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Abstract
Public-interest goods benefit consumers and also generate external benefits boost-
ing societal welfare. Despite this characteristic of these goods, their level of con-
sumption or production are generally well below the socially desirable levels with-
out intervention. Motivated by influenza vaccine market, this paper examines the 
intervention design problem for a public-interest good facing yield uncertainty in 
production as well as inefficiencies in distribution and allocation. The proposed 
mechanism considers two intervention tools with the aim of resolving the inefficien-
cies in the system and allowing the actors to take socially desirable decisions. The 
first tool is to intervene so that demand level for the good is increased; we call it 
demand increasing strategy. The second tool aims to support the production, alloca-
tion, and distribution by investing in research and development and better planning 
and enhances the availability; we call this as availability increasing strategy. The 
intervention design problem is based on stylized demand and availability models 
that take into account investments made to improve them. The model suggested is 
experimented by a numerical study to analyze the impact of applying proposed joint 
mechanism in US influenza vaccine market. The results show that proposed strategy 
is very effectual in terms of vaccination percentages achieved and budget savings 
realized beyond the current practices, and the improvement in vaccination percent-
ages is even greater when uncertainty in the system is higher. Besides, the results 
suggest that as long as the parameter calibration and decision problems are solved 
consistently, availability can be approximated by its average value when necessary.

Keywords  OR in societal problem analysis · Supply chain management · Public-
interest good · Intervention mechanism

 *	 Ece Zeliha Demirci 
	 e.z.demirci@tue.nl

1	 Department of Industrial Engineering and Innovation Sciences, Eindhoven University 
of Technology (TU/e), Eindhoven, The Netherlands

2	 Department of Industrial Engineering, Bilkent University, Ankara, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s10696-019-09348-5&domain=pdf


	 E. Z. Demirci, N. K. Erkip 

1 3

1  Introduction

Goods with positive externalities, which are referred as public-interest goods in 
this study, benefit consumers as well as non-paying third parties. For instance, 
vaccines obviously make the individuals less susceptible to a contagious disease 
and also they reduce the chances that non-vaccinated people will get the disease. 
Clearly, vaccination is good for the whole society since with only few unvacci-
nated individuals the transmission of the disease cannot be maintained and the 
risk of pandemic will be low. In a free market, this type of goods are either under-
consumed or under-produced due to free-riders as well as incorrect pricing poli-
cies or ignorance of external benefits. Thus, there is a need for regulating the 
environment of these goods by a central authority (government or social planner) 
so that their consumption is raised towards a socially desirable level. Here, the 
main goal of the central authority is to design and fund an intervention scheme 
that triggers the actors of the supply chain to take decisions for the benefit of the 
society. In this study, we explore the problem of designing an intervention strat-
egy for a public-interest good that has uncertainty in availability.

The motivation of this study is based on influenza vaccine supply chain. Influ-
enza is a very well-known acute respiratory illness that circulates quickly result-
ing in seasonal outbreaks. World Health Organization (WHO) reports that each 
year the outbreaks end up with 250,000–500,000 deaths globally; additionally 
annual costs of outbreaks in terms of health care, lost days of work and schooling, 
and social disruption vary between $1 million and $6 million per 100,000 inhab-
itants in industrialized countries like France, Germany, and the United States 
(World Health Organization 2005). Annual vaccination is known to be the most 
effective and efficient strategy for fighting influenza to prevent morbidity and 
mortality. Therefore, majority of the countries carry out influenza vaccination 
programmes targeting nationwide coverage levels. In spite of the programmes 
having been implemented, current statistics show that the vaccine coverage lag 
behind the targeted goals in most of the developed countries (Mereckiene 2015; 
Centers for Disease Control and Prevention 2015a). Also, WHO reports that all 
countries in the world are facing influenza vaccine shortage. These problems 
originate from issues that are inherent to influenza vaccine supply chains.

One of the challenges of this system arises mainly due to characteristics of pro-
duction process such as long production times, reformulation of vaccine composi-
tion each year, and yield issues. Majority of the production depends on flu virus 
grown in chicken eggs. The process starts with the announcement of the WHO 
Global Influenza Program on the virus strains that will be included in the forth-
coming season’s vaccines. The manufacturing procedure takes approximately six 
months and can be summarized as follows: growing the virus in chicken eggs, 
harvesting the virus containing fluid from the eggs after several days, inactivat-
ing viruses, purifying, testing, and packaging (Centers for Disease Control and 
Prevention 2015b; Gerdil 2003). Vaccine composition is controlled each year and 
updated if needed due to continuous antigenic changes in the virus strains. The 
uncertain characteristics of the biological processes and safety and quality tests 
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cause yield uncertainty. Specifically, either the production may result in fewer 
quantities or it may need extra time to end up with the desired quantities (National 
Vaccine Advisory Committee 2003). Besides, there are always problems of timely 
distribution of the usable vaccine to different areas, all causing an uncertainty in 
the availability of vaccine in the desired quantities at each demand point. We are 
going to name this phenomena as “uncertainty in availability”, caused by produc-
tion yield problems that includes late production instances, as well as delays in 
timely distribution of vaccine that prevents effective usage (Duijzer et al. 2018; 
Yarmand et al. 2014). Hence, instead of produced quantity, “usable quantity” is 
available for effective vaccination.

Another problem is insufficient demand for reaching an effectual or socially 
desirable coverage level. Each vaccination decreases the infection risk for the close 
contacts of vaccinee and brings positive externality. This method of protection is 
called herd immunity. However, self-interested individuals might disregard this 
value while making vaccination decision with the idea of free-riding benefits from 
other’s vaccination. Thus, the vaccine market suffers from ignorance of externality 
effects and lack of incentives to get vaccinated.

The focus of this paper is designing an intervention strategy for influenza vac-
cines, which will decrease the effects of inefficiencies described above and encour-
age the channel to take a solution closer to socially optimal decision. In the strategy, 
we consider possibility of different efforts that will eventually increase the usable 
quantity. We enable this by considering a total budget, which can be used for dif-
ferent efforts, and solve a budget allocation problem. Formulating the problem as a 
budget allocation problem and solving it under a limited budget are motivated from 
the fact that budget is generally made up off funding from various sources (i.e. coun-
tries, organizations, and etc.) and thus the total is not fully controllable. Also, in 
their introduction to a special issue on health care, Brailsford et al. (2012) explicitly 
point out the importance of strategic decisions and budget usage in public-oriented 
health sector activities.

Influenza vaccines can be seen as one-time newsvendor products, as they need 
to be reformulated each year due to antigenic drift (Chick et al. 2008; Duijzer et al. 
2018). Thus, we study the problem for a system consisting of a newsvendor firm that 
faces yield issues and a central authority having a fixed budget throughout the paper. 
For the influenza vaccine case, central authority refers to a social planner like WHO, 
Centers for Disease Control and Prevention (CDC), etc. or a government. The role 
of the central authority is to coordinate the expenditures limited by the budget and 
maximize the social welfare. A critical issue while designing an intervention mecha-
nism is to choose the intervention tools to be considered and their associated effects.

One alternative is making investment in demand increasing strategies. We assume 
that this investment is devoted to any attempt that will promote vaccination. In prac-
tice, these may correspond to subsidizing vaccine cost, public education, media 
campaigns to inform those at high risk, expanding access to vaccination services 
(i.e. via pharmacy, immunization centers near schools and worksites, home visits), 
organizing school vaccination programs, and establishing client reminder and recall 
systems (Centers for Disease Control and Prevention 2015a). A different example 
to demand increasing strategies can be given based on a recent news discussing low 
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immunization rates for HPV (The New York Times 2015). Current policy issues and 
lack of MD endorsement (and recommendation) are found to be responsible for the 
shortfall in the usage of these vaccines. For this case mentioned in the news, organ-
izing information briefing for doctors can be a good example for demand increasing 
strategies so that they will make timely recommendations to children for receiving 
the vaccine.

Another intervention tool is availability increasing strategy through which usa-
ble quantity of the production decision can be increased. The uncertainty associ-
ated with the availability of flu vaccines has two causes which are output quantity 
due to random yield and delivery timing (Dai et al. 2016). The former dimension of 
uncertainty is mainly due to current production technologies that have several limi-
tations such as yield issues, production capacity, and ability to accelerate production 
in case of pandemic. These inefficiencies can be overcome through financial support 
to manufacturer to increase yield and thus availability. Deo and Corbett (2009) also 
highlight that it is required to subsidize research on production processes instead 
of only implementing immunization programs. This can be done by giving funding 
to manufacturer to share his risk or investing in new production technologies. For 
instance, U.S. government and the Crucell Corporation have been investing in cell 
based technology which promises to provide more flexibility and has the potential 
to reduce lead times and yield uncertainty (Williams 2016). The U.S. National Insti-
tutes of Health (NIH) granted $9.5 million to ID Biomedical to develop this technol-
ogy. In 2016, FDA has approved cell isolated vaccine viruses and the only cell based 
flu vaccine has been licensed (Centers for Disease Control and Prevention 2019). 
The latter dimension of uncertainty in the availability includes timing inefficiencies 
in production and delivery timing (Duijzer et al. 2018). Several examples from US 
can be found. An early example can be given as 2000–2001 season during which 
influenza vaccine coverage has been realized 16% lower than the previous season 
while leaving 7.5 million doses unused (Dai et  al. 2016). The reason behind has 
been explained by the unavailability of vaccines during peak demand times of Octo-
ber and November which results with the cancellation of vaccination campaigns. 
A more recent example is delayed shipments during 2014–2015 season leading to 
shortage during peak demand time. These examples bring out the idea of removing 
these issues by better planning and support to manufacturer to encourage him to ini-
tiate at risk early production prior to the design freeze.

In brief, in this study we analyze an intervention mechanism composed of the two 
intervention tools described above. We note that the proposed joint mechanism’s 
objectives are parallel with the objectives of GAP (Global action plan for influenza 
vaccines), which is carried on by WHO (World Health Organization 2015). GAP is 
an exhaustive project aimed at achieving higher vaccine usage, improving produc-
tion capacity, and research and development.

To analyze the above mentioned framework, we build a bilevel programming 
model, which enables us to integrate manufacturer’s point of view into the central 
authority’s decision making process. We assume that demand and availability are 
correlated random variables without loss of generality and follow bivariate lognor-
mal distribution. Bivariate lognormal distribution is quite general as one can rep-
resent distributions with different shapes and values of coefficient of variation. We 
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express demand and availability as functions of corresponding investments made 
to improve them. Under the lognormal demand and availability models proposed, 
given central authority’s decisions we obtain closed form expression for the optimal 
quantity to be produced by the manufacturer. We also characterize the optimal solu-
tion for specific forms of authority’s objective function, and demand and availability 
functions.

The framework considered in the study is abstract when compared with the dif-
ficulties encountered in a real environment. As a result, we include some numeri-
cal analyses to reflect the usability of such a model. To realize any analysis we set 
up a case study with parameters reflecting an actual instance. Additionally, we plan 
for some specific analyses (other than standard sensitivity) to understand the reflec-
tion of the numerical results on the decision making processes. Finally, bringing all 
together, we aim to accumulate information which will be instrumental to persuade 
the decision makers to utilize such approaches. With these in mind we complete our 
presentation with numerical experiments.

The numerical experiments rely on available estimates from studies on influenza 
vaccine supply chains in literature and CDC’s statistics on flu vaccination cover-
age in US. We propose a parameter calibration procedure based on available infor-
mation. Our test results indicate that considerable improvement can be achieved by 
the joint policy. Moreover, we compare the results with the case where imperfect 
availability is approximated by a deterministic function dependent on investment 
made to improve it. The solutions show that the vaccination coverage obtained with 
deterministic availability function are very close to the ones achieved under avail-
ability uncertainty if the demand function’s parameters are calibrated accurately for 
each version. Finally, we add a discussion and our findings on the selection of total 
budget level to support decision makers. Note that the production processes in many 
industries face availability uncertainty such as agriculture, biofuel production, min-
ing, and etc. Although the framework of the study is inspired from influenza vac-
cines, it can be applied to other goods with similar characteristics.

In the conclusion section, we present a summary of our results. We also discuss 
the usability of this model for practitioners using the results of the technical parts, as 
well as the numerical analyses.

2 � Literature review

Recent studies in operations management have examined the design of incentives in 
public-interest goods context. The incentives considered are generally in the form 
of rebates (i.e. refund of money awarded to consumers of that particular product) 
or subsidies (i.e. payment to the firm that manufactures and/or sells the product for 
every unit produced/ordered). There are a number of studies that consider a single 
intervention tool in order to motivate the adoption of this type of goods, which are 
Lobel and Perakis (2011), Cohen et al. (2015), and Chemama et al. (2014). Lobel 
and Perakis (2011) consider the use of rebates in order to reach a specified adop-
tion target for solar photovoltaic technology. Cohen et  al. (2015) investigate the 
impact of demand uncertainty on the optimal rebate amount as well as governmental 
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expenditure, supplier’s profit, and consumer surplus. Chemama et al. (2014) develop 
a two-period model to study the effect of committing to a rebate amount along two 
periods versus adjusting it among the periods on the risk sharing between gov-
ernment and supplier. On the other hand, there are studies on intervention design 
and its impacts on the societal and players’ outcomes in a setting including mul-
tiple intervention tools. Raz and Ovchinnikov (2015) and Taylor and Xiao (2014) 
employ rebates and subsidies for coordinating the market. Raz and Ovchinnikov 
(2015) analyze the problem via three different mechanisms (i.e. joint mechanism 
consisting both tools and two simplified mechanisms including one of the tools) and 
show that joint mechanism can coordinate the system, whereas simplified mecha-
nisms can coordinate either price or quantity. In contrast, Taylor and Xiao (2014) 
explores the problem for a long shelf life product like malaria drugs and show that 
the donor should only subsidize the firm at the optimal scheme. In Demirci and 
Erkip (2017), central authority uses a joint mechanism composed of investment in 
demand increasing strategies and rebates for regulating the system. They present a 
model that decides on the optimal budget amount and details of intervention mech-
anism. One possible example of public-interest good is home care service with a 
lot of inference to possible strategic and tactical level plans as described by Matta 
et al. (2014). They present a model for home care organisations from an operations 
management perspective. Additionally, as a solution methodology we use a similar 
approach employed by Demirci and Erkip (2017). However, the characteristic of this 
problem is quite different as this one includes an explicit budget consideration, as 
well as random yield in addition to random demand and different intervention tools.

At the same time, there is an increasing interest in vaccine supply chain related 
decision problems in OR/OM literature. Duijzer et al. (2018) presents a structured 
overview of vaccine supply chain literature by classifying the studies depending on 
the supply chain component under consideration, which are composition, alloca-
tion, distribution, and production. The studies on vaccine composition investigate 
the problem of which virus strains to include in the vaccine for either influenza or 
HIV vaccines. Examples for the ones focusing on influenza vaccines are Kornish 
and Keeney (2008), Cho (2010), and Özaltın et  al. (2011), and examples for HIV 
are Porco and Blower (1998) and Maher and Murray (2016). Besides, there are also 
studies focusing on epidemic dynamics of influenza, which can be utilized for mak-
ing preparatory planning. One recent example is Lee and Shin (2016). The vaccine 
allocation problem decides on for which groups vaccination will be administered. 
As the problem is a higher level decision problem and quite general, it has been 
studied for various types of diseases and cases. Some recent studies are Samii et al. 
(2012), Tanner and Ntaimo (2010) and Yarmand et al. (2014). Vaccine distribution 
problem includes several operational problems. One is determining how to distrib-
ute the vaccines, i.e. via fixed locations (or point of dispensing) or mobile facilities. 
Each option brings out new questions like facility location and layout and staffing 
decisions if point of dispensing is chosen and routing problems otherwise. The other 
operational problem is to decide on size and location of vaccine inventories. Exam-
ples of studies dealing with these problems are Jacobson et al. (2006), Halper and 
Raghavan (2011), and Ramirez-Nafarrate et al. (2015). The studies which are closely 
related to our work fall into the production category. This cluster of papers has been 
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devoted to find schemes to coordinate the vaccine market. We will only review the 
ones which focus on influenza vaccines in the remaining part of this section.

The inefficiencies of a flu vaccine supply chain emanating from operational issues 
on the supply side and negative externality effect on the demand side mostly have 
not been addressed concurrently in prior studies. A group of studies focus on only 
supply uncertainty and its impact on social welfare. Chick et al. (2008) present first 
integrated supply chain/health economics model for a system consisting of a monop-
olistic manufacturer that sells vaccines to a government. Based on their results they 
investigate that manufacturer bears all of the production risks due to lack of coor-
dination, which results in shortfall of vaccines. Hence, they derive a variant of cost 
sharing contract, which provides an incentive to the manufacturer to produce social 
optimum quantity. In Chick et al. (2016), the major concern is to design a contract 
that will align incentives of government and manufacturer as in Chick et al. (2008), 
but they consider an environment with asymmetric information about production 
uncertainty and include the possibility to fulfill the shortfall demand at a higher 
cost after the delivery date. Mamani et al. (2013) extend the study of Chick et al. 
(2008) to a scenario with multiple governments and risk of disease transmission 
across borders. They design a contractual agreement among governments that will 
enhance global health outcomes. Using a Cournot competition model, Deo and Cor-
bett (2009) argue that the limited number of entrants in a vaccine market, vaccine 
undersupply and low society surplus can be explained by yield uncertainty inherent 
to this environment. In all of these studies demand is exogenous to their models; 
however the consumer behavior (reflecting negative network externality effect) is 
also incorporated in this context more recently. Briefly, they assume that consumers’ 
decision of whether to uptake vaccine depends on the vaccinated fraction of the pop-
ulation. Mamani et al. (2012) show that in an oligopolistic vaccine market, a fixed 
subsidy should be administered to consumers so that a socially optimal immuniza-
tion rate can be reached. However, they ignore the impact of yield uncertainty on the 
subsidy design and social welfare. Later, Adida et al. (2013) study a similar prob-
lem in a setting that includes consumer behavior as well as yield uncertainty, and 
show that a fixed two-part subsidy scheme is not sufficient to coordinate even the 
monopoly market. They propose a two-part menu of subsidies that includes a sub-
sidy dependent on coverage level given to the consumers and a unit production pay-
ment to the manufacturer in order to eliminate the market inefficiencies. In contrast 
to previous studies, Arifoğlu et al. (2012) do not formalize the setting as an incentive 
design problem, but instead explore the implications of demand side versus supply 
side interventions on the manufacturer’s decision and societal outcome under differ-
ent conditions. In addition to yield uncertainty considered in the articles described 
below, Yarmand et al. (2014) shows that allocation problem and timing of distribu-
tion significantly affects the issue of availability as mentioned in the introduction.

Unlike the existing studies in the literature, our model is a budget allocation prob-
lem and further decides on the quantity to be produced and intervention scheme 
under uncertainty in both demand and availability. Also, our work is differenti-
ated from previous work in terms of using strategic intervention tools simultane-
ously and their effects on the system dynamics, modelled in a very general way. 
However, we do not take into account epidemiological details and just consider the 
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initial preventive stage of vaccination. In other words, we simply treat the problem 
as a single stage problem, following similar others in the literature. This makes our 
budget allocation framework applicable to other types of goods with resembling 
characteristics.

3 � Model and assumptions

This section presents the decision model to determine the allocation of budget 
among intervention tools, and demand and availability models.

3.1 � Decision model

We model intervention design problem for the context discussed by bilevel program-
ming. Bilevel programming involves problems of two independent hierarchical deci-
sion makers within a single instance, problem of one becoming part of constraints 
of the other one. This type of problems includes an upper-level decision maker or 
leader and a lower-level decision maker or follower. Each player attempts to opti-
mize its own objective, but they are affected from each other’s decision. A distin-
guishing property of this programming is that leader can influence follower’s deci-
sion, but cannot dominate completely [see Colson et al. (2007) and Bard (1998) for 
more comprehensive information].

In our case, the central authority is the leader, who is interested in maximizing 
the social welfare, whereas newsvendor firm is the follower with the objective of 
maximizing expected profit. Newsvendor firm faces imperfect yield and uncertainty 
in availability due to characteristics of production and distribution processes. We 
model uncertainty in availability with stochastically proportional approach, which 
is widely studied in the literature [see Yano and Lee (1995) for a detailed review of 
approaches solving lot sizing problem with random yield]. This approach is applica-
ble to systems like influenza vaccine production system, in which availability uncer-
tainty emanates from inflexibility of production system to adapt to changes in the 
environment or material, distribution and allocation.

Central authority intervenes in the system through a joint mechanism composed 
of two intervention tools: (1) investment made in demand increasing strategies, Bd , 
and (2) investment made in availability increasing strategies, By . Any effort aimed 
at increasing demand will shift the demand distribution, and similarly investment 
made in availability increasing strategies will affect availability distribution. Thus, 
mean demand and mean availability increase as investment made in demand increas-
ing and availability increasing strategies increase, respectively. We assume that the 
social welfare/utility is assessed by a function of manufacturing quantity, which in 
turn is a function of the intervention mechanism (i.e. Bd and By ). The reason behind 
this is that the main goal is to increase the adoption level in this environment. The 
adoption level is closely related with the quantity produced as the self-interested 
individuals decide whether to search for vaccine by knowing the available quantity 
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(Arifoğlu et  al. 2012; Arifoğlu 2012). Note that adoption level also considers the 
inefficiency in the allocation, as well as timely distribution of the produced amount.

Let r, c, s be unit selling price, manufacturing cost, and salvage value respectively. 
u(.) denotes the utility of the central authority (reflecting public view), which is a func-
tion of the production quantity Q. Note that production quantity, in turn is a function of 
the budgets made available for different strategies. We assume a strictly concave util-
ity as a function of Q for every Bd and By . A summary of the notation is presented in 
Table 1 and the bilevel programming formulation of the problem (BLP) is given below:

where P(Q,Bd,By) is the profit function of the newsvendor firm and is given by:

with 1A = 1 if A is true, and 0 otherwise. D(Bd) and Y(By) are the random variables 
denoting demand and availability, respectively. Note that they are dependent on the 
investment amount made in to improve them.

The usable quantity that will be received at the end of processes is YQ as we explore 
the model for stochastically proportional availability. Also, note that we expect Bd and 
By affecting the distributions of demand and availability individually and through their 
possible correlation. Specifically, the lower level problem is a newsvendor model with 
dependent random availability and demand. A recent study by Okyay et al. (2014) also 
studied a newsvendor problem with similar characteristics from the perspective of an 

(1)max
Bd ,By

u(Q(Bd,By))

(2)s.t. Bd + By ≤ B

(3)Bd,By ≥ 0

(4)Q(Bd,By) = argmaxQ P(Q,Bd,By).

P(Q,Bd,By) = rY(By)Q(Bd,By)1{Y(By)Q(Bd ,By)≤D(Bd)}

+ rD(Bd)1{Y(By)Q(Bd ,By)≥D(Bd)} + s(Y(By)Q(Bd,By)

− D(Bd))1{Y(By)Q(Bd ,By)≥D(Bd)} − cQ(Bd,By)

Table 1   Notation
r Unit selling price
c Unit manufacturing cost
s Unit salvage value
Bd Investment made in demand increasing strategies
By Investment made in availability increasing strategies
B Total available budget of central authority
Q(Bd ,By) Manufacturing quantity of the manufacturer
u(.) Utility function of the central authority
P(Q,Bd ,By) Profit function of the manufacturer
D(Bd) Random variable denoting demand
Y(By) Random variable denoting availability
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inventory manager who decides on how much to order. However, we consider the prob-
lem for a manufacturer and thus the cost is not only incurred for the usable quantity YQ 
but for Q. Thus, the optimality condition of our problem would be different than the 
presented one in Okyay et al. (2014).

In this problem, the central authority goes first and determines the investment 
amounts made in intervention tools, and later in view of his decisions manufacturer 
decides on production quantity. Equations (1)–(3) express the central authority’s prob-
lem, while (4) corresponds to the manufacturer’s problem. The objective of the central 
authority is to find the utility maximizing investment amounts, Bd and By . The selection 
of Bd and By affects the solution and objective function of the manufacturer by affect-
ing the distributions used to evaluate P(Q,Bd,By) , and in turn manufacturer’s decision 
influences the central authority’s utility. Constraint (2) imposes budget constraint on 
the total money invested for demand and availability increasing strategies. Equation (3) 
guarantees non-negativity of Bd and By . Lastly, Eq. (4) reflects the newsvendor problem 
under random availability for given Bd and By.

3.2 � Analysis of the decision model

Primary approach for solving bilevel optimization problems is replacing lower level 
problem by its first order conditions. Thus, we start our analysis by the lower level 
problem.

We find out that the expected profit maximizing Q(Bd,By) occurs at

The details of derivation can be found in “Appendix 1”.

Remark 1  The following conditions should hold so that it is economic to manufac-
ture for the newsvendor:

Condition (6) guarantees that the average revenue is higher than the unit produc-
tion cost, whereas condition (7) ensures that the unit production cost is greater than the 
average salvage value.

Lemma 1  E[P(Q,Bd,By)] is strictly concave in Q for every Bd and By . This assures 
that the solution to the lower level problem is unique, implying that the lower level 
problem can be replaced by its first order condition (by p. 308 of Bard 1998).

Accordingly, BLP can be written as the following single-level mathematical pro-
gram (SP):

(5)E
[
Y(By)1{D(Bd)≤Y(By)Q(Bd ,By)}

]
=

rE[Y(By)] − c

r − s
.

(6)rE[Y(By)] >c,

(7)sE[Y(By)] <c.

(8)max
Bd ,By

u(Q(Bd,By))
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Now, we obtain a relatively easy to solve standard nonlinear program. In this for-
mulation, the central authority optimizes utility/social welfare subject to her con-
straints and optimal decision of manufacturer.

3.3 � Representation of demand and availability

We use lognormal distribution to represent demand and availability as various dis-
tributional shapes can be represented by it. The distribution is specified with two 
parameters, one of which being a shape parameter and the other being a scale 
parameter (Law et  al. (1991)). These two parameters give the flexibility to deter-
mine whether the distribution is right or left skewed. Also, as an example having a 
pdf with a long right tail enables us to cover almost deterministic availability case 
in case it models the availability or makes high demand values to have almost zero 
probability if it is used to model demand.

We assume that demand comes from a family of lognormal distributions with param-
eter Bd . Once Bd is set, the demand distribution will be known accordingly. For general-
ity, we assume that Bd will affect both the mean and standard deviation of the demand. 
Let HD(Bd) and VD(Bd) be functions of Bd . Then, we can represent the demand by

where WD has standard normal distribution and �DVD(Bd) is a parameter of the dis-
tribution. It can be verified that E[D(Bd)] = HD(Bd) , where HD(Bd) is a function of 
Bd , and Var(D(Bd)) = HD(Bd)

2(e�
2

D
VD(Bd)

2

− 1).

Remark 2  If HD(Bd) is an increasing function of Bd and VD(Bd) is a non-increasing 
function of Bd , there will be a first order stochastic dominance order between cdfs 
of demand. Specifically, the cdf with higher Bd value will stochastically dominate all 
others with smaller Bd.

One can write coefficient of variation of demand as cvD(Bd) =
√
e�

2

D
VD(Bd)

2

− 1 . 
Hence, an increase in Bd will not increase the cvD value. Note that the assumptions 
on the form of the functions are very general and intuitively require that any addi-
tional budget devoted to increase demand will increase the mean, but not increase 
(likely to decrease) the coefficient of variation of demand.

We construct the availability function with a similar reasoning as in demand 
function. We use a lognormal availability function dependent on parameter By.

(9)s.t. Bd + By ≤ B

(10)Bd,By ≥ 0

(11)(5).

D(Bd) = HD(Bd)e
−

1

2
�2

D
VD(Bd)

2+�DVD(Bd)WD ,

Y(By) = HY (By)e
−

1

2
�2

Y
VY (By)

2+�YVY (By)WY ,
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where WY has standard normal distribution and �YVY (By) is a parameter of the 
distribution. As in the demand function, E[Y(By)] = HY (By) , where HY (By) is 
an increasing concave function in By and takes values in the interval [0,1], and 
Var(Y(By)) = HY (By)

2(e�
2

Y
VY (By)

2

− 1) . Similarly, coefficient of variation is given by 

cvY (By) = 
√
e�

2

Y
VY (By)

2

− 1 . Also, first order stochastic dominance order holds for the 
availability model as in demand case. Note that availability is allowed to take values 
larger than 1, although the probability of such events is usually small depending on 
the selected parameters and reasonable budget levels considered.

We assume that demand and availability can be jointly lognormally distributed. 
Specifically, natural logarithms of random variables D and Y have bivariate normal 
distribution with means ln(HD(Bd)) − �2

D
VD(Bd)

2∕2 and ln(HY (By)) − �2

Y
VY (By)

2∕2 , 
and standard deviations �DVD(Bd) and �YVY (By) , respectively, and correlated by � . 
Specifically, (WD,WY ) has a standard bivariate normal distribution with correlation 
coefficient � , E[WD,WY ] = �.

Recall that Bd denotes the investment amount allocated to demand increas-
ing strategies, whereas By reflects the investment amount allocated to availability 
improving strategies in our model. Any effort targeted to achieve higher demand 
attracts more consumers for vaccine uptake and thus shifts the mean demand 
upwards. Besides, investment devoted to availability increasing strategies decreases 
the risks included in the manufacturing process and improves the yield, as well as 
decreases the inefficiencies in vaccine distribution. Thus, an increase in the invest-
ment amounts Bd or By leads to a first order stochastic dominance order between 
cdfs of demand or availability, respectively as described in Remark 2. Note that we 
can also envision a correlation between the uncertain components of demand and 
availability variables. Positive correlation indicates that higher demand motivates 
the manufacturer to improve availability, as well as improved availability may result 
in a tendency for more demand. On the other hand, it is harder to justify negative 
correlation though. One possible explanation might be to consider a situation where 
knowledge of higher levels of availability dampening the artificial demand amplifi-
cation caused by the previous unacceptable experiences.

4 � Analysis of the model

In the later sections of the study, we assume specific forms for HD(Bd) and HY (By) . 
Although there are not many studies on investment response functions, an advertis-
ing response function is generally assumed to be concave in advertising expenditure 
in previous studies (e.g. Khouja and Robbins 2003; Lee and Hsu 2011; Arcelus et al. 
2006). We follow the same assumption in our analysis. Under a concave response 
function, as the money invested increases the mean demand and mean availability 
also increase but with a monotonically diminishing rate. In our analysis, we use 
the mean demand function analyzed in Khouja and Robbins (2003), which is given 
below:

HD(Bd) = � + �wB�

d
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where � is the initial mean demand (i.e. mean demand before intervention), and w 
and � ( w ≥ 0 , 0 ≤ � ≤ 1 ) are constants that reflect effectiveness of demand increas-
ing strategy. For a fixed w > 0 , mean demand increases at a faster rate for larger 
values of � . When w = 0 , mean demand is not influenced by demand increasing 
strategies.

One possible form for HY (By) is as follows:

As By → 0,HY (By) →
1

a
 and as By → ∞,HY (By) → 1 . 1 / a gives the initial avail-

ability (availability rate without intervention) and k is a measure for the efficiency of 
the availability improving technology.

For further analysis we consider VD(Bd) = 1 and VY (By) = 1 . Both cases will yield 
family of demand distributions that have equal coefficient of variations. We think that 
this represents a pessimistic view for the use of budgets, as additional budget is not 
effective in changing the variability represented by the coefficient of variation values.

4.1 � Manufacturer’s problem

We use the properties of lognormal random variables to derive E[Y1{D≤YQ}] (see 
“Appendix 1” for the details) and express it as follows:

Solving (5) and (12) for Q gives:

where Φ−1(.) denotes the inverse of the standard normal cdf.
Along with the fact that the argument of Φ−1(.) should be between 0 and 1, we 

deduce the following conditions on HY (By) from (13):

HY (By) =
kBy + 1

kBy + a
, for a > 1 and k ≥ 0.

(12)

E
�
Y(By)1{D(Bd)≤Y(By)Q(Bd ,By)}

�

= HY (By)Φ

⎛
⎜⎜⎜⎝

ln(Q(Bd,By)) + ln(HY (By)) − ln(HD(Bd)) + �2

Y
∕2 + �2

D
∕2 − ��Y�D�

�2

Y
+ �2

D
− 2��Y�D

⎞⎟⎟⎟⎠

(13)
Q(Bd,By) = e

�
Φ−1

�
rHY (By)−c

(r−s)HY (By)

�√
�2

Y
+�2

D
−2��Y�D−ln(HY (By))+ln(HD(Bd))−�

2

Y
∕2−�2

D
∕2+��Y�D

�

,

(14)HY (By) >
c

r
,

(15)HY (By) <
c

s
.



	 E. Z. Demirci, N. K. Erkip 

1 3

Note that these conditions are similar to the ones given in Remark 1. It is critical to 
check whether the condition given by equation (14) is always satisfied or not while 
solving the model. For the specific form HY (By) =

kBy+1

kBy+a
 , this condition is always 

satisfied if r > ac . Actually, this condition on the model parameters is a natural 
assumption for the newsvendor so that it is economic to operate. In the opposite case 
(if r < ac ), the intervention mechanism is able to make the system economic by 
investing on availability increasing strategies, and consequently increasing the avail-
ability. Note that in this case, there is a minimum budget requirement constraint for 
By , i.e. By >

ac−r

k(r−c)
 , that will enable the manufacturer to operate.

Remark 3  If 
√

𝜎2

Y
+ 𝜎2

D
− 2𝜌𝜎Y𝜎D > 0.3989

(
r−s

c

)
 , then 𝜕Q(Bd ,By)

𝜕By

> 0.

See “Appendix 1” for the proof.
Remark  3 states a sufficient condition to ensure an increase in By will in turn 

increase Q. However, at the same time, it implies that when uncertainty is low or 
when the system is very profitable, availability increasing strategies may have no 
effect or negative effect on Q. Note that this does not necessarily mean that expected 
sales is decreasing. Figure  1 depicts an example for this case. Briefly, the figure 
illustrates optimal manufacturing quantity and expected sales as a function of By for 
a given value of Bd . The intuition is that the improvement in availability does not 
necessarily imply an increase in targeted quantity, Q∗ , since the realized quantity 
will be more by manufacturing with a higher availability factor.

4.2 � Further results when utility function is expected sales or any increasing 
function of expected sales

Motivated by the vaccine market’s environment, we use the expected sales value to 
assess the utility for this problem. Note that one can use any objective function that 
will reflect societal benefit. The governments’ or social planner’s main goal is to 

Fig. 1   Example for Remark 
3 (with parameter values 
of r = 15 , c = 3 , s = 0 , 
cv

D
= cv

Y
= 0.5 , � = −0.5 , 

a = 1.43 , w = 0.05 , k = 10−6 , 
B
d
= 106)
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reach or get closer to socially optimal level of vaccine coverage, which is usually 
stated as a coverage rate. Also, the objective has been used as coverage rate in pre-
vious studies like (Adida et al. 2013). Therefore, for budgets that are not extremely 
large the expected sales will be a realistic objective function consistent with the cur-
rent market environment. We discuss the effect of the budget size in Sect. 5.2.4. In 
the remaining part of the study, we continue our analysis by taking the objective as 
expected sales.

Expected sales with respect to our demand and availability models can be 
expressed as follows (see “Appendix 1” for details of derivation) :

Furthermore, we state the below proposition using the fact that expected sales is 
an increasing (and strictly concave) function of Q.

Proposition 1  Consider all the conditions stated by Remark 1, Remarks 2 and 3 
are satisfied, so that Q is an increasing function of both Bd and By . Under these con-
ditions, all of the budget will be used at the central authority’s optimal intervention 
scheme, i.e. B∗

d
+ B∗

y
= B holds at the optimal solution (Q∗,B∗

d
,B∗

y
).

See “Appendix 1” for the proof.

Now, using expected sales as the objective function and utilizing the optimal 
solution characteristics of the problem for a strictly concave and monotone increas-
ing utility function of Q [i.e. Proposition 1 and Equation (13)], we express the prob-
lem in terms of a single variable. The formulation is as follows:

(16)

E
�
min

�
Y(By)Q(Bd,By),D(Bd)

��

= HD(Bd)Φ

⎛⎜⎜⎜⎝

ln(Q(Bd,By)) − ln(HD(Bd)) − �2

D
∕2 + ln(HY (By)) − �2

Y
∕2 + ��D�Y�

�2

D
+ �2

Y
− 2��D�Y

⎞⎟⎟⎟⎠
+ HY (By)Q(Bd,By)

Φ

⎛⎜⎜⎜⎝

−ln(Q(Bd,By)) + ln(HD(Bd)) − �2

D
∕2 − ln(HY (By)) − �2

Y
∕2 + ��D�Y�

�2

D
+ �2

Y
− 2��D�Y

⎞⎟⎟⎟⎠

(17)

max
By

HD(B − By)Φ

�
Φ−1

�
rHY (By) − c

(r − s)HY (By)

�
−

�
�2

D
+ �2

Y
− 2��D�Y

�

+ HY (By)

�
c − sHY (By)

(r − s)HY (By)

�

× e

�
Φ−1

�
rHY (By)−c

(r−s)HY (By)

�√
�2

Y
+�2

D
−2��Y�D−ln(HY (By))+ln(HD(B−By))−�

2

Y
∕2−�2

D
∕2+��Y�D

�
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We conduct a set of numerical experiments to study the structure of the problem for 
the following mean demand and availability functions; 
HD(B − By) = � + �w(B − By)

� and HY (By) =
kBy+1

kBy+a
 . In the examples solved, we 

observe that the objective function is concave with respect to By . However, we are 
not able to prove the concavity in general.

4.3 � Approximate representation of the objective function with expected 
availability

In this subsection, we define a new objective function that is 
E[min

{
E[Y(By)]Q(Bd,By),D(Bd)

}
] , which is alike expected sales, and compare its 

value with the former one for given intervention design. Specifically, we replace 
E[min

{
Y(By)Q(Bd,By),D(Bd)

}
] term with E[min

{
E[Y(By)]Q(Bd,By),D(Bd)

}
] . We 

consider this situation as one would see such cases in practice. The new objective 
function for bivariate lognormal distribution can be written down as follows:

See “Appendix 1” for the derivation.

Proposition 2  Given Bd and By , the following relations hold between the two 
objective function candidates:

 See “Appendix 1” for the proof.

(18)s.t. 0 ≤ By ≤ B

(19)

E
[
min

{
E[Y(By)]Q(Bd,By),D(Bd)

}]

= HD(Bd)Φ

(
ln(E[Y(By)]Q(Bd,By)) − ln(HD(Bd)) − �2

D
∕2

�D

)

+ HY (By)Q(Bd,By)Φ

(
−ln(E[Y(By)]Q(Bd,By)) + ln(HD(Bd)) − �2

D
∕2

�D

)

If 𝜌 ≤ 0, E
[
min

{
E[Y(By)]Q(Bd,By),D(Bd)

}]
> E

[
min

{
Y(By)Q(Bd,By),D(Bd)

}]
,

Otherwise , E
[
min

{
E[Y(By)]Q(Bd,By),D(Bd)

}]
= E

[
min

{
Y(By)Q(Bd,By),D(Bd)

}]
if 𝜎Y = 2𝜌𝜎D

E
[
min

{
E[Y(By)]Q(Bd,By),D(Bd)

}]
> E

[
min

{
Y(By)Q(Bd,By),D(Bd)

}]
if 𝜎Y > 2𝜌𝜎D

E
[
min

{
E[Y(By)]Q(Bd,By),D(Bd)

}]
< E

[
min

{
Y(By)Q(Bd,By),D(Bd)

}]
if 𝜎Y < 2𝜌𝜎D
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In general, the objective function value with E[Y(By)] replacing the random avail-
ability variable will be either an over or under-estimate of the expected sales value. 
The conditions indicate that if demand and availability are uncorrelated or nega-
tively correlated, E[min

{
E[Y(By)]Q(Bd,By),D(Bd)

}
] overestimates the expected 

sales value.

5 � Numerical analysis

In this section, we present a numerical study using demand and availability func-
tions explained in Sect. 4 and model (SP) given in Sect. 4.2 with the objective of 
maximizing expected sales in order to gain insights about the impact of applying 
joint mechanism on US influenza vaccine market. The numerical study is conducted 
based on available information from prior studies on influenza vaccine supply chain 
and US influenza vaccine market. We investigate how the proposed intervention 
mechanism proceeds and provide a detailed discussion of the results. Before con-
tinuing with the numerical results, we first explain how we set up our parameter sets.

5.1 � Data set and calibration procedure for demand model’s parameters

We choose the cost parameters and availability information from prior related stud-
ies in the literature, the details can be found in Table 2. The remaining parameters to 
calibrate are related to the demand and availability functions, namely k, cvd , cvy , � , 
� , w, and � . Our available information allows us to calibrate only two of these vari-
ables given the others. With the limited available information, our approach is then 
to set some of these parameters to certain values and calibrate the remaining.

We think that the key parameters to calibrate are � and � , both describing the 
shape of the demand function. So, we will set the remaining parameters, i.e. k, cvd , 
cvy , � , and w to a value and find � and � , accordingly. Of course, our intention is to 
analyze the effect of varying these set parameter values on the results. Table 3 sum-
marizes the range of values for these selected parameters.

Note that we use only one value for w, as we think that the calibration procedure 
will adjust the results obtained for the demand function. Additionally, relative values 
for k and w are important and hence varying only k will suffice. Note that k value is 
exogenously taken, since we do not have any information on the availability increas-
ing strategies.

Table 2   Base parameter set Parameter Value References

r $15 Arifoğlu et al. (2012)
c $3 Arifoğlu et al. (2012)
s $0 Arifoğlu et al. (2012)
a 1.43 Cho (2010)
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The available data used for calibration is explained below. CDC reports that 
2009–2010 influenza season vaccination coverage among all persons aged higher 
than six months in the United States is 41.2%, which corresponds to 123.3 mil-
lion people (Centers for Disease Control and Prevention 2015c). Note that the 
population size under consideration is 299.272 million people. Besides, accord-
ing to Department of Health and Human Resources’ report CDC’s fiscal year 
2010 budget request for Influenza Program is $158,992,000 (Centers for Disease 
Control and Prevention 2015d).

The steps of calibration used are briefly illustrated in Fig. 2. Details of proce-
dure are presented in “Appendix 2”. Calibrated � and � values for varying values 
of coefficient of variation of demand, availability, and � are tabulated in Tables 8 
and 9, respectively in “Appendix 2”.

5.2 � Analysis of results

In this section, we use the numerical results obtained as a basis to demonstrate 
the improvements that can be obtained by applying the proposed joint mecha-
nism. Specifically, we investigate two main issues: (1) improvement in vac-
cination percentage, and (2) budget savings with joint mechanism, both to get 
more complete information on the value of applying the joint mechanism. We 
further analyze two issues: the effect of considering availability uncertainty in 
this framework and the meaning of the total budget for the policy makers. The 
details of how computations are made are explained in “Appendix 2”. Note that 
each numerical problem solved for a given budget level corresponds to a com-
pletely different problem environment due to change in demand model’s param-
eter calibration process, so comparisons among problems may not be consistent. 
Of course, the problems where the only change is the total budget or k, the results 
are comparable.

Table 3   Parameter values used 
in numerical experiments

Parameter Value

k
{
10−5, 10−6, 10−7

}
w 0.05
cvD = cvY {0.5, 1, 2}

� {−0.9,−0.5, 0, 0.5, 0.9}

Fig. 2   Steps utilized for calibrating parameters of the demand model
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5.2.1 � Improvement in vaccination percentage

One of the reasonable measures to evaluate the performance of joint mechanism 
is vaccination percentage, which is the ratio of expected sales to population size 
under consideration. First, we analyze the vaccination percentage to be reached 
if joint mechanism is applied under that period’s budget amount of 158.992 mil-
lion. Table 4 reports the outcomes for varying values of k, coefficient variation of 
demand and availability, and � . The results demonstrate the importance of con-
sidering a joint mechanism that eliminates the inefficiencies emanating from both 
supply and demand sides. The numerical studies show that the vaccination rates of 
the 2009–2010 season is raised from 41.2% to a range between 42.46% and up to 
58.28% depending on the values of k, cvD , cvY , and � . The gap in the vaccinated 
percentage between the statistics of 2009–2010 season (41.2%) and the realized 
percentage under proposed strategy is quite high based on the fact that each per-
centage corresponds to approximately 2.9 million people. Also, we observe that the 
improvement in vaccination rates is greater for higher values of efficiency of avail-
ability improving strategy (k) as expected.

Besides, we compute and tabulate the vaccination rates for a representative set 
of budget values in Tables 11, 12 and 13 in “Appendix 3”. We observe that unless 
total budget is very tight, higher uncertainty in the system and negative correlation 
between demand and availability raise vaccination percentages even more with effi-
cient allocation of budget among intervention alternatives.1

Table 4   Vaccination 
percentages achieved by joint 
mechanism (%), as opposed to 
reported 41.2%

cv
D
= cv

Y
k �

− 0.5 0 0.5

0.5 10−5 44.99 44.06 42.99

10−6 44.69 43.84 42.86

10−7 43.79 43.18 42.46
1 10−5 49.91 47.56 44.99

10−6 48.90 46.81 44.50

10−7 46.11 44.71 43.15
2 10−5 58.28 53.46 48.28

10−6 56.18 51.93 47.32

10−7 50.55 47.79 44.76

1  Note that cases with different � ’s and coefficient of variation values are not comparable, as the calibra-
tion procedure utilized yields different parameter values. We can see the effect of calibration under very 
low budget values. However, the calibration procedure seems to work well under higher budget levels 
which are closer to real values used in practice. For instance, in the case where cv

D
= cv

Y
= 0.5 and 

budget is 30 million $, the vaccination percentage first increases when � rises from − 0.9 to − 0.5 and 
then starts to decrease with more increase in the value of � . On the other hand, vaccination percentage 
increases with � at higher budget values.
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5.2.2 � Budget savings with joint mechanism

We further analyze the value of the joint mechanism proposed in terms of total 
budget spent. Specifically, we determine the budget required to achieve the afore-
mentioned season’s vaccination percentage with the joint mechanism, and demon-
strate the savings in the required budget. In Table 5, we present percentage savings 
for varying values of k, cvD , cvY , and � . The budget savings ranges between 28.01 
and 89.81%. Clearly, applying joint mechanism substantially reduces the required 
budget to achieve the desired vaccination coverage, especially when uncertainty in 
the system is low. Also, the budget savings are reasonably high even the availabil-
ity improving strategy’s efficiency is tenfold lower. Based on the results depicted in 
Table 5, one can conclude that under higher uncertainty in the system, knowing the 
correlation would be very significant, of course, if it exists.

5.2.3 � What if imperfect availability is approximated by a deterministic function?

Although one can have estimates for the availability’s mean and variance, it may as 
well be hard to fit a distribution. Thus, while solving these types of decision prob-
lems there is a tendency to represent availability by its average value, i.e. in our case 
this corresponds to a deterministic function of By . Here, we examine the influence of 
an imperfect availability without uncertainty on the vaccination percentage.

To obtain the optimal investment amounts ( Bd
d
 and Bd

y
 ) for deterministic imperfect 

availability case, we solve the decision model together with parameter calibration 
structure by setting availability’s variance to zero. However, availability is uncertain 
in reality and this affects both the calibration and decision structures (see Tables 8 
for � values and 10 for updated � values for deterministic imperfect availability case 
in “Appendix 2”). Using the parameters reflecting availability variability, we evalu-
ate Q and expected sales for Bd

d
 and Bd

y
 in order to observe the effect of considering 

deterministic availability. A representative set of results for equal values of cvD and 
cvY , and k = 10−6 are provided in Table  6, where optimal vaccination percentage 

Table 5   Budget savings relative 
to current practice (%)

cv
D
= cv

Y
k �

− 0.5 0 0.5

0.5 10−5 87.90 89.10 89.81

10−6 82.45 83.84 84.71

10−7 65.47 67.28 68.55
1 10−5 64.89 60.67 51.31

10−6 58.44 54.26 45.12

10−7 40.03 36.16 28.06
2 10−5 65.82 61.29 51.37

10−6 59.36 54.86 45.14

10−7 40.90 36.67 28.01
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found by taking into account availability’s variability and realized percentage with 
deterministic availability are given in parentheses, respectively. Average loss in vac-
cination percentages is 0.05%, with the maximum being 0.12%. Comparing the two 
cases, one can observe that even if the central authority ignores availability uncer-
tainty, it might end up with a vaccination rate in the ballpark of optimal solution by 
solving calibration and decision problems successively.

5.2.4 � Which total budget is sufficient?

The effect of spending more is obviously going to result in more people being 
vaccinated. Given the structure of the objective function as well as the strategies 
considered, one may be interested in the effect of any additional budget on the out-
come. Table 7 summarizes $ spent per additional person vaccinated using an addi-
tional budget of $10 × 106 (i.e. if total budget is $160 × 106 , then we record $ spent 
per additional person vaccinated with the additional $10 × 106 budget used over 
$150 × 106 ) for different values of cvD , cvY , � , and k = 10−6.

Note that the results given above represent the additional budget spent to the cost 
of vaccine paid by the consumer. Comparing these numbers will be a good indi-
cation for the policy makers. At 150 million budget, the money spent per person 
ranges between $0.86 and $1.20 depending on cvD , cvY , and � . However, we see 
that the additional budget spent per person can be considerably high for some cases 
due to concave structure of demand and availability models. For the cases where the 
budget spent per additional person vaccinated is higher than $15, the policy maker 
may prefer to subsidize whole cost of vaccines instead of investing in demand and 
availability increasing strategies. Moreover, we can interpret whether the budget 
used in current practice is reasonable based on these results. If uncertainty in the 
system is high, the current budget used in practice seems to be reasonable and can 
be increased further; otherwise for low uncertainty case a much lower budget looks 
to be sufficient for investing in demand and availability increasing strategies.

Table 7   $ Spent per additional 
person vaccinated with the 
additional budget of $10 × 106

cv
D
, cv

Y
� Total Budget (×106)

160 170 180 190 200

0.5 − 0.5 24.49 25.95 27.39 28.83 30.26
0 34.45 36.54 38.61 40.68 42.73
0.5 57.47 61.03 64.58 68.12 71.64

1 − 0.5 5.43 5.70 5.98 6.24 6.51
0 6.75 7.11 7.45 7.80 8.13
0.5 8.99 9.47 9.95 10.42 10.88

2 − 0.5 2.73 2.85 2.97 3.08 3.19
0 3.47 3.63 3.79 3.94 4.10
0.5 4.76 4.99 5.22 5.45 5.67
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6 � Conclusion

We organize the conclusions following the two aspects emphasized in the study: (1) 
technical background and analysis of the results obtained by the case and (2) issues 
regarding the applicability of the proposed model.

Inspired from influenza vaccines, this study suggests a model to design interven-
tion mechanism for a public-interest good facing availability issues in order to achieve 
socially desirable consumption/usage level. In particular, we consider a system com-
posed of a manufacturer and a central planner that intervenes to the system through 
demand and availability increasing strategies. The goal of the intervention is to resolve 
the inefficiencies like insufficient demand and availability issues that are inherent to 
the system and motivate the channel to take socially more acceptable decisions. We 
develop and incorporate lognormal demand and availability models to our decision 
problem, general enough to be used in different contexts as well. For the detailed anal-
ysis of the model, we follow a pessimistic view and use demand and availability func-
tions with equal coefficient of variation values. Of course, the value of the mechanism 
will be more if the variances are also affected from the investments made.

The main contribution of this study is to emphasize and technically show that 
strategies only targeting one aspect of the problem are likely to fall short in an appli-
cation, emphasizing the importance of coordinating intervention strategies. We 
verify our results by implementing the proposed approach for the case in US influ-
enza vaccine market. Along with the numerical study, we show that the vaccination 
coverage in US can be increased considerably via the proposed joint mechanism by 
addressing both demand and availability issues in the system. Note that in addition 
to enhancing social welfare, proposed mechanism decreases total budget require-
ments for a desired level of vaccination. Note that the budget used for improving the 
vaccination percentages and availability are generally separate as they are funded by 
different organizations or resources. The budget we used in the numerical study is 
mainly to support and extend the reach of influenza vaccines. However, this study 
might provide an incentive to redesign the current fundings under an aggregate 
budget and to decide on the allocation of budget by a central planner.

We think the model has a considerable potential of applicability, if donor organi-
zations for such programs accept the lead of one central authority (for vaccine case 
implemented for the world scale, WHO seems to be the natural candidate) for use of 
the budget. Of course, each organization may propose limits of their donation used for 
different strategies. (Note that these limits will lead to additional constraints on various 
budgets; however do not create any difficulties in obtaining the solution. Nevertheless, 
the obtained optimal solution may not be as good as the unconstrained version similar 
to the one solved in this work, depending on the severity of the limitations imposed.)

A second possibly debatable issue would be the selection of the objective function. 
Note that this objective function should more-or-less reflect the targets of the donors, 
as well. In our case study, we considered the expected number of vaccines sold. Tech-
nically, the only requirement for the objective function is to have it a strictly concave 
function, which is not a difficulty. However, if one selects an increasing function (as 
we did in our Case study) the optimal value obtained should be reconsidered to make 
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sure that it is acceptable. For instance, if we had reached vaccination levels of 85% or 
higher in our results, additional considerations may have been inevitable to include in 
the model to prevent side effects of such high percentages.

Once the major organizational hurdle is removed and an objective function is set, 
the remaining issues for applicability is more technical. The distributions used in this 
work are fairly general and can accommodate a large spectrum of data structures. The 
model requires aggregate data, and hence it is important to be consistent while aggre-
gating the more detailed data and/or estimating data. The procedure we describe in 
Sect. 5.1 and “Appendix 2” is robust as it makes use of calibrations for those param-
eters which are not easy to estimate.

Note that some of the technical aspects mentioned in Sect. 3 allows the problem to be 
transformed to a standard non-linear program which can be solved by a standard pack-
age. Also additional properties shown in Sect. 4 and numerical results obtained suggest 
that certain details modeled are not necessarily important in every case (such as replacing 
imperfect yield distribution with its expected value and use it as a deterministic param-
eter). However, unless there is evidence on the contrary, we suggest to start with full 
detailed model and continue by removing some details when numerical results allow.

Finally, we suggest the central authority to consider relevant what-if type questions 
to be answered as well as any sensitivity type analyses to be carried out before deci-
sions are made and implemented. This would not be difficult as running non-linear pro-
grams is straightforward.
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Appendices

Appendix 1: Proofs and derivations

Analysis of lower level problem
We can rewrite the manufacturer’s profit and expected profit functions as follows:

E[min
{
Y(By)Q(Bd,By),D(Bd)

}
] is given by

P(Q,Bd,By) =(r − s)min
{
Y(By)Q(Bd,By),D(Bd)

}

− cQ(Bd,By) + sY(By)Q(Bd,By)

E[P(Q,Bd,By)] =(r − s)E[min
{
Y(By)Q(Bd,By),D(Bd)

}
]

− cQ(Bd,By) + sE[Y(By)]Q(Bd,By)

http://creativecommons.org/licenses/by/4.0/
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Note that f Bd (.) and gBy(.) are pdfs of demand and availability, respectively. The 
pdfs are dependent on the investment amounts allocated to improve demand and 
availability.

First derivative of expected sales is given by

Utilizing (22) one can write the first derivative of expected profit and equate it to 
zero, and derive the first order optimality condition as in (25).

Derivation of E[Y(By)1{D(Bd)≤Y(By)Q(Bd ,By)}]E[Y(By)1{D(Bd)≤Y(By)Q(Bd ,By)}]E[Y(By)1{D(Bd)≤Y(By)Q(Bd ,By)}]

Theorem  2.1 of Lien and Balakrishnan (2006) gives an explicit expression for 
moments of the form E[XmYnIXY (a, b,K)] , where (X,Y)T have bivariate lognormal 
distribution and IXY (a, b,K) is an indicator function which takes value of 1 when 
XaYb ≤ K and 0 otherwise. After applying this theorem to our case with X = Y  , 
Y = D , m = 1 , n = 0 , b = 1 , a = −1 , K = Q , �X = ln(HY (By)) − �2

Y
 , we obtain the 

form given in (12).

Proof of  Remark 3  Differentiating (13) with respect to By , and using the fact that 
HY (By) is increasing in By , we obtain the following:

(20)
∫

∞

0

{
∫

Y(By)Q(Bd ,By)

0

xf
Bd

D(Bd)|Y(By)
(x|y)dx

+∫
∞

Y(By)Q(Bd ,By)

Y(By)Q(Bd,By)f
Bd

D(Bd)|Y(By)
(x|y)dx

}
gBy(y)dy

(21)

�E
[
min

{
Y(By)Q(Bd,By),D(Bd)

}]
�Q(Bd,By)

= ∫
∞

0
∫

∞

Y(By)Q(Bd ,By)

{
f
Bd

D(Bd)|Y(By)
(x|y)dx

}
ygBy (y)dy

(22)= E
[
Y(By)1{D(Bd)>Y(By)Q(Bd ,By)}

]

(23)
𝜕E[P(Q,Bd,By)]

𝜕Q(Bd,By)
= (r − s)E

[
Y(By)1{D(Bd)>Y(By)Q(Bd ,By)}

]
+ sE[Y(By)] − c

(24)= rE[Y(By)] − (r − s)E
[
Y(By)1{D(Bd)≤Y(By)Q(Bd ,By)}

]
− c

(25)E
[
Y(By)1{D(Bd)≤Y(By)Q(Bd ,By)}

]
=

rE[Y(By)] − c

r − s
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For deriving the condition that will make 𝜕Q(Bd ,By)

𝜕By

> 0 , it suffices to find out when (
1

𝜙(Φ−1(
rHY (By)−c

(r−s)HY (By)
)

c

(r−s)HY (By)

√
𝜎2

Y
+ 𝜎2

D
− 2𝜌𝜎Y𝜎D − 1

)
> 0.

Note that HY (By) takes the value of at most 1 and �(.) takes the value of at most 
0.3989. Thus, when 

√
𝜎2

Y
+ 𝜎2

D
− 2𝜌𝜎Y𝜎D > 0.3989

(
r−s

c

)
 , the result follows.

Derivation of E[min
{
Y(By)Q(Bd,By),D(Bd)

}
]E[min

{
Y(By)Q(Bd,By),D(Bd)

}
]E[min

{
Y(By)Q(Bd,By),D(Bd)

}
]

As in the derivation of E[Y(By)1{D(Bd)≤Y(By)Q(Bd ,By)}] , we apply Theorem 2.1 of Lien 
and Balakrishnan (2006) in order to derive explicit expressions for the two terms 
found in the rhs of the equation given above.

E[D(Bd)1D(Bd)≤Y(By)Q(Bd ,By)
] is found by applying the theorem with the following 

values: X = D , Y = Y  , m = 1 , n = 0 , a = 1 , b = −1 , K = Q , �X = ln(HD(Bd)) − �2

D
.

E[Y(By)Q(Bd,By)1D(Bd)≥Y(By)Q(Bd ,By)
] is derived with the values of X = D , Y = Y  , 

m = 0 , n = 1 , a = 1 , b = −1 , K = Q , �X = ln(HD(Bd)) − �2

D
 . 	�  ◻

Proof of Proposition 1  The result follows from the facts that Q increases as Bd and By 
increase (by Equation (5)) and utility is an increasing concave function of Q. There-
fore, central authority will allocate all budget between Bd and By.

Derivation of E[min
{
E[Y(By)]Q(Bd,By),D(Bd)

}
]E[min

{
E[Y(By)]Q(Bd,By),D(Bd)

}
]E[min

{
E[Y(By)]Q(Bd,By),D(Bd)

}
]

�Q(Bd,By)

�By

= e

�
Φ−1

�
rHY (By)−c

(r−s)HY (By)

�√
�2

Y
+�2

D
−2��Y�D−ln(HY (By))+ln(HD(Bd))−�

2

Y
∕2−�2

D
∕2+��Y�D

�

×
HY (By)

�

HY (By)

⎛
⎜⎜⎜⎝

1

�(Φ−1

�
rHY (By)−c

(r−s)HY (By)

� c

(r − s)HY (By)

�
�2

Y
+ �2

D
− 2��Y�D − 1

⎞
⎟⎟⎟⎠

E
[
min

{
Y(By)Q(Bd,By),D(Bd)

}]
= E

[
D(Bd)1D(Bd)≤Y(By)Q(Bd ,By)

]

+ E
[
Y(By)Q(Bd,By)1D(Bd)≥Y(By)Q(Bd ,By)

]
.

(26)

E[min
{
E[Y(By)]Q(Bd,By),D(Bd)

}
] = �

E[Y(By)]Q(Bd ,By)

0

xf (x)dx

+ �
∞

E[Y(By)]Q(Bd ,By)

E[Y(By)]Q(Bd,By)f (x)dx

= E[D(Bd)1D(Bd)≤E[Y(By)]Q(Bd ,By)
]

+ E[Y(By)]Q(Bd,By)(1 − F(E[Y(By)]Q(Bd,By)))
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After setting values of applying X = D , Y = Y  , m = 1 , n = 0 , a = 1 , b = 0 , 
K = E[Y]Q , �X = ln(HD(Bd)) − �2

D
 in Theorem  2.1 of Lien and Balakrishnan 

(2006), we find the expression given below:

Then, substituting F(E[Y(By)]Q(Bd,By)) = Φ
(

ln(E[Y(By)]Q(Bd ,By))−ln(HD(Bd))+�
2

D

�D

)
 and 

(27) into (26), we obtain the expression given in (19). 	�  ◻

Proof of Proposition 2  Let T = ln(HY (By)Q(Bd,By)) − ln(HD(Bd)) , then the functions 
can be expressed as follows:

Note that the following conditions always hold:

Using the expressions (28) and (29), and conditions (30) and (31), we obtain the fol-
lowing relations between the functions:

(27)

E
[
D(Bd)1D(Bd)≤E[Y(By)]Q(Bd ,By)

]

= HD(Bd)Φ

(
ln(E[Y(By)]Q(Bd,By)) − ln(HD(Bd)) − �2

D

�D

)

(28)

E[min
�
Y(By)Q(Bd,By),D(Bd)

�
]

= HD(Bd)Φ

�
T − (�D − �Y )

2∕2 + (� − 1)�D�Y√
(�D − �Y )

2 + 2(1 − �)�D�Y

�

+ HY (By)QΦ

�
−T − (�D − �Y )

2∕2 + (� − 1)�D�Y√
(�D − �Y )

2 + 2(1 − �)�D�Y

�

(29)

E[min
{
E[Y(By)]Q(Bd,By),D(Bd)

}
]

= HD(Bd)Φ

(
T − �2

D
∕2

�D

)
+ HY (By)Q(Bd,By)Φ

(
−T − �2

D
∕2

�D

)

(30)
√

(𝜎D − 𝜎Y )
2 + 2(1 − 𝜌)𝜎D𝜎Y > 𝜎D if 𝜎Y > 2𝜌𝜎D

(31)(𝜎D − 𝜎Y )
2∕2 + (1 − 𝜌)𝜎D𝜎Y > 𝜎2

D
∕2 if 𝜎Y > 2𝜌𝜎D

(32)
E[min

{
E
[
Y(By)]Q(Bd,By),D(Bd)

}]

= E
[
min

{
Y(By)Q(Bd,By),D(Bd)

}]
if �Y = 2��D
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	�  ◻

Appendix 2: Details of the computations and calibration 
for the parameters of the demand model

Details of calibration for the parameters of the demand model

The calibration method is briefly described in Fig. 2. First two steps of the calibra-
tion are reiterated for each different pair of coefficient of variation of demand and 
availability, whereas last step is repeated for each coefficient of variation value of 
demand and availability, as well as � . Firstly, following the value of population size 
used in Arifoğlu et al. (2012)’s numerical study, i.e. N = 100 , we assume that 0.99 
percentile in demand distribution corresponds to 100 vaccines, and obtain mean 
demand before investment, HD(Bd = 0) or � . Then, we rescale � along with the 
assumption that total population size of 299.272 million corresponds to 100 people. 
Lastly, we obtain � by setting expected sales to that aforementioned season’s vac-
cination level. Note that last step is solved under the observation that all budget is 
invested in demand increasing strategies.

Calibrated values for the parameters of the demand model

See Tables 8, 9 and 10.

(33)
E
[
min

{
E[Y(By)]Q(Bd,By),D(Bd)

}]

> E
[
min

{
Y(By)Q(Bd,By),D(Bd)

}]
if 𝜎Y > 2𝜌𝜎D

(34)
E
[
min

{
E[Y(By)]Q(Bd,By),D(Bd)

}]

< E
[
min

{
Y(By)Q(Bd,By),D(Bd)

}]
if 𝜎Y < 2𝜌𝜎D

Table 8   �
(cv

D
, cv

Y
) �(×103)

(0.5, 0.5) 111,497.6
(1, 1) 61,014.7
(2, 2) 34,980.2

Table 9   �
cv

D
= cv

Y
�

− 0.9 − 0.5 0 0.5 0.9

0.5 0.13 0.12 0.11 0.09 0.06
1 0.24 0.23 0.21 0.19 0.17
2 0.36 0.33 0.29 0.25 0.22
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Details of the computations

We solve the model given in Sect. 3.2 by replacing (5) with (13) using the non-
linear solver CONOPT within the GAMS environment. We also tested the model 
with different nonlinear solvers in GAMS environment that can solve logarith-
mic functions, like KNITRO. However, we observe that CONOPT produces 
more reliable results. The problems are solved very fast like within approxi-
mately 0.003 seconds. We also verify whether the solution obtained is optimal 
by enumerating the problem presented in Sect. 4.2.

Appendix 3: Numerical results

See Tables 11, 12, 13.

Table 10   � when yield is 
assumed to be deterministic

cv
D

�

0.5 0.08
1 0.19
2 0.25

Table 11   Vaccination percentages when cv
D
= cv

Y
= 0.5 (%)

� k Budget ( $ × 106)

30 50 100 150 200 250 300 350

− 0.9 10−5 41.94 43.02 44.58 45.55 46.27 46.84 47.33 47.74

10−6 41.23 42.44 44.14 45.18 45.94 46.54 47.04 47.47

10−7 39.38 40.82 42.84 44.05 44.93 45.61 46.17 46.66
− 0.5 10−5 41.94 42.82 44.09 44.88 45.46 45.92 46.30 46.64

10−6 41.34 42.34 43.73 44.57 45.18 45.67 46.07 46.42

10−7 39.77 40.98 42.65 43.64 44.35 44.91 45.36 45.75
0 10−5 41.86 42.50 43.41 43.97 44.38 44.71 44.98 45.21

10−6 41.42 42.15 43.15 43.75 44.19 44.53 44.81 45.06

10−7 40.23 41.13 42.36 43.07 43.58 43.98 44.30 44.58
0.5 10−5 41.66 42.06 42.61 42.95 43.19 43.38 43.54 43.68

10−6 41.39 41.84 42.45 42.81 43.07 43.27 43.44 43.59
10−7 40.64 41.20 41.96 42.40 42.70 42.94 43.13 43.30

0.9 10−5 39.38 40.82 42.84 44.05 44.93 45.61 46.17 46.66

10−6 41.16 41.36 41.63 41.79 41.90 41.99 42.06 42.13

10−7 40.87 41.11 41.44 41.63 41.76 41.86 41.94 42.01
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Table 12   Vaccination percentages when cv
D
= cv

Y
= 1 (%)

� k Budget ( $ × 106)

30 50 100 150 200 250 300 350

− 0.9 10−5 36.81 40.77 46.96 51.07 54.24 56.85 59.08 61.05

10−6 35.01 39.18 45.61 49.85 53.10 55.77 58.06 60.06

10−7 31.17 35.34 42.03 46.48 49.90 52.71 55.10 57.20
− 0.5 10−5 36.89 40.39 45.80 49.37 52.10 54.35 56.26 57.95

10−6 35.34 39.03 44.66 48.35 51.16 53.45 55.42 57.13

10−7 32.01 35.74 41.63 45.52 48.49 50.91 52.97 54.77
0 10−5 36.96 39.84 44.25 47.13 49.32 51.11 52.64 53.97

10−6 35.74 38.79 43.39 46.36 48.61 50.45 52.01 53.37

10−7 33.15 36.25 41.09 44.24 46.62 48.55 50.20 51.63
0.5 10−5 36.89 39.12 42.49 44.67 46.31 47.65 48.78 49.77

10−6 36.07 38.42 41.92 44.16 45.85 47.22 48.38 49.39
10−7 34.39 36.77 40.43 42.80 44.58 46.01 47.23 48.28

0.9 10−5 36.57 38.21 40.66 42.22 43.40 44.35 45.15 45.85

10−6 36.19 37.88 40.39 41.99 43.18 44.15 44.96 45.67

10−7 35.61 37.25 39.77 41.41 42.63 43.63 44.46 45.19

Table 13   Vaccination percentages when cv
D
= cv

Y
= 2 (%)

� k Budget ( $ × 106)

30 50 100 150 200 250 300 350

− 0.9 10−5 34.02 40.93 52.52 60.72 67.30 72.88 77.78 82.17

10−6 31.04 38.06 49.83 58.16 64.82 70.46 75.42 79.85

10−7 25.14 31.59 43.02 51.32 58.03 63.74 68.75 73.25
− 0.5 10−5 33.99 40.10 50.17 57.19 62.76 67.45 71.54 75.19

10−6 31.40 37.66 47.94 55.08 60.74 65.49 69.64 73.33

10−7 26.22 32.09 42.22 49.43 55.18 60.02 64.25 68.03
0 10−5 33.88 38.93 47.06 52.61 56.95 60.58 63.72 66.50

10−6 31.84 37.05 45.39 51.06 55.49 59.18 62.36 65.19

10−7 27.75 32.75 41.11 46.90 51.45 55.24 58.52 61.43
0.5 10−5 33.62 37.49 43.58 47.66 50.81 53.41 55.65 57.62

10−6 32.24 36.25 42.52 46.69 49.90 52.55 54.82 56.83
10−7 29.58 33.48 39.82 44.11 47.42 50.16 52.50 54.57

0.9 10−5 33.00 35.79 40.10 42.93 45.10 46.88 48.40 49.73

10−6 32.39 35.24 39.63 42.52 44.71 46.51 48.05 49.39

10−7 31.53 34.24 38.59 41.50 43.73 45.56 47.12 48.49
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