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Numerical solution of time-dependent three-particle Faddeev equations:
Calculation of rearrangement S matrices
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The time-dependent Faddeev equations (TDFEs) are employed for the first time as a computational tool for
three-particle scattering problems. Rearrangement transition amplitudes over a wide range of collision energies
are extracted from a single numerical wave-packet solution of the TDFE. To numerically solve the TDFE in
momentum space for a given initial wave packet, finite-element-type discretizations of Jacobi momenta in
terms of local basis functions is employed to convert the TDFE into a set of first-order differential equations
in time. Central difference formula for the time derivative is used for the time propagation step. Two forms
of TDFE are considered and incorporation of permutational symmetry for three identical particles into these
equations is carried out. The proposed method is tested on a three-body model that is often used as a benchmark
to compare different computational approaches to three-particle problem. Rearrangement S-matrix elements
obtained from the analysis of the wave-packet solution of TDFE at asymptotic times are compared with the
results of well-established time-independent methods. These results establish that the TDFE approach is a viable
and competitive addition to the existing arsenal of computational methods for the three-body scattering problem.
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I. INTRODUCTION

Computational studies of scattering problems have tradi-
tionally been carried out within the time-independent (TI)
framework. Differential form of Faddeev equations in coor-
dinate space or Faddeev-AGS integral equations in momen-
tum space has been the usual tool to study the three-body
problems in the context of nuclear physics [1–3]. During the
last two decades, however, the time-dependent wave-packet
(TDWP) approach has emerged as a viable alternative to
time-independent approach, especially for reactive scattering
of few-atom systems in chemical physics [4–7]. For few-body
problems in the context of nuclear physics, although some
earlier explorations [8–13] of the time-dependent approach
have been made, it has not so far attracted sufficient interest.
In this paper, a time-dependent wave-packet method based on
the time-dependent Faddeev equations (TDFE) is investigated
as a means of solving the scattering problem in a three-particle
system with rearrangement and breakup channels. As far as
the present author is aware, this is the first time that TDFE is
numerically solved.

The time-independent (stationary) approach involves either
the solution of the Schrödinger equation in coordinate space
subject to scattering boundary conditions, or alternatively, the
solution of momentum-space integral equations with kernels
possessing singularities corresponding to open channels. Both
schemes run into nontrivial complications for scattering sys-
tems involving rearrangements and breakup [1,2]. Implemen-
tation of appropriate boundary conditions in coordinate space
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gives rise to computational complications because (i) there
is no single set of coordinates that is capable of express-
ing boundary conditions in all types of asymptotic regions,
(ii) grid discretization or basis expansion using a single set
of coordinates is ill suited to describe rearrangement dynam-
ics, and (iii) asymptotic conditions for breakup channel may
require prohibitively large computational domains [14,15].
On the other hand, in momentum space approach, kernel
singularities associated with breakup channel can be rather
difficult to handle computationally.

Some of the problems encountered in time-independent
formulation, namely, the non-normalizable nature of scat-
tering wave functions in coordinate space, and complicated
singularities of the kernel of integral equations in momentum
space may be avoided in the time-dependent (TD) approach,
where scattering problem is posed as a time-evolution prob-
lem entirely within the Hilbert space. The time-dependent
approach is usually implemented in the form of numerical
time evolution of a given initial wave packet in coordi-
nate space or momentum space. TD approaches to reactive
scattering in the context of chemical physics are usually
formulated in coordinate space [4–7]. For few-atom prob-
lems within chemical physics, the TDWP approach, com-
pared to the time independent methods, scales more favor-
ably with respect to number of grid points and/or basis
functions used to discretize the spatial degrees of freedom.
As a result, the TDWP approach to scattering has in fact
become a real competitor to time-independent methods for
such systems [4,5]. The possibility of using momentum
space in time-dependent scattering calculations was explored
in Refs. [10–13] in the context of two- and three-particle
problems.
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In the TD approach, the time-dependent Schrödinger equa-
tion (TDSE) is converted into a set of first-order differential
equations in time by discretization of the spatial degrees of
freedom. This spatial discretization is achieved by requiring
that the TDSE is satisfied, in a weighted-residual sense, either
on a set of grid points, or on an approximation space. Time
propagation may then be done by a number of well-known al-
gorithms [4–7]. The specification of the approximation space,
or of the discretization grid, entails, first, the selection of
an appropriate set of coordinates (or momenta). In principle,
the approximation space can be built from basis functions in
any given set of coordinates. However, the separability of the
dynamics in arrangement channels at asymptotic times can not
be exploited effectively with a single choice of coordinates.

As is well known from the TI theory, there is no unique
set of coordinates capable of describing the four types of
asymptotic separable dynamics of a three-particle system.
Natural variables to describe asymptotic dynamics are the
Jacobi variables for rearrangement channels and hyperspheri-
cal variables for the breakup channel. The lack of a single set
of coordinates (or momenta) capable of describing all types of
asymptotic separable dynamics makes the space discretization
a nontrivial problem. Of course, this is the perennial problem
of rearrangement scattering whether in TI or TD contexts.

Applications of the TDWP approach in few-atom systems
employ either the hyperspherical coordinates [6] or the Jacobi
coordinates of a single rearrangement (usually the reactants)
[4,5]. The use of hyperspherical variables/bases to discretize
the spatial degrees of freedom does lead to the challenging
problem of transforming between hyperspherical and Jacobi
representations of initial and final wave packets. On the other
hand, the Jacobi-coordinate approach that uses a grid or basis
discretization in reactant Jacobi variables will not be able
to describe asymptotic configurations in other arrangements,
unless a very fine grid (or an excessively large basis) is
employed. Also, when the wave packet is propagated in terms
of the Jacobi variables of, say, the initial rearrangement, the
task of transforming to the Jacobi variables of other rearrange-
ments can be taxing. In some applications, to account for the
presence of reaction and dissociation channels, strategically
placed carefully crafted absorbing potentials are used to elim-
inate the parts of the outgoing wave packet that heads for exit
in different rearrangements than the initial.

Another way to approach the coordinate problem would
be the simultaneous use of discretization grids or expansion
bases in natural variables of all rearrangements. In the con-
text of three-particle problems, Faddeev equations provide a
natural setting for this type of approach, in that each Faddeev
component can be discretized in terms of its natural Jacobi
variables.

In the present work, the time-dependent version of the
Faddeev equations (TDFEs) is explored as a tool to implement
the time-dependent wave-packet approach for three-particle
scattering. Interestingly enough, the time-dependent version
of the Faddeev equations appear to have received scant at-
tention in the literature. It appears that the first mention
of TDFE is by Kouri et al. in Ref. [16]. Soon thereafter,
Evans [17] and Kouri et al. [18] have passingly referred to
TDFE while discussing the formal aspects of multiparticle

scattering within (what they refer to as) the arrangement-
channel quantum mechanics. In another vein, Sultanov and
coworkers [19] used TDFE as the starting point to develop a
semiclassical approach to Coulombic three-body systems with
two heavy and one light particle. The present study appears
to be the first TDFE calculation of a three-particle problem
above the breakup threshold. In this calculation, the spatial
discretization of TDFE is carried out in momentum space,
while time is discretized by the central difference formula.

Computational implementations of the time-dependent
scattering theory have traditionally been based on the
Schrödinger-picture coordinate-space propagation of wave
packets. Wave packets move and spread in coordinate space.
This gives rise to the so-called boundary-reflection problem,
since one has to work in practice with finite approximation
spaces, which necessarily have a finite support in coordi-
nate space. Absorbing potentials placed at the edges of the
computational domain have been used to combat these com-
plications [4,5]. In contrast, momentum amplitudes of wave
packets do not move or spread. A compact momentum-space
wave packet remains compact. In other words, the effective
momentum-space support (defined, e.g., as the momentum
interval over which the probability density is greater than a
certain minimum) does not change. Scattering manifests itself
in the form of phase modulation of the momentum ampli-
tude of the wave packet. However, wave-packet propagation
in momentum representation is not necessarily free of the
boundary-reflection problem. The fineness of the momentum
discretization determines the size of the corresponding (im-
plicit) region in the coordinate space, and, hence, the maxi-
mum period of reflection-free propagation. Nevertheless, the
momentum-space approach offers the possibility of extending
the duration of the reflection-free propagation by employing
a finer momentum grid over only the effective momentum
support of the wave packet [12,13].

Organization of this paper is as follows. In Sec. II, the no-
tation and kinematics for three-particle problem is introduced.
Section III is devoted to a review of the basic features of
the computational time-dependent approach to rearrangement
scattering. Time-dependent Faddeev equations are introduced
in Sec. IV A. Discretizations of spatial variables and time are
the subject of Sec. IV B. Permutational symmetry of three
identical particles are incorporated into the TDFE in Sec. V.
Computational details and results are reported in Sec. VI.
Finally, concluding remarks and possible directions of further
research are given in Sec. VII.

II. THREE-PARTICLE SYSTEM

A. Kinematics and arrangement channels

The collision system of interest consists of three particles,
which are labeled as 1, 2, and 3. The greek letters α, β,
γ , etc. will be used as dummy indices for the particles.
Adopting the so-called odd-man-out notation, two-fragment
partitions (α)(βγ ) of the three particles are referred to as
rearrangements and will be enumerated by the index α of
the lone (spectator) particle. The quantities associated with a
two-particle subsystem (βγ ) will also be labeled by the index
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α of the remaining third particle. The breakup (dissociation)
channel (1) (2) (3) will be denoted by the index 0. The three
rearrangement channels and the breakup channel constitute
the arrangement channels of the three-particle system.

The Jacobi coordinates for the rearrangement (α)(βγ )
are denoted by xα and yα . Here, xα is the internal relative
coordinate of the pair (βγ ), and yα the relative position of the
spectator particle α with respect to the center of mass (c.o.m.)
of the pair (βγ ). The momenta conjugate to xα and yα are pα

and qα , respectively.
The total c.o.m. Hamiltonian H of the system is given as

H = H0 + V, (1)

where H0 is the kinetic energy operator, and V the total
interaction. In the present paper the total interaction is taken
to be pairwise additive, viz., V = V1 + V2 + V3.

In terms of the Jacobi variables of rearrangement channels,
the free Hamiltonian H0 admits the following decompositions:

H0 = kα + Kα, α = 1, 2, 3, (2)

where

kα = p2
α/(2μα ), and Kα = q2

α/(2να ). (3)

Here μα is the the reduced mass for relative motion within
the two-particle subsystem ( βγ ) and να the reduced mass
for relative motion of the spectator particle α with respect to
c.o.m. of the pair (β, γ ).

The eigenstates of H0 are the plane-wave states |pαqα〉. In
labeling state vectors, the notation | p ′q′ 〉α will be used to
represent the state |pα = p′, qα = q′〉. That is, the variables
or labels that appear inside a ket vector (or bra vector) are the
variables or labels of the rearrangement channel whose index
appears as a subscript to the ket (or bra) sign. This notation is
especially convenient in the implementation of permutational
symmetry when particles are identical. For instance, with P123

denoting the even permutation operator that takes (123) to
(231), one has P123|pq〉1 = |pq〉2.

The momentum states are normalized as α〈 pq|p′q′ 〉α =
δ(p − p′) δ(q − q′). Adopting a similar normalization for the
position states |xy〉α , one has α〈xy|pq〉α = (2/π )3 exp{ip ·
x} exp{iq · y}.

The internal Hamiltonian for the pair (βγ ) is hα = kα +
Vα , where Vα is the potential between particles β and γ . The
bound states of hα are denoted |φαn〉 with energies εαn. The
time dependence of the bound states is simple: |φαn(t )〉 =
exp(−iεαn t ) |φαn〉.

The asymptotic dynamics in the rearrangement channel
α is described by Hα (≡ Kα + hα ). The eigenstates of Hα

(referred to as channel states) will be denoted as |φαnqα〉
or |φnq〉α , with corresponding energy eigenvalues Eαnq =
εαn + q2

α/2να . The channel interaction V α is defined as V α =
H − Hα . As the total interaction is pairwise additive, one has
V α = ∑

β δ̄αβ Vβ , where δ̄αβ = 1 − δαβ .

B. Model

The three-particle system considered in this work consists
of three identical particles (nucleons) whose total interaction
is pairwise additive, with the pair potentials restricted to act

only on the s-wave states of the pairs. The time-dependent
approach has been tested using two models for the pair
potential:

(i) Rank-1 separable potential

V = |χ > λ < χ |,
where 〈p|χ〉 = 1/(p2 + c2), with c = 1.444 fm−1. The pa-
rameter λ was chosen to give the bound-state energy ε =
−0.05370 fm−2.

(ii) Malfliet-Tjon (MT-III) potential [20]

V (r) = VR
e−μRr

r
− VA

e−μAr

r
,

whose momentum-space representation is given as

V (q, q′) = 1

2π2

(
VR

(q − q′)2 + μ2
R

− VA

(q − q′)2 + μ2
A

)
.

The values of parameters are taken from [21]: VA = 626.885
MeV fm, VR = 1438.72 MeV fm, μA = 1.55 fm−1, and μR =
3.11 fm−1. The particle (nucleon) mass and h̄ are set to unity
and fm is taken as as the unit of length. The nucleon mass
adopted yields the conversion factor 1 fm−2 = 41.47 MeV.

In the present paper, attention is further restricted to states
of zero total angular momentum. Therefore, in what fol-
lows, all angular variables will disappear and momentum
states |pq〉α will be replaced by spherical momentum states
|pq〉α ( ≡ (4π )−1

∫
dp̂

∫
dq̂ |pq〉α ). The subspace of all pos-

sible asymptotic states |φnq〉α in a given rearrangement α of
the three-particle model is then characterized by the projector

�α =
∑

n

∫
q2 dq |φnq〉α α〈φnq|. (4)

As is well known, with separable pair potentials, Faddeev
equations for rearrangement transition operators are reduced
to a set of effective two-body integral equations in the spec-
tator momenta. Although these effective potentials possess
logarithmic singularities that require careful treatment, vari-
ous numerical techniques exist to solve them accurately. In
the present work, reference results for the separable-potential
model were obtained by solving the effective two-body equa-
tions using a Schwinger-type variational method.

For the other model with MT-III potential, accurate bench-
mark solutions above the breakup threshold have been re-
ported in the literature using several different approaches
[21–23]. However, these benchmark results are available only
at two collision energies. Reference results over a wide range
of energies were generated using an extension of the coupled-
reaction-channels (CRC) method in which the CRC ansatz is
augmented by two-body pseudostates to simulate the breakup
channel. It has been demonstrated in the past that this method
can give accurate results for both the separable-potential
model [24] and the local MT-III model [25].

C. Approximation spaces

Discretization of spatial variables is usually carried out by
projecting the wave packet on an approximation space and
then requiring the TDSE (or equivalent dynamical equation)
to hold on a test space. Depending on the nature of the

024002-3
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selected approximation and test spaces, one can have different
computational schemes. In this work, the Galerkin scheme
was chosen to handle the spatial degrees of freedom.

The basis functions for the α-rearrangement subspace
Sα are the direct product functions uαi(pα )vα j (qα ), i =
1, 2, . . . , Iα ; j = 1, 2, . . . , Jα . Here {uαi(pα )} is a suitable
set of Iα expansion functions for the pair, while {vα j (qα )} a
suitable set of Jα expansion functions for the spectator.

Note that basis functions in a given variable are not neces-
sarily orthonormal. Therefore, one needs the overlap matrices
�αp and �αq for the bases {ui(pα )} and {u j (qα )}, respectively.
The overlaps α〈uiv j |ui′v j′ 〉α are collected in the matrix �α .
which is given by the direct product of matrices �αp and �αq.
Due to its direct-product nature, this overlap matrix is easy to
deal with.

III. TIME-DEPENDENT DESCRIPTION OF
REARRANGEMENT SCATTERING IN A

THREE-PARTICLE SYSTEM

Time-dependent treatment of the collision of an incident
particle with a bound pair seeks the solution of the time-
dependent Schrödinger equation,

i
∂|�(t )〉

∂t
= H |�(t )〉 (5)

subject to the initial condition

|�(0)〉 = |�αn0q0 (0)〉 = |φαn0 fαq0〉 = |φn0 fq0〉α (6)

describing the spectator particle α (with average momentum
q0) incident upon the pair (βγ ) (in bound state φαn0 ). Here
| fαq0〉 is an incoming wave packet for the relative motion of
particle α with average momentum q0, and average separation
y0. The present numerical implementation uses a Gaussian
wave packet:

〈yα| fαq0〉 = N
eiq0yα

yα

e−(yα−y0 )2/2d2
, (7)

where N is a normalization constant, and d the width param-
eter. The average separation y0 and the width d are chosen so
that the effective coordinate-space support of the initial wave
packet is outside the the range of the channel interaction (V α).

The free time evolution of the initial state |�αv0q0〉 under
Hα is given by

|�αn0q0 (t )〉 = |φn0 (t ) fq0 (t )〉α =
∫

q2 dq |φn0 q〉α fαq0 (q, t ),

(8)
where fαq0 (q, t ) = e−itEαn0q fαq0 (q), with Eαn0q = εαn0 +
q2/2να , and fαq0 (q) being the momentum amplitude of the
Gaussian wave packet given in Eq. (7).

Let |�αn0q0 (t )〉 denote the solution of the three-particle
TDSE that coincide with |�αv0q0 (t )〉 at time t = 0. One can
define the rearrangement components of the total wave packet
via the projections∣∣� (β )

αn0q0
(t )

〉 = �β |�αn0q0 (t )〉, β = 1, 2, 3. (9)

As t → ∞, these components will be spatially separated, and
the scattering into the rearrangement β will be solely con-
tained in |� (β )

αn0q0
〉. The components |� (β )

αn0q0
(t )〉, β = 1, 2, 3,

can be further analyzed as

∣∣� (β )
αn0q0

(t )
〉 =

∑
n

∫
q2dq|φnq〉βgβn(q, t ), (10)

where

gβn(q, t ) =β

〈
φnq

∣∣� (β )
αn0q0

(t )
〉
. (11)

As t → ∞, gβn(q, t ) represents an outgoing wave packet for
the spectator particle β.

The fundamental result of the time-dependent scattering
theory is that, as t → ∞,∣∣� (β )

αn0q0
(t )

〉 = Sβα |�αn0q0 (t )〉, β = 1, 2, 3, α = 1, 2, 3,

(12)

where Sβα is the scattering operator for the rearrangement
process (α)(βγ ) → (β )(αγ ).

To extract the sharp-energy matrix elements of the rear-
rangement S operators, one can use the energy conserving
property of Sβα , viz.,

β〈φn′q′ | Sβα |φnq〉α = Ŝβn′q′, αnq(Eαnq ) δ(Eβn′q′ − Eαnq), (13)

where Ŝβn′q′, αnq(Eαnq ) is the reduced S-matrix element whose
absolute value square gives the probability for the transition
from the initial state |φnq〉α to the final state |φn′q′〉β . By
projecting Eq. (10) onto the channel state |φn′q′〉β , and making
use of Eqs. (8) and (12), one finds, as t → ∞,

Ŝβn′q′, αn0q(E ) =
√

νβq′

ναq
β〈φn′q′|�αn0q0 (t )〉
α〈φn0 q|�αn0q0 (t )〉

=
√

νβq′

ναq

gβn′ (q′, t )

fαq0 (q, t )
, (14)

where q is fixed by the requirement E = εβn′ + q′2/2νβ =
εαn0 + q2/2να .

Numerical determination of �αn0q0 (t ) is beset by the well-
known difficulties of rearrangement scattering, as alluded to
in Sec. I. The usual strategy to tackle the time-dependent
propagation of a wave packet would be to discretize the the
spatial degrees of freedom by expanding the wave packet in
a basis. This basis could be specified either in momentum
space or in coordinate space. In this work, momentum space
is used. Choosing a suitable basis, however, is no easy task,
and is hampered by the well-known complications of the
rearrangement scattering. For instance, if three-particle basis
functions are taken as direct products of functions in pα and
qα , such a separable basis will not be appropriate to describe
the dynamics in other rearrangement channels β( �= α).

Clearly the chosen basis must be capable of describ-
ing outgoing (separable) wave packets such as |φβn gβn〉 in
all rearrangements, β = 1, 2, 3. In earlier work [10,11], in-
spired from the coupled-reaction-channels (CRC) method, a
nonorthogonal basis {uαi(qα )vα j (qα ), n = 1, 2, . . . , Iα, m =
1, 2, . . . , Jα, α = 1, 2, 3 }, consisting of separable basis func-
tions from all rearrangements had been used. In this CRC-like
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scheme, the total wave packet was expanded as

|�αn0q0 (t )〉 =
3∑

β=1

Iβ∑
i=1

Jβ∑
j=1

|uiv j〉β cβi j (t ), (15)

and expansion coefficients cβi j (t ) are obtained by solving the
following system of first-order equations:

i
3∑

β=1

Iβ∑
i′=1

Jβ∑
j′=1

γ 〈uiv j |ui′v j′ 〉β dcβi′ j′ (t )

dt

=
3∑

β=1

Iβ∑
i′=1

Jβ∑
j′=1

γ 〈uiv j |H |ui′v j′ 〉β cβi′ j′ (t ), (16)

where i = 1, . . . , Iγ , j = 1, . . . , Jγ and γ = 1, 2, 3. Al-
though this scheme was shown to work reasonably well with
modest basis sizes [10,11,13], the presence of the nonorthog-
onality overlap matrix α〈uiv j |ui′v j′ 〉β is an undesirable feature
that makes the numerical solution of Eq. (16) awkward and
inconvenient.

The use of basis functions in hyperspherical coordinates
provides an alternative to separable bases in Jacobi coordi-
nates (see, e.g., Ref. [6]). However, description of separable
wave packets such as |φβn gβn〉 in terms of hyperspherical
coordinates is not free of difficulties either. The description
of a wave packet that splits into rearrangement pieces, which
emerge in different asymptotic regions is best done in terms of
separable bases in Jacobi coordinates. Thus simultaneous use
of multiarrangement bases without giving rise to nonorthogo-
nality problem is called for. Faddeev formalism of three parti-
cle dynamics provides just the right setting for this approach.

IV. TIME-DEPENDENT FADDEEV EQUATIONS

A. Formalism

The celebrated Faddeev equations [26] for the three-
particle system have been originally derived and used within
time-independent framework. It involves dividing the the total
time-independent scattering state |�E 〉 for total energy E
as |�E 〉 = |ψF

1 〉 + |ψF
2 〉 + |ψF

3 〉, in terms of the three rear-
rangement components |ψF

α 〉, α = 1, 2, 3. These components
satisfy the coupled equations⎛

⎝E − H1 0 0
0 E − H2 0
0 0 E − H3

⎞
⎠

⎛
⎜⎝

∣∣ψF
1

〉
|ψF

2 〉
|ψF

3 〉

⎞
⎟⎠

=
⎛
⎝ 0 V1 V1

V2 0 V2

V3 V3 0

⎞
⎠

⎛
⎜⎝

∣∣ψF
1

〉∣∣ψF
2

〉∣∣ψF
3

〉
⎞
⎟⎠. (17)

Another lesser-known version of Faddeev wave function
equations is⎛

⎝E − H1 0 0
0 E − H2 0
0 0 E − H3

⎞
⎠

⎛
⎜⎝

∣∣�T F
1

〉
∣∣�T F

2

〉
∣∣�T F

3

〉
⎞
⎟⎠

=
⎛
⎝ 0 V2 V3

V1 0 V3

V1 V2 0

⎞
⎠

⎛
⎜⎝

|�T F
1 〉∣∣�T F
2

〉
∣∣�T F

3

〉
⎞
⎟⎠, (18)

where the interaction matrix is the transpose of the usual
Faddeev interaction matrix of Eq. (17). This version will be
referred to as the transposed Faddeev equations. As elabo-
rated by Levin [27], this version corresponds to the Faddeev-
Lovelace choice for the coupling of rearrangements. Each
of the components |�T F

1 〉, |�T F
2 〉, and |�T F

3 〉 are, in fact,
identical to the full state |�E 〉. To obtain Eq. (18), one first
rewrites the full Schrödinger equation as

(E − H1)|�E 〉 = V2|�E 〉 + V3|�E 〉,
and then labels different occurences of |�E 〉 with rearrange-
ment indices in the following manner:

(E − H1)
∣∣�T F

1

〉 = V2

∣∣�T F
2

〉 + V3

∣∣�T F
3

〉
.

That is, the arrangement subscript α in |�T F
α 〉 is simply a

bookkeeping device indicating that, in expressions such as
(E − Hα )|�E 〉 or Vα|�E 〉, the total scattering state |�E 〉 will
be treated in terms of the Jacobi variables and/or expansion
basis appropriate for the rearrangement α.

In the time-dependent context, the full wave packet |�(t )〉
is decomposed into Faddeev components as

|�(t )〉 = ∣∣ψF
1 (t )

〉 + ∣∣ψF
2 (t )

〉 + ∣∣ψF
3 (t )

〉
, (19)

where the time-dependent Faddeev components are now de-
fined via

i
∂
∣∣ψF

β (t )
〉

∂t
= Vβ |�(t )〉, (20)

with β = 1, 2, 3. This is in complete analogy to (E −
H0)|ψF

β 〉 = Vβ |�E 〉 in the time-independent context. Since
one assumes that V is pairwise additive, viz., V = V1 + V2 +
V3, one can easily verify that summing Eq. (20) over the
components gives the time-dependent Schrödinger equation.
If one rewrites Eq. (20) as(

i
∂

∂t
− H0

)∣∣ψF
β (t )

〉 = Vβ

(∣∣ψF
1 (t )

〉 + ∣∣ψF
2 (t )

〉 + ∣∣ψF
3 (t )

〉)
(21)

and then rearranges, one obtains the TDFE:

i
∂|ψF

β (t )〉
∂t

= Hβ

∣∣ψF
β

〉 + Vβ

(∣∣ψF
γ (t )

〉 + ∣∣ψF
α (t )

〉)
, (22)

where (α, β, γ ) stand for cyclic permutations of (1,2,3). For
future reference, Eq. (22) is rewritten in explicit matrix form:

i
∂

∂t

⎛
⎜⎝

∣∣ψF
1 (t )

〉
∣∣ψF

2 (t )
〉

∣∣ψF
3 (t )

〉
⎞
⎟⎠ =

⎡
⎣

⎛
⎝H1 0 0

0 H2 0
0 0 H3

⎞
⎠

+
⎛
⎝ 0 V1 V1

V2 0 V2

V3 V3 0

⎞
⎠

⎤
⎦

⎛
⎜⎝

|ψF
1 (t )〉∣∣ψF
2 (t )

〉∣∣ψF
3 (t )

〉
⎞
⎟⎠. (23)

TDFE is to be solved subject to the initial condition∣∣ψF
β (0)

〉 = δβα|�αn0q0 (0)〉, (24)

where �αn0q0 is the initial wave packet defined in Eq. (6). Note
that, in our notation for Faddeev components, reference to the
initial state has been suppressed.
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As shown in Ref. [16], at asymptotic times, the outgoing
wave packet emerging in the rearrangement β is solely con-
tained in the Faddeev component |ψF

β (t )〉. That is, as t → ∞,

�β

∣∣ψF
β (t )

〉 = Sβα|�αn0q0 (t )〉, β = 1, 2, 3, α = 1, 2, 3.

(25)
and

Ŝβn′q′, αn0q(E ) =
√

νβq′

ναq

β〈φn′q′|ψF
β (t )〉

α〈φn0 q|�αn0q0 (t )〉 . (26)

Alternatively, one can extract the rearrangement S matrix
using Eq. (14) with the total wave packet �αn0q0 (t ) obtained
from the Faddeev components via �αn0q0 (t ) = ∑3

β=1 ψF
β (t ).

In other words, at asymptotic future, both �β �αn0q0 (t ) and
�β ψF

β (t ) represent the portion of the outgoing wave packet
in which spectator β is flying away from the bound pair (αγ ).

The time-dependent version of the transposed Faddeev
equations read

i
∂

∂t

⎛
⎜⎝

∣∣�T F
1 (t )

〉∣∣�T F
2 (t )

〉∣∣�T F
3 (t )

〉
⎞
⎟⎠=

⎡
⎣

⎛
⎝H1 0 0

0 H2 0
0 0 H3

⎞
⎠ +

⎛
⎝ 0 V2 V3

V1 0 V3

V1 V2 0

⎞
⎠
⎤
⎦

×

⎛
⎜⎝

∣∣�T F
1 (t )

〉∣∣�F
T F (t )

〉∣∣�T F
3 (t )

〉
⎞
⎟⎠. (27)

where |�T F
1 (t )〉 = |�T F

2 (t )〉 = |�T F
3 (t )〉 = |�(t )〉. This set

of equations will be referred to as time-dependent trans-
posed Faddeev equations (TDTFE). The initial conditions for
TDTFE are∣∣�FL

1 (0)
〉 = ∣∣�FL

2 (0)
〉 = ∣∣�FL

3 (0)
〉 = ∣∣�αn0q0 (0)

〉
, (28)

where α is the initial rearrangement.
In principle any one of �T F

β (t ), β = 1, 2, 3, can be used
as the full wave packet �(t ) in Eq. (14). In practice, how-
ever, due to the finite nature of grid or basis representations,
scattering into the rearrangement β will be best represented
by �T F

β (t ). Thus, in computational implementation of the
TDTFE, asymptotic analysis can be based on

�β

∣∣�T F
β (t )

〉 = Sβα |�αn0q0 (t )〉. (29)

and

Ŝβn′q′, αn0q(E ) =
√

νβq′

ναq

β〈φn′q′|�T F
β (t )〉

α〈φn0 q|�αn0q0 (t )〉 , (30)

for t in asymptotic future.

B. Discretizaton of spatial variables and time in TDFE

Structure of TDFE is especially suited to the simultaneous
use of all three rearrangement bases. Each component ψF

β (t )
is expanded in its natural separable basis {|uiv j〉β}, viz.,

∣∣ψF
β (t )

〉 =
Iβ∑

i=1

Jβ∑
j=1

|uiv j〉β cF
βi j (t ), (31)

with initial condition in Eq. (24) becoming

cF
βi j (0) = δβα

Iα∑
i′=1

Jα∑
j′=1

(
�−1

α

)
i j,i′ j′ α〈ui′v j′ |�αn0q0 (0)〉. (32)

To obtain the time-evolution equation for the expansion
coefficients, the weighted-residual approach can be used. To
this end, one introduces an error term (or residual) for each
rearrangement component via

|εα〉 =
[

i
∂

∂t
− Hα

] Iα∑
i=1

Jα∑
j=1

|uiv j〉αcF
αi j (t )

−Vα

Iβ∑
i=1

Jβ∑
j=1

|uiv j〉βcF
βi j (t )−Vα

Iγ∑
i=1

Jγ∑
j=1

|uiv j〉γ cF
γ i j (t ).

(33)

Galerkin method requires that the error term |εα〉 be orthog-
onal to the approximation subspace Sα , viz., α〈uiv j |εα〉 =
0. On the other hand, collocation method would require
α〈piq j |εα〉 = 0. The time-evolution equations that follow
from the Galerkin scheme read

�α

dCF
α (t )

dt
= HαCF

α (t ) +
∑

β

δ̄αβVF
αβCF

β (t ), (34)

where CF
α (t ) is the column vector of expansion coefficients

cF
αi j (t ), and

(Hα )i j,i′ j′ = α〈uiv j |Hα|ui′v j′ 〉α (35)(
VF

αβ

)
i j,i′ j′ = α〈uiv j |Vα|ui′v j′ 〉β. (36)

By defining

CF (t ) =

⎛
⎜⎝

CF
1 (t )

CF
2 (t )

CF
3 (t )

⎞
⎟⎠, (37)

HF =
⎛
⎝H1 0 0

0 H2 0
0 0 H3

⎞
⎠ +

⎛
⎝ 0 VF

12 VF
13

VF
21 0 VF

23

VF
31 VF

32 0

⎞
⎠, (38)

and

� =
⎛
⎝�1 0 0

0 �2 0
0 0 �3

⎞
⎠, (39)

one can write the discretized TDFE in the compact matrix
form

i �
dCF (t )

dt
= HF CF (t ). (40)

To solve this system of first-order differential equations,
the central difference approximation of the time derivative
provides a convenient propagation scheme:

CF (tn+1) = −2i (δt ) �−1 HF CF (tn) + CF (tn−1), (41)

where δt is the time step, and tn = n δt . More sophisticated
time-propagation schemes could be employed, but this con-
ditionally stable scheme has proven to be satisfactory for
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present purposes. The presence of the �−1 matrix in Eq. (41)
is rather innocuous because � has a block-diagonal structure
in rearrangement indices and each block �β is a direct product
of two smaller matrices, namely, �β = �βp ⊗ �βq. This
is to be contrasted with the nontrivial task of inverting the
non-orthogonality matrix appearing in the CRC approach of
Eq. (16).

C. Discretizaton of spatial variables and time in TDTFE

Structure of TDTFE is also well suited to the simultane-
ous use of all three rearrangement bases. Each �T F

β (t ), β =
1, 2, 3, is expanded in its natural separable basis {|uiv j〉β},
viz.,

∣∣�T F
β (t )

〉 =
Iβ∑

i=1

Jβ∑
j=1

|uiv j〉β cT F
βi j (t ). (42)

The initial condition (26) becomes

cT F
βi j (0) =

Iβ∑
i′=1

Jβ∑
j′=1

(
�−1

β

)
i j,i′ j′ β〈ui′v j′ |�αn0q0 (0)〉. (43)

Applying the Galerkin scheme one obtains

�α

dCT F
α (t )

dt
= HαCT F

α (t ) +
∑

β

δ̄αβVT F
αβ CT F

β (t ), (44)

where CT F
α (t ) is the column vector of expansion coefficients

cT F
αi j (t ), and (

VT F
αβ

)
i j,i′ j′ = α〈uiv j |Vβ |ui′v j′ 〉β. (45)

By defining

CT F (t ) =

⎛
⎜⎝

CT F
1 (t )

CT F
2 (t )

CT F
3 (t )

⎞
⎟⎠ (46)

and

HT F =
⎛
⎝H1 0 0

0 H2 0
0 0 H3

⎞
⎠ +

⎛
⎝ 0 VT F

12 VT F
13

VT F
21 0 VT F

23

VT F
31 VT F

32 0

⎞
⎠, (47)

one can write the discretized TDTFE in the compact matrix
form

i �
dCT F (t )

dt
= HT F CT F (t ). (48)

Using the central difference approximation for the time
derivative, one obtains the TDTFE version of Eq. (41) as

CT F (tn+1) = −2i (δt ) �−1 HT F CT F (tn) + CT F (tn−1). (49)

V. IMPLEMENTATION OF PERMUTATIONAL
SYMMETRY

One can proceed in two ways to incorporate the effects of
particle identity.

(i) Postsymmetrization. The calculation is carried
out as if identical particles are distinguishable,

and the resulting distinguishable S matrices are
combined to obtain the physical S matrices
(symmetrized or antisymmetrized as the case
may be).

(ii) Prior symmetrization. The permutational symmetry is
incorporated into the Faddeev equations. As is well
known from the TI context, when one has three iden-
tical particles, three Faddeev equations can be reduced
to a single Faddeev equation. Of course, similar re-
duction occurs in the time-dependent case. Thus the
prior symmetrization has the advantage of involving
less computational work.

Both schemes have been used in the present study, partly
to ensure the reliability of numerical procedures and coding
practices. Instead of going over the full machinery of post-
and prior-symmetrization schemes for the general three-body
system, this section specializes to the model problem of three
identical particles involving only s-wave two-body interac-
tions and zero-angular momentum states. The two special
cases that will be considered are (i) three identical spin-0
bosons, (ii) quartet spin state of three nucleons.

A. Permutational symmetry for Faddeev equations

1. Three identical spinless particles

If one just proceeds as if identical particles are distinguish-
able, one first notes that, for collisions starting in rearrange-
ment 1, the expansion coefficients satisfy CF

2 = CF
3 in the

discretized TDFE. Here it is assumed that all particles are
treated on equal footing. In particular, all three rearrangement
bases are identical. With this caveat in mind, for our model
system one has H1 = H2 = H3, �1 = �2 = �3, and VF

12 =
VF

21 = VF
13 = VF

31 = VF
23 = VF

32. Hence, three equations for
the component vectors reduces to two coupled equations, viz.,

i �1
dCF

1 (t )

dt
= H1CF

1 (t ) + 2VF
12CF

2 (t ) (50)

i �1
dCF

2 (t )

dt
= H1CF

2 (t ) + VF
12

[
CF

1 (t ) + CF
2 (t )

]
. (51)

After numerical propagation of vectors CF
1 (t ) and CF

2 (t ) to
asymptotic times, one can construct the components |ψF

1 (t )〉,
and |ψF

2 (t )〉, from which distinguishable-particle S matri-
ces Ŝ1n,1n0 and Ŝ2n,1n0 are obtained using either Eq. (30) or
Eq. (14). Note that, for the model considered, Ŝ2n,1n0 = Ŝ3n,1n0 .
The symmetrized S matrix is then given by

Ŝsym
nn0

= Ŝ1n,1n0 + 2 Ŝ2n,1n0 . (52)

For the determination of Ŝsym
nn0 , one does not really need

to solve for the individual vectors CF
1 (t ), CF

2 (t ), and CF
3 (t ).

It would suffice to solve for their symmetric combina-
tion CF

sym(t ) = CF
1 (t ) + CF

2 (t ) + CF
3 (t ) = CF

1 (t ) + 2 CF
2 (t ).

Combining Eqs. (50) and (51), one finds

i �1

dCF
sym(t )

dt
= [

H1 + 2VF
12

]
CF

sym(t ). (53)

The initial condition is CF
sym(0) = CF

1 (0). It can be noted in
passing that Eq. (53) is the discretized version of the prior-
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symmetrized Faddeev equation, viz.,

i
∂
∣∣ψF

sym(t )
〉

∂t
= [H1 + V1 (P123 + P132)]

∣∣ψF
sym(t )

〉
, (54)

where P123 and P132 are the even permutation operators.
In the computational implementation of the prior-

symmetrization scheme, Csym(t ) is obtained by solving
Eq. (53) and the symmetrized Faddeev component |ψF

sym(t )〉
is constructed using |ψF

sym(t )〉 = ∑
i

∑
j |uiv j〉1 [CF

sym(t )]i j .
The symmetrized S matrix Ŝsym

nn0 follows from the analysis of
|ψF

sym(t )〉 at asymptotic times:

Ŝsym
n′q′, n0q(E ) =

√
q′

q

1
〈
φn′q′∣∣ψF

sym(t )
〉

1〈φn0 q|�1n0q0 (t )〉 . (55)

Alternatively one can form the symmetrized full wave
packet

|�sym(t )〉 = (I + P123 + P132)
∣∣ψF

sym(t )
〉

= (I + P123 + P132)
∑

i

∑
j

|uiv j〉1
[
CF

sym(t )
]

i j
,

(56)

and extract the elastic S matrix via

Ŝsym
n′q′, n0q(E ) =

√
q′

q
1〈φn′q′|�sym(t )〉

1〈φn0 q|�1n0q0 (t )〉 . (57)

2. Three nucleons in quartet spin state

One can apply a similar procedure to implement the anti-
symmetrization requirement for the system of three identical
spin-1/2 fermions. For the special case of the quartet state of
three nucleons (within s-wave interaction model and for zero
angular momentum states), the antisymmetrized S-matrix el-
ements is obtained from the distinguishable-particle S-matrix
elements via

Ŝanti
nn0

= Ŝ1n,1n0 − 0.5Ŝ2n,1n0 − 0.5Ŝ3n,1n0 = Ŝ1n,1n0 − Ŝ2n,1n0 .

(58)

The factor of −0.5 in this equation represents the spin-isospin
recoupling coefficient between rearrangements of three nucle-
ons in the quartet spin state.

If one is interested in the determination of Ŝanti
nn0

only,
it would suffice to solve for the antisymmetric combi-
nation CF

anti(t ) = CF
1 (t ) − 0.5CF

2 (t ) − 0.5 CF
3 (t ) = CF

1 (t ) −
CF

2 (t ). The time-evolution equation for CF
anti(t ) is obtained by

combining Eqs. (50) and (51):

i �1
dCF

anti(t )

dt
= [

H1 − VF
12

]
CF

anti(t ). (59)

Again this equation is the discretized version of the prior-
antisymmetrized Faddeev equation:

i
∂
∣∣ψF

anti(t )
〉

∂t
= [H1 + V1 (P123 + P132)]

∣∣ψF
anti(t )

〉
, (60)

As before the incorporation of the antisymmetry re-
quirement reduces the computational burden. In the com-
putational implementation of this prior-antisymmetrization

scheme, CF
anti(t ) is obtained by solving Eq. (59) and the

antisymmetrized Faddeev component |ψF
anti(t )〉 is constructed

using |ψF
anti(t )〉 = ∑

i

∑
j |uiv j〉1 (CF

anti(t ))i j . The antisym-
metrized S-matrix element Ŝanti

nn0
is then obtained from the

asymptotic analysis of |ψF
anti(t )〉 via

Ŝanti
n′q′, n0q(E ) =

√
q′

q
1
〈
φn′q′∣∣ψF

anti(t )
〉

1
〈
φn0 q

∣∣�1n0q0 (t )
〉 . (61)

Alternatively one can form the antisymmetrized full wave
packet∣∣�F

anti(t )
〉 = (I + P123 + P132)

∣∣ψF
anti(t )

〉
= (I + P123 + P132)

∑
i

∑
j

|uiv j〉1
[
CF

anti(t )
]

i j,

(62)

and extract the elastic S matrix via

Ŝanti
n′q′, n0q(E ) =

√
q′

q
1〈φn′q′|�F

anti(t )〉
1〈φn0 q|�1n0q0 (t )〉 . (63)

B. Permutational symmetry for transposed Faddeev equations

Introduction of permutational symmetry into the trans-
posed Faddeev equations proceed pretty much like that of the
Faddeev equations.

1. Three identical spinless particles

Since for three identical particles in the present model,
H1 = H2 = H3, �1 = �2 = �3, and VT F

12 = VT F
21 = VT F

13 =
VT F

31 = VT F
23 = VT F

32 , the three equations for CT F
1 , CT F

2 , and
CT F

3 reduce to two coupled equations, viz.,

i �1
dCT F

1 (t )

dt
= H1CT F

1 (t ) + 2VT F
12 CT F

2 (t ) (64)

i �1
dCT F

2 (t )

dt
= H1CT F

2 (t ) + VT F
12

[
CT F

1 (t ) + CT F
2 (t )

]
, (65)

where the fact that CT F
2 = CT F

3 has been used. After numer-
ical propagation of vectors CT F

1 (t ) and CT F
2 (t ) to asymptotic

times, one can construct the states |�T F
1 (t )〉, and |�T F

2 (t )〉,
from which distinguishable-particle S matrices Ŝ1n,1n0 and
Ŝ2n,1n0 are obtained using Eq. (30). The symmetrized S matrix
Ŝsym

nn0 is then given by Eq. (52).
For the determination of Ŝsym

nn0 , it would suffice to solve for
the symmetric combination CT F

sym(t ) = CT F
1 (t ) + CT F

2 (t ) +
CT F

3 (t ) = CT F
1 (t ) + 2 CT F

2 (t ). Combining Eqs. (64) and (65),
one finds

i �1

dCT F
sym(t )

dt
= [

H1 + 2VF
12

]
CT F

sym(t ). (66)

The initial condition becomes CT F
sym(0) = CT F

1 (0) +
CT F

2 (0) + CT F
3 (0). In passing it is noted that Eq. (66) is

the discretized version of the prior-symmetrized form of the
transposed Faddeev equation, viz.,

i
∂
∣∣�T F

sym(t )
〉

∂t
= [H1 + (P123 + P132)]V1

∣∣�T F
sym(t )

〉
. (67)
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In the computational implementation of the prior-
symmetrization scheme, CT F

sym(t ) is obtained by solving
Eq. (66) and the symmetrized state |�T F

sym(t )〉 is con-
structed using |�T F

sym(t )〉 = ∑
i

∑
j |uiv j〉1[CT F

sym(t )]i j . The
symmetrized S matrix Ŝsym

nn0 then follows from the analysis of
|�T F

sym(t )〉 at asymptotic times:

Ŝsym
n′q′,n0q(E ) =

√
q′

q

1
〈
φn′q′∣∣�T F

sym(t )
〉

1〈φn0 q|�1n0q0 (t )〉 . (68)

2. Three nucleons in quartet spin state

As in the case for Faddeev equations, the antisymmetrized
S-matrix elements is obtained from the distinguishable-
particle S-matrix elements via Eq. (58). If one is solely
interested in the determination of Ŝanti

nn0
, it would suf-

fice to solve for the antisymmetric combination CT F
anti(t ) =

CT F
1 (t ) − 0.5CT F

2 (t ) − 0.5CT F
3 (t ) = CT F

1 (t ) − CT F
2 (t ). The

time-evolution equation for CT F
anti(t ) is obtained by combining

Eqs. (64) and (65):

i�1
dCT F

anti(t )

dt
= [

H1 − VT F
12

]
CT F

anti(t ). (69)

Again, the incorporation of the antisymmetry requirement
reduces the computational burden. In the computational im-
plementation of this postantisymmetrization scheme, CT F

anti(t )
is obtained by solving Eq. (69) and the antisymmetrized
wave packet |�T F

anti (t )〉 is constructed using |�T F
anti (t )〉 =∑

i

∑
j |uiv j〉1(CT F

anti(t ))i j . The antisymmetrized S-matrix el-
ement Ŝanti

nn0
is then obtained from the asymptotic analysis of

|�T F
anti (t )〉 via

Ŝanti
n′q′,n0q(E ) =

√
q′

q
1
〈
φn′q′∣∣�T F

anti (t )
〉

1〈φn0 q|�1n0q0 (t )〉 . (70)

VI. CALCULATIONS AND RESULTS

A. Reference results

Reference results for the three-boson and three-fermion
models described in Sec. V has been obtained within time-
independent framework. For the separable pair potential,
momentum-space Faddeev integral equations for rearrange-
ment transition operators has been used. As is well known,
with separable pair potentials, Faddeev equations are reduced
to a set of effective two-body integral equations in the spec-
tator momenta. However, above the breakup threshold, the
effective potentials of these integral equations have loga-
rithmic singularities that require careful treatment. For the
present study, the effective two-body equations have been
solved using Schwinger variational principle with a basis
of piecewise polynomials in the spectator momentum. Due
attention has been paid to the logarithmic singularities in the
effective potential term in accordance with the analysis of
singularities given in Ref. [28]. A subtraction scheme similar
to the one used in Ref. [29] has been devised to calculate
matrix elements involving these singularities.

Reference results for the three-boson and three-fermion
models with the local pair potential (MT-III) has been ob-
tained using an extension of the coupled-reaction-channels

TABLE I. Inelasticity parameter |S| and real part of phase shift δR

for the seperable potential model. Results obtained from the numeri-
cal wave-packet solutions of TDTFE are compared with the results of
two different sets of time-independent calculations. Faddeev results
refer to Faddeev integral-equation calculations in momentum space,
while CRC refers to the calculations using the CRC ansatz supple-
mented with two-body pseudostates. Results obtained from the wave
packet at different asymptotic times T are listed for various values
of spectator momentum q. Wave-packet parameters are q0 = 2 fm−1,
y0 = 9 fm, d = 1.5 fm. Finite-element grid corresponds to Ip = 44
and Jq = 201.

q (fm−2) T (fm2) |Ŝsym| δ
sym
R |Ŝanti| δanti

R

0.50 32 0.8462 171.59 1.0347 77.39

40 0.8581 170.50 1.0119 78.47

48 0.8844 170.26 0.9889 78.22

CRC 0.8959 172.42 0.9876 77.59

Faddeev 0.8959 172.35 0.9876 77.51

1.00 32 0.4113 119.54 0.8827 39.90

40 0.4148 119.25 0.8829 39.91

48 0.4126 119.32 0.8835 39.91

CRC 0.4176 119.25 0.8824 40.01

Faddeev 0.4183 119.11 0.8825 39.96

1.50 24 0.3178 52.68 0.9068 19.16

32 0.3203 52.71 0.9073 19.16

40 0.3223 52.97 0.9081 19.17

48 0.3230 53.21 0.9089 19.18

CRC 0.3177 52.97 0.9065 19.19

Faddeev 0.3181 53.05 0.9069 19.15

2.00 24 0.6006 26.32 0.9541 9.38

32 0.6010 26.29 0.9545 9.38

40 0.6006 26.30 0.9549 9.38

48 0.6010 26.29 0.9555 9.38

CRC 0.5966 26.34 0.9535 9.39

Faddeev 0.5974 26.33 0.9537 9.37

2.50 24 0.7871 15.49 0.9773 4.82

32 0.7874 15.51 0.9795 4.82

40 0.7876 15.55 0.9797 4.83

48 0.7884 15.56 0.9800 4.83

CRC 0.7837 15.64 0.9790 4.82

Faddeev 0.7846 15.56 0.9791 4.81

(CRC) method. In this approach, the usual CRC expansion
ansatz is supplemented with pseudostates in each rearrange-
ment as described in Ref. [24]. In effect, the two-body contin-
uum is simulated by a discrete set of pseudostates. To ensure
convergence for a rather wide range of collision energies, the
reference CRC results quoted in this paper were obtained us-
ing a set of 80 pseudostates for each two-particle subsystem. A
comparison of the results from Faddeev and CRC approaches
for the separable potential model are given in Table I for se-
lected values of q. That this approach is capable of producing
accurate results for the MT-III model with a much smaller
pseudostate basis has already been demonstrated in Ref. [25].
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TABLE II. Inelasticity parameter |S| and real part of phase
shift δR for the local potential model. Results obtained from the
numerical wave-packet solutions of TDTFE are compared with the
CRC results at a number of collision energies. Benchmark results
from the literature are also given for two of the collision energies.
Results obtained from the wave packet at different asymptotic times
T are listed for various values of spectator laboratory energy ELab

in .
Wave-packet parameters are q0 = 2 fm−1, y0 = 9 fm, d = 1.5 fm.
Finite-element grid corresponds to Ip = 44 and Jq = 201.

ELab
in )

(MeV) q (fm−2) T (fm2) |Ŝsym| δ
sym
R |Ŝanti| δanti

R

14.1 0.5498 32 0.7918 152.23 1.0083 69.68

40 0.8088 152.93 0.9756 69.64

48 0.8279 152.71 0.9787 69.18

CRC 0.8302 153.12 0.9783 68.96

Refs. [22,23] − − 0.9782 68.95

42.0 0.9488 32 0.4333 105.77 0.9009 37.58

40 0.4362 105.74 0.9019 37.60

48 0.4417 104.63 0.9029 37.60

CRC 0.4328 105.21 0.9033 37.71

Refs. [22,23] − − 0.9035 37.71

105.0 1.50 24 0.4997 38.32 0.9459 13.90

32 0.5037 38.37 0.9465 13.90

40 0.5046 38.47 0.9471 13.90

48 0.5045 38.65 0.9479 13.91

CRC 0.5009 38.46 0.9452 13.6

186.6 2.00 24 0.7903 16.58 0.9863 4.91

32 0.7910 16.59 0.9867 4.91

40 0.7912 16.59 0.9872 4.91

48 0.7919 16.60 0.9876 4.92

CRC 0.7880 16.63 0.9858 4.95

291.6 2.50 24 0.9431 6.03 0.9791 1.17

32 0.9438 6.04 0.9981 1.17

40 0.9446 6.06 0.9984 1.17

48 0.9452 6.06 0.9985 1.18

CRC 0.9424 6.07 0.9976 1.18

For the fermion model with MT-III potential, Table II contains
a comparison of CRC results with benchmark results from
Refs. [22,23] at two collision energies. Unfortunately, such
benchmark results for the boson case are not available and the
CRC results alone are used as the reference.

Since in the three-particle model under consideration there
is only one bound state in each rearrangement, the only
rearrangement S matrices occurring after proper account of
permutational symmetry are Ŝsym

1q,1q(E ) and Ŝanti
1q,1q(E ), which

correspond to the symmetrized and antisymmetrized rear-
rangement S-matrix elements of the three-boson and three-
fermion cases, respectively. In the presentation of results,
these S-matrix elements are referred to as elastic S matrices
and are denoted as Ŝsym(E ) and Ŝanti(E ). Recall that E and q
are related in the present model by E = ε + 3q2/4. Here ε is
the energy of the sole bound state of the two-particle system.

B. Computational implementation of the wave-packet method

For the expansion bases ui and v j , piecewise quadratic
polynomials [30] are used. For this purpose, a computational
domain in the p-q plane for each rearrangement is chosen by
introducing the cutoff values pmax and qmax. The values for
these cutoffs are chosen by considering the momentum-space
support of the wave packet. The interval [0, pmax] for the vari-
able p is partitioned into Ip finite elements, and a set of I local
quadratic interpolation functions ũi(p) are defined on this
p grid. Here I = 2Ip − 1. Similarly, [0, qmax] is partitioned
into Jq finite elements, and J local quadratic interpolation
functions ṽ j (q) are defined on the q grid, with J = 2Jq − 1.
Explicit forms of these local piecewise interpolation functions
can be found in Ref. [12,30]. The basis functions ui(p) and
v j (q) are then defined via

ui(p) = ũi(p)

p
and u j (q) = ṽ j (q)

q
. (71)

Note that the finite-element grids do not have to be equally
spaced, but are chosen to have a denser set of points in regions
where wave packet is expected to have appreciable amplitude.
For the p variable we used Ip = 44 and the grid points were
distributed as [0(10)0.5],[0.5(15)2.0],[2.0(5)3.0],[3.0(14)12],
where the notation [a(n)b] denotes the division of the interval
[a, b] into n equal finite elements. For the q variable, the finest
grid used Jq = 201 finite elements. These choices give rise
to I = 87, and J = 401, with the resulting dimension of the
Hamiltonian matrix becoming 34887.

The finite-element grid for q is chosen by taking into
account the average and width of the momentum distribution
of the initial wave packet. More points are used over the
effective momentum support (defined for present purposes
as the interval over which momentum probability density is
greater than 1 × 10−4) of the packet. Calculations reported in
this paper employed two sets of parameters for the initial wave
packet:

(i) q0 = 2 fm−1, y0 = 9 fm, d = 1.5 fm. This wave
packet is quite broad in momentum space: its effec-
tive momentum support is the interval [0.0,4.0]. For
this case, the interval [0, qmax] was divided into 201
finite elements and the grid points were distributed
as [0(30)0.3],[0.3(168)4.5],[4.5(3)4.8] where [a(n)b]
means that the interval [a, b] is divided into n equal
finite elements.

(ii) q0 = 1 fm−1, y0 = 18 fm, d = 3 fm. This packet
is narrower in momentum space than the previous
packet. Its effective momentum support is the interval
[0, 2.0]. Since this packet is wider in coordinate space,
initial center of the packet is taken as y0 = 18 in order
to ensure that essentially almost all of the initial wave
packet is outside the range of the interaction. The inter-
val [0, qmax] was divided into 201 finite elements ac-
cording to [0(100)1.0],[1.0(70)2.4],[2.4(31)4.8]. An-
other slightly less narrower momentum-space wave
packet (with q0 = 1 fm−1, y0 = 9, d = 2.5 fm) was
also used in some calculations. For the time propaga-
tion, the time step of δt = 0.005 was found adequate.
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FIG. 1. Real and imaginary parts of the symmetrized S-matrix
Ssym for the three-boson model with separable pair potential are
plotted as a function of spectator momentum q. Results obtained
via Eq. (68) from the numerical wave-packet solution of the time-
dependent transposed Faddeev equation (TDTFE) are compared with
reference results from solutions of time-independent momentum-
space Faddeev integral equations. Parameters of the initial wave
packet are q0 = 2 fm−1, y0 = 9 fm, d = 1.5 fm.

Ŝsym(E ) are extracted from the solutions of TDFE us-
ing asymptotic forms of either the Faddeev components via
Eq. (55) or the total wave packet via Eq. (57). Similarly,
Ŝanti(E ) are extracted from asymptotic forms of the Faddeev
components via Eq. (61) or the total wave packet via Eq. (63).
On the other hand, solutions of TDTFE in asymptotic future
yield Ŝsym(E ) via Eq. (68) and Ŝanti(E ) via Eq. (70).

C. Results for three-boson and three-fermion models

Figures 1 and 2 present the results of the time-dependent
approach for the separable-potential model using the TDTFE
version with the broader wave packet. Shown are Ŝsym(E )
and Ŝanti(E ) extracted from numerically propagated total wave
packet of the TDTFE approach at time t = 40 fm2. For q
between 0.5 fm−1 and 4 fm−1, wave-packet results and refer-
ence results are essentially indistinguishable on these graphs.
However, wave-packet results for low q in the tail of the
momentum distribution are of lower accuracy (fermion case)
or even qualitatively wrong (boson case). For q < 0.5 fm−1

where the momentum density of the initial wave packet is
less than 5 × 10−3, the results with this particular initial wave
packet do not at all exhibit the dip that exists in reference

FIG. 2. Same as Fig. 1 but for Santi of the three-fermion model.
Wave-packet results were calculated via Eq. (70) from the numerical
wave-packet solution of the time-dependent transposed Faddeev
equation (TDTFE).

FIG. 3. Real part δR of phase shift for three-boson and three-
fermion models with separable pair potential. Results of wave
packet calculation are compared with results from time-independent
momentum-space Faddeev calculations. Parameters of the initial
wave packet are q0 = 2 fm−1, y0 = 9 fm, d = 1.5 fm.

results for ImŜsym. The dip in ReŜsym is not fully recovered
either. On the other hand, the results for the fermion model are
more accurate in general and in the low-energy region as well.

It is customary to analyze such scattering information in
terms of the inelasticity parameter |Ŝ| and the real part δR of
the complex phase shift δ (defined via Ŝ = e2iδ = |Ŝ|e2iδR ).
Figures 3 and 4 show |Ŝ| and δR as a function of the spec-
tator momentum q, respectively. The agreement between the
wave-packet and Faddeev calculations is quite satisfactory for
q > 0.5 fm−1. Interestingly, δR for the boson case exhibits
a jump of 180 degrees at about q = 0.445 fm−1. In the
low-energy end, for q < 0.5 fm−1, inelasticity parameters
from wave-packet calculations are seriously defective for both
fermion and boson cases. Wave-packet results for δR in low-
momentum region have the wrong behavior for the boson
case, while δR for the fermion case at least have the right type
of dependence on q.

Note that at collision energies corresponding to q <

0.2676 fm−1 only elastic channel is open. For q >

0.2676 fm−1, the breakup channel is open and in fact dom-
inates over rearrangement, especially, for the three-boson
model. In Table I, a quantitative comparison of wave-packet
results with reference results is made at selected values of q
and at various values of asymptotic time T . Although there is
some variation with evaluation time T , the agreement between

FIG. 4. Inelasticity parameter |S| for three-boson and three-
fermion models with separable pair potential. Results of wave-
packet calculation are compared with results from time-independent
momentum-space Faddeev calculations. Parameters of the initial
wave packet are q0 = 2 fm−1, y0 = 9 fm, d = 1.5 fm.
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FIG. 5. Real and imaginary parts of the symmetrized S matrix
Ssym for the three-boson model with the MT-III potential are plotted
as a function of spectator momentum q. Parameters of the initial
wave packet are q0 = 2 fm−1, y0 = 9 fm, d = 1.5 fm.

the Faddeev and wave-packet results is quite satisfactory
(except for q = 0.5 fm−1) for both |Ŝ| and δR. Thus, these cal-
culations show that fairly accurate and stable rearrangement
S matrices can be extracted for over a rather large range of
collision energies from a single wave-packet propagation.

Encouraged by these results, the time-dependent approach
has next been tested on the model with local pair potential
MT-III. Figures 5 and 6 give the S-matrix results obtained
from the TDTFE approach with the same wave packet used in
the separable-potential calculation reported above. In Figs. 7
and 8, |Ŝ| and δR are given as functions of q. These graphs
(Figs. 5–8) all look very much like the corresponding graphs
(Figs. 1–4) of the separable potential model. The jump in δR

is shifted to q = 0.375 fm−1. Table II gives a quantitative
comparison of wave-packet results (extracted at various values
of asymptotic time T ) with reference results at selected values
of the energy ELab

in of the incident particle in the laboratory
frame. Note that, for ELab

in = 14.1 MeV and 42 MeV, the
accurate results that are available in the literature [22,23]
are also shown for the fermion model with the MT-III pair
potential. The same observations and comments made on the
wave-packet results for the separable potential model apply
to the MT-III potential case as well. Except for momentum
components in the tails of the momentum space wave packet,
S matrices extracted from the asymptotic wave packet are
reasonably accurate and stable.

For an initial wave packet with broad distribution in q,
there is a great disparity between the passage times of high-
energy and low-energy components. Long propagation times
necessary for low-momentum components q < 0.5 fm−1 may

FIG. 6. Same as Fig. 5 but for Santi of the three-fermion model.

FIG. 7. Real part δR of phase shift for three-boson and three-
fermion models with the MT-III potential. Parameters of the initial
wave packet are q0 = 2 fm−1, y0 = 9 fm, d = 1.5 fm.

lead to boundary-reflection problem for high-momentum
components. To avoid such complications, momentum dis-
tribution of the initial wave packet must be taken narrow.
Accordingly, in an effort to improve the results for the low-
energy regime (q < 0.5 fm−1), an initial wave packet with
q0 = 1.0 fm−1 and d = 3 fm was tried for the boson model
with MT-III potential. Results for Ŝsym obtained using the
TDTFE approach with this wave packet at time t = 64 fm2

are shown in Fig. 9. For the fermion version, Fig. 10 presents
the results for an initial wave packet with q0 = 1.0 fm−1

and d = 2.5 fm. Results for the fermion version with this
narrower momentum wave packet are of the same quality as
the results obtained with the broader momentum wave packet.
For the boson case, ReŜsym and ImŜsym are satisfactory for
0.4 < q < 1.75 fm−1, although some oscillations showing up
in the higher-energy region. There is some improvement in
Ŝsym in the low-energy region. Wave-packet results for ImŜsym

now exhibit a dip at low-momentum values. However, it is still
not as deep as the dip in the reference results. The inelasticity
parameters and phase shifts implicit in Figs. 9 and 10 are
shown in Figs. 11 and 12. It is gratifying to observe that
there is considerable improvement in the low-q behavior of the
wave packet results for δR. However, inelasticities for q < 0.5
are still qualitatively wrong. Evidently, finite-element grids
(in momentum space) used in these calculations are relatively
coarse and unable to adequately represent time evolution of
the wave-packets with small average momentum and narrow
momentum distribution.

Numerical wave-packet solutions of the TDFE are consid-
ered next. Since the boson case provides a more stringent

FIG. 8. Inelasticity parameter |S| for three-boson and three-
fermion models with the MT-III potential. Parameters of the initial
wave packet are q0 = 2 fm−1, y0 = 9 fm, d = 1.5 fm.
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FIG. 9. Same as Fig. 5, but with q0 = 1 fm−1, y0 = 18 fm,
d = 3 fm.

FIG. 10. Same as Fig. 6, but with q0 = 1 fm−1, y0 = 9 fm,
d = 2.5 fm.

FIG. 11. Real part δR of phase shift for three-boson and three-
fermion models with the MT-III potential with the narrower
momentum-space wave packets as in Figs. 9 and 10. This figure
should be contrasted with Fig. 7.

FIG. 12. Inelasticity parameter |S| for three-boson and three-
fermion models with the MT-III potential with the narrower
momentum-space wave packets as in Figs. 9 and 10. This figure
should be contrasted with Fig. 8.

FIG. 13. Real and imaginary parts of Ssym for the three-boson
model with MT-III potential are plotted as a function of spectator
momentum q. Wave-packet results are from calculations with time-
dependent Faddeev equations (TDFEs). S matrices calculated via
Eq. (55) from the Faddeev component of the TDFE are compared
with the reference results. Initial wave-packet parameters are q0 =
2 fm−1, y0 = 9 fm, d = 1.5 fm.

testing system, calculations in the rest of this section are
restricted to three-boson model with MT-III potential. S matri-
ces Ŝsym(E ) extracted from numerically propagated Faddeev
component at time t = 40 are presented in Fig. 13. Since
the same initial wave packet has been used in both TDFE
and TDTFE calculations, Fig. 13 is to be compared with
Fig. 5. Results from Faddeev component are not satisfactory
for q < 1 fm−1. Apparently spatial separation of the Faddeev
components of the wave packet at asymptotic times that the
formal analysis predicts does not get materialized in these
calculations. But the sum of the Faddeev components provide
more stable and more accurate results as shown in Fig. 14. In
fact there are only slight differences between Figs. 5 and 14
for Ssym. Nevertheless, based on this and similar other (unre-
ported) calculations, it is concluded that the TDTFE approach
appears to yield more accurate results than TDFE approach.

VII. SUMMARY AND OUTLOOK

Present work reports the numerical wave-packet solution
of the time-dependent Faddeev equations and successful cal-
culation of rearrangement S matrices for a wide range of
energies from a single wave packet. To the best knowledge
of this author, this constitutes the first instance where time-

FIG. 14. Real and imaginary parts of Ssym for the three-boson
model are plotted as a function of spectator momentum q. Wave-
packet results of this figure were obtained via Eq. (57) from the
numerical total wave-packet solution of the TDFE (i.e., from the sum
of Faddeev components). Same initial wave packet as in Fig. 13.
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dependent Faddeev equations are solved numerically. The
local-potential model used to implement the proposed time-
dependent approach is a realistic one often used to test com-
putational methods for three-body scattering [21–23,25]. The
present work demonstrates that the time-dependent Faddeev
approach is a promising addition to the the existing pool of
computational methods for three-body scattering problems.
Its computational advantage stems from the fact that one
works entirely with square-integrable functions. The problems
of boundary conditions or kernel singularities that besets the
time independent approaches are avoided. That one can obtain
scattering information for a range of collision energies from a
single solution is perhaps the greatest advantage. In contrast,
the computational effort needed for one collision energy in
time-independent schemes is roughly the same magnitude as
that needed by the propagation and analysis of just one wave
packet. The computational effort involved in organizing and
executing the propagation of one initial Faddeev wave packet
is comparable to that of solving the Faddeev equations in
coordinate space or AGS equations in momentum space for
one collision energy. If anything, time-dependent approach
is simpler as far as computational complexity is concerned
because, once Hamiltonian matrix is constructed, the time
propagation is reduced to repeated matrix vector multiplica-
tions and other basic linear algebra operations. As such, the
main body of the calculation is in extremely suitable form
for parallel computing with use of graphics processing units
(GPU) [31,32]. By adopting the current method to compu-
tational platforms involving GPUs, more realistic potentials
could be handled with finer discretization grids and without
the drastic truncation of angular momentum states.

Compared with the time-dependent versions of CRC ansatz
[10,13] and hyperspherical-expansion approaches [6], the
time-dependent Faddeev approach allows for the simultane-
ous use of Jacobi variables and bases for all rearrangements
without the formal overcompleteness concern or the computa-
tional difficulties caused by the nonorthogonal overlap matrix.

Most Faddeev calculations in the time-independent context
are staged in momentum space. Present study shows that
the momentum space is rather convenient also in the time-
dependent context. As opposed to the moving and spreading

character of wave packets in coordinate space, momentum
space wave packets pretty much remain compact. Thanks
to this feature, the numerical effort can be concentrated on
the momentum domain where the packet has appreciable
amplitude. One can use a finer grid over the effective support
of the wave packet, while the rest of the computational domain
can be covered with a coarser grid. This is also beneficial
in connection with the boundary-reflection problem. It was
observed that the use of a fine grid over a portion of the
total computational domain has been sufficient to guarantee
relatively long periods of reflection-free propagation. In fact,
for the wave-packet calculations reported in Table II and
Fig. 5, at t = 40 fm2, the average distance of the spectator
particle from the bound pair (as calculated from the numerical
outgoing packet) comes out as 122.9 fm, while its dispersion
is found as 29.5 fm. Note that the dispersion of y in the
initial wave packet was only 1.06 fm. Had one staged the
calculation in the coordinate representation, the propagation
of the wave packet until such long times would necessitate a
very large computational domain in Jacobi coordinates and the
use of absorbing potentials to combat the boundary reflection
problem.

The present paper has concentrated on the extraction of
rearrangement amplitudes from the wave-packet solutions of
TDFE and TDTFE equations. Of course, these solutions also
contain information about the breakup process. In fact, from
the accuracy of rearrangement amplitudes one can infer that
the total breakup probability at a given collision energy is
predicted correctly. To tackle the problem of obtaining state-
to-state breakup amplitudes, one observes that, at asymptotic
future, the difference between the total wave packet and
the sum of the rearrangement components can be identified
as the outgoing packet for the breakup channel. That is, if
one defines the breakup component of the total wave packet
via |� (breakup)

αn0q0 (t )〉 = (I − �1 − �2 − �3) |�αn0q0 (t )〉, then,
for asymptotic times T , one should have |� (breakup)

αn0q0 (T )〉 =
S0α|�αn0q0 (T )〉, where S0α is the S operator for the process
α + (βγ ) → α + β + γ . Whether this provides a viable
scheme for calculating state-to-state breakup amplitudes α <

p′q′|S0α (E )|φn0 q >α with E = ε + 3q2/4 = p′2 + 3q′2/4 will
be the subject of future work.
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