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We consider a discrete-time infinite-horizon inventory system with non-stationary demand, full backlogging,

and deterministic replenishment lead time. Demand arrives according to a probability distribution conditional

on the state of the world that undergoes Markovian transitions over time. But the actual state of the world

can only be imperfectly estimated based on past demand data. We model the inventory replenishment

problem for this system as a Markov decision process (MDP) with an uncountable state space consisting

of both the inventory position and the most recent belief, a conditional probability mass function, about

the actual state of the world. Assuming that the state of the world evolves as an ergodic Markov chain,

using the vanishing discount method along with a coupling argument, we prove the existence of an optimal

average cost that is independent of the initial system state. For our linear cost structure, we also establish

the average-cost optimality of a belief-dependent base-stock policy. We then discretize the uncountable belief

space into a regular grid and observe that the average cost under our discretization converges to the optimal

average cost as the number of grid points grows large. Finally, we conduct numerical experiments to evaluate

the use of a myopic belief-dependent base-stock policy as a heuristic for our MDP with the uncountable state

space. On a test bed of 108 instances, the average cost obtained from the myopic policy deviates by no more

than a few percent from the best lower bound on the optimal average cost obtained from our discretization.
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1. Introduction

Companies often face non-stationary demand that is driven by dynamic environmental factors,

such as fluctuating economic and/or market conditions (Shang 2012, Kesavan and Kushwaha 2014,

and Hu et al. 2016). Associating a specific demand distribution with each state, Markov chains

provide an elegant mathematical framework for incorporating non-stationary demand into inven-

tory models. In this framework, the probability distribution of demand evolves over time according

to a Markov chain whose state variable captures all the relevant information about environmental

factors to represent the demand state. But the current demand state is often unobservable. The

true demand state is unknown to a manufacturer until she notices the introduction, change in

relative price, or end-of-life decision of a competing product, or the change in purchasing power

or interest of customers. In a supply chain setting, it may also be unknown to upstream stages if

the information provided by downstream stages is limited or its credibility cannot be guaranteed
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(Özer et al. 2011, Shamir and Shin 2016, and Spiliotopoulou et al. 2016). Limited information

sharing may even arise within a manufacturing firm: The authors encountered a situation in a

furniture company where the sales department did not communicate the promotion periods to the

production department. This company thus observed raw material stock-outs due to high demand

during the promotion periods, but also suffered from excess inventory in the subsequent periods

since it raised its order quantities by misinterpreting this short-lived upward shift in demand.

Only a few researchers have considered Markov-modulated demand under partial information

about the demand state. These researchers have focused only on finite-horizon total-cost and

infinite-horizon discounted-cost inventory systems with bounded or Poisson demand (Treharne and

Sox 2002, Bayraktar and Ludkovski 2010, and Malladi et al. 2019). To our knowledge, in the

literature dealing with Markov-modulated demand and partial information, no one has studied

the infinite-horizon average-cost inventory systems. One reason for this gap in the literature is the

notorious difficulty of the resulting partially observed Markov decision processes (POMDPs) under

the average cost criterion (Ding et al. 2002 and Chapter 5 in Bertsekas 2012). Our study is the

first attempt to fill this gap: We establish structural results for an average-cost inventory system

with Markov-modulated demand and partial information.

Specifically, we study the inventory replenishment problem for a single-item discrete-time system

with full backlogging and non-stationary demand that arrives according to one of a finite number

of probability distributions in each time period. The probability distributions undergo Markovian

transitions between time periods. The state of the underlying Markov chain, i.e., the demand

state, is only partially observable based on past demand data. The infinite-horizon discounted-cost

problem for this system can be modeled as a POMDP with an information vector that contains all

past demand observations and the belief about the initial demand state. The demand state belief in

any period can be specified as a probability distribution over the set of demand states that forms a

sufficient statistic for the entire demand history and possesses the Markovian property. The belief

evolves over time, as new demand observations become available, according to the Bayes’ formula.

To leverage this Markovian structure of the belief, we formulate the infinite-horizon discounted-cost

problem as an MDP with a state space consisting of the inventory position and the belief about

the current demand state. (See Sandıkçı 2010 for details on reduction of a POMDP to an MDP.)

Research on inventory management with demand information updating can be classified into

three groups: The first group employs time series to model the demand (e.g., Johnson and Thomp-

son 1975 and Miller 1986). The second group uses the martingale model of forecast evolution (e.g.,
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Graves et al. 1986, Heath and Jackson 1994, Kaminsky and Swaminathan 2001, 2004). The last

group exploits Bayesian updating mechanisms for stationary demand with unknown parameters

under backlogging (e.g., Scarf 1959, 1960, Karlin 1960, Iglehart 1964, and Azoury 1985), for cen-

sored demand under unobservable lost sales (e.g., Lariviere and Porteus 1999, Ding et al. 2002,

Heese and Swaminathan 2010, and Chen and Mersereau 2015), and for non-stationary demand

with partially observed demand states (e.g., Treharne and Sox 2002, Arifoğlu and Özekici 2010,

2011, and Malladi et al. 2019). Our study falls into the last group.

For our linear cost structure, we establish the optimality of a belief-dependent base-stock policy

in the discounted-cost case, deriving theoretical bounds on the optimal base-stock levels (Proposi-

tion 1). However, this result is not immediate in the average-cost case: The state space of our MDP

with Bayesian updating is uncountable due to the presence of the demand state belief. This hinders

straightforward application of the standard vanishing discount method in the average-cost analysis

of our problem. It is even unclear whether there exists an optimal average cost that is independent

of the initial state of our MDP. Assuming that the Markov chain governing the demand state tran-

sitions is ergodic (Assumption 1), we are able to adapt the vanishing discount method to our MDP

via a coupling argument that was not studied in the extant inventory literature to our knowledge.

This enables us to prove that (i) there exists an optimal average cost independent of the initial

state of our MDP, (ii) the average-cost optimality equation holds, and (iii) the belief-dependent

base-stock policy is optimal in the average-cost case (Theorem 1).

Since the state space of our MDP is uncountable, finding an exact solution for the average-cost

optimality equation (and calculating the base-stock levels) is a computational challenge (Zhou and

Hansen 2001 and Saldı et al. 2017). As an approximation, we discretize our belief space via the

regular grid approach in Lovejoy (1991). The average cost under this approximation is a lower

bound on the optimal average cost (Yu and Bertsekas 2004). This bound converges to the optimal

average cost as the number of grid points goes to infinity. Compared to this lower bound, we

numerically evaluate the cost performance of a myopic belief-dependent base-stock policy as a

heuristic replenishment policy for our average-cost problem with uncountable state space.

Myopic base-stock policies can be easily implemented in practice. These policies were also shown

to be optimal for several inventory models in the case of stationary demand (Veinott 1965 and

Lovejoy 1990) and in the case of non-stationary demand under certain conditions (Johnson and
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Thompson 1975 and Lovejoy 1992). For the finite-horizon total-cost version of our problem, how-

ever, previous research has found that the total cost under the myopic belief-dependent base-stock

policy may significantly deviate from the optimal total cost (see Treharne and Sox 2002): On a test

bed of 252 instances, for the myopic policy, the average optimality gap is 5.19% and the largest

optimality gap is 44.84%. Our numerical experiments reveal that the myopic policy performs sig-

nificantly better in our average-cost problem than in the finite-horizon total-cost problem: On the

same test bed, the average cost under the myopic policy is only 0.41% on average, and no more than

3.61%, higher than the best lower bound on the optimal average cost that can be obtained from

our approximation. It is also noteworthy that the myopic policy computations are instantaneous.

The rest of this paper is organized as follows: Section 2 reviews the related literature. Section 3

formulates our problem. Section 4 presents our structural results for both discounted-cost and

average-cost problems. Section 5 offers a discretization scheme for the calculation of a lower bound

on the optimal average cost. Section 6 presents our numerical results and Section 7 concludes.

2. Related Literature

Most classical inventory models assume that demand is independent of environmental factors other

than time (Chapter 1 in Beyer et al. 2010). There is also a growing body of literature that models

non-stationary demand (due to environmental factors) as a Markov-modulated process: Song and

Zipkin (1993) consider an inventory system with Markov-modulated Poisson demand, full backlog-

ging, ordered stochastic replenishment lead times, and fixed and linear variable ordering costs. They

establish the optimality of a state-dependent (s,S) policy in the discounted cost problem. In the

case of zero lead time, Sethi and Cheng (1997) generalize the optimality of state-dependent (s,S)

policies to inventory systems with more general Markov-modulated demand, full backlogging, and

fixed and linear variable ordering costs. Applying the vanishing discount method to the infinite-

horizon discounted-cost problem in Sethi and Cheng (1997), Beyer and Sethi (1997) extend the

optimality of state-dependent (s,S) policies to the infinite-horizon average-cost problem. Using the

vanishing discount method, Huh et al. (2011) partially characterize the optimal policy structures

for several different single-stage inventory models with Markov-modulated demand and capacity.

All of the papers above assume that the current state of the Markov-modulated process is per-

fectly observed by the controller and thus the true demand distribution is always known. Several

other papers have significantly relaxed this assumption: Treharne and Sox (2002) consider discrete-

time inventory systems in which the demand state can only be partially observed through the past
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demand data. They study the finite-horizon total-cost problem with bounded demand, full back-

logging, deterministic lead time, and linear variable ordering costs. They establish the optimality

of a base-stock policy with the base-stock levels that depend on the most recent belief about the

actual demand state. Arifoğlu and Özekici (2010) consider discrete-time inventory systems with

random yield, finite capacity, full backlogging, zero lead time, and fixed and linear variable order-

ing costs. The demand state is partially revealed via an observation process that is different from

the past demand data. The observation process takes values from a finite set whereas the demand

is real valued. They prove the optimality of belief-dependent (s,S) policies in the discounted-

cost problem. Bayraktar and Ludkovski (2010) consider continuous-time inventory systems with

Markov-modulated Poisson demand, zero lead time, and fixed and linear variable ordering costs.

The demand state is partially observed through the past demand data. They characterize the opti-

mal policy structure in both cases of backlogging and lost sales. Malladi et al. (2019) consider

discrete-time inventory systems with finite demand, full backlogging, zero lead time, fixed and

linear variable ordering costs. The demand state is partially revealed via an observation process

that contains the past demand data. All these papers incorporate partial observations into their

inventory models via Bayesian updating mechanisms in finite-horizon total-cost or infinite-horizon

discounted-cost problems. In this study, however, we focus on the infinite-horizon average-cost

problem. In addition, we allow for more general demand distributions by only requiring the second

moment of demand to be finite (in each demand state).

For the infinite-horizon average-cost problems with uncountable state spaces, the optimal average

cost may depend on the initial state. And when it is independent of the initial state, an optimal

stationary policy need not exist (Chapter 5 in Bertsekas 2012). The vanishing discount method can

be used to prove the existence of a constant optimal average cost that is independent of the initial

state. Using this method, Ross (1968) shows that the uniform boundedness and equicontinuity of

the differential discounted cost function ensures the existence of an optimal average cost. Beyer and

Sethi (1997) establish the uniform boundedness and equicontinuity of the differential discounted

cost function for inventory models in which the perfectly observed demand state evolves over time

according to an irreducible Markov chain. Using a coupling argument to obtain certain bounds on

the discounted cost function, Borkar (2000) proves the uniform boundedness and equicontinuity

of the differential discounted cost function for controlled Markov chains with partial observations

when the underlying Markov chain is ergodic. In this study, we apply the vanishing discount method
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together with the coupling argument of Borkar (2000) to our inventory system, which enables us

to show the existence of a constant optimal average cost for this system.

Since solving the average-cost optimality equation on an uncountable state space is infeasible,

previous work has developed discretization schemes for approximate solutions. Lovejoy (1991)

discretizes the uncountable state space into a regular grid with the concept of “triangulation.”

Zhou and Hansen (2001) improve Lovejoy’s result by introducing a variable-resolution regular grid.

Both papers establish a lower bound for discounted-cost problems modeled as POMDPs. Yu and

Bertsekas (2004) present a lower approximation approach for both discounted-cost and average-

cost problems modeled as POMDPs. There are also papers that approximate the average cost for

MDPs with uncountable state space; see, for instance, Feinberg et al. (2012) and Saldı et al. (2017).

In this study, we adopt the discretization schemes in Lovejoy (1991) and Yu and Bertsekas (2004),

which enable us to obtain a sufficiently tight lower bound on the optimal average cost.

We thus contribute to the inventory literature in several important ways:

• To our knowledge, we are the first to study the inventory replenishment problem with Markov-

modulated demand and partial demand state information in the average cost case.

• In the literature, Treharne and Sox (2002) have shown the optimality of a belief-dependent

base-stock policy in the finite-horizon problem with bounded demand. We generalize this

structural result to the infinite-horizon discounted-cost problem with possibly unbounded

demand. We also derive theoretical bounds on the optimal base-stock levels.

• We are the first to apply the coupling argument of Borkar (2000) along with the vanishing

discount method to the inventory replenishment problem. With this approach, we prove the

existence of an optimal average cost independent of the initial state of our MDP defined on an

uncountable state space and extend the optimality of the belief-dependent base-stock policy

to the average-cost problem. Our approach may also conceivably be useful in other operations

management problems modeled as POMDPs under the average-cost criterion.

• We propose the use of a myopic belief-dependent base-stock policy as a heuristic. We numer-

ically examine its performance by calculating a sufficiently tight lower bound on the optimal

average cost, obtained from the discretized version of our problem as in Lovejoy (1991) and

Yu and Bertsekas (2004), and by comparing this bound to the cost under the myopic policy.
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3. Problem Formulation

We study the inventory replenishment problem for a single-item discrete-time system over an

infinite horizon. Demand in each period arrives according to a probability distribution conditional

on the state of world (e.g., economy or market) that undergoes Markovian transitions over time.

The demand state in period t, dt, takes a value from a finite set N := {1,2, ...,N}, ∀t ∈ Z+ :=

{1,2, ...}. We model the demand state process {dt}t∈Z+
as a finite-state Markov chain with an

N ×N stationary transition matrix P = {pij} where pij := P{dt+1 = j|dt = i}, ∀t∈Z+. Demand in

period t, wt, is a non-negative discrete random variable. We denote by ri(·) the probability mass

function of wt for a given dt = i, i.e., ri(k) := P{wt = k|dt = i}. The values of pij and ri(·) can be

estimated based on past demand data by employing the Baum-Welch algorithm from the literature

that builds upon the maximum likelihood estimation procedure. We refer the reader to Rabiner

(1989) for a detailed description of this algorithm. We assume that there exist a finite µ and a

finite ζ such that µi =E[wt|dt = i]≤ µ and ζi =E[w2
t |dt = i]≤ ζ, ∀i∈N . We also assume that there

exists an i ∈ N such that µi > 0. The latter assumption is violated if and only if the demand is

always zero throughout the infinite horizon.

The demand state dt, t ∈ Z+, can only be partially observed based on the initial state belief

and the realized demand values prior to period t. We define the state belief in any period, which

is also known as the “conditional state distribution” in the literature (see Fernández-Gaucherand

et al. 1991), as an N -dimensional vector consisting of the apriori probabilities of being in each

demand state conditioned on the history composed of the initial state belief and all past demand

observations. Therefore, the belief in period t > 1, πt = [πt1, . . . , π
t
N ], can be formulated as πti(π,ω) :=

P{dt = i|π1 = π,ωt−1 = ω}, ∀i ∈ N , where π1 = [π1
1, . . . , π

1
N ] is the initial state belief and ωt−1 =

(w1, ...,wt−1) is the demand history. Note that π1
i = P{d1 = i}, ∀i ∈ N . We denote by r̂π(·) the

probability mass function of wt for a given πt = π. Thus:

r̂π(k) = P{wt = k|πt = π}=
∑
i∈N

P{wt = k|πt = π,dt = i}P{dt = i|πt = π}=
∑
i∈N

ri(k)πi.

Also, note that µπ =E[wt|πt = π] =
∑

i∈N πiµi and ζπ =E[w2
t |πt = π] =

∑
i∈N πiζi.

All unmet demand is backlogged. The replenishment order placed at the beginning of period t

is received at the beginning of period t+ l, where l ∈ {0,1, . . .} is constant, ∀t ∈ Z+. As we allow

for non-zero replenishment lead times, we define the inventory position as the number of items on

hand plus the number of items on order minus the number of backlogged demands, and include it

in the state description of our MDP. We denote the inventory position at the beginning of period
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t by yt ∈ Z, and the replenishment order quantity at the beginning of period t by ut ∈ Z+ ∪ {0},

∀t∈Z+. For an initial inventory position y1, the inventory position evolves over time as follows:

yt+1 = yt +ut−wt, ∀t∈Z+. (1)

Since the state belief πt forms a sufficient statistic for the information collected up to period t (see

Rhenius 1974), we also include πt in the state description of our MDP. Given the current belief

πt = π and the current demand realization wt =w, the next belief πt+1 can be calculated as follows:

πt+1
i =

∑
j∈N pji rj(w) πj∑
j′∈N rj′(w) πj′

:= Ti(π,w), ∀t∈Z+,∀i∈N . (2)

Let Π :=
{
π ∈ [0,1]N :

∑
i∈N πi = 1

}
be the continuous space of all possible beliefs. We define T :

Π×(Z+∪{0})→Π as the one-period belief update function given by T (·, ·) = [T1(·, ·), . . . , TN(·, ·)]∈

Π (see Treharne and Sox 2002 and Chapter 4 in Bertsekas 2017 for similar belief updates).

There are two types of costs in our inventory model: The ordering cost in period t is linear in the

order quantity and is given by cut, where c is the unit ordering cost. The single-period expected

inventory cost in period t+ l is piecewise linear and is given by

g(πt, yt +ut) = E

[
max

{
h

(
yt +ut−

l∑
n=0

wt+n

)
, b

(
−yt−ut +

l∑
n=0

wt+n

)}∣∣∣∣πt
]
,

where b and h are the unit shortage and holding costs per period, respectively. Note that the

conditional (l+ 1)-period demand distribution can be calculated as follows:

P

{
l∑

n=0

wt+n = k

∣∣∣∣πt
}

=

k∑
k1=0

k−k1∑
k2=0

· · ·
k−

∑l−1
j=1

kj∑
kl=0

r̂πt(k1)r̂πt+1(k2) · · · r̂πt+l−1(kl)r̂πt+l

(
k−

l∑
j=1

kj

)
where πt+1 = T (πt, k1), . . . , πt+l = T (πt+l−1, kl).

For any initial belief π1 = π ∈Π and any initial inventory position y1 = y ∈Z, the expected long-

run average cost per period under a replenishment policy with order quantities U = (u1, u2, ...), ut ≥

0, t∈Z+, can be written as

JU(π, y) = lim sup
T→∞

1

T
E

[
T∑
t=1

[cut + g(πt, yt +ut)]

∣∣∣∣π1 = π, y1 = y

]
subject to (1) and (2).

The objective is to determine the replenishment policy that minimizes the expected long-run aver-

age cost per period. Since the replenishment decisions cannot influence the inventory levels up to

period l, we exclude the holding and shortage costs incurred up to period l from our cost for-

mulation. However, the belief updating process begins with the initial demand observation at the

end of the first period. In this formulation we allow the order quantity to depend on the state of

the system in each period. For notational convenience, however, we suppress the dependency of

ut on (πt, yt). In Section 4, we prove that there exists a replenishment policy with order quan-

tities U∗ = (u∗1, u
∗
2, . . .) ∈ U , where U = {(u1, u2, . . .)|ut ∈ Z+ ∪ {0}}, and a constant λ∗, which is

independent of π and y, such that λ∗ = JU
∗
(π, y)≤ JU(π, y), ∀U ∈ U , ∀π ∈Π, and ∀y ∈Z.
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4. Analytical Results

In this section, first, we provide structural results for the discounted-cost problem that we will

utilize in our average-cost analysis. Then, we employ the vanishing discount method along with

a coupling argument for arbitrarily different initial demand states to prove that the average-cost

optimality equation holds, and use this equation to characterize the optimal policy structure for

our average-cost problem. We refer the reader to Chapter 5 in Beyer et al. (2010), Chapter 5 in

Bertsekas (2012), and Chapter 8 in Puterman (2014) for details on the vanishing discount method.

4.1. The Discounted-Cost Problem

Let α∈ (0,1) denote the discount factor. For any initial state (π, y)∈Π×Z, the optimal expected

total discounted cost over an infinite horizon can be defined as

vα(π, y) = inf
U∈U

JUα (π, y)

where JUα (π, y) is the expected total discounted cost for the initial state (π, y) under a replenishment

policy with order quantities U = (u1, u2, . . .), i.e.,

JUα (π, y) = lim
T→∞

E

[
T∑
t=1

αt−1[cut +αlg(πt, yt +ut)]

∣∣∣∣π1 = π, y1 = y

]
.

Following Proposition 4.1.9 in Bertsekas (2012), we verify that the optimal cost function vα satisfies

vα(π, y) = min
u≥0

{
cu+αlg(π, y+u) +α

∞∑
w=0

vα(T (π,w), y+u−w)r̂π(w)

}
, ∀π ∈Π, ∀y ∈Z. (3)

(See Treharne and Sox 2002 for a similar formulation on the finite-horizon total-cost problem

with finite demand.) We assume that αlb > c. Note that if αlb were less than c, it would never

be optimal to place an order in an (l + 1)-period problem. This assumption is standard in the

inventory literature; see, for instance, Sethi and Cheng (1997), Arifoğlu and Özekici (2010), and

Chapter 3 in Bertsekas (2017). For the discounted-cost problem in (3), Proposition 1 shows that

a belief-dependent base-stock policy is optimal and the optimal belief-dependent base-stock levels

Sπα are bounded between 0 and αlµ(b+h)(l+1)

αlh+(1−α)c
, ∀π ∈Π, ∀α∈ (0,1).

Proposition 1. For any α ∈ (0,1), the optimal stationary inventory replenishment policy is a

belief-dependent base-stock policy with base-stock levels Sπα such that the optimal order quantity

in state (π, y) is Sπα − y if y < Sπα, and zero otherwise. Furthermore, the optimal belief-dependent

base-stock levels Sπα, ∀π ∈Π, satisfy (i) Sπα ≤M where M := αlµ(b+h)(l+1)

αlh+(1−α)c
and (ii) Sπα ≥ 0.
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Proof. We will prove that vα(π, y) is discrete-convex in y, i.e., vα(π, y+1)−vα(π, y)≥ vα(π, y)−

vα(π, y − 1), ∀π ∈ Π, ∀y ∈ Z. With this property, we are able to characterize the optimal policy

structure. We consider the value iteration algorithm that can be used to calculate vα(·, ·): Let

vtα(·, ·) denote the cost function at iteration t of the value iteration algorithm. Letting z = y+ u,

we obtain vt+1
α (π, y) =−cy+ minz≥y {Gt

α(π, z)} where

Gt
α(π, z) = cz+αlg(π, z) +α

∞∑
w=0

vtα(T (π,w), z−w)r̂π(w).

Since g(π, z) ≥ 0 and Gt
α(π, z) ≥ cz + αlg(π, z), limz→+∞G

t
α(π, z) ≥ limz→+∞{cz + αlg(π, z)} =

∞ and limz→−∞G
t
α(π, z) ≥ limz→−∞{cz + αlg(π, z)} ≥ limz→−∞{(c− αlb)z} =∞ (recall αlb > c).

These results also hold when c= 0 by definition of g(π, z) and our assumption of E[wt]≤ µ, ∀t∈Z+.

We assume that v0
α(·, ·) is the zero function. Thus, following Proposition 4.1.9 in Bertsekas (2012),

we verify limt→∞ v
t
α(π, y) = vα(π, y).

Note that v0
α(π, y) is discrete-convex in y, ∀π ∈Π. Also, note that G0

α(π,0) = αlg(π,0)≤ αlbµ(l+

1)<∞, ∀π ∈Π. Assuming that vtα(π, y) is discrete-convex in y and Gt
α(π,0) is finite, ∀π ∈Π, we

will show that vt+1
α (π, y) is discrete-convex in y and Gt+1

α (π,0) is finite, ∀π ∈ Π. First, we show

that vt+1
α (π, y) is discrete-convex in y, ∀π ∈ Π. It is easy to verify that cz + αlg(π, z) is discrete-

convex in z. Thus, as we assume vtα(π, y) is discrete-convex in y, ∀π ∈Π, and since Gt
α(·, ·) is a sum

of discrete-convex functions, Gt
α(π, z) is discrete convex in z, ∀π ∈ Π. Hence, as we assume that

Gt
α(π,0) <∞, and since limz→+∞G

t
α(π, z) = limz→−∞G

t
α(π, z) =∞, ∀π ∈ Π, there exists a finite

global minima Sπ,tα such that Sπ,tα = arg minz∈Z{Gt
α(π, z)}, ∀π ∈Π. This implies that

min
z≥y

Gt
α(π, z) =

{
Gt
α(π,Sπ,tα ) if y < Sπ,tα ,

Gt
α(π, y) if y≥ Sπ,tα .

In order to show that vt+1
α (π, y) is discrete convex in y, we need to consider three different cases

depending on the relationship between Sπ,tα and y:

(1) If y < Sπ,tα , we have vt+1
α (π, y + 1) = −c(y + 1) + minz≥y+1 {Gt

α(π, z)} = −c(y + 1) +

Gt
α(π,Sπ,tα ), vt+1

α (π, y) = −cy + minz≥y {Gt
α(π, z)} = −cy + Gt

α(π,Sπ,tα ), and vt+1
α (π, y − 1) =

−c(y− 1) + minz≥y−1 {Gt
α(π, z)}=−c(y− 1) +Gt

α(π,Sπ,tα ). Hence vt+1
α (π, y+ 1)− vt+1

α (π, y) =

−c= vt+1
α (π, y)− vt+1

α (π, y− 1).

(2) If y = Sπ,tα , we have vt+1
α (π, y + 1) = −c(y + 1) + Gt

α(π,Sπ,tα + 1), vt+1
α (π, y) = −cy +

Gt
α(π,Sπ,tα ), and vt+1

α (π, y − 1) = −c(y − 1) + Gt
α(π,Sπ,tα ). Since Sπ,tα is the global minima,

vt+1
α (π, y+1)−vt+1

α (π, y) =−c+Gt
α(π,Sπ,tα +1)−Gt

α(π,Sπ,tα )≥−c= vt+1
α (π, y)−vt+1

α (π, y−1).
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(3) If y > Sπ,tα , we have vt+1
α (π, y + 1) = −c(y + 1) + Gt

α(π, y + 1), vt+1
α (π, y) = −cy +

Gt
α(π, y), and vt+1

α (π, y − 1) = −c(y − 1) + Gt
α(π, y − 1). By discrete-convexity of Gt

α(π, z),

vt+1
α (π, y + 1) − vt+1

α (π, y) = −c + Gt
α(π, y + 1) − Gt

α(π, y) ≥ −c + Gt
α(π, y) − Gt

α(π, y − 1) =

vt+1
α (π, y)− vt+1

α (π, y− 1).

Hence vt+1
α (π, y) is discrete-convex in y, ∀π ∈ Π. Next, we show that Gt+1

α (π,0) is

finite, ∀π ∈ Π. As we assume that Gt
α(π,0) < ∞, and since vt+1

α (π, y) ≤ −cy + Gt
α(π,0),

∀y ≤ 0, we have
∑∞

w=0 v
t+1
α (T (π,w),−w)r̂π(w) ≤

∑∞
w=0[cw + Gt

α(T (π,w),0)]r̂π(w) = cµπ +∑∞
w=0G

t
α(T (π,w),0)r̂π(w)<∞. Hence Gt+1

α (π,0)<∞, ∀ ∈Π.

Since limt→∞ v
t
α(π, y) = vα(π, y), vα(π, y) is discrete-convex in y, ∀π ∈ Π. Let Gα(π, z) = cz +

αlg(π, z) +α
∑∞

w=0 vα(T (π,w), z−w)r̂π(w). Since vα(π, y) is discrete-convex in y, ∀π ∈Π, Gα(π, z)

is discrete-convex in z, ∀π ∈ Π. Also, note that limz→+∞Gα(π, z) = limz→−∞Gα(π, z) =∞ and

limt→∞G
t
α(π,0) =Gα(π,0)<∞, ∀π ∈Π. Therefore a belief-dependent base-stock policy with base-

stock levels Sπα is optimal. We next prove (i) and (ii):

(i) For any α∈ (0,1), let U = (u1, u2, . . .) represent the order quantities under the optimal belief-

dependent base-stock levels Sπα, ∀π ∈Π. Suppose that ∃π ∈Π such that Sπα >M . Now consider

all sample paths that start with y1 = y for some finite y < Sπα and π1 = π where Sπα >M . We

now construct an alternative policy with order quantities Ũ = (ũ1, ũ2, . . .) such that

ũt =


u1− 1 if t= 1,

u2 + 1 if t= 2,

ut otherwise.

The inventory position plus the order quantity in period t under the alternative policy is

ỹt + ũt =

{
y1 +u1− 1 if t= 1,

yt +ut if t > 1.

Hence:

J Ũα (π, y)− JUα (π, y) = E

[
∞∑
t=1

αt−1[cũt +αlg(πt, ỹt + ũt)− cut−αlg(πt, yt +ut)]

∣∣∣∣∣π1 = π, y1 = ỹ1 = y

]
= αl[g(π,Sπα − 1)− g(π,Sπα)] + c((ũ1−u1) +α(ũ2−u2))

= αl

(
bP

{
l+1∑
n=1

wn ≥ Sπα

∣∣∣∣∣π1 = π

}
−hP

{
l+1∑
n=1

wn ≤ Sπα − 1

∣∣∣∣∣π1 = π

})
− (1−α)c

= αl

(
(b+h)P

{
l+1∑
n=1

wn ≥ Sπα

∣∣∣∣∣π1 = π

}
−h

)
− (1−α)c.

Since wt is non-negative, ∀t ∈ Z+, Markov’s inequality implies that J Ũα (π, y) − JUα (π, y) ≤

αl
(

(b+h)µ(l+1)

Sπα
−h
)
− (1−α)c. Since Sπα >M , αl

(
(b+h)µ(l+1)

Sπα
−h
)
− (1−α)c < 0. We have
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a contradiction because the expected total discounted cost under the alternative policy cannot

be smaller than the expected total discounted cost under the optimal policy. We thus conclude

that any policy with Sπα >M for some π ∈Π cannot be optimal.

(ii) For any α∈ (0,1), let U = (u1, u2, . . .) represent the order quantities under the optimal belief-

dependent base-stock levels Sπα, ∀π ∈Π. Suppose that ∃π ∈Π such that Sπα < 0. Now consider

all sample paths that start with y1 = y for some finite y≤ Sπα and π1 = π where Sπα < 0. Let K

be the first period after period 1 with a replenishment order, i.e., K = minn∈Z+
{n : n≥ 2, un >

0|π1 = π, y1 = y}. For a given sample path, if K = k, we construct an alternative policy with

order quantities Ũ = (ũ1, ũ2, . . .) such that

ũt =


u1 + 1 if t= 1,

uk− 1 if t= k,

ut otherwise.

The inventory position plus the order quantity in period t under the alternative policy is

ỹt + ũt =

{
yt +ut + 1 if 1≤ t≤ k− 1,

yt +ut if t≥ k.

Note that yt +ut < 0 and ỹt + ũt ≤ 0 for t < k. Hence:

J Ũα (π, y)− JUα (π, y) = E

[
∞∑
t=1

αt−1[cũt +αlg(πt, ỹt + ũt)− cut−αlg(πt, yt +ut)]

∣∣∣∣π1 = π, y1 = ỹ1 = y

]

=

∞∑
k=2

E

[
∞∑
t=1

αt−1[cũt +αlg(πt, ỹt + ũt)− cut−αlg(πt, yt +ut)]

∣∣∣∣K = k,π1 = π, y1 = ỹ1 = y

]
P{K = k}

=

∞∑
k=2

[
c−αk−1c−αlb

k−1∑
t=1

αt−1(ỹt + ũt− yt−ut)

]
P{K = k}

=

∞∑
k=2

[(1−α)c−αlb]
(

1−αk−1

1−α

)
P{K = k}.

Since 1−αk−1

1−α > 0, P{K = k}> 0 for some k≥ 2, and (1−α)c−αlb < 0 (recall αlb > c), we have

J Ũα (π, y)− JUα (π, y)< 0. We have a contradiction because the expected total discounted cost

under the alternative policy cannot be smaller than the expected total discounted cost under

the optimal policy. Any policy with Sπα < 0 for some π ∈Π cannot be optimal. �

A similar threshold policy is available in the literature: Treharne and Sox (2002) establish the

optimality of a belief-dependent base-stock policy for a finite-horizon total-cost problem with

bounded Markov-modulated demand. We extend the optimal policy structure in Treharne and

Sox (2002) to an infinite-horizon discounted-cost problem with more general Markov-modulated

demand (not necessarily bounded). In Section 4.2, we further extend the optimal policy structure

in Treharne and Sox (2002) to the infinite-horizon average-cost problem.
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4.2. The Average-Cost Problem

We next consider the vanishing discount method for our analysis of the average-cost problem: For

a fixed π̄ ∈Π, we define δα(π, y) := vα(π, y)− vα(π̄,0) as the differential discounted cost function,

∀π ∈Π, ∀y ∈Z. For any α∈ (0,1), the equation in (3) implies that

δα(π, y) + (1−α)vα(π̄,0) = min
u≥0

{
cu+αlg(π, y+u) +α

∞∑
w=0

δα(T (π,w), y+u−w)r̂π(w)

}
. (4)

We will show (in Theorem 1) that there exists a constant λ∗ and a Lipschitz continuous function

δ∗(·, ·) that together satisfy the average-cost optimality equation:

δ∗(π, y) +λ∗ = min
u≥0

{
cu+ g(π, y+u) +

∞∑
w=0

δ∗(T (π,w), y+u−w)r̂π(w)

}
, ∀π ∈Π, ∀y ∈Z,

such that (1 − α)vα(π̄,0)→ λ∗ and δα(π, y)→ δ∗(π, y) as α goes to 1. In order to obtain this

analytical result, we establish that (1−α)vα(π̄,0) is bounded with respect to α∈ (0,1) (see Lemma

1), and that δα(·, ·) is Lipschitz continuous and uniformly bounded with respect to α ∈ (0,1) (see

Lemma 2). We will also show (in Theorem 1) that the optimal replenishment policy is a belief-

dependent base-stock policy in our average-cost problem.

Lemma 1. (1−α)vα(π̄,0) is bounded with respect to α∈ (0,1).

Proof. For any α ∈ (0,1) and the initial inventory position ỹ1 = 0, consider a replenishment

policy with order quantities Ũ = (ũ1, ũ2, . . .) such that ũt = 0 if t= 1 and ũt = wt−1 if t > 1. Note

that the above policy implies that the base-stock level is zero for all π ∈ Π. Thus ỹt + ũt = 0,

∀t∈Z+. Since this is a suboptimal policy, we have

(1−α)vα(π̄,0)≤ (1−α)J Ũα (π̄,0)

= (1−α)E

[
∞∑
t=1

αt−1[cũt +αlg(πt, ỹt + ũt)]

∣∣∣∣∣π1 = π̄, ỹ1 = 0

]

= (1−α)E

[
∞∑
t=1

αt−1

(
cũt +αlb

l∑
n=0

wt+n

)∣∣∣∣∣π1 = π̄

]

= (1−α)E

[
∞∑
t=1

αt−1

(
αcwt +αlb

l∑
n=0

wt+n

)∣∣∣∣∣π1 = π̄

]

= (1−α)

∞∑
t=1

αt−1

(
αcE[wt|π1 = π̄] +αlb

l∑
n=0

E[wt+n|π1 = π̄]

)

≤ (1−α)

[
∞∑
t=1

αt−1

]
[c+ b(l+ 1)]µ= [c+ b(l+ 1)]µ.

Hence (1−α)vα(π̄,0) is bounded with respect to α∈ (0,1). �

In order to obtain further analytical results, we assume that the Markov chain governing the

demand state transitions is ergodic. Previous work has required the irreducibility of the underlying
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Markov chain for optimal policy characterization in average-cost inventory models with perfectly

observed Markov-modulated demand (see Beyer and Sethi 1997 and Huh et al. 2011). In this study,

in addition to irreducibility, we also require the aperiodicity of the underlying Markov chain for

our average-cost inventory model with partially observed Markov-modulated demand.

Assumption 1. The Markov chain with transition matrix P is ergodic.

We now consider two demand state processes {dt}t∈Z+
and {d̃t}t∈Z+

, both evolving accord-

ing to Markov chains with the same transition matrix. Let ν(i, j) := P{d = i, d̃ = j} denote

an arbitrary joint probability mass function for demand states d and d̃. Also, let Vπ,π̃ :={
ν :
∑

j∈N ν(i, j) = πi,∀i∈N , and
∑

i∈N ν(i, j) = π̃j,∀j ∈N
}

. Following Borkar (2000), we define

the Wasserstein distance between two beliefs π and π̃ that correspond to d and d̃, respectively:

∆(π, π̃) := inf
ν∈Vπ,π̃

{Eν [|d− d̃|]}= inf
ν∈Vπ,π̃

{∑
i∈N

∑
j∈N

|i− j|ν(i, j)

}
.

Using the above definition and our structural results in Proposition 1, under Assumption 1, Lemma

2 proves that δα(·, ·) is Lipschitz continuous and uniformly bounded with respect to α∈ (0,1).

Lemma 2. Suppose that Assumption 1 holds. For all finite Y ∈ Z+, δα : Π×Y→ R, where Y :=

{−Y,−Y +1, . . . , Y −1, Y }, is Lipschitz continuous and uniformly bounded with respect to α∈ (0,1).

Proof. We consider two systems with initial beliefs π and π̃, and initial inventory positions y ∈Y

and ỹ ∈ Y, respectively. Let y1, y2, . . . denote the inventory positions observed in the first system

with beliefs π1, π2, . . . under the optimal belief-dependent base-stock policy with order quantities

U = (u1, u2, . . .). Similarly, let ỹ1, ỹ2, . . . denote the inventory positions observed in the second system

with beliefs π̃1, π̃2, . . . under an alternative policy with order quantities Ũ = (ũ1, ũ2, . . .) such that

ũt = max{(yt +ut)− ỹt,0}, ∀t∈Z+.

Let ηij := min{n∈Z+ : dn = d̃n|d1 = i, d̃1 = j} denote the first period in which the demand states

of these two systems become equal to each other, given that the initial demand state is i in the

first system and j in the second system. Also, let K̃ij := mink∈Z+
{k≥ n : yk +uk = ỹk + ũk|ηij = n}

denote the first period after period ηij in which the inventory positions of these two systems become

equal to each other. Following the coupling argument in Borkar (2000), we verify that the same

demand values are observed in these systems with initial beliefs π and π̃ once the demand states dt

and d̃t become equal to each other. Hence, if the inventory positions become equal to each other as

well in a certain period, they will remain equal to each other in all future periods, i.e., if K̃ij = k,

then yt = ỹt and ut = ũt, ∀t≥ k+ 1. Thus:

δα(π̃, ỹ)− δα(π, y) = vα(π̃, ỹ)− vα(π̄,0)− vα(π, y) + vα(π̄,0) = vα(π̃, ỹ)− vα(π, y)≤ J Ũα (π̃, ỹ)− vα(π, y)
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=E

[
∞∑
t=1

αt−1[cũt +αlg(π̃t, ỹt + ũt)− cut−αlg(πt, yt +ut)]

∣∣∣∣π1 = π, π̃1 = π̃, y1 = y, ỹ1 = ỹ

]

≤
∑
i∈N

∑
j∈N

∞∑
n=1

∞∑
k=n

E

[
k∑
t=1

αt−1[αl[g(π̃t, ỹt + ũt)− g(πt, yt +ut)] + c(ũt−ut)]

∣∣∣∣∣d1 = i, d̃1 = j, y1 = y, ỹ1 = ỹ

]
P{K̃ij = k}P{ηij = n}πiπ̃j . (5)

By the alternative policy structure, yt + ut ≤ ỹt + ũt, ∀t ∈ Z+. By Proposition 1, 0 ≤ yt + ut ≤

ỹt + ũt ≤max{M,Y }, ∀t∈Z+. Hence:

g(π̃t, ỹt + ũt) = hE

[
ỹt + ũt−

l∑
m=0

w̃t+m

∣∣∣∣∣
l∑

m=0

w̃t+m ≤ ỹt + ũt, d̃1 = j

]
P

{
l∑

m=0

w̃t+m ≤ ỹt + ũt

∣∣∣∣∣d̃1 = j

}

+ bE

[
l∑

m=0

w̃t+m− ỹt− ũt

∣∣∣∣∣
l∑

m=0

w̃t+m > ỹt + ũt, d̃1 = j

]
P

{
l∑

m=0

w̃t+m > ỹt + ũt

∣∣∣∣∣d̃1 = j

}
≤ hmax{M,Y }+ b(l+ 1)µ=A.

Note that A∈R+ is finite. Consequently:

E

[
k∑
t=1

αt+l−1[g(π̃t, ỹt + ũt)− g(πt, yt +ut)]

∣∣∣∣∣d1 = i, d̃1 = j, y1 = y, ỹ1 = ỹ

]

≤E

[
k−1∑
t=1

g(π̃t, ỹt + ũt)

∣∣∣∣∣d1 = i, d̃1 = j, y1 = y, ỹ1 = ỹ

]
≤ (k− 1)A. (6)

Recall that yk+1 = ỹk+1 and wt = w̃t, ∀t ≥ n. Also, recall that E[wt] ≤ µ and E[w̃t] ≤ µ, ∀t ∈ Z+.

Thus:

E

[
k∑
t=1

αt−1c(ũt−ut)

∣∣∣∣∣d1 = i, d̃1 = j, y1 = y, ỹ1 = ỹ

]

≤E

[
k∑
t=1

c(ỹt+1− ỹt + w̃t− yt+1 + yt−wt)

∣∣∣∣∣d1 = i, d̃1 = j, y1 = y, ỹ1 = ỹ

]

= c(y− ỹ) + c

n−1∑
t=1

(E[w̃t|d̃1 = j]−E[wt|d1 = i])≤ c(y− ỹ) + c(n− 1)µ. (7)

The inequalities in (5)–(7) imply the following inequalities.

δα(π̃, ỹ)− δα(π, y)≤
∑
i∈N

∑
j∈N

∞∑
n=1

∞∑
k=n

[(k− 1)A+ c(y− ỹ) + c(n− 1)µ]P{K̃ij = k}P{ηij = n}πiπ̃j

≤A
∑
i∈N

∑
j∈N

E[K̃ij − 1]πiπ̃j + cµ
∑
i∈N

∑
j∈N

E[ηij − 1]πiπ̃j + c(y− ỹ). (8)

We make the following two observations regarding the inequality in (8):

(1) Under Assumption 1, there exists a finite Γ> 0 such that E[ηij − 1]≤ Γ, ∀i, j ∈N (see Borkar

2000). If i= j, E[ηij] = 1. If i 6= j, |i− j| ≥ 1. Thus E[ηij − 1]≤ Γ|i− j|, ∀i, j ∈N .

(2) If i= j, the inventory positions become equal once a replenishment order is observed in the

second system. Since Sπα ≥ 0, ∀π ∈Π, by Proposition 1, we place an order in the second system

no later than the period up to which a total of ỹ + 1 units of demand are observed. Hence,
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K̃ij ≤min{n :
∑n

t=1 w̃t ≥ ỹ+ 1| π̃1 = π̃}. For a sample path starting with belief π̂ ∈Π, and for

a finite ξ ∈Z+, let τπ̂,ξ := min{n :
∑n

t=1 w̃t ≥ ξ| π̃1 = π̂} be the first period when the cumulative

demand is no less than ξ. Using the second moment method, we show that

P{w̃t ≥ 1|π̃t} ≥ (E[w̃t|π̃t])2

E[w̃2
t |π̃t]

=
µ2
π̃t

ζπ̃t
=

(∑
i∈N µiπ̃

t
i

)2∑
i∈N ζiπ̃

t
i

.

As we assume ∃i∈N such that µi > 0, and by Assumption 1, we have P{w̃t ≥ 1|π̃t}> 0, ∀t∈

Z+. Thus P
{∑ξ

t=1 w̃t ≥ ξ
∣∣∣∣π̃1 = π̂

}
> 0, ∀π̂ ∈Π. Let ρξ := maxπ̂∈Π

{
P
[∑ξ

t=1 w̃t < ξ

∣∣∣∣π̃1 = π̂

]}
<

1. Notice that

E[τπ̂,ξ] =

ξ−1∑
n=0

P{τπ̂,ξ >n}+

∞∑
n=ξ

P{τπ̂,ξ >n} ≤ ξ+

∞∑
n=ξ

P{τπ̂,ξ >n}

= ξ+

∞∑
n=ξ

P

{
n∑
t=1

w̃t < ξ

∣∣∣∣ π̃1 = π̂

}
= ξ+

∞∑
k=1

(k+1)ξ−1∑
m=kξ

P

{
m∑
t=1

w̃t < ξ

∣∣∣∣ π̃1 = π̂

}

≤ ξ+

∞∑
k=1

(k+1)ξ−1∑
m=kξ

P

{
kξ∑
t=1

w̃t < ξ

∣∣∣∣ π̃1 = π̂

}
= ξ+

∞∑
k=1

ξ P

{
kξ∑
t=1

w̃t < ξ

∣∣∣∣ π̃1 = π̂

}

≤ ξ+ ξ

∞∑
k=1

P


ξ∑
t=1

w̃t < ξ,

2ξ∑
t=ξ+1

w̃t < ξ, . . . ,

kξ∑
t=(k−1)ξ+1

w̃t < ξ

∣∣∣∣ π̃1 = π̂

 .

Also notice that

P


ξ∑
t=1

w̃t < ξ,

2ξ∑
t=ξ+1

w̃t < ξ, . . . ,

kξ∑
t=(k−1)ξ+1

w̃t < ξ

∣∣∣∣ π̃1 = π̂


= P


2ξ∑

t=ξ+1

w̃t < ξ, . . . ,

kξ∑
t=(k−1)ξ+1

w̃t < ξ

∣∣∣∣ π̃1 = π̂,

ξ∑
t=1

w̃t < ξ

P

{
ξ∑
t=1

w̃t < ξ

∣∣∣∣ π̃1 = π̂

}

≤ P


2ξ∑

t=ξ+1

w̃t < ξ, . . . ,

kξ∑
t=(k−1)ξ+1

w̃t < ξ

∣∣∣∣ π̃ξ+1 = π̆

ρξ

for some π̆ ∈Π. Proceeding similarly, it can be shown that

P


ξ∑
t=1

w̃t < ξ,

2ξ∑
t=ξ+1

w̃t < ξ, . . . ,

kξ∑
t=(k−1)ξ+1

w̃t < ξ

∣∣∣∣ π̃1 = π̂

≤ ρkξ .
Consequently:

E[τπ̂,ξ]≤ ξ+ ξ

∞∑
k=1

ρkξ =
ξ

1− ρξ
<∞.

Thus if i= j, because K̃ij ≤ τπ̃,ỹ+1, we obtain E[K̃ij]<∞. If i 6= j, because K̃ij ≤ ηij + τπ̂,ŷ+1

for some π̂ ∈Π and ŷ ∈Y, and E[ηij]<∞, we again obtain E[K̃ij]<∞. Hence there exists a

finite B ∈R+ such that E[K̃ij − 1]≤B(|i− j|+ |y− ỹ|).

Now recall the inequality in (8):

δα(π̃, ỹ)− δα(π, y)≤A
∑
i∈N

∑
j∈N

E[K̃ij − 1]πiπ̃j + cµ
∑
i∈N

∑
j∈N

E[ηij − 1]πiπ̃j + c(y− ỹ)
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≤A
∑
i∈N

∑
j∈N

B(|i− j|+ |y− ỹ|)πiπ̃j + cµΓ
∑
i∈N

∑
j∈N

|i− j|πiπ̃j + c|y− ỹ|

= (AB+ cµΓ)
∑
i∈N

∑
j∈N

|i− j|πiπ̃j + (AB+ c)|y− ỹ|

= (AB+ cµΓ)E[|d1− d̃1|] + (AB+ c)|y− ỹ|. (9)

Pick an arbitrary ε > 0. With an appropriate choice of the joint mass function of (d1, d̃1), we can

obtain

δα(π̃, ỹ)− δα(π, y)≤ (AB+ cµΓ) [∆(π, π̃) + ε] + (AB+ c)|y− ỹ|.

Since ε > 0 is arbitrary, there exists a finite C ∈R+ such that δα(π̃, ỹ)− δα(π, y)≤C[∆(π, π̃) + |y−

ỹ|]. Since π, π̃ ∈Π and y, ỹ ∈Z are arbitrary, |δα(π̃, ỹ)−δα(π, y)| ≤C[∆(π, π̃)+ |y− ỹ|]. Thus δα(·, ·)

is Lipschitz continuous for α∈ (0,1).

Since the inequality in (9) holds for any π, π̃ ∈Π and for any y, ỹ ∈ Z, and δα(π̄,0) = vα(π̄,0)−

vα(π̄,0) = 0, the following inequality holds.

|δα(π, y)|= |δα(π, y)− δα(π̄,0)| ≤ (AB+ cµΓ)E[|d1− d̃1|] + (AB+ c)|y|. (10)

Since |d1− d̃1| ≤N , there exists a finite D ∈R+ such that |δα(π, y)| ≤D for any π ∈Π and for any

finite y ∈Z. Thus δα(·, ·) is uniformly bounded with respect to α∈ (0,1). �

We are now ready to state the main result of this paper that builds upon Lemmas 1 and 2:

Theorem 1. Under Assumption 1, there exist a constant λ∗ and a Lipschitz continuous function

δ∗(·, ·) satisfying the following average-cost optimality equation

δ(π, y) +λ= min
u≥0

{
cu+ g(π, y+u) +

∞∑
w=0

δ(T (π,w), y+u−w)r̂π(w)

}
. (11)

Furthermore, there exists an optimal stationary inventory replenishment policy that can be described

as a belief-dependent base-stock policy with base-stock levels Sπ,∀π ∈Π.

Proof. By Lemma 2, δα(·, ·) is Lipschitz continuous and uniformly bounded with respect to α∈

(0,1). By the Arzela-Ascoli Theorem, there exist a sequence αt→ 1 as t→∞ and a Lipschitz contin-

uous function δ∗(π, y) such that δαt(π, y)→ δ∗(π, y), ∀π ∈Π and for any finite y ∈Z. By Lemma 1,

(1−α)vα(π̄,0) is bounded with respect to α ∈ (0,1). By the Bolzano-Weierstrass Theorem, there

exist a subsequence αtn→ 1 as n→∞ and a constant λ∗ such that (1−αtn)vαtn (π̄,0)→ λ∗. We now

define the random variable Ψt(π, z) := δαt(T (π,w), z−w). Thus E[Ψt(π, z)] =
∑∞

w=0 δαt(T (π,w), z−

w)r̂π(w). Since P{wt ≥ 1|πt}> 0, ∀t∈Z+, by Proposition 1, the inventory position takes values no

greater than M after a sufficiently large number of periods. Hence, by the inequality in (10), the

following inequalities hold.

Ψt(π, z)≤ (AB+ cµΓ)N + (AB+ c)|z−w| ≤ (AB+ cµΓ)N + (AB+ c)(M +w).
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Since E[w] is finite, w is integrable. Thus, by Lemma 2 and the dominated convergence theorem,

Ψt(π, z) converges everywhere to Ψ(π, z) := δ∗(T (π,w), z−w). By the inequality in (10), and since

E[w] is finite, the following inequality holds.

E[|Ψt(π, z)|] =

∞∑
w=0

|δαt(T (π,w), z−w)|r̂π(w)≤ (AB+ cµΓ)N + (AB+ c)

∞∑
w=0

|w− z|r̂π(w)<∞.

Hence Ψt(π, z) is uniformly integrable with respect to t. Therefore, and since Ψt(π, z) con-

verges everywhere to Ψ(π, z) for any fixed π and z, E[Ψt(π, z)]→ E[Ψ(π, z)]. This implies that

limαt→1

∑∞
w=0 δαt(T (π,w), y+u−w)r̂π(w) =

∑∞
w=0 δ

∗(T (π,w), y+u−w)r̂π(w). Consequently, using

the equation in (4) and the bounded convergence theorem, we obtain

δ∗(π, y) +λ∗ = min
u≥0

{
cu+ g(π, y+u) +

∞∑
w=0

δ∗(T (π,w), y+u−w)r̂π(w)

}
. (12)

Following Theorem 1 in Ross (1968), we verify the existence of an optimal stationary deterministic

policy. By definition of δα(·, ·) and Proposition 1, δαt(π, y) is discrete-convex in y, ∀π ∈Π. Since the

limit of a sequence of discrete-convex functions is discrete-convex, δ∗(π, y) is also discrete-convex

in y, ∀π ∈Π. Thus the optimal stationary policy is a belief-dependent base-stock policy. �

In the literature several papers identify the optimal policy structure for average-cost inventory

systems with Markov-modulated demand when the state of the underlying Markov chain is perfectly

observed (Beyer and Sethi 1997 and Huh et al. 2011). To our knowledge, however, we are the

first to characterize the optimal policy structure for average-cost inventory systems with Markov-

modulated demand when the state of the underlying Markov chain can only be partially observed.

5. Discretized Approximation

Solving the optimality equation in (11) for each state (π, y)∈Π×Z and finding the optimal base-

stock level for each belief π ∈Π is a computational challenge since Π is an uncountable space. To

address this challenge, we now discretize the uncountable space Π, on which the beliefs are defined,

based on the regular grid approach developed by Lovejoy (1991): Let Qn denote a regular grid for

a given n∈Z+ such that the convex hull of Qn is Π. Specifically, Qn is defined by

Qn :=

{
[θ1, ..., θN ]∈QN

∣∣∣∣ θi =
ki
n
,

N∑
i=1

ki = n,ki ∈Z+ ∪{0}

}
,

where Q is the set of rational numbers. (Recall that N is the number of demand states.) The

number of grid points in Qn is κn = |Qn|= (N−1+n)!

(N−1)!n!
. We denote the elements of Qn by {q1, . . . , qκn}.

Any belief π ∈ Π can be expressed as a convex combination of the grid points in Qn, i.e., π =∑κn
i=1 γi(π)qi where γi(π)≥ 0 denotes the convex combination multiplier associated with qi, ∀i=

1, . . . , κn, such that
∑κn

i=1 γi(π) = 1. Using the triangulation method developed by Lovejoy (1991), we
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find the smallest simplex containing the belief π and denote the corresponding convex combination

multipliers by γ∗i (π). This method yields the convex representation scheme
¯
γn := (γ∗1(·), . . . , γ∗κn(·))

with γ∗i (·)> 0 for at most N elements of Qn as stated by the Carathéodory’s Theorem.

Following Yu and Bertsekas (2004), we define εn as the fineness of the discretization scheme

(Qn,
¯
γ1) that is formulated as

εn := max
π∈Π

max
qi∈Qn:γ∗i (π)>0

||π− qi||

where || · || denotes the Euclidean distance. Since Qn is a regular grid and any belief can only be

represented by the closest grid points to that belief according to our construction of
¯
γn, it can be

shown that εn =
√
N−1

n
√
N

. Note that εn→ 0 as n→∞. For any n ∈ Z+, we can compute the optimal

average cost λ∗n and the optimal differential cost function δ∗n(·, ·) associated with an εn-discretization

scheme (Qn,
¯
γn) by solving the following optimality equations:

δn(q, y) +λn = min
u≥0

{
cu+ g(q, y+u) +

∞∑
w=0

κn∑
i=1

γ∗i (T (q,w))δn(qi, y+u−w)r̂q(w)

}
, ∀q ∈Qn, ∀y ∈Z.

Numerical experiments in Section 6 verify the statement in Yu and Bertsekas (2004) that λ∗n

converges from below to the optimal average cost λ∗ as n grows large. In addition, again following

Yu and Bertsekas (2004), we derive an upper bound on the optimal average cost λ∗:

λ∗ ≤ λ̆n := max
(π,y)∈Π×Z

{
δ̄n(π, y)− δ̂n(π, y)

}
(13)

where

δ̂n(π, y) +λ∗n = min
u≥0

{
cu+ g(π, y+u) +

∞∑
w=0

κn∑
i=1

γ∗i (T (π,w))δ∗n(qi, y+u−w)r̂π(w)

}
, ∀π ∈Π, ∀y ∈Z,

and

δ̄n(π, y) +λ∗n = min
u≥0

{
cu+ g(π, y+u) +

∞∑
w=0

δ̂n(T (π,w), y+u−w)r̂π(w)

}
, ∀π ∈Π, ∀y ∈Z.

With the above discretization scheme, if the demand is bounded, we are able to address the

computational challenge in our problem. Suppose that the demand is bounded above by W . We

know from Proposition 1 that the optimal base-stock levels are between 0 and M in the discounted-

cost problem. Following the same proof steps as in Proposition 1, these bounds can be shown

to apply to the optimal base-stock levels in the average-cost problem, restricting the inventory

position to take values between −W and M . If the initial inventory position is above M or below

−W , it eventually falls into this range after a finite number of periods. The contribution of the cost

due to the excess or insufficient inventory in those initial periods to the average cost can thus be

disregarded in our infinite-horizon planning. In Section 6, we use the lower bound λ∗n obtained from

the above discretization scheme in our numerical experiments on instances with bounded demand.
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6. Numerical Results

In this section, for our MDP in Section 3, we conduct numerical experiments to investigate the

value of implementing belief-dependent base-stock levels (see Section 6.1) and the performance of

a myopic belief-dependent base-stock policy as a heuristic replenishment policy (see Section 6.2).

We consider instances with three demand states, i.e., N={1, 2, 3}. The demand distributions

are Binomial(20, p), Binomial(20, 0.5), and Binomial(20, 1− p) for the demand states 1, 2, and

3, respectively. We generate a total of 108 instances in which b = 20, h ∈ {2,5,10}, l ∈ {0,1,2},

p∈ {0.1,0.2,0.3,0.4}, and the transition matrix P is

P1 =

 0.5 0.25 0.25
0.25 0.5 0.25
0.25 0.25 0.5

 , P2 =

 0.7 0.15 0.15
0.15 0.7 0.15
0.15 0.15 0.7

 , or P3 =

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

 .
Since the long-run average order quantity per period equals the expected demand per period under

any base-stock policy, the unit ordering cost has no impact on the base-stock level calculation in

our experiments, and thus we exclude it from our numerical study. Our instances are similar to

those studied by many others (e.g., Chen 2010, Arifoğlu and Özekici 2010, 2011, Natarajan and

Swaminathan 2014, and Chao et al. 2018) in terms of the lead time values and the shortage to

holding cost ratios. Notice that Assumption 1 holds for each of our instances.

For each instance, using the policy iteration method, we calculate the average costs λ∗n associated

with our discretization scheme for n∈ {1,2,4,8,16,32,64} and their percentage differences from the

average cost λ∗1, i.e, 100× λ∗n−λ
∗
1

λ∗1
. Figures 1–3 exhibit these percentage gaps for our instances with

lead times 0, 1, and 2, respectively. Notice that λ∗1 is the worst lower bound that can be obtained

from our discretization scheme. It is important to note that, when n = 1 in our discretization

scheme, the number of grid points in Q1 equals the number of demand states, i.e., κ1 =N . And there

is a bijective relationship between the grid points and the demand states so that each grid point

corresponds to a different demand state. Hence, solving the optimality equations associated with

the ε1-discretization scheme (Q1,
¯
γ1), we obtain the optimal average cost that could be achieved

if the demand states were perfectly observed, which is λ∗1, and an optimal policy that can be

characterized as a state-dependent base-stock policy (Beyer and Sethi 1997). We observe from

Figures 1–3 that the average costs λ∗64 and λ∗32 are virtually equal for each instance. Thus, we take

the average cost λ∗64 as the optimal average cost in our experiments. We note that the difference

between λ∗64 and λ∗1 can be viewed as the value of perfect state information.

Our simulation studies in Sections 6.1–6.2 consist of 30 replications of 10000 periods in each

instance. We observed that the 10000-period horizon is long enough to represent our infinite-horizon
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Figure 1 100× λ∗
n−λ

∗
1

λ∗
1

vs. n when l = 0, b = 20, P ∈ {P1, P2, P3}, p∈ {0.1,0.2,0.3,0.4}, h∈ {2,5,10}.
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planning, and that the average cost found via simulation is not affected by the initial system state

in our instances. We set the initial inventory position to be zero, while we randomly choose the

initial state beliefs. We take into account the holding and backordering costs incurred in periods

l+1 through 10000, excluding those incurred in periods 1 through l, in our average cost calculation.

Starting from period 2, we update the state belief at the beginning of each period.

6.1. The Value of Belief-Dependent Base-Stock Levels

In order to investigate the value of Bayesian updating along with belief-dependent base-stock lev-

els in our MDP in Section 3, first, we consider a much simpler MDP with a stationary demand

distribution that is obtained by compounding the demand distributions based on the stationary

distribution of the underlying Markov chain. For such an MDP, a myopic base-stock policy with

a single base-stock level is optimal (Veinott 1965) and the optimal base-stock level can be eas-
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Figure 2 100× λ∗
n−λ

∗
1

λ∗
1

vs. n when l = 1, b = 20, P ∈ {P1, P2, P3}, p∈ {0.1,0.2,0.3,0.4}, h∈ {2,5,10}.
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ily found using the newsvendor formula applied to the lead-time demand distribution. For each

instance, we calculate the optimal base-stock level for this MDP and simulate the inventory system

under this base-stock level. Our simulation results indicate the average cost under this base-stock

level is on average 16.1% greater than the optimal average cost λ∗64 on our test bed, highlight-

ing the importance of incorporating the non-stationarity of demand distribution and the partial

information about demand distribution into decision-making via Bayesian updating along with

belief-dependent base-stock levels.

Recall that the optimal policy under perfectly observed demand states can be specified as a

state-dependent base-stock policy. With this observation, we now consider another simplification of

our MDP in Section 3 that in each period estimates the demand state and uses the corresponding

base-stock level that is obtained from the ε1-discretization scheme (Q1,
¯
γ1). As our estimate of

the demand state in each period t, following Chapter 9 in Barber (2012), we choose the state
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Figure 3 100× λ∗
n−λ

∗
1

λ∗
1

vs. n when l = 2, b = 20, P ∈ {P1, P2, P3}, p∈ {0.1,0.2,0.3,0.4}, h∈ {2,5,10}.
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with the highest posterior probability based on the entire demand history, i.e., arg maxi∈N π
t
i . Our

simulation results show that the average cost under this simplification is on average 9.53% greater

than the optimal average cost λ∗64 on our test bed, indicating the significance of Bayesian updating

along with belief-dependent base-stock levels in our problem.

6.2. Performance Evaluation of the Myopic Base-Stock Policy

We now adapt the myopic base-stock policy introduced by Veinott (1965) to our inventory model

as a heuristic replenishment policy. In this heuristic, the order quantity in period t is determined

according to a myopic belief-dependent base-stock level S̃π
t

that is calculated from the newsvendor

formula applied to the lead-time demand distribution conditional on the current belief πt, i.e.,

S̃π
t

= arg min
k∈{0,...,M}

(
P

{
l∑

n=0

wt+n ≤ k
∣∣∣∣πt
}
≥ b

h+ b

)
.
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Figure 4 95% confidence intervals for 100× λ̃−λ∗
64

λ∗
64

vs. p when b = 20, l ∈ {0,1,2}, P ∈ {P1, P2, P3}, h∈ {2,5,10}.
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For each instance, we simulate the inventory system under this myopic belief-dependent base-stock

policy, calculating the average cost denoted by λ̃ in each replication. Figure 4 exhibits the 95%

confidence intervals for the percentage difference from the optimal average cost λ∗64, i.e., 100× λ̃−λ∗64
λ∗64

.

We observe from Figure 4 that the confidence intervals contain zero in 92 of the 108 instances:

The myopic base-stock policy appears to be optimal at a confidence level of 95% in those instances.

We also note that the largest optimality gaps (no more than 3.07%) tend to occur when p= 0.1 and

h= 10: The myopic base-stock policy is optimal if yt ≤ S̃π
t

with probability one (Lovejoy 1992). It

performs worse as the likelihood of excess inventory at the beginning of any period, i.e., P{yt ≥ S̃π
t},

increases. For the instances with p= 0.1, in a single period, the lowest possible expected demand is

20×p= 2 while the highest possible expected demand is 20× (1−p) = 18. For such instances with

highly fluctuating demand, the base-stock levels are likely to vary more widely over time, leading

to a larger P{yt ≥ S̃π
t}. Hence, and since the holding cost is high, a worse performance results.

In the literature Treharne and Sox (2002) have evaluated the performance of the myopic belief-

dependent base-stock policy in the finite-horizon total-cost problem (with Markov-modulated
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demand and partial information). They consider instances with three demand states in which the

demand distributions are negative binomial with means 1, 8, and 16, respectively. They rescale

their distributions by truncating them at a maximum demand of 18. The transition matrices,

holding and shortage costs, and lead times in our instances are similar to those in only some of

their instances. On a test bed of 252 instances, for the myopic policy, they have found that the

average optimality gap is 5.19% and the largest optimality gap is 44.84%. This poor performance

of the myopic policy reported in Treharne and Sox (2002) prompted us to extend our numerical

experiments in the average-cost problem (again with Markov-modulated demand and partial infor-

mation) to include the compiled instances in Treharne and Sox (2002). On the same test bed, for

the myopic policy, we have found that the average optimality gap is only 0.41% and the largest

optimality gap is 3.61%. We thus conclude that the myopic policy performs significantly better in

the average-cost problem than in the finite-horizon total-cost problem.

7. Concluding Remarks

We have studied the inventory replenishment problem when the demand distribution undergoes

Markovian transitions over time. The state of the underlying Markov chain can only be partially

observed based on past demand data. After formulating this problem as an MDP with Bayesian

updating, we establish the optimality of a belief-dependent base-stock policy in the discounted-cost

case. Using the vanishing discount method, when the underlying Markov chain is ergodic, we extend

the optimality of the belief-dependent base-stock policy to the average-cost case. Numerical exper-

iments have revealed the outstanding average-cost performance of the myopic belief-dependent

base-stock policy. Structural insights gained from our study further our understanding of data-

driven approaches in inventory management that involve Bayesian updating.

Future extensions of this paper could consider inventory models with fixed replenishment order

costs. In the literature dealing with fixed ordering costs, Beyer and Sethi (1997) have shown the opti-

mality of a state-dependent (s,S) policy for average-cost inventory models with perfectly observed

Markov-modulated demand. Leveraging our structural analysis, the optimality of (s,S) policies

may be extended to average-cost models with partially observed Markov-modulated demand. Our

research may also guide future research aimed at characterizing the optimal policy structure in more

complex average-cost inventory models, such as multi-item and/or multi-echelon inventory systems

with partial demand information. Lastly, future research could study the inventory replenishment
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problem under more limited information about demand. Examples include inventory models with

unknown demand distributions and unknown transition matrices for the underlying Markov chain,

and inventory models with unknown numbers of demand states. The Baum-Welch and Viterbi algo-

rithms may be employed in estimation of such unknown parameters, enabling good approximations

of the original problem. See Mamani et al. (2017), Ban and Rudin (2019), Xin and Goldberg (2019),

and Zhang et al. (2019) for recent work on data-driven approaches in the inventory literature.
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