
Computers and Operations Research 106 (2019) 76–90

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

An exact algorithm for the minimum squared load assignment

problem

Özlem Karsu

a , ∗, Meral Azizoglu

b

a Department of Industrial Engineering, Bilkent University, Ankara 06800, Turkey
b Department of Industrial Engineering, Middle East Technical University, Ankara 06800, Turkey

a r t i c l e i n f o

Article history:

Received 12 May 2018

Revised 21 February 2019

Accepted 22 February 2019

Available online 26 February 2019

Keywords:

Assignment problem

Squared load

Branch

Bound

a b s t r a c t

In this study, we consider an assignment problem with the objective to minimize the sum of squared

loads over all agents. We provide mixed integer nonlinear and linear programming formulations of the

problem and present a branch and bound algorithm for their solution. The results of our computational

experiment have shown the satisfactory behavior of our branch and bound algorithm.

© 2019 Elsevier Ltd. All rights reserved.

o

l

f

n

T

n

t

s

f

s

a

o

v

f

i

a

b

o
1. Introduction

Assignment problems are relevant to many practical applica-

tions; hence a large body of the operational research literature

has been devoted to finding efficient solution algorithms for these

problems.

The classical assignment problem (AP) assigns n tasks to m

agents, where each task is to be performed by one agent and each

agent has to perform one task. The aim is to minimize the total

assignment cost (time). Several versions of this classical AP model

have been studied, including but not limited to the k -cardinality

assignment, the bottleneck assignment (BAP), the balanced as-

signment, the minimum deviation assignment, the lexicographic

bottleneck, the semi-assignment, and the categorized assignment

models (see Pentico, 2007 , and the related references therein).

The classical AP assumes that a single task will be assigned to

an agent, however, in many practical situations an agent can per-

form multiple tasks as long as its capacity permits. The resulting

problem is referred to as generalized assignment problem and a

survey by Cattrysse and Van Wassenhove (1992) discusses a vari-

ety of its applications. If the agent capacities are determined with

respect to multiple resources the problem becomes a multiple re-

source generalized assignment problem (Karsu and Azizo ̆glu, 2012,

2014).
∗ Corresponding author.

E-mail address: ozlemkarsu@bilkent.edu.tr (Ö. Karsu).

m

a

a

B

p

r

https://doi.org/10.1016/j.cor.2019.02.011

0305-0548/© 2019 Elsevier Ltd. All rights reserved.
When the objective is minimizing the maximum cost (instead

f minimizing the total cost), the generalized assignment prob-

em and multiple resource generalized assignment problem are re-

erred to as bottleneck generalized assignment problem and bottle-

eck multiresource generalized assignment problem, respectively.

here are two versions of these bottleneck models: task bottle-

eck and agent bottleneck, in which the maximum cost over all

asks and the maximum cost over all agents are minimized, re-

pectively (Mazzola and Neebe, 1988; Karsu and Azizo ̆glu, 2012). A

urther variation of the BAP is the imbalanced time minimizing as-

ignment problem, where n tasks are to be assigned to m (m < n)

gents, and some agents will be assigned more than one task. The

bjective is minimizing the time by which all tasks are completed.

The quadratic assignment problem (QAP), is another important

ariant of the AP that uses a quadratic objective function of the

ollowing form (Lawler, 1963):

n ∑

, j=1

n ∑

k,p=1

c i jkp x ik x jp

Many real life problems such as facilities location, parallel

nd distributed computing, and combinatorial data analysis can

e modeled as QAPs. Loiola et al. (2007) state that the QAP is

ne of the hardest NP-hard problems. Integer linear program-

ing, mixed integer linear programming, permutation-based, trace

nd graph formulations of the QAP have been developed and ex-

ct solution methods such as branch and bound, branch and cut,

ender’s decomposition, and dynamic programming have been

roposed (Loiola et al., 2007; Burkard, 2013; Drezner, 2015). A

elaxed version of the QAP is the quadratic semi-assignment

https://doi.org/10.1016/j.cor.2019.02.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2019.02.011&domain=pdf
mailto:ozlemkarsu@bilkent.edu.tr
https://doi.org/10.1016/j.cor.2019.02.011

Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90 77

p

c

b

t

l

a

t

t

n

m

b

i

l

t

(

a

c

b

a

a

S

s

t

i

h

n

2

a

p

t

e

l

a

(

c

c

i

e

a

S

c

s

t

T

a

i

e

t

3

i

s

t

s

t

l

a

l

T

d

f

c

p

M

a

a

l

p

S

c

p

g

g

2

s

f

a

x

a

f

2

s

M
s

∑

∑

x

o

i

t

s

2

g

y

y{
roblem (QSAP), in which n objects (tasks) are assigned to m lo-

ations (agents) so as to minimize the overall distance covered

y the flow of materials among different objects. Unlike the QAP,

he number of objects is not necessarily equal to the number of

ocations, i.e., the assignment constraints are replaced by semi-

ssignment constraints (Pitsoulis, 2009). The QSAP also appears in

ask allocation to processors so that an overall cost, that includes

he assignment cost, the processor usage cost and the commu-

ication cost between the tasks of different processors, is mini-

ized. The QSAP is introduced by Greenberg (1969) and shown to

e strongly NP-hard by Sahni and Gonzalez (1976) . Several studies

n the literature have considered the QSAP and the related task al-

ocation problems. The suggested solution approaches include in-

eger programming and column generation methods (Ernst et al.,

2006)), and mathematical programming and branch-and-bound

lgorithms (Billionnet et al., 1992; Magirou and Milis, 1989; Sin-

lair, 1987; Stone, 1977). Milis and Magirou (1995) define lower

ounds for the QAP using the task allocation problem. Malucelli

nd Pretolani (1995) develop a class of lower bounds for the QSAP

nd Malucelli (1996) defines some polynomially solvable cases.

aito et al. (2009) discuss the theoretical aspects of the quadratic

emi-assignment polytope. Drwal (2014) studies a special case of

he QSAP, which assigns n tasks to m server machines while min-

mizing the sum of worst-case processing times. Several meta-

euristic algorithms are proposed for the QSAP (Wang and Pun-

en, 2017) and for some of its special cases (Punnen and Wang,

016).

In this paper, we consider an assignment problem with n tasks

nd m agents, where each task is assigned to one agent. Agents can

erform multiple tasks; however there is a concern for distributing

he total load (cost) over all agents in a balanced way.

To achieve this, we suggest a fairness-encouraging (or equity-

ncouraging) objective function: minimizing the sum of squared

oads of all agents. This objective helps achieving a bal-

nced distribution without sacrificing much from the total load

cost).

Ensuring a balanced (fair) workload allocation is an important

oncern in task assignment problems, hence various ways of in-

orporating fairness into assignment decisions have been discussed

n a number of papers (see Karsu and Morton, 2015 and the ref-

rences therein). One of the methods used to ensure a balanced

llocation of a good (bad) is maximizing (minimizing) a specific

chur-concave (Schur-convex) function that aggregates the out-

omes (Karsu and Morton, 2015). The sum of squared loads is

uch a Schur-convex function and we minimize it en route to dis-

ributing the workload equitably in a task assignment problem.

he function is a symmetric function, hence encourages fairness

nd is in line with the Pigou-Dalton principle of transfers. Us-

ng a symmetric function of the load vector is important since it

nsures that the agents are identical. That is, in a setting with

wo agents, two solutions with load distributions (3, 6) and (6,

) will have the same total squared load value (9 + 36 = 45). It

s also in line with the Pigou Dalton principle of transfers, which

tates that transferring some load from a relatively worse-off agent

o a relatively better-off one should result in a more desirable

olution. Consider two load allocations (3,6) and (4,5). The to-

al load is the same in both allocations (i.e. they have the same

evel of efficiency). However the second allocation is more fair,

s it can be obtained from the first one by transferring 1 unit of

oad from a busy agent (agent 2) to a less busy one (agent 1).

his is reflected in the sum of squared loads values of the two

istributions: 45 versus 41. One could also use other Schur-convex

unction forms, but the sum of squares functions (and in general

onvex functions of the form

∑

i

y α
i

: α ≥ 1) are considered appro-

riate for ensuring fairness in many applications (see for example
artin et al. (2013) for scheduling and Lulli and Odoni (2007) for

ir traffic flow management applications).

To the best of our knowledge, this article is the first reported

ttempt for solving the minimum squared load assignment prob-

em.

The rest of the article is organized as follows: We define the

roblem and give the associated mathematical models in Section 2 .

ection 3 presents the branch and bound algorithm. Section 4 dis-

usses the results of our computational experiment to test the

erformance of the mathematical model and branch and bound al-

orithm. In Section 5 , we give some concluding remarks and sug-

estions for future work.

. Problem definition

We consider n tasks to be assigned to m agents. We define a

ingle parameter p ij to denote the time required by task j if per-

ormed by agent i. We assume that p ij values are integers. We use

 binary variable x ij to explain our assignment decisions where

 ij =

{
1 if task j is assigned to agent i

0 otherwise

}
Our objective is to minimize the sum of squared loads over all

gents.

In this section we give the nonlinear and linear programming

ormulations of the sum of squared loads problem.

.1. The sum of squared loads problem-non-linear model

The nonlinear programming formulation of our problem is as

tated below.

The sum of squared loads problem—non linear model (SSL-NL)

in ZSQ

 . t .
n ∑

j=1

x i j ≥ 1 ∀ i = 1 , ..., m

(1)

m

i =1

x i j = 1 ∀ j = 1 , ..., n (2)

m

i =1

(

n ∑

j=1

p i j x i j

) 2

= ZSQ (3)

 i j = 0 or 1 ∀ i = 1 , ..., m, ∀ j = 1 , ..., n (4)

The objective function is to minimize the total squared load

ver all agents. Constraint set (1) ensures that at least one task

s assigned to each agent and constraint set (2) ensures that each

ask is assigned to one agent. Constraint set (3) defines the total

quared load.

.2. The sum of squared loads problem-linear model

The sum of squared loads model is a non-linear integer pro-

ram.

We linearize the model by introducing a continuous variable

 ijk , which is defined below:

 i jk =

1 if tasks j and k are both assigned to agent i, i . e ., x ik = x ij = 1

0 otherwise

}

78 Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90

3

o

b

a

M

s

∑

∑

x

m

m

l

o

(

e

H

L

b

T

P

t

b

s

a

M

s

u

u

v

t

o

p

n

T

Using the new decision variable, our objective function ZSQ can

be rewritten in linear terms, as follows:

ZSQ =

m ∑

i =1

(

n ∑

j=1

p i j x i j

) 2

=

m ∑

i =1

n ∑

j=1

n ∑

k> j

2 p i j p ik x i j x ik +

m ∑

i =1

n ∑

j=1

p i j
2 x i j

=

m ∑

i =1

n ∑

j=1

n ∑

k> j

2 p i j p ik y i jk +

m ∑

i =1

n ∑

j=1

p i j
2 x i j

We now state the linear form of our model that uses the linear

form of ZSQ.

The sum of squared loads problem-linear model (SSL-L)

Min ZSQ

s . t .

n ∑

j=1

x i j ≥ 1 ∀ i = 1 , ..., m (5)

m ∑

i =1

x i j = 1 ∀ j = 1 , ..., n (6)

m ∑

i =1

n ∑

j=1

n ∑

k> j

2 p i j p ik y i jk +

m ∑

i =1

n ∑

j=1

p 2 i j x i j = ZSQ (7)

y i jk ≥ x i j + x ik − 1 ∀ i = 1 , ..., m ∀ j = 1 , ..., n ∀ k > j (8)

y i jk ≥ 0 ∀ i = 1 , ..., m ∀ j = 1 , ..., n ∀ k > j (9)

x i j = 0 or 1 ∀ i = 1 , ..., m, ∀ j = 1 , ..., n (10)

The objective function is to minimize the total squared load

over all agents. Constraint set (5) ensures that at least one task

is assigned to each agent and constraint set (6) ensures that each

task is assigned to one agent. Constraint set (7) defines the total

squared load. Constraint sets (8) and (9) support the definition of

y ijk variables. The assignment restrictions are given by constraint

set (10).

We let ZSQ

∗ be the optimal objective function value of the

above model and Z tot (P) be the total load value,
m ∑

i =1

n ∑

j=1

p i j x i j value

of its optimal solution.

3. Branch and bound algorithm

In this section, we present a branch and bound (B&B) algorithm

that finds an optimal solution to the minimum total squared load

over all agents problem (whose nonlinear and linear models (SSL-

NL and SSL-L) are presented in Section 2).

At each level of the B&B tree we select a task. At level r, we

consider task r and generate m nodes: each representing the as-

signment of task r to one of the m agents. Fig. 1 illustrates our

branching scheme.

A partial solution to the problem, i.e., a node of the B&B tree,

gives a set of assigned tasks (S) together with their agents.

For each node, we calculate a lower bound (a set of lower

bounds discussed below are considered in a hierarchical way) and

eliminate the node if the lower bound is no smaller than the upper

bound. If all nodes are eliminated at any level then we backtrack

to the previous level. Among the non-eliminated nodes we select

the one having the smallest lower bound value for generating new

branches. We terminate whenever we reach the root node.
.1. Lower bounds

In this section, we discuss our procedures to find lower bounds

n the minimum total squared load value. Our lower bounds are

ased on the solutions of the following minimum total cost (load)

ssignment model.

The sum of loads problem-linear model

in Z tot =

m ∑

i =1

n ∑

j=1

p ij x ij

 . t .

n

j=1

x i j ≥ 1 ∀ i = 1 , ..., m (11)

m

i =1

x i j = 1 ∀ j = 1 , ..., n (12)

 i j = 0 or 1 ∀ i = 1 , ..., m, ∀ j = 1 , ..., n (13)

We let Z tot
∗ be the optimal objective function value of the above

odel. The model is a classical minimum cost network flow for-

ulation for which total unimodularity property holds. This fol-

ows that if all p ij values are integer, once the integrality constraints

n the x ij values are relaxed, the optimal x ij values are either 0 or 1

we refer the reader to Ahuja et al. (1993) , for network flow mod-

ls and in-depth treatment of the total unimodularity property).

ence the optimal solution can be found in polynomial time using

P software.

Through the following theorem we show that Z tot
∗ is a lower

ound on the total load of our problem.

heorem 1. Z tot
∗ ≤ Z tot (P)

roof. : Z tot
∗ is a lower bound on the total load of all problems

hat include constraint sets (1), (2) and (4). Hence Z tot
∗ is a lower

ound on the total load of our problem that minimizes the total

quared load. #

Consider the following dual model of the minimum total load

ssignment problem.

The dual model for the sum of loads problem-linear model

ax Z tot =

m ∑

i =1

u i +

n ∑

j=1

v j

 . t .

 i + v j ≤ p i j ∀ i = 1 , ..., m, ∀ j = 1 , ..., n (14)

 i ≥ 0 ∀ i = 1 , ..., m (15)

 j unrestricted in sign ∀ j = 1 , ..., n (16)

We denote the optimal dual solution as (u ∗
i
, v ∗

j
) . Z tot

∗ is the op-

imal objective function value, i.e., Z ∗tot =

m ∑

i =1

u ∗
i
+

n ∑

j=1

v ∗
j
. To find Z tot

∗

ne may solve the dual program.

We now discuss the extension of the total load problem to any

artial solution (node) S, where Set A is the set of agents having

o task assignment and Set B is the set of not-yet-assigned tasks.

he resulting model is as stated below:

Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90 79

Fig. 1. The branching scheme.

M

s

∑

∑

x

a

l

t

M

s

u

u

v

t

b

v

t

T

P

i

e

≤

l

Table 1

Data of the example problem, total load minimizing solution and optimal values of

the dual variables.

Agent/Task 1 2 3 4 5 6 7 8 9 10 u ∗
i

1 18 13 13 12 16 18 16 13 10 10 2

2 10 18 15 10 12 17 15 11 7 7 0

3 7 8 12 11 15 15 14 14 8 19 0

v ∗
j

7 8 11 10 12 15 14 11 7 7 104

Table 2

Data of the reduced problem, total load minimizing solution and optimal

values of the dual variables.

Agent/Task 3 4 5 6 7 8 9 10 u ∗
i
(S)

1 13 12 16 18 16 13 10 10 –

2 15 10 12 17 15 11 7 7 –

3 12 11 15 15 14 14 8 19 0

v ∗
j
(S) 12 10 12 15 14 11 7 7

i

#

l

f

t

s

o

Z

Z

l

a

i

i

A

h

The sum of loads problem for partial solution S -linear model

in Z tot (S) =

m ∑

i =1

∑

j∈ B
p ij x ij

 . t .

j∈ B
x i j ≥ 1 i ∈ A (17)

m

i =1

x i j = 1 j ∈ B (18)

 i j = 0 or 1 ∀ i = 1 , ..., m, j ∈ B (19)

We let Z tot
∗(S) be the optimal objective function value of the

bove model.

Now consider the following dual model of the assignment prob-

em for node S .

The dual model for the sum of loads problem for partial solu-

ion S

ax Z tot (S) =

∑

i ∈ A
u i +

∑

j∈ B
v j

 . t .

 i + v j ≤ p i j i ∈ A , j ∈ B (20)

 i ≥ 0 i ∈ A (21)

 j unrestricted in sign j ∈ B (22)

We denote the optimal dual solution as (u ∗
i
(S) , v ∗

j
(S)) . The op-

imal objective function value is Z ∗tot (S) =

∑

i ∈ A
u ∗

i
(S)+

∑

j∈ B
v ∗

j
(S)

Through the following theorem we show that one may also

enefit from the optimal dual values at the root node, i.e., (u ∗
i
, v ∗

j
)

alues, while finding lower bounds on the total load value at par-

ial solution S .

heorem 2.
∑

i ∈ A
u ∗

i
(S)+

∑

j∈ B
v ∗

j
(S) ≥ ∑

i ∈ A
u ∗

i
+

∑

j∈ B
v ∗

j

roof. : An optimal solution at the root node, i.e., (u ∗
i
, v ∗

j
) values,

s feasible for the dual problem solved at node S . The feasibility is

nsured as: u ∗
i

+ v ∗
j
≤ p i j ∀ i , ∀ j at the root node, therefore u i

∗ + v j
∗

p ij i ∈ A j ∈ B for any subsets of agents (A) and tasks (B).

Note that the objective function value of any feasible so-

ution provides a lower bound on the optimal solution value
∑

 ∈ A
u ∗

i
(S)+

∑

j∈ B
v ∗

j
(S) as the dual objective is of maximization type.

Theorem 2 follows that the optimal dual variables at a particu-

ar node may be used to find lower bounds for all nodes emanating

rom that node.

We illustrate the lower bounds on the total load values through

he following 10-task and 3-agent assignment problem instance.

The optimal solution of the minimum total load problem as-

igns Task 3 to Agent 1, Tasks 4, 5, 8, 9, and 10 to Agent 2 and all

ther tasks to Agent 3. The objective function value of the solution,

∗
tot =

m ∑

i =1

n ∑

j=1

p i j x i j = 104 .

Table 1 includes the optimal values of the dual variables.

∗
tot =

m ∑

i =1

u

∗
i +

n ∑

j=1

v ∗j = 2 + 0 + 0 + 7 + 8 + 11 + 10 + 12

+15 + 14 + 11 + 7 + 7 = 104

The optimal solution of the minimum total squared load prob-

em assigns Tasks 3 and 7 to Agent 1, Tasks 4, 5, 8, 10 to Agent 2

nd all other tasks to Agent 3.

The objective function value of this solution is ZSQ =
m ∑

 =1

(
n ∑

j=1

p i j x i j)
2

= 3885 and the resulting total load Z ∗tot (P) =
m ∑

 =1

n ∑

j=1

p i j x i j = 107 . Note that Z tot
∗ = 104 ≤ Z tot (P) = 107.

Now consider a partial schedule S where Task 1 is assigned to

gent 2 and Task 2 is assigned to Agent 1. The reduced problem

as 8 tasks and 3 agents as seen in Table 2 .

80 Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90

w

a

b

m

s

v

c

W

L

L

L

L

c

i

l

m

T

t

P

s

m

m

o

l

l

L

r

d

P

P

C

e

L

m

s

C

t

t

i

i
The optimal solution of the minimum total load problem as-

signs Tasks 4, 5, 8, 9, 10 to Agent 2 and all other tasks to Agent 3.

The optimal dual solution at that node is also given in Table 2 .

The objective function value of the solution, Z tot
∗ (S) = 88. The

total load of the already-fixed assignments (Task 1 to Agent 2 and

Task 2 to Agent 1) is 13 + 10 = 23. Hence a lower bound on the

total load is 18 + 13 + 88 = 111.

Using the dual solution at node S , a lower bound on the total

load of the remaining tasks is ∑

i ∈ A
u

∗
i
(S)+

∑

j∈ B
v ∗j (S) = 1 + 0 + 12 + 10 + 12 + 15

+14 + 11 + 7 + 7 = 88 .

Hence a lower bound on the total load of the partial schedule

with assigned tasks 1 and 2 is 13 + 10 + 88 = 111.

The lower bound found by using the dual variables of the root

node is ∑

i ∈ A
u

∗
i
+

∑

j∈ B
v ∗j = 0 + 11 + 10 + 12 + 15 + 14 + 11 + 7 + 7 = 87 .

Note that
∑

i ∈ A
u

∗
i
+

∑

j∈ B
v ∗j = 87 ≤ 88 =

∑

i ∈ A
u

∗
i
(S) +

∑

j∈ B
v ∗j (S)

One may solve the assignment problem at any node and bene-

fit from the dual variables to eliminate the nonpromising descen-

dant nodes without solving the corresponding dual problem (see

Rinnooy Kan et al., 1975 , for the minimum total cost single ma-

chine scheduling problem). An alternative option is to solve the as-

signment problem only at the root node and use the dual variables

of the root node solution to find lower bounds at all other nodes

(see Azizoglu and Kirca, 1999 , for the minimum total cost unre-

lated parallel machine scheduling problem). In this study, we use a

different approach by solving the assignment problem at some de-

fined levels and use the dual variables for a number of descendant

levels.

Finding lower bounds on the optimal total squared load value

We let LB ZTOT be any valid lower bound on the total load. One

valid lower bound on the total load value is the minimum possible

total load value, i.e., objective function value of the minimum total

load problem. Theorem 3 below defines a lower bound on the total

squared load that is based on the equal distribution of LB ZTOT to the

agents.

Theorem 3. LB ZTOT
2 /m is a valid lower bound on the optimal total

squared load value.

Proof. : An optimal distribution of LB ZTOT over all agents gives a

lower bound on the optimal total squared load value as LB ZTOT is a

lower bound on the total load of any feasible solution.

We now show that en route to minimizing total squared load,

LB ZTOT is evenly distributed among the agents, i.e., the load of each

agent is LB ZTOT /m .

When the load is evenly distributed among the agents, the total

squared load of any agent is (LB ZTOT /m) 2 . Now assume e units of

load are removed from one agent and put over the load of another

agent.

Such a move will change the objective function value by

(LB ZTOT /m − e)
2 + (LB ZTOT /m + e)

2 − 2 ∗ (LB ZTOT /m)
2

= (LB ZTOT /m)
2 − 2 eL B ZTOT /m + e 2 + (LB ZTOT /m)

2

+ 2 eL B ZTOT /m + e 2 − 2 ∗ (LB ZTOT /m)
2

= 2 e 2 > 0 as e > 0 .

Note that any movement towards an uneven distribution of

the load will increase the total squared load value. Hence the to-

tal squared load over all agents, i.e., m (LB ZTOT /m) 2 = LB ZTOT
2 /m is a

lower bound on the optimal total squared load value. #
We now discuss the extension of LB ZTOT to a partial schedule S

here the load of agent i is L i (S) (L i (S) is the load due to the

lready-fixed assignments of the partial solution). We let LB ZTOT (S)

e a valid lower bound on the total load of the remaining assign-

ents for node S. LB ZTOT (S) may be found either using the optimal

olution of the total load problem at node S or the optimal dual

ariables of the total load problem found at any parent node (Re-

all Theorem 2).

We define two lower bounds on the optimal squared load value.

e use the following notation in bound calculations:

 TOT (S) = the realized total load over all agents at node S

 T OT (S) =

(

m ∑

i =1

L i (S)

)

 MAX (S) = the realized maximum load over all agents at node S

 MAX (S) = Ma x i L i (S)

Average load based bounds: These lower bounds aggregate the

urrent loads of the agents, hence use total load L TOT (S) while mak-

ng the distribution.

Theorem 4 below defines a lower bound on the total squared

oad using aggregate realized load and a lower bound on the re-

aining total load.

heorem 4. (L TOT (S) + LB ZTOT (S))
2 / m is a valid lower bound on the

otal squared load of node S .

roof. : Using the result of Theorem 3 , a lower bound on the total

quared load, can be stated as follows.

 ((L T OT (S) + L B ZT OT (S)) /m)
2 = (L T OT (S) + L B ZT OT (S)) 2 /m. #

Note that one can calculate LB ZTOT (S) by solving the (reduced)

inimum total load problem at node S or using the dual variables

f one its parent nodes based on Theorem 2 . We call the average

oad based bound that uses the LB ZTOT (S) from the minimum total

oad problem LB1 and the average load based bound that calculates

B ZTOT (S) using the dual variables LB2.

Fill up strategy based bounds: These lower bounds use the cur-

ent load of each agent, i.e., individual L i values, while making the

istribution.

The remaining load LB ZTOT (S) is distributed to the agents using

rocedure 1 .

rocedure 1. Two cases arise:

ase 1. mL MAX (S) − L TOT (S) ≤ LB ZTOT (S)

LB ZTOT (S) − (mL MAX (S) − L TOT (S)) units of load are distributed

venly over L MAX (S)

The resulting load is

 B ZT OT (S) − (m L MAX (S) − L T OT (S)) + m L MAX (S)

= L B ZT OT (S) + L T OT (S)

Hence a lower bound on the optimal squared load is

 ((LB ZTOT (S) + L TOT (S))/ m) 2 = (LB ZTOT (S) + L TOT (S))
2 / m

Note that in this case the fill up strategy based bound is the

ame as the average load based bound.

ase 2. mL MAX (S) − L TOT (S) > LB ZTOT (S)

In this case we distribute LB ZTOT (S)to the agents starting from

he one having the minimum load, i.e., L i value. The agent with

he minimum load is loaded till its load reaches the second min-

mum L i value. We then update the remaining load and distribute

t evenly between two agents till their loads approach to the

Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90 81

t

d

e

a

T

m

P

a

t

a

C

p

C

t

b

w

1

r

s

c

p

n

b

p

L

s

T

i

T

P

o

a

u

f

s

L

C

P

(

6

t

l

Fig. 2. Initial load allocation in the example problem.

Fig. 3. Load allocation in the example problem - agent 1 filled first.

L

A

A

R

3

3

N

A

i

t

i

t

f

l

m

s

hird minimum load. We again update the remaining load and

istribute it evenly among three agents till their loads become

qual the fourth minimum load. We continue in this manner till

ll LB ZTOT (S)units of load are distributed.

We let LL i (S) be load of agent i returned by Procedure 1 .

heorem 5. Procedure 1 returns a valid lower bound on the opti-

al total squared load value for node S .

roof. : Procedure 1 distributes LB ZTOT (S) such that the load of any

gent cannot be moved to any other agent without increasing the

otal squared load.

Let LL i (S) be load of agent i returned by Procedure 1 . Two cases

rise for the movement of load from agent i to another agent j

ase 1. LL i (S) > LL j (S)

In this case LL i (S) = L i (S) and any movement from agent i is not

ossible.

ase 2. LL i (S) ≤ LL j (S)

Assume e units of load are removed from agent i and assigned

o agent j . Such a move will change the objective function value

y

(LL i (S) − e)
2 +

(
LL j (S) + e

)2 − LL i (S)
2 − LL j (S)

2

= LL i (S)
2 − 2 eL L i (S) + e 2 + LL j (S)

2 + 2 eL L j (S)

+ e 2 − LL i (S)
2 − LL j (S)

2

= − 2 eL L i (S) + 2 eL L j (S) + 2 e 2

= 2 e
(
LL j (S) − LL i (S)

)
+ 2 e 2 > 0 as LL i (S) ≤ LL j (S) and e > 0 .

Note that any movement between two agents cannot be done

ithout increasing the total squared load value. Hence Procedure

 guarantees to distribute LB ZTOT (S) among the agents such that the

esulting total squared load is a lower bound on the optimal total

quared load. #

Similar to the case in the average load based bounds, one can

alculate LB ZTOT (S) by solving the (reduced) minimum total load

roblem at node S or using the dual variables of one its parent

odes based on the result of Theorem 2 . We call the fill up strategy

ased bound that uses the LB ZTOT (S) from the minimum total load

roblem LB3 and the fill up strategy based bound that calculates

B ZTOT (S) using the dual variables LB4.

At a partial solution S , given the same LB ZTOT (S) , the fill-up

trategy based bound dominates the average load based bound.

hrough the following theorem we show that LB3 (S) (LB4(S)) dom-

nates LB1(S) (LB2(S)).

heorem 6. LB1 (S) ≤ LB3 (S)

roof. : LB3 (S) and LB1 (S) both distribute LB ZTOT (S) + L TOT (S)units

f load among the agents. The distribution of LB1 (S) is even among

ll agents whereas LB3 (S) may make uneven distribution due to

neven current loads. In the proof Theorem 2 we show that a per-

ectly even distribution, as in LB1 (S), provides the smallest total

quared load value. Hence LB1 (S) ≤ LB3 (S).

Using the result of Theorem 6 , we first evaluate node S using

B1 (S). If the node cannot be fathomed then we use LB3 (S).

orollary 1. LB2 (S) ≤ LB4 (S)

roof. : The only difference between LB1(S) (LB3(S)) and LB2(S)

LB4(S)) is the way that LB ZTOT is calculated. The proof of Theorem

 is valid for any LB ZTOT , therefore the result is immediate.

We illustrate the lower bounds on the total load values

hrough the following 10-task and 3-agent assignment prob-

em instance. We consider the partial solution seen in Fig. 2 .
 MAX (S) = Max i L i = 7.

ssume L B ZT OT (S) = 8 .

verage load based bound = (L TOT (S) + LB ZTOT (S))
2
/m

= (15 + 8)
2
/ 3 = 176 . 3

Fill-up strategy based bound:

emaining Load = 8

 ∗ 7 − 3 − 5 − 7 = 6

(8 ≥ 6) then

 ∗ (7 + (8 − 6) / 3)
2 = 176 . 3

ow assume LB ZTOT (S) = 3 .

verage load based bound = (15 + 3)
2
/ 3 = 108 .

Fill-up strategy based bound:

First fill agent 1 up to the load of agent 3 (See Fig. 3). Remain-

ng Load becomes 3–2 = 1.

Distribute the remaining load equally among agents 1 and 3 till

he remaining load is fully distributed or till the load of agent 2

s reached. 1 unit of remaining load is depleted when the loads of

wo agents reach to 5.5 units as seen in Fig. 4 .

The loads of the resulting distribution are 5.5, 7 and 5.5 units

or agents 1, 2 and 3 respectively. The resulting total squared

oad = 30.25 + 49 + 30.25 = 109.5 is a lower bound on the opti-

al total squared load.

Note that average load based bound = 108 ≤ 109.5 = Fill-up

trategy based bound.

82 Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90

Fig. 4. Load allocation in the example problem - agents 1 and 3 filled next.

l

u

a

w

o

4

o

s

r

S

a

U

c

o

i

S

h

e

o

i

t

c

a

t

l

t

o

u

c

L

t

a

k

g

f

I

t

h

p

e

o

i

1 The test instances are available at: http://staff.bilkent.edu.tr/ozlemkarsu/ .
2 We conducted Wilcoxon signed rank test to verify our observation that the so-

lution time decreases as k moves towards 15 and increases afterwards. For example,

for m = 5, n = 30 and k = 1 and k = 5 settings, we tested the null hypothesis that the

median solution time difference is 0 against the alternate that it is more than 0.

The p value is found as 0.002, which indicates that the test rejects our null hypoth-

esis at 5% significance level. There is enough statistical evidence to conclude that

the median solution time for k = 1 is more than the median solution time when

k = 5. Similar conclusions are made with p values of 0.0352 (for k = 5 and k = 10) and

0.004 (for k = 10 and k = 15). We then tested the null hypothesis that for k = 15 and

k = 20 settings the median solution time difference is 0 against the alternate that it

is less than 0. The p value of 0.002 indicates statistical evidence to conclude that

the median solution time for k = 15 is less than that of k = 20. We observed similar

results for the other settings.
3.2. Upper bounds

Our B&B algorithm starts with an initial upper bound, UB,

and updates the upper bound whenever a feasible solution with

smaller total squared load is reached.

We propose four simple procedures to calculate an initial upper

bound at the root node. We extend one of the upper bounds to

the partial solutions where we solve assignment problem to find a

lower bound.

UB1: Solve the linear programming relaxation of the linear total

squared load model.

The optimal relaxed solution may be infeasible as some tasks

may be assigned to more than one agent. We reassign each of

those tasks to an agent that has the highest partial assignment

value. After the reassignment, there may be some agents with no

assigned tasks. In such a case we randomly select an agent with

at least two assigned tasks and transfer one of its tasks to one of

the empty agents. We continue till no empty agent remains. We

let UB1 be the objective function of the resulting feasible solution

with no partial assignments and no empty agents.

UB2: We assign each task to an agent that handles the task

with minimum load. If all agents were assigned to at least one

task then the resulting solution would be feasible to our problem.

Otherwise there is at least one agent with no task assignments. In

such a case we randomly select an agent(s) with at least two as-

signed tasks and transfer one of its tasks to the empty agent(s). We

let UB2 be the objective function of the resulting feasible solution

with no partial assignments and no empty agents.

UB3: We assign a single task to each agent, starting from the

first agent. The selected task is the one having the minimum load

for that agent. We assign the remaining tasks to their minimum

load agents as in UB2. The assignment is feasible as it returns all

agents with at least one assignment and one agent assignment to

each task. We let UB3 be the objective function of the resulting

feasible solution with no partial assignments and no empty agents.

UB4: Any feasible solution to the minimum total load prob-

lem is feasible for the minimum total squared load problem as

the problems have the same constraint set. This follows an opti-

mal solution to the minimum total load problem is feasible for the

minimum total squared load problem; hence its total squared load

value, UB4, is an upper bound on the minimum total squared load

value.

We extend our idea to find UB4 to the nodes where we solve

the total load problem to obtain lower bounds. At those nodes, we

evaluate the total squared load value of the feasible solution that

minimizes the total load of the unassigned tasks with the hope of

improving UB.
At the root node of the branch and bound algorithm, we calcu-

ate UB1, UB2, UB3 and UB4 and take their minimum as an initial

pper bound, UB. That is, we start with UB = min (UB1, UB2, UB3

nd UB4). We update UB whenever we find a complete solution

ith smaller objective function value. At termination, UB gives the

ptimal total squared load.

. Computational experiments

In this section, we demonstrate the computational efficiency of

ur branch and bound algorithm by conducting experiments on a

et of test instances. We discuss the data generation scheme and

esults of our experiment.

We generate three sets of problem instances (named sets S1,

2 and S3). The time requirements, i.e., p ij values, for sets S1, S2

nd S3 are generated from discrete uniform distributions U[5, 25],

[10, 20], and U[25, 35], respectively.

Set S1 includes problem instances, where the range of the pro-

essing times is relatively high. Set S2 is used to see the effect

f a decrease in the range of the distribution while maintaining

ts expected value (note that the expected value is the same as in

1 while the range is lower). Set S3 is used to see the effect of a

igher expected value while maintaining the same range with S2.

We create problem instances with m = 5 and m = 10 agents. For

ach value of m , we select n values starting from 25, in increments

f 5. We generate 10 problem instances for each m, n and process-

ng time set combination. In total, 360 instances are considered in

he main experiment. 1

The algorithm is coded in Visual C ++ and solved by a quad-

ore (Intel Core i5 3.30 GhZ) computer with 8 GB RAM. All models

re solved by CPLEX 12.5. The solution times are expressed in Cen-

ral Processing Unit (CPU) seconds.

We first conduct an experiment to see the effects of using four

ower bounds altogether versus using only dual and minimum to-

al load based bounds at different levels. We let k be the number

f consecutive levels for which dual based bounds (LB2, LB4) are

sed in the branch and bound algorithm. After a series of such k

onsecutive levels, we use minimum total load based bounds (LB1,

B3) for one level. We conduct preliminary experiments on rela-

ively small size instances of Set S1 (for m = 5, n = 25, 30, 35, 40

nd for m = 10, n = 25, 30) to analyse the effects of using different

 values. Note that when k = 0, four lower bounds are used alto-

ether at each level of the branch and bound tree.

Fig. 5 a and b show the average solution times for different k ,

or instances where m = 5, n = 30 and m = 10, n = 30, respectively.

t is observed that the solution times decrease as k increases up

o a certain level (15) and after that level it starts to increase. We

ave similar results for the other problem sets. Hence, in our ex-

eriments we set k to 15. 2

We also tried using average load based bounds in the first lev-

ls of the branch and bound tree to avoid the computational effort

f the fill up strategy. However this strategy does not provide sat-

sfactory results, hence it is not used in the experiment.

http://staff.bilkent.edu.tr/ozlemkarsu/

Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90 83

Fig. 5. (a) Effect of k on the solution times. (b). Effect of k on the solution times.

Table 3

Results of the branch-and-bound algorithm.

CPU time % of nodes at which a

model is solved (Avg.)

Avg.% of nodes fathomed

Set m n Avg Max Avg # of nodes (∗10 5) LB1 LB2 LB3 LB4

S1 5 25 0.09 0.28 0.29 1.65 0.00 62.68 0.00 8.10

30 0.65 5.73 3.31 0.99 0.00 65.36 0.00 6.95

35 0.22 1.19 0.78 1.27 0.00 70.51 0.00 4.96

40 6.10 57.97 7.86 1.78 0.00 71.77 0.00 6.00

45 19.20 179.39 57.89 1.17 0.00 72.06 0.00 6.41

50 92.74 84 9.4 9 167.19 1.00 0.00 73.86 0.00 5.05

55 23.98 135.95 41.97 1.34 0.00 73.76 0.00 5.10

60 36.01 297.19 51.33 1.41 0.00 73.99 0.00 4.20

65 72.05 428.45 90.78 1.47 0.00 74.71 0.00 4.24

70 350.31 2432.33 561.26 1.39 0.00 75.72 0.00 3.00

10 25 6.47 50.50 21.16 1.18 0.26 59.62 0.20 10.33

30 8.73 37.37 61.88 0.68 0.12 72.02 0.04 9.40

35 87.36 427.64 912.38 0.29 0.01 76.88 0.01 7.90

40 275.05 1394.28 1719.72 0.88 0.05 77.82 0.02 7.59

45 1125.05 3600(2) ∗ 1612.47 1.06 0.06 80.69 0.01 7.33

S2 5 25 0.75 4.82 2.40 1.92 0.00 68.43 0.00 9.55

30 4.65 41.47 36.31 0.81 0.00 69.71 0.00 8.54

35 0.69 4.34 6.10 1.54 0.00 69.92 0.00 6.29

40 22.88 126.47 45.86 1.67 0.00 71.30 0.00 8.16

45 19.13 121.83 51.71 1.11 0.00 71.30 0.00 8.36

50 373.11 3600(1) 969.76 0.83 0.00 72.13 0.00 7.21

55 336.37 1746.93 519.47 1.49 0.00 73.63 0.00 6.15

60 98.19 307.59 135.31 1.59 0.00 73.77 0.00 5.50

65 318.54 1243.40 366.78 1.49 0.00 74.99 0.00 4.87

70 824.09 3600(2) 1919.90 1.26 0.00 75.75 0.00 4.00

10 25 103.96 346.19 392.10 1.52 0.29 72.50 0.26 15.81

30 206.92 1403.79 1686.50 0.54 0.13 78.49 0.01 10.36

35 740.14 3600(1) 6924.40 0.21 0.00 77.69 0.01 12.03

S3 5 25 1.64 9.72 5.14 1.98 0.00 69.10 0.00 9.63

30 16.80 155.30 149.01 0.79 0.00 69.36 0.00 9.65

35 5.55 45.63 71.96 1.26 0.00 70.28 0.00 7.75

40 68.75 390.17 140.02 1.62 0.00 71.23 0.00 8.55

45 91.44 459.60 203.26 1.30 0.00 70.65 0.00 9.22

50 411.84 3600(1) 1508.09 0.77 0.00 71.77 0.00 7.78

55 747.54 3600(2) 1153.72 1.44 0.00 72.23 0.00 7.62

10 25 3050.34 3600(8) 4139.55 1.25 0.17 34.54 0.28 12.87

∗ The numbers in the parentheses show the number of instances that could not be solved in one hour.

T

w

B

s

s

e

w

l

b

a

e

W

n

c

s

w

a

a

t

c

i
In Tables 3 and 4 , the results of our experiment are reported.

able 3 , we give the results of the B&B algorithm and in Table 4 ,

e compare the performance of the CPLEX MIP solver with the

&B algorithm. We set a time limit of 1 h for both algorithms. We

top the experiments for a given set when at least 2 out of 10 in-

tances cannot be solved in one hour.

Table 3 shows the average and maximum CPU times and the av-

rage number of nodes in the B&B tree. The percentage of nodes at

hich the total load minimizing LP models are solved (so as to find

ower bounds), the average percentage of nodes eliminated by dual

ased bounds (LB2, LB4) and optimal Z TOT based bounds (LB1, LB3)

re also reported. The percentage value is calculated separately for

ach instance and the average value across 10 instances is found.
e also state the number of instances for which optimality could

ot be verified within an hour.

It is observed that Set S1 instances, where the range of the pro-

essing times is relatively large, constitute the easiest to solve in-

tances. In this set the B&B algorithm finds the optimal solutions

ithin an hour for problems with sizes up to 70 tasks when m = 5

nd up to 40 tasks when m = 10.

Set S3 instances, with relatively higher average processing times

nd lower range, are the hardest-to-solve instances. In this set, the

ime limit is reached when n = 50 and n = 25, for m = 5 and m = 10

ases, respectively.

As expected, for fixed m (n), the solution times and the tree size

ncrease as n (m) increases, with a few exceptions. One of these

84 Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90

Table 4

CPLEX MIP solver versus B&B algorithm results.

CPU timeCPLEX CPU timeB&B CPU timeB&B without LB3 and LB4 Deviation of MIP solver solution from the B&B solution

Set m n Avg Max Avg Max Avg Max Avg Max

5 25 41.85 93.56 0.09 0.28 0.16 0.58 0.00 0.00

30 800.43 2571.15 0.65 5.73 2.13 20.29 0.00 0.00

S1 35 3264.57 (6 ∗) 360 0.0 0 0.22 1.19 1.40 7.94 0.03 0.24

10 25 6.39 26.09 6.47 50.50 52.07 387.56 0.00 0.00

30 962.23 (1) 3600.32 8.73 37.37 96.50 777.38 0.00 0.00

35 3441.83 (9) 3600.57 87.36 427.64 1746.15 3600 (1) 0.05 0.26

∗ The numbers in the parentheses show the number of instances that could not be solved in one hour.

Table 5

Objective function values of the CPLEX MIP Solver and optimal objective function values by the B&B (I.:Instance num-

ber).

S1 S2 S3

m n I. CPLEX Optimal m n I. CPLEX Optimal m n I. CPLEX Optimal

5 70 1 65152 62696 5 65 1 112359 109273 5 45 1 287265 278490

2 57076 56529 2 118405 109782 2 305580 291387

3 62389 61012 3 116256 109814 3 297655 289180

4 62727 61316 4 113283 106698 4 282809 278486

5 71660 62599 5 115377 110431 5 288517 284679

6 61695 60574 6 114959 110182 6 287571 277077

7 71738 69228 7 111570 106389 7 294607 290437

8 68345 63421 8 111044 106620 8 295565 287555

9 66,890 63053 9 117373 107330 9 291943 281789

10 61006 60287 10 113752 109120 10 281358 277165

10 40 1 6669 6669 10 30 1 11054 10904

2 6980 6980 2 11275 11131

3 6728 6728 3 10857 10845

4 6 86 8 6 86 8 4 10 0 06 9941

5 6139 6139 5 11127 10979

6 5616 5616 6 10126 9937

7 7616 7601 7 10384 10384

8 6499 6499 8 10989 10900

9 6262 6256 9 10717 10650

10 7612 7584 10 10473 10398

a

0

2

s

o

n

e

i

g

M

w

c

o

S

v

h

t

t

t

r

o

e

A

t

t

S
exceptions occurs when m = 5, n = 50, which is due to a single in-

stance with a relatively high average processing time, which makes

it hard to solve. We observe that the dual based lower bound(s)

(LB2, LB4) are effective in eliminating unpromising nodes over all

instances while the optimal Z TOT based bound(s) (LB1, LB3) become

useful in instances where m = 10.

In Table 4 we give the average and maximum solution times for

the sum of squared loads problem-linear model (SSL-L) returned

by the CPLEX MIP solver and the solution times of the B&B al-

gorithm for comparison. We also report the CPU times of a sim-

pler version of the proposed B&B algorithm in which the elaborate

lower bounds (LB3 and LB4) are not used. The table also includes

the deviation of the MIP solver solution from the optimal solution.

As seen in the table, the size of the problems that CPLEX MIP

solver can solve within an hour is significantly smaller compared

to the ones by the B&B algorithm. The B&B algorithm without

the elaborate lower bounds performs worse than the version using

these bounds, yet its performance is still much better than that of

the CPLEX MIP solver.

We could find the optimal solutions by the B&B algorithm

for all these instances, hence we report the average and maxi-

mum percentage deviation of the CPLEX solution from the op-

timal solution returned by the B&B algorithm (100 ∗(CPLEX so-

lution − OPT)/OPT). We also report the number of instances for

which CPLEX terminated due to the time limit. CPLEX could only

solve Set S1 instances with m = 5 and n = 25, 30 and m = 10 and

n = 25 optimally within one hour. For Set S2 and S3, we try in-

stances with m = 5, n = 25 and m = 5, n = 30, however none of

them could be solved within an hour. In Set 2 instances, the
verage and maximum% deviations from the B&B solutions are

.088 and 0.60, respectively when m = 5, n = 25 and 0.63 and

.12, respectively when m = 5, and n = 30. We observe similar re-

ults for Set S3 instances with average (maximum)% deviations

f 0.35 (1.23) when m = 5, n = 25 and 1.33 (2.33) when m = 5,

 = 30. The deviations increase as the problem size increases, for

xample the maximum% deviation can go up to 5.71 for Set 3

nstances when m = 5, n = 45. The results show that the B&B al-

orithm outperforms the model solutions returned by the CPLEX

IP solver. The CPLEX MIP solver could not guarantee optimality

ithin an hour and the returned solution is not optimal in most

ases. B&B algorithm terminates much quicker and guarantees

ptimality.

To observe the quality of solutions returned by CPLEX MIP

olver in more detail, in Table 5 we provide the objective function

alues (ZSQ values) of the solutions returned by CPLEX within an

our and the optimal solutions returned by the B&B algorithm, for

he largest problem instances in our data set that could be solved

o optimality. For all of these largest instances CPLEX stopped due

o time limit without verifying optimality. We provide the detailed

esults of all instances in Appendix A .

Table 5 shows that in all combinations with one exception the

bjective function values of the CPLEX MIP Solver after one hour of

xecution are much worse than those easily returned by the B&B

lgorithm. The exception is m = 10 and n = 40 for Set 1 combina-

ion, where 7 out 10 solutions by the CPLEX MIP Solver turned out

o be optimal.

Recall that the upper bound mechanisms that we discuss in

ection 2 are simple heuristic solutions. We also compare the

Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90 85

Table 6

Performances of the simple heuristic solutions.

Avg. % deviation from the optimal # of instances for which it returns the best solution

Set m n UB1 UB2 UB3 UB4 UB2 UB3 UB4

S1 5 25 125.88 11.50 19.74 12.55 7 1 9

30 111.44 10.52 12.99 9.97 3 4 6

35 111.91 8.03 11.17 8.86 7 2 9

40 115.70 7.82 10.83 7.09 3 1 9

45 134.68 8.23 9.43 8.21 5 2 8

50 139.67 8.13 11.04 8.63 6 4 7

55 119.36 4.61 7.18 4.70 7 3 8

60 138.83 5.23 8.28 5.38 7 2 7

65 126.66 4.33 6.25 4.15 4 2 8

70 134.74 4.31 5.74 4.61 2 4 6

10 25 112.78 24.68 30.18 18.18 2 1 9

30 103.14 18.28 25.46 16.54 3 3 6

35 109.02 16.00 20.54 13.08 1 2 8

40 96.54 13.92 19.42 9.49 1 2 8

45 102.70 14.48 18.49 14.91 2 2 6

S2 5 25 77.21 13.30 15.97 11.72 3 2 8

30 85.05 13.98 14.27 13.43 1 6 4

35 80.76 10.42 11.97 9.62 2 5 6

40 80.49 9.77 11.60 8.94 4 1 8

45 87.08 9.69 9.82 10.19 2 6 3

50 95.43 9.89 11.68 10.45 4 4 7

55 80.49 6.76 7.03 6.88 5 6 8

60 91.20 6.43 7.63 6.80 5 3 7

65 83.21 4.71 5.39 4.83 4 4 7

70 91.68 6.36 6.88 6.07 2 3 7

10 25 72.54 24.14 28.33 19.65 1 1 9

30 61.63 21.42 24.02 14.90 2 1 9

35 78.13 21.87 23.27 23.32 2 5 3

S3 5 25 61.55 14.03 15.63 12.97 2 5 5

30 71.40 14.55 14.15 14.09 1 6 4

35 64.13 10.74 12.06 10.00 2 5 6

40 64.20 10.06 11.51 9.30 4 1 8

45 69.84 9.60 9.30 10.08 2 6 3

50 75.74 9.71 11.07 10.29 4 4 7

55 65.30 6.99 6.82 7.17 5 6 7

10 25 57.71 23.31 27.12 19.75 1 1 9

s

t

T

U

(

w

t

b

b

w

(

a

b

c

p

n

r

a

g

g

M

s

d

r

t

s

Table 7

Results for the instances with close m and n values.

B&B algorithmCPU Time CPLEX MIP solverCPU time

Set m n Avg Max Avg Max

1 10 15 0.025 0.04 0.24 0.31

20 0.766 4.85 0.83 2.00

12 15 0.039 0.08 0.22 0.27

20 3.268 18 0.69 0.92

15 15 0.019 0.02 0.12 0.13

20 0.363 1.03 0.89 2.86

2 10 15 0.311 1.06 3.17 5.36

20 8.508 66.1 1454.86 (3) 3600

12 15 0.543 1.13 4.88 12.46

20 66.435 186.03 157.07 433.85

15 15 0.02 0.02 0.13 0.14

20 380.666 1575.97 83.60 480.28

3 10 15 30.315 74.13 1910.33 (2) 3600

20 7.535 61.06 – –

12 15 112.546 246.45 – –

20 – – – –

15 15 0.023 0.05 0.1467 0.153

20 – – – –

5

j

p
olution of the B&B algorithm with these heuristic solutions

o provide better insight on how well the algorithm works.

able 6 shows the average deviation of the upper bounds (UB1,

B2, UB3, UB4) from the optimal solution calculated as follows

100 ∗(UB − OPT)/OPT). We also report the number of instances at

hich the corresponding upper bound gives the best solution over

he four upper bounds (out of 10 instances), including the ties.

We observe that UB1 performs poorest and it never returns the

est value, therefore it is not reported in the table. The other upper

ounds have comparable quality, with UB4 performing consistently

ell. Yet, even when the best heuristic value is used, the minimum

average) deviation from the optimal solution is always above 4%,

nd can be as high as 20% as seen in the table.

Finally, we generate instances with approximately same num-

er of tasks and agents to see how the algorithm performs for such

ases and report the associated results in Table 7 . We did not re-

ort the results for the sets in which more than 3 instances could

ot be solved within an hour (indicated with – sign). The k pa-

ameter is set to approximately 1.5 m (15 for instances with m = 10

nd m = 12, 20 for instances with m = 15). The detailed results are

iven in Appendix B .

We observe that as the number of tasks and number of agents

et closer, most of the instances are solved quicker by the CPLEX

IP solver. For example, for Set 2 instances with n = 20, the CPLEX

olution times decrease as m increases from 10 to 15. However we

o not observe any decrease in the solution times of the B&B algo-

ithm, when m and n values get closer, except for the case when

hey are equal. Still, the B&B algorithm outperforms the CPLEX MIP
olver in almost all instances. t
. Conclusions

In this study, we consider an assignment problem with the ob-

ective to minimize the sum of squared loads of all agents. We

ropose mixed integer nonlinear and linear programming formula-

ions of the problem and present a branch and bound algorithm for

86 Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90

w

m

j

s

s

A

m

A

their solution. The results of our computational experiment have

shown the satisfactory behavior of our branch and bound algo-

rithm. The algorithm is capable of solving the instances with up to

70 tasks when there are 5 agents and up to 45 tasks when there

are 10 agents.

To the best of our knowledge, this study is the first reported at-

tempt to solve the assignment problem with the objective to min-

imize the total squared agent loads. Future research may consider

the development of heuristic approaches like meta-heuristic ap-

proaches that produce high quality solutions in reasonable times.

Another important direction for future research might be study-

ing load balancing problems with different measures that reflect

the relative importance of the agents, like total weighted squared
Table A.1

Set1, m = 5 instances.

n I. CPLEX Time B&B Time CPLEX Soln. B&B Soln. n I. B&B Time

25 1 84.0 0.07 7665 7665 45 1 0.19

2 44.3 0.05 8654 8654 2 0.35

3 7.7 0.02 8131 8131 3 188.25

4 11.2 0.07 8991 8991 4 0.2

5 8.4 0.01 9098 9098 5 3.91

6 57.0 0.18 8873 8873 6 0.19

7 29.4 0.02 9340 9340 7 7.08

8 8.0 0.27 7215 7215 8 0.65

9 74.9 0.02 10159 10159 9 1.21

10 93.6 0.16 8111 8111 10 0.17

30 1 2571.2 0.05 16954 16954 50 1 0.17

2 417.4 0.13 12107 12107 2 27.12

3 419.1 0.4 11788 11788 3 0.91

4 1097.9 0.02 15679 15679 4 1.6

5 1587.0 5.48 13235 13235 5 2.04

6 163.8 0.02 11228 11228 6 837.5

7 552.0 0.02 13102 13102 7 46.49

8 363.1 0.05 12580 12580 8 0.3

9 625.6 0.09 14648 14648 9 0.48

10 207.2 0.02 13453 13453 10 0.61

35 1 3600 0.13 16610 16606 55 1 0.97

2 2082.4 0.05 13885 13885 2 1.26

3 2395.7 0.02 15623 15623 3 81.45

4 3126.2 0.2 17823 17823 4 15.57

5 3600 0.27 15617 15617 5 136.9

6 3600 0.05 16704 16664 6 0.34

7 3440.0 1.17 16099 16099 7 0.16

8 3600 0.03 20862 20862 8 0.12

9 3600 0.05 15667 15667 9 0.91

10 3600 0.12 16154 16154 10 3.64

40 1 3600 0.19 22626 22479

2 3600 60.06 19925 19812

3 3600 0.29 21605 21605

4 3600 0.18 19480 19480

5 3600 0.25 23482 23482

6 3600 0.03 24067 24067

7 3600 0.35 19050 18968

8 3600 0.05 19551 19551

9 3600 1.04 18131 18023

10 3600 0.78 22351 22255

CPLEX solution time is reported as 3600 s (1 h) when the time limit of 1 h is reached. Fo

time limit. B&B soln. is the optimal solution.
orkload. Future research can also be performed on extending the

odels to solve other practical problems such as the ergonomic

ob rotation problem (Otto and Battaïa, 2017), which aims at en-

uring a balanced distribution of risks among individual work as-

ignments.

cknowledgments

We thank the anonymous reviewers for their constructive com-

ents.

ppendix A
 CPLEX Soln. B&B Soln. n I. B&B Time CPLEX Soln. B&B Soln.

23887 23704 60 1 17.41 57173 54430

32372 32217 2 0.43 52299 50528

30745 30646 3 6.82 55069 52074

25660 25243 4 4.67 48534 48041

29763 29538 5 29.58 52068 50623

23675 23675 6 0.08 4 84 96 48229

30578 30557 7 0.2 45291 45110

29773 29633 8 1.9 43783 43087

25885 25836 9 302.91 47691 45553

22735 22735 10 2.07 61721 60124

33085 32929 65 1 17.58 56087 55251

36637 36065 2 18.66 56741 56353

30693 30371 3 0.19 55719 54628

29210 29191 4 16.22 52068 51034

32531 32398 5 408.95 56902 56047

35766 35598 6 90.14 56335 55669

38178 36085 7 0.86 51772 50866

33667 33019 8 4.14 52924 52462

34671 34027 9 7.81 52220 51718

36140 35187 10 127.91 59005 54523

37615 36556 70 1 13 65152 62696

46634 45591 2 0.27 57076 56529

43138 43131 3 0.29 62389 61012

44770 43625 4 885.83 62727 61316

39300 38670 5 137.13 71660 62599

41779 40900 6 24.64 61695 60574

47217 46393 7 2400.72 71738 69228

36075 34820 8 2.54 68345 63421

34819 34799 9 0.12 66890 63053

32196 31655 10 0.58 61006 60287

r n ≥ 45 instances, the CPLEX solution times are not reported as CPLEX reaches the

Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90 87

Table A.2

Set1, m = 10 instances.

n I. CPLEX Time B&B Time CPLEX Soln. B&B Soln. n I. B&B Time CPLEX Soln. B&B Soln.

25 1 5.30 0.4 2315 2315 35 1 0.18 5657 5657

2 26.09 4.61 2675 2675 2 258.59 5333 5333

3 3.29 4.34 2738 2738 3 11.91 4906 4906

4 3.18 0.05 2723 2723 4 63.78 4878 4878

5 3.18 0.19 3028 3028 5 439 5470 5470

6 3.94 0.36 2470 2470 6 3.47 5179 5168

7 2.76 0.95 2369 2369 7 60.38 6360 6360

8 5.01 0.68 2472 2472 8 0.34 5057 5057

9 8.58 50.55 2593 2593 9 16.17 5473 5473

10 2.57 2.67 2734 2734 10 42.02 5132 5132

30 1 2766.42 15.41 4527 4527 40 1 5.64 6669 6669

2 269.36 2.62 4850 4850 2 2.43 6980 6980

3 3600 37.76 4595 4595 3 2.93 6728 6728

4 41.1 2.4 3579 3579 4 2.6 6 86 8 6 86 8

5 753.33 20.27 4762 4762 5 217.91 6139 6139

6 72.04 3.31 3559 3559 6 135.75 5616 5616

7 26.21 1.34 3809 3809 7 1422.36 7616 7601

8 595.68 0.12 4715 4715 8 886.56 6499 6499

9 1432.61 5.36 4489 4489 9 39.41 6262 6256

10 65.276 0.62 4251 4251 10 74.03 7612 7584

CPLEX solution time is reported as 3600 s (1 h) when the time limit of 1 h is reached. For n ≥ 35 instances, the CPLEX

solution times are not reported as CPLEX reaches the time limit. B&B soln. is the optimal solution.

Table A.3

Set 2, m = 5 instances.

n I. B&B Time CPLEX Soln. B&B Soln. n I. B&B Time CPLEX Soln. B&B Soln. n I. B&B Time CPLEX Soln. B&B Soln.

25 1 0.24 16125 16029 40 1 1.87 43130 42351 55 1 1.15 79928 76197

2 0.15 16491 16491 2 125.59 41182 40610 2 9.47 86563 82722

3 0.05 16263 16263 3 5.8 43174 42234 3 1587.45 84045 81283

4 0.52 16956 16949 4 0.12 40763 40218 4 29.54 84491 81827

5 0.02 16507 16507 5 0.24 44356 43576 5 1743.24 83342 78285

6 0.97 17242 17242 6 0.12 44580 44377 6 5.93 83182 80559

7 0.03 16871 16871 7 29.89 41708 41340 7 1.8 87464 82747

8 4.91 16075 16075 8 1.28 41370 41038 8 1.38 78202 75910

9 0.07 17799 17799 9 62.79 40776 40128 9 7.14 76128 75418

10 0.61 16461 16422 10 2.23 42343 41992 10 21.14 74494 73209

30 1 0.12 27243 26945 45 1 1.02 52007 50968 60 1 72.68 103258 98654

2 0.49 23773 23701 2 0.81 57222 56503 2 0.44 99250 95950

3 4.11 23780 23766 3 131.14 57021 55559 3 25.08 104210 97323

4 0.12 26140 26010 4 1.11 51664 51011 4 61.51 101255 95131

5 40.89 24953 24681 5 3.17 56110 53694 5 301.4 101741 95968

6 0.03 23418 23418 6 0.37 51038 50291 6 3.79 97226 94382

7 0.06 25021 24501 7 59.64 56403 55910 7 0.25 95607 91400

8 0.04 23921 23921 8 4.71 55175 54754 8 217.94 95324 91408

9 0.12 25754 25726 9 1.37 53870 52124 9 310.25 95957 91572

10 0.02 24512 24266 10 0.87 50799 50146 10 3.52 106583 102784

35 1 1.1 32402 32098 50 1 1.51 66863 65044 65 1 74.87 112359 109273

2 0.09 30922 30596 2 97.89 69979 67158 2 9.63 118405 109782

3 0.03 32293 32154 3 1.48 64235 63109 3 32.85 116256 109814

4 0.2 33551 33551 4 0.17 63874 62284 4 103.64 113283 106698

5 0.43 31458 31458 5 4.81 65678 63867 5 1010.9 115377 110431

6 0.04 32126 31969 6 3600 69035 68152 6 583.03 114959 110182

7 0.43 32497 32241 7 28.54 69579 67773 7 5.89 111570 106389

8 0.08 35695 35551 8 0.8 65980 65524 8 0.59 111044 106620

9 0.13 32227 32227 9 0.62 66889 65970 9 1267.99 117373 107330

10 4.46 32810 32434 10 0.15 69135 66697 10 143.53 113752 109120

CPLEX reaches the time limit of 1 h for all instances; hence CPLEX solution times are not reported. B&B soln. is the optimal solution.

88 Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90

Table A.4

Set 2, m = 10 instances.

n I. B&B Time CPLEX Soln. B&B Soln. n I. B&B Time CPLEX Soln. B&B Soln.

25 1 263.21 6912 6892 30 1 35.56 11054 10904

2 25.92 7090 7090 2 341.03 11275 11131

3 50.93 7231 7231 3 256.55 10857 10845

4 3.72 7221 7203 4 21.73 10 0 06 9941

5 1.17 7492 7492 5 1527.21 11127 10979

6 50.24 6978 6978 6 4.42 10126 9937

7 150.79 7082 7082 7 8.13 10384 10384

8 59.14 7075 7072 8 6.09 10989 10900

9 357.61 7274 7274 9 3.77 10717 10650

10 126.42 7195 7195 10 1.88 10473 10398

CPLEX reaches the time limit of 1 h for all instances; hence CPLEX solution times are not reported. B&B

soln. is the optimal solution.

Table A.5

Set 3, m = 5 instances.

n I. B&B Time CPLEX Soln. B&B Soln. n I. B&B Time CPLEX Soln. B&B Soln. n I. B&B Time CPLEX Soln. B&B Soln.

25 1 0.24 86610 86604 35 1 2.64 184221 171510 45 1 2.44 287265 278490

2 0.16 87939 87666 2 0.19 168959 168245 2 2.72 305580 291387

3 0.06 87919 87138 3 0.05 173754 171516 3 407.15 297655 289180

4 1.43 89031 89031 4 0.59 176162 175286 4 4.02 282809 278486

5 0.02 88762 87682 5 1.17 172627 169811 5 6.33 288517 284679

6 4.1 90102 89904 6 0.04 177574 170884 6 1.76 287571 277077

7 0.03 88758 88535 7 5.05 175420 171891 7 457.67 294607 290437

8 9.56 87158 87158 8 0.19 181733 179383 8 19.51 295565 287555

9 0.05 91257 90777 9 0.09 172290 171572 9 4.24 291943 281789

10 1.08 87672 87664 10 49.24 175035 172715 10 11.17 281358 277165

30 1 0.22 135563 133505 40 1 16.17 229354 224800

2 2.48 127747 126459 2 389.89 225718 220991

3 9.34 129673 126724 3 21.46 231905 224738

4 0.41 132604 131607 4 0.65 229513 219738

5 157.41 129700 129027 5 1.25 230858 227727

6 0.03 127731 125478 6 0.13 239903 229417

7 0.31 130682 128750 7 92.68 230810 223172

8 0.14 129386 126778 8 5.68 230291 221803

9 0.29 132562 130905 9 153.38 224577 220371

10 0.02 128070 127406 10 4.99 228607 223912

CPLEX reaches the time limit of 1 h for all instances; hence CPLEX solution times are not reported. B&B soln. is the optimal solution.
Appendix B
Table B.1

Set 1 instances.

m n I. CPLEX Time B&B Time Opt. Soln. m n I. CPLEX Time

10 15 1 0.31 0.03 967 12 15 1 0.27

2 0.28 0.03 1348 2 0.27

3 0.23 0.02 1155 3 0.23

4 0.23 0.01 1225 4 0.22

5 0.23 0.02 1413 5 0.18

6 0.24 0.02 981 6 0.18

7 0.21 0.03 1015 7 0.21

8 0.24 0.03 981 8 0.17

9 0.23 0.04 1324 9 0.21

10 0.23 0.02 1122 10 0.24

20 1 0.94 0.24 1755 20 1 0.90

2 2.00 0.33 2327 2 0.77

3 0.51 0.05 2315 3 0.66

4 0.42 0.04 1889 4 0.68

5 0.94 0.06 1865 5 0.54

6 0.44 0.08 1755 6 0.53

7 1.08 0.23 2385 7 0.62

8 0.56 0.61 1647 8 0.68

9 0.75 4.85 2142 9 0.92

10 0.66 1.17 2089 10 0.55

Since both CPLEX and B&B provide the optimal solution, we only report the optimal solut
B&B Time Opt.Soln. m n I. CPLEX Time B&B Time Opt.Soln.

0.04 772 15 15 1 0.12 0.02 543

0.08 1053 2 0.12 0.02 770

0.03 1003 3 0.11 0.02 850

0.02 1025 4 0.13 0.01 692

0.02 939 5 0.12 0.02 596

0.02 791 6 0.12 0.02 775

0.04 901 7 0.12 0.02 772

0.08 978 8 0.12 0.02 686

0.04 954 9 0.11 0.02 901

0.02 1001 10 0.11 0.02 722

1.02 1469 20 1 2.86 0.4 1170

2 1797 2 0.61 0.41 1286

1.49 1626 3 0.62 0.04 1151

0.38 1593 4 0.80 0.34 1038

0.08 1364 5 0.49 0.05 1122

0.23 1588 6 1.28 1.03 1157

0.41 1339 7 0.51 0.64 1175

7.91 2032 8 0.50 0.46 1197

18 1415 9 0.55 0.12 1215

1.16 1616 10 0.72 0.14 1004

ion.

Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90 89

Table B.2

Set 2 instances.

m n I. CPLEX Time B&B Time CPLEX Soln. B&B Soln. m n I. CPLEX Time B&B Time Opt. Soln.

10 15 1 3.29 1.06 2753 2753 12 20 1 323.18 52.2 3955

2 4.81 0.21 2938 2938 2 426.09 41.01 4158

3 5.07 0.17 2801 2801 3 41.61 51.71 4086

4 2.19 0.08 2890 2890 4 62.66 47.6 4078

5 5.36 0.4 3120 3120 5 13.42 11.48 3852

6 2.10 0.02 2653 2653 6 19.72 4.48 3968

7 1.71 0.07 2735 2735 7 139.60 60.38 3849

8 2.84 0.41 2714 2714 8 49.81 61.53 4338

9 2.38 0.48 2956 2956 9 433.85 147.93 3853

10 1.97 0.21 2807 2807 10 60.77 186.03 4173

20 1 349.93 0.73 4584 4584 15 15 1 0.12 0.02 1563

2 3600 0.56 4985 4985 2 0.14 0.02 1741

3 244.25 0.15 4966 4966 3 0.13 0.02 1829

4 793.76 2.74 4903 4903 4 0.14 0.02 1699

5 787.87 0.11 4631 4631 5 0.14 0.02 1651

6 53.31 0.17 4590 4590 6 0.14 0.02 1787

7 3600 0.37 4954 4 94 8 7 0.13 0.02 1720

8 66.78 1.52 4422 4422 8 0.13 0.02 1697

9 1452.26 12.63 4864 4864 9 0.13 0.02 1848

10 3600 66.1 5060 5060 10 0.13 0.02 1739

12 15 1 12.46 0.91 2249 2249 20 1 480.28 470.79 3232

2 4.49 1.01 2384 2384 2 19.52 58.05 3268

3 5.31 0.2 2400 2400 3 94.37 25.93 3236

4 2.28 0.23 2426 2426 4 12.75 346.95 3152

5 1.83 0.07 2318 2318 5 11.85 53.53 3170

6 2.26 0.24 2251 2251 6 32.11 1575.97 3213

7 5.63 0.74 2385 2385 7 84.69 252.7 3239

8 4.07 1.13 2349 2349 8 16.89 199.32 3304

9 4.41 0.68 2339 2339 9 11.65 26.78 3280

10 6.11 0.22 2393 2393 10 71.91 796.64 3166

CPLEX solution time is reported as 3600 s (1 h) when the time limit of 1 h is reached. Since both CPLEX and B&B provide the optimal

solution for m = 12 and m = 15 instances, we only report the optimal solution for these instances. For the other instances, B&B soln.

is the optimal solution.

Table B.3

Set 3 instances.

m n I. CPLEX Time B&B Time CPLEX Soln. B&B Soln. m n I. CPLEX Time B&B Time CPLEX Soln. B&B Soln.

10 15 1 1840.20 74.13 16238 16238 12 15 1 3600 142.17 13484 13484

2 2896.99 39.82 16663 16663 2 3600 182.48 13799 13799

3 733.74 20.78 16346 16346 3 3600 43.63 13845 13845

4 928.09 7.69 16555 16555 4 3600 98.45 13901 13901

5 3600 54.25 17085 17085 5 3600 15.98 13643 13643

6 1738.99 1.28 15988 15988 6 3600 37.13 13486 13486

7 1346.82 5.56 16190 16190 7 3600 131.3 13800 13800

8 921.50 34.86 16139 16139 8 3600 168.6 13704 13704

9 3600 47.56 16711 16711 9 3600 246.5 13694 13694

10 1496.86 17.22 16352 16352 10 3600 59.26 13808 13808

20 1 3600 0.67 26424 26424 15 15 1 0.14 0.02 9528 9528

2 3600 0.55 27365 27365 2 0.15 0.02 9946 9946

3 3600 0.18 27286 27286 3 0.15 0.02 10154 10154

4 3600 2.1 27163 27163 4 0.15 0.02 9844 9844

5 3600 0.12 26531 26531 5 0.15 0.02 9736 9736

6 3600 0.17 26430 26430 6 0.15 0.05 10052 10052

7 3600 0.38 27274 27268 7 0.15 0.02 9895 9895

8 3600 1.06 26022 26022 8 0.15 0.02 9842 9842

9 3600 9.06 27064 27064 9 0.15 0.02 10203 10203

10 3600 61.06 27514 27514 10 0.14 0.02 9944 9944

CPLEX solution time is reported as 3600 s (1 h) when the time limit of 1 h is reached. B&B soln. is the optimal solution.

R

A

A

B

B

C

D

D

E

G

K

K

K

L

eferences

huja, R.K. , Magnanti, T.L. , Orlin, J.B. , 1993. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, New Jersey .

zizo ̆glu, M. , Kırca, Ö, 1999. Scheduling jobs on unrelated parallel machines. IIE

Trans. 31 (2), 153–161 .
illionnet, A. , Costa, M.C.Costa , Sutter, A. , 1992. An efficient algorithm for a task

allocation problem. J. Assoc. Comput. Mach. 39, 502–518 .
urkard, R.E. , 2013. Quadratic assignment problems. In: Pardalos, P, Du, Dd-Z (Eds.),

Handbook of Combinatorial Optimization. Springer, New York, pp. 2741–2814 .
attrysse, D.G. , Van Wassenhove, L.N. , 1992. A survey of algorithms for the general-

ized assignment problem. Eur. J. Oper. Res. 60 (3), 260–272 .

rezner, Z. , 2015. Quadratic assignment problem. In: Laporte, G, Nickel, S., Saldanha
da Gama, F. (Eds.), Location Science. Springer, pp. 345–363 .
rwal, M , 2014. Algorithm for quadratic semi-assignment problem with partition

size coefficients. Optim. Lett. 8, 1183 .
rnst, A. , Jiang, H. , Krishnamoorthy, M , 2006. Exact solutions to task allocation prob-

lems. Manag. Sci. 52.10, 1634–1646 .
reenberg, D.E. , 1969. A quadratic assignment problem without column constraints.

Nav. Res. Logist. Q. 16, 417–422 .
arsu, Ö. , Azizo ̆glu, M. , 2012. The multi-resource agent bottleneck generalised as-

signment problem. Int. J. Prod. Res. 50 (2), 309–324 .

arsu, Ö. , Azizo ̆glu, M. , 2014. Bicriteria multiresource generalized assignment prob-
lem. Nav. Res. Logist. 61 (8), 621–636 .

arsu, Ö. , Morton, A. , 2015. Inequity averse optimization in operational research.
Eur. J. Oper. Res. 245 (2), 343–359 .

awler, E.L. , 1963. The quadratic assignment problem. Manag. Sci. 9 (4), 586–599 .

http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0001
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0001
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0001
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0001
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0002
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0002
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0002
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0014

90 Ö. Karsu and M. Azizoglu / Computers and Operations Research 106 (2019) 76–90

P

P

P

R

S

S

W
Loiola, E.M. , de Abreu, N.M.M. , Boaventura-Netto, P.O. , Hahn, P. , Querido, T. , 2007. A
survey for the quadratic assignment problem. Eur. J. Oper. Res. 176 (2), 657–690 .

Lulli, G. , Odoni, A. , 2007. The European air traffic flow management problem. Transp.
Sci. 41 (4), 431–443 .

Magirou, V.F. , Milis, J.Z. , 1989. An algorithm for the multiprocessor assignment prob-
lem. Oper. Res. Lett. 8, 351–356 .

Malucelli, F. , 1996. A polynomially solvable class of quadratic semi-assignment prob-
lems. Eur. J. Oper. Res. 91, 619–622 .

Malucelli, F. , Pretolani, D. , 1995. Lower bounds for the quadratic semi-assignment

problem. Eur. J. Oper. Res. 83.2, 365–375 .
Martin, S. , Ouelhadj, D. , Smet, P. , Vanden Berghe, G. , Özcan, E. , 2013. Cooperative

search for fair nurse rosters. Expert Syst. Appl. 40 (16), 6674–6683 .
Mazzola, J.B. , Neebe, A.W. , 1988. Bottleneck generalized assignment problems. Eng.

Costs Prod. Econ. 14 (1), 61–65 .
Milis, I.Z. , Magirou, V.F. , 1995. A Lagrangian relaxation algorithm for sparse

quadratic assignment problems. Oper. Res. Lett. 17.2, 69–76 .

Otto, A. , Battaïa, O. , 2017. Reducing physical ergonomic risks at assembly lines by
line balancing and job rotation: a survey. Comput. Ind. Eng. 111, 467–480 .
entico, D.W. , 2007. Assignment problems: a golden anniversary survey. Eur. J. Oper.
Res. 176 (2), 774–793 .

itsoulis, L. , 2009. Quadratic Semi-Assignment Problem, Encyclopedia of Optimiza-
tion. Springer, pp. 3170–3171 .

unnen, A.P. , Wang, Y. , 2016. The bipartite quadratic assignment problem and ex-
tensions. Eur. J. Oper. Res. 250.3, 715–725 .

innooy Kan, A.H.G. , Lageway, B.J. , Lenstra, J.K. , 1975. Minimizing total costs in one–
machine scheduling. Oper. Res. 23, 908–927 .

Sahni, S. , Gonzalez, T. , 1976. P-complete approximation problems. ACM J. 23,

555–565 .
Saito, H. , Fujie, T. , Matsui, T. , Matuura, S. , 2009. A study of the quadratic semi-as-

signment polytope. Discret. Optim. 6, 37–50 .
inclair, J.B. , 1987. Efficient computation of optimal assignments for distributed

tasks. J. Parallel Distrib. Comput. 4, 342–362 .
tone, H.S. , 1977. Multiprocessor scheduling with the aid of network flow algo-

rithms. IEEE Trans. Softw. Eng. SE-3, 85–93 .

ang, Y. , Punnen, A.P. , 2017. The boolean quadratic programming problem with
generalized upper bound constraints. Comput. Oper. Res. 77, 1–10 .

http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0018
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0018
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0025
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0025
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0027
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0027
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0027
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0027
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0028
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0028
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0028
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0030
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0030
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0031
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0031
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0032
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0032
http://refhub.elsevier.com/S0305-0548(19)30050-4/sbref0032

	An exact algorithm for the minimum squared load assignment problem
	1 Introduction
	2 Problem definition
	2.1 The sum of squared loads problem-non-linear model
	2.2 The sum of squared loads problem-linear model

	3 Branch and bound algorithm
	3.1 Lower bounds
	3.2 Upper bounds

	4 Computational experiments
	5 Conclusions
	Acknowledgments
	Appendix A
	Appendix B
	References

