end customer faces corresponds to �S1 by definition.

Before enumerating all possible solutions, one can compare the quantities 
of the GSM regime with those of the SSM regime given a fixed supply prob-
ability. The following observations are made: As M increases, expected finished 
goods inventory decreases for the GSM since probabilities for states with less 
finished goods inventory are larger, whereas expected work-in-process inventory 
increases. As K increases, finished goods inventory increases for both regimes. 
However, as K varies, expected work-in-process inventory stays the same for both 
regimes, as work-in-process is related to supply probability of the upstream stage. 
The SSM regime keeps less finished goods inventory and more work-in-process 
inventory than the GSM regime for the same �S1 value whereas the supply prob-
ability of GSM is greater than the supply probability of the corresponding SSM. 
Finally, the SSM has more expected backlogs than the corresponding GSM.

Table 3   Performance of the approximation

Stage 1 �
s Expected 

subcon-
tracted

Expected end-
ing on-hand 
inv.

Expected WIP 
Inv.

Expected backlog

p1 = 0.05 Exact 0.9975 0.0001 0.9476 0.0525 0.0026
p2 = 0.05 Approximation 0.9975 0.0001 0.9478 0.0525 0.0026
p1 = 0.1 Exact 0.9902 0.0011 0.8910 0.1099 0.0109
p2 = 0.1 Approximation 0.9903 0.0011 0.8920 0.1099 0.0108
p1 = 0.1 Exact 0.9908 0.0010 0.8977 0.1100 0.0102
p2 = 0.05 Approximation 0.9908 0.0010 0.8979 0.1100 0.0102
p1 = 0.1 Exact 0.9878 0.0014 0.8640 0.1096 0.0136
p2 = 0.2 Approximation 0.9885 0.0014 0.8716 0.1096 0.0128
p1 = 0.2 Exact 0.9629 0.0093 0.7680 0.2384 0.0464
p2 = 0.2 Approximation 0.9642 0.0091 0.7755 0.2386 0.0449
p1 = 0.05 Exact 0.9958 0.0002 0.9120 0.0524 0.0044
p2 = 0.2 Approximation 0.9962 0.0002 0.9197 0.0524 0.0040
p1 = 0.05 Exact 0.9972 0.0001 0.9405 0.0525 0.0030
p2 = 0.1 Approximation 0.9972 0.0001 0.9415 0.0525 0.0029
p1 = 0.2 Exact 0.9667 0.0083 0.7920 0.2396 0.0416
p2 = 0.1 Approximation 0.9669 0.0083 0.7931 0.2396 0.0414
p1 = 0.2 Exact 0.9677 0.0081 0.7980 0.2399 0.0404
p2 = 0.05 Approximation 0.9677 0.0081 0.7982 0.2399 0.0404
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In the numerical analyses we consider combinations of various SSM and GSM 
systems for both stages and compute the expected total cost of inventories, and 
effects on the expected outsourcing quantities.

Expected total ending on-hand inventory cost is found according to either Eqs. (9) 
or (13) for Stage 1 and according to either Eqs. (2) or (4) for Stage 2. We set inventory 
holding cost as 1 for Stage 1 and 0.5 for Stage 2. Hence, expected ending on-hand 
inventory cost is found by multiplying holding costs by ending on-hand inventory 
amounts. For Stage 1, expected work-in-process inventory is again found according 
to Eqs. (10) or (14) and is included in the expected total ending on-hand inventory 
cost. Expected backlog quantities are calculated according to Eqs. (11) or (16).

The values considered for numerical examples are as follows: For 
any stage and any regime K = 1, 2 , and for the GSM regime at any stage 
M = K,K + 1,K + 2,K + 3 . In total 100 combinations of these 10 different cases 
are evaluated when the probability of no production is taken as 0.2 for all cases.

5.2.1 � Expected total carrying cost

For ease of presentation, we clustered the comparison cases according to the service 
level achieved by Stage 1. The service level ranges from 95.3% to 96.8% and from 
99% to 100% . Therefore, we clustered the cases according to the minimum service 
level obtained ( 95.3% and 99% ). Detailed results for the best 10 combinations based 
on “expected total ending on-hand inventory costs” are presented in Tables 6 and 7 in 
“Appendix 8”, following other work in the area that presents only these costs (Graves 
and Willems 2003). As expected, SSM regime yields lower expected on-hand inven-
tory cost values when the service level is not high. When it is high, we expect the 
GSM to be relatively effective.

Service level is [95.3 %,  96.8%] Table 6 in “Appendix 8” ranks the models when 
the service level of the system is around 95.3 %. When both stages are operated 
under the SSM and K1 = K2 = 1 , the system has the minimum expected total ending 
on-hand inventory cost. It can be observed that the GSM when K2 = 1 for Stage 2 
performs better than other combinations. The best combination for the GSM is when 
K2 = 1 and M2 = 4 (the limit we tried, and hence closest to the SSM regime).

Service level is [99 %,  100%] Table  7 in “Appendix 8” ranks the cases in 
increasing order of the total expected ending on-hand inventory cost where the ser-
vice level of the system is around 99 %. The best case is an SSM/GSM combination 
when K2 = 1 and K1 = 1,M1 = 1 . The explanation is straightforward: As the SSM 
keeps more stock for the required service level, a combination that uses the GSM 
regime outperforms an SSM/SSM system.

5.2.2 � Measuring effects of outsourcing 

One of the assumptions made by Graves and Willems (2003) for the GSM regime, 
is that the excess demand over the accepted maximum bound is outsourced from 
another source to satisfy customer requirements. However, there is no additional 
term that represents the outsourced amount in the objective function, assuming that 
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the expected subcontracting cost will be negligible. Note that we followed the same 
assumption in our work. Here we analyze the effect of that assumption.

For the analysis, we consider two systems where one system uses the GSM regime 
only (call it the GSM/GSM system) and the other one uses the SSM regime (call 
it the SSM/SSM system). Note that in order to make a reasonable comparison, the 
expected ending on-hand inventory cost of the SSM/SSM system should be larger 
than that of the GSM/GSM system, while both should yield approximately the same 
service level. Given these conditions, our aim is to find a threshold outsourcing cost 
per unit for Stage 1 (the outsourcing cost for Stage 2 has the same proportion as hold-
ing costs, i.e., = h2∕h1 ), which will yield the same expected costs for both systems.

To come up with a comparison, we consider minimum service level clusters 
95.3% and 99%, and the SSM/SSM system with K2 = 2 , K1 = 1 and K2 = 2 , K1 = 2 , 
respectively. Those are the cases that yield a higher expected on-hand inventory cost 
compared to some GSM/GSM combinations. We take the difference of expected 
ending on-hand inventory costs and divide the difference by the cost of total net 
expected outsourced in the GSM/GSM system (expected outsourced in Stage 1 + 
(h2∕h1) * expected outsourced in Stage 2) to find the threshold outsourcing cost that 
will equate the expected total cost of the two cases considered. Using the threshold 
cost found, we compute the expected cost of subcontracting as a percentage of total 
expected cost of ending on-hand inventory, and we represent the threshold cost as 
a percentage of the expected backlog cost implied by the service level used for the 
stage. The results are shown in Tables 4 and  5.

Table 4   Analyses with threshold outsourcing costs when service level is at least 95.3% (range: [95.3% , 
96.8%])

Case 
number

K
2

M
2

K
1

M
1

Total expected subcontracting 
cost at threshold as a percentage 
of total expected ending on-hand 
inventory holding cost (%)

Total expected subcontract-
ing cost at threshold as a 
percentage of unit total 
expected backlog cost (%)

1 1 4 2 4 15 28
2 1 4 2 5 7 6
3 1 3 2 4 7 13
Base case 2 NA 2 NA – –

Table 5   Analyses with threshold outsourcing costs when service level is at least 99% (range: [99% , 
100%])

Case number K
2

M
2

K
1

M
1

Total expected subcontract-
ing cost at threshold as a 
percentage of total expected 
ending on-hand inventory 
holding cost (%)

Total expected subcon-
tracting cost at threshold 
as a percentage of unit 
total expected backlog 
cost (%)

1 1 2 1 2 23 26
2 1 3 1 2 30 35
3 1 4 1 2 32 38
Base case 2 NA 1 NA – –
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Both results indicate that it is beneficial to take into account the effect of out-
sourced quantity in certain cases, as opposed to not considering it at all. Especially 
when higher service levels are considered, subcontracting is beneficial with a rela-
tively low threshold value, which implies that the GSM regime is likely to be a more 
expensive choice.

6 � Conclusions and future work

For the single-stage system, we can evaluate steady-state probabilities of a DTMC 
exactly when service regime parameters are (K for the SSM and K and M for the 
GSM) supplied. The two-stage system can also be represented exactly by a DTMC, 
when each stage is allowed to follow either the SSM or the GSM regime. However, 
when it comes to evaluating steady-state probabilities, the number of states grow 
exponentially prohibiting sound computations. Nevertheless, we formulate a GSM/
GSM operated two-stage system and compute the steady-state probabilities exactly. 
Once we have steady-state probabilities, we can obtain quantities for expected end-
ing on-hand inventory of finished goods and work-in-process inventories, as well as 
expected backlogs and expected outsourced amount.

For more realistic serial systems, we offer an approximation. We decompose the 
stages by defining the probability of supply from one stage to the next. We numeri-
cally show that the decomposition approximation is fairly accurate for the two-stage 
model.

To analyze the systems further, we use total enumeration considering all combi-
nations (GSM, SSM for any stage) of service regimes with varying K and M values. 
We cluster combinations that yield reasonably close service levels and compare dif-
ferent systems. Results suggest that for reasonable service levels, an SSM/SSM sys-
tem results in the lowest total expected on-hand inventory costs. However, when the 
service level is relatively higher, we expect the GSM to be relatively effective.

Finally, we make some computations to test the assumption made in the litera-
ture that expected subcontracting cost is negligible. We conclude by showing that 
expected quantity to outsource may well be an important consideration, and hence 
should not be ignored.

One immediate extension of the current work is to model a two echelon assem-
bly system. As all suppliers operate according to a base stock policy and a service 
model (SSM or GSM), the probability of supply for each supplier can be obtained 
by solving the single-stage problem, as in the two-stage serial system. Therefore, 
the system can be modeled by using a DTMC structure and probability values can 
be used in the transitions to reflect a supplier’s effect on Stage 1. The difference 
between a serial system and an assembly system is in the state representation of 
Stage 1: Each supplier’s work-in-process inventory in stock should be represented. 
The size of the state space grows rapidly in this case, and hence solving this prob-
lem even computationally may require a different method. Decomposing the model 
[see de Kok and Visschers (1999)] appears to be an acceptable direction to proceed, 
although a modification method used in Ettl et al. (2000) can be pursued as well.
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Future work can also consider the partial supply (production) availability case. 
Most features of the model may remain the same, except the reflection of the supply 
uncertainty structure. In the current context, supply uncertainty that the downstream 
stage faces is a result of production uncertainty at the upstream stage. Hence, sup-
ply unavailability can be used to reflect production unavailability. In the extension, 
desired production quantity may be fully supplied, partially supplied or not sup-
plied at all. Following the structure of Güllü et al. (1999) a DTMC can be specified 
requiring an extension to the already existing states.

Appendix 1: Probability transition matrix for single‑stage problem 
under the SSM

K K − 1 K − 2 ... K − n K − n− 1 ...







K 1− p p 0 ... 0 0 ...
K − 1 1− p 0 p ... 0 0 ...
K − 2 1− p 0 0 ... 0 0 ...

...
...

...
...

...
...

...
...

K − n 1− p 0 0 . 0 p ...
K − n− 1 1− p 0 0 . 0 0 ...

...
...

...
...

...
...

...
...

Appendix 2: Probability transition matrix for single‑stage problem 
under the GSM

K K − 1 K − 2 K − 3 ... −M +K + 1 −M +K







K 1− p p 0 0 ... 0 0
K − 1 1− p 0 p 0 ... 0 0
K − 2 1− p 0 0 p ... 0 0

...
...

...
...

...
...

...
...

−M +K + 1 1− p 0 0 0 ... 0 p
−M +K 1− p 0 0 0 ... 0 p
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Appendix 3: Probability transition matrix for two‑stage problem 
under the GSM

(1, 1, 0) (1, 0, 1) (1,−1, 2) (0, 0, 1) (0, 1, 0) (0,−1, 2) (−1, 0, 0) (−1,−1, 1)








(1, 1, 0) (1− p1)(1− p2) (1− p2)p1 0 p1p2 (1− p1)p2 0 0 0
(1, 0, 1) (1− p1)(1− p2) 0 (1− p2)p1 0 (1− p1)p2 p1p2 0 0

(1,−1, 2) (1− p1)(1− p2) 0 (1− p2)p1 0 (1− p1)p2 p1p2 0 0
(0, 0, 1) (1− p1)(1− p2) 0 (1− p2)p1 0 0 0 (1− p1)p2 p1p2
(0, 1, 0) (1− p1)(1− p2) (1− p2)p1 0 0 0 0 p2 0

(0,−1, 2) (1− p1)(1− p2) 0 (1− p2)p1 0 0 0 (1− p1)p2 p1p2
(−1, 0, 0) (1− p1)(1− p2) 0 (1− p2)p1 0 0 0 (1− p1)p2 p1p2

(−1,−1, 1) (1− p1)(1− p2) 0 (1− p2)p1 0 0 0 (1− p1)p2 p1p2

Appendix 4: Two‑stage model: expressions for stage 1 for the SSM

SSM

Replenishment Time ( �)
� =

�

i with probability �
S2 (1 − p1)(

∑i

j=0
[(1 − �

S2 )i−jp
j

1
])
�

                              where i= 0,1,2,3,...
Demand during � D =

�

iQ with probability �
S2 (1 − p1)(

∑i

j=0
[(1 − �

S2 )i−jp
j

1
])
�

                              where i= 0,1,2,3,...
E[D

�
] Q�S2 (1 − p1)(

∑∞

i=1
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j=0
[i(1 − �

S2 )i−jp
j

1
])

�
2
�

Q2
�
S2 (1 − p1)(
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j=0
[i2(1 − �

S2 )i−jp
j

1
])

−[Q�S2 (1 − p1)(
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])]2
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Appendix 8: Two‑stage models: ranking according to expected total 
on‑hand inventory costs

See Tables 6 and 7.
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Table 6   Service level is at least 
95.3% (range: [95.3% , 96.8%])

Total expected ending 
on-hand inventory 
cost

Stage 2 
service 
model

Stage 1 
service 
model

K
2

M
2

K
1

M
1

1 (min) SSM SSM 1 NA 1 NA
2 GSM SSM 1 4 1 NA
3 GSM SSM 1 3 1 NA
4 GSM SSM 1 2 1 NA
5 GSM SSM 1 1 1 NA
6 SSM GSM 1 NA 1 2
7 GSM GSM 1 4 1 2
8 GSM GSM 1 3 1 2
9 GSM GSM 1 2 1 2
10 SSM GSM 1 NA 1 3

Table 7   Service level is at least 99% (range: [99%, 100%])

Total expected ending on-
hand inventory cost

Stage 2 service 
model

Stage 1 service 
model

K
2

M
2

K
1

M
1

1(min) SSM GSM 1 NA 1 1
2 GSM GSM 1 4 1 1
3 GSM GSM 1 3 1 1
4 GSM GSM 1 2 1 1
5 GSM GSM 1 1 1 1
6 SSM GSM 2 NA 1 1
7 GSM GSM 2 5 1 1
8 GSM GSM 2 4 1 1
9 GSM GSM 2 3 1 1
10 GSM GSM 2 2 1 1
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