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Abstract
In this study, the predictability of the most liquid twelve cryptocurrencies are analyzed at
the daily and minute level frequencies using the machine learning classification algorithms
including the support vector machines, logistic regression, artificial neural networks, and
random forests with the past price information and technical indicators asmodel features. The
average classification accuracy of four algorithms are consistently all above the 50% threshold
for all cryptocurrencies and for all the timescales showing that there exists predictability
of trends in prices to a certain degree in the cryptocurrency markets. Machine learning
classification algorithms reach about 55–65% predictive accuracy on average at the daily
or minute level frequencies, while the support vector machines demonstrate the best and
consistent results in terms of predictive accuracy compared to the logistic regression, artificial
neural networks and random forest classification algorithms.

Keywords Cryptocurrency · Machine learning · Artificial neural networks · Support vector
machine · Random forest · Logistic regression

1 Introduction

The dramatic growth of Bitcoin prices and other cryptocurrencies has attracted great attention
in recent years. Increasingmore than 120% in the year 2016, and reaching to a ‘hard to believe’
level of $20,000 from $900 in the year 2017, Bitcoin prices has experienced an exponential
growth that led to opportunities of enormous gains that no other financial asset class can
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Fig. 1 Daily scaled prices in US dollars for Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC) and Ripple
(XRP)

bring in such a short time. Other cryptocurrencies like Ethereum, Ripple and Litecoin were
no exception and their prices have increased several thousand percent in 2017 alone (see
Fig. 1).

In addition to that, Bitcoin’s dominance in market capitalization over the cryptocurrency
market has gradually faded from 85% in 2010 to 50% today, showing that an overall attraction
to the cryptocurrencies has taken place in the last couple of years.

Lately, as Bitcoin spirals to new lows everyday in the year 2018, while dragging the entire
cryptocurrencymarket downwith it,market participants are becoming increasingly interested
in the factors that lead to such downturns to understand the price dynamics of these digital
cryptocurrencies.

However, from the perspective of a cryptocurrency trader, whether the prices going up
or down is no problem as long as the direction is predictable. In the case of an expected
boom period, investors can take a long position in cryptocurrencies beforehand to realize
their returns once the prices reach up to a certain level. Whereas in the case of a bust period
foreseen in the future, investors can short sell these cryptocurrencies through margin trading
(allowed bymany cryptocurrency exchanges) to gain excess returns.Moreover, taking long or
short positions has becomemuch easier after the action taken by theCBOE inDecember 2017
when they introduced Bitcoin futures. Such a financial asset provides investors to speculate
on Bitcoin prices in both directions through leverage without even holding Bitcoins. Similar
strategies can be implemented lately for other cryptocurrencies through binary options traded
in the offshore exchanges.

All these anecdotes lead us to the question of whether cryptocurrency prices are pre-
dictable? In otherwords, does EfficientMarketHypothesis (EMH) hold for cryptocurrencies?
In an efficient market (Fama 1970), any past information should already be reflected into the
current prices so that prices might be effected by only future events. However, since the future
is unknown, prices should follow a random walk (or a martingale process, to be precise). In
the special case of theweak-form efficiency, future returns can not be predicted on the basis of
past price changes, however, since the earlier works by Mandelbort (1971) and others (Fama
and French 1988; Lo and Mackinlay 1988; Poterba and Summers 1988; Brock et al. 1992;
Cochran et al. 1993), weak-form of EMH has been found to be violated in various types of
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asset returns,1 which in turn leads to important problems such as: (i) preferred investment
horizon being a risk factor (Mandelbort 1997); and (ii) the fail of common asset pricing
models such as CAPM or APT, or derivative pricing models like the Black-Scholes-Merton
model (Kyaw et al. 2006; Jamdee and Los 2007).

As evident by the discussions above, EMH has been an intriguing subject for both aca-
demicians and market professionals for a very long time, and naturally, the efficiency of
cryptocurrencies (especially of Bitcoin) has gained immediate interest due to this fact. For
example, the pricing efficiency of Bitcoin has been studied extensively in the last couple of
years in various academic papers: Urquhart (2016) provides the earliest evidence on the status
of market efficiency for Bitcoin and concludes that Bitcoin is not weakly efficient, however
it has a tendency of becoming weakly efficient over time. Building upon that, Nadarajah
and Chu (2017) run various weak-form efficiency tests on Bitcoin prices via power trans-
formations and state that Bitcoin is mostly weak-form efficient throughout their sample
period. Excessive amount of studies followed on the same topic with different approaches
in methodologies, sample frequency, benchmark currency etc. (Bariviera 2017; Vidal-Tomas
and Ibanez 2018; Jiang et al. 2018; Tiwari et al. 2018; Khuntia and Pattanayak 2018; Sensoy
2019). Against all different perspectives, the main conclusion is that Bitcoin is inefficient,
but to gain weak-form efficiency over time.2

Even though the related literature on Bitcoin is satisfactory, other cryptocurrencies has
attracted relatively less attention. Brauneis and Mestel (2018) investigate the weak-form
efficiency of cryptocurrencies in the cross-section, and show that liquidity and market cap-
italization has a significant effect on the pricing efficiency. In another study, Wei (2018)
analyzes the return predictability of 456 cryptocurrencies and concludes that there is a strong
negative relationship between return predictability with cryptocurrency liquidity. Bouri et al.
(2019a) analyse various cryptocurrencies and find that price explosivity in one cryptocur-
rency leads to explosivity in another. Bouri et al. (2019b) examine the role of trading volume
in predicting the returns and volatility of several cryptocurrencies and show that trading vol-
ume carries useful information to predict extreme negative and positive returns of all sample
cryptocurrencies, however it has limited ability to forecast future volatility for a small group
of cryptocurrencies. Mensi et al. (2019) compare the efficiency of Bitcoin and Ethereum at
the intraday level and show that Bitcoin is more inefficient for overall, upward, and down-
ward trends. In a recent study, Ji et al. (2019) show that cryptocurrencies are integrated within
broadly-defined commodity markets.

According to our view, the problem with the abovementioned literature is threefold: (i)
There are vast amount of studies on the pricing efficiency of Bitcoin, however other cryp-
tocurrencies are mostly ignored in this strand of literature; (ii) almost all of the previous
literature rely on common statistical tests where the outcome of these tests simply reject the
null hypothesis of weak-form efficiency or not. However, in the case of inefficiency, these
tests provide no explicit way of exploiting the opportunities nor state the potential excess
gains that could be obtained through consistent active trading; and (iii) most of the literature
deals with daily returns, however high-frequency analysis is ignored.

In this study, we aim to tackle all the abovementioned problems. Using returns obtained at
various intraday frequencies for the most liquid twelve cryptocurrencies, we test their return
predictability via several methods including support vector machines, logistic regression,

1 See Noakes and Rajaratnam (2016) and Avdoulas et al. (2018) for more recent evidence.
2 Some studies focus on dependency structure between Bitcoin prices and other variables. For example, see
El Alaoui et al. (2019) and Bouri et al. (2018a, b, c). For other various aspects of the cryptocurrency markets,
see Cretarola and Figà-Talamanca (2019), Giudici and Polinesi (2019) and Koutmos (2019).
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artificial neural networks and random forest classification algorithms. Naturally, our contri-
bution to the literature is manyfold: First, unlike the previous studies that mostly focus on
only Bitcoin, we cover a sample of twelve cryptocurrencies. This helps us to understand the
overall price dynamics of the cryptocurrency market rather than a single digital currency.
Second, previous studies usually use daily data, whereas we cover a sample ranging from a
few minutes to daily frequency. This is especially important since in the current status of the
financial markets, algorithmic (especially high-frequency) trading is implemented actively,
with average asset holding periods barely extend over a few minutes (Glantz and Kissell
2013). Several cryptocurrency exchanges provide algorithmic trading connections to their
customers which makes it essential to analyse the cryptocurrency market’s pricing efficiency
at the intraday level (Sensoy 2019). Third, rather than using the common statistical method-
ologies to test the pricing efficiency, we refer to the state of the art methodologies used in
the decision sciences that provide us the potential patterns to be exploited and the resulting
gains if the selected strategy is implemented. Finally, the use of many cryptocurrencies and
different timescales the set of features utilized for prediction can be easily verified in their
ability to generalize in different timescales for different cryptocurrencies. This is particularly
important since most studies on using machine learning algorithms for forecasting consider
a single asset at a single timescale without showing the potential of generalization ability of
algorithms in different markets and timescales.

Accordingly, we find that the direction of returns in cryptocurrency markets can be pre-
dicted for the daily or minute level timescales in a consistent manner with classification
accuracies reaching as high as 69% success ratio and with average accuracy for all sample
cryptocurrencies around 55–60%. Furthermore, we identify that the support vector machines
and even logistic regression algorithms outperform the artificial neural networks and random
forest algorithms. Support vector machines are well known for their robustness with respect
to noisy data and also have great ability to generalize to different timescales and market con-
ditions. Overall, support vector machines and also logistic regression perform sufficiently
well across different timescales and different cryptocurrencies. Formarket practitioners these
results indicate the possibility to design trading rules based on these classification algorithms.

Our findings complementmany of the earlier studies by showing that weak form efficiency
property in cryptocurrency markets is violated both at daily and various minutely levels
supporting the works by Sensoy (2019) on Bitcoin and Mensi et al. (2019) on Ethereum,
and extending them for several cryptocurrencies. However, in addition, we show that these
inefficiencies can be exploited explicitly with specific algorithms and the resulting potential
gains are reported. Our findings also show that trading volume, as an input in the algorithms,
can be used in forecasting cryptocurrency returns which supports the results of El Alaoui
et al. (2019) on Bitcoin and Bouri et al. (2019b) on a small group of cryptocurrencies and
extends them for a much larger group of cryptocurrencies.

The rest of the paper is organized as follows: Sect. 2 presents the data we use in this study.
Section 3 explains the methodologies that we employ to uncover the predictability patterns.
Section 4 provides the empirical findings and also checks the robustness of the results and
finally, Sect. 5 concludes.

2 Data

In this study, we use the dollar-denominated cryptocurrency data from the Bitfinex exchange.
We obtain the trade data from the Kaiko digital asset store. Our initial dataset covers the
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Fig. 2 Daily scaled prices for the selected coins

period from 1 April 2013 to 23 June 2018, where the starting date covers only the trade data
of Bitcoin. Within this time period, there are seventy-seven cryptocurrencies which trade
against US dollar, however, there are only a few cryptocurrencies with data covering longer
than 1 year.3 The earliest starting date for the other cryptocurrencies’ data is 10 August
2017. Hence, in order to have enough number of cryptocurrencies with reasonable number
of observations to drawmeaningful and robust conclusions, we use two filteringmechanisms.
First, we choose cryptocurrencies which have data starting on 10 August 2017 and is still
available on the last day of our sample, 23 June 2018. Second, for any selected frequency,4

we choose the cryptocurrencies having less than 1% non-trading time interval within all time
intervals. These two criteria leave us with twelve cryptocurrencies to be analysed: Bitcoin
Cash (BCH), Bitcoin (BTC), Dash (DSH), EOS (EOS), Ethereum Classic (ETC), Ethereum
(ETH), Iota (IOT), Litecoin (LTC), OmiseGO (OMG), Monero (XMR), Ripple (XRP), and
Zcash (ZEC). Figure 2 shows the daily closing prices for each of the selected coins. The
prices are scaled by the price as of date 10 August 2017.

As of 17 June 2018, there are 1298 cryptocurrencies traded in the global markets.5 As it is
shown in Table 1, twelve cryptocurrencies that we use in this study already represent 79.8%
of the total cryptocurrency market capitalization as of this date. This shows that sample is
a good representative of the overall cryptocurrency markets and enables the reader to make
more general inferences about the cryptocurrency market as a whole using the results of this
paper.

Table 2 presents the number of trade intervals (intervals in which there is at least one
trade) for each time frequency together with the ratios of no trade time intervals (intervals in
which there is no trade) to the total number intervals in that time frequency. For daily data
we have 318 days with at least one trade in each day. As opposed to standard procedure, we
do not carry over the last available price for the missing values (no trade intervals). This also
strengthens the robustness of our results.

3 These are Bitcoin (BTC): 01/04/2013 to 23/06/2018, Litecoin (LTC): 19/05/2013 to 23/06/2018, Ethereum
(ETH): 09/03/2016 to 23/06/2018, Ethereum Classic (ETC): 26/07/2016 to 23/06/2018
4 We use four different sampling frequencies: 15-min, 30-min, 60-min, and daily.
5 https://coinmarketcap.com/historical/20180617/.
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Table 1 Market value of the
selected cryptocurrencies

Mcap % of total Mcap

BCH $14,762,203,191 5.2

BTC $112,259,483,017 39.9

DSH $2,168,194,562 0.8

EOS $9,570,108,557 3.4

ETC $1,485,200,676 0.5

ETH $50,463,958,154 17.9

IOT $3,328,954,782 1.2

LTC $5,574,619,332 2.0

OMG $938,946,264 0.3

XMR $2,031,741,763 0.7

XRP $21,032,740,889 7.5

ZEC $804,911,554 0.3

All $224,421,062,741 79.8

Table 2 Summary statistics of trade intervals for each time frequency

15-min 30-min 60-min

# of trade
intervals

% ratio of
no trade
intervals

# of trade
intervals

% ratio of
no trade
intervals

# of trade
intervals

% ratio of
no trade
intervals

BCH 30,293 0.56 7582 0.52 7582 0.45

BTC 30,373 0.51 7603 0.45 7603 0.38

DSH 30,236 0.86 7593 0.52 7593 0.42

EOS 30,299 0.53 7586 0.46 7586 0.39

ETC 30,354 0.57 7599 0.50 7599 0.43

ETH 30,367 0.53 7603 0.47 7603 0.38

IOT 30,289 0.56 7582 0.52 7582 0.43

LTC 30,359 0.55 7598 0.51 7598 0.45

OMG 29,959 1.00 7515 0.79 7515 0.69

XMR 30,241 0.94 7602 0.52 7602 0.39

XRP 30,303 0.54 7586 0.47 7586 0.41

ZEC 30,240 0.77 7590 0.48 7590 0.38

Tables 3, 4, 5 and 6 provide descriptive statistics for the log-returns in each time frequency.
EOS, BCH, andXRP have the highest average returns, and ETCwhereas ZEChave the lowest
average returns for each of the different time frequencies. Similarly, IOT, EOS, and OMG
have the highest volatilities measured by the unconditional standard deviation and DSH,
ETH, and BTC have the lowest volatilities, respectively. It is also important to note from
the tables that the number of up-moves (increases) and down-moves (decreases) are evenly
distributed inside the data for each time frequency. This also significantly contributes to the
robustness of our empirical results.

We utilize forty features in prediction of the daily and minute level returns in the next
time period. The fundamental features used are the open, close, high, low prices, high-low
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range, number of trades in the given close to open time intervals, US dollar denominated
volume, number of cryptocurrencies traded (cryptocurrency volume) for all trades and sim-
ilarly number of trades, US dollar trade volume, cryptocurrency volume for buyer initiated
trades which altogether sum up to eleven features. The second group of features include the
last five lagged log-returns. The exponential weighted moving average of the close prices,
and the cumulative sum of the last 3 and 5 days of log-returns, and their differences are
utilized as ten additional features. Two different relative strength index, two rate of change
index and the weighted moving average of close prices are also utilized as features. Next we
briefly explain some of the commonly used technical indicators. The complete list of all the
features utilized are given in Table 7. Among others, Kara et al. (2011), Huang et al. (2005),
Guresen et al. (2011) and Kim (2003) utilize the past price information and similar set of
technical indicators as features to predict the asset returns in various other markets except
the cryptocurrency markets.

The relative strength index is calculated using the following formula:

RSI = 100 − 100

1 + SMMA(U , n)/SMMA(D, n)
, (1)

where the smoothed moving average SMMA, i.e. an exponential moving average of the
upward and downward price changes in the last n trading days. During the upward price
change, U is calculated as

U = closenow − closeprevious and D = 0, (2)

whereas during downward price changes, the price closes below the previous close price and
we have

D = closeprevious − closenow and U = 0. (3)

Once the upward and downward price changes are calculated, the exponentialmoving average
is calculated over those values for the predetermined last n trading days. In our set of features,
we utilize two separate n values of 9 and 14 days, respectively. Once the relative strength
index is calculated, four other indicator features are also created to signal the potentially
overbought or oversold assets with respect to the 9- and 14-days RSI values. As given in
Table 7, whenever the RSI value is below 20%, a buy signal is given with value equal to 1,
whereas another variable is constructed for the sell signal yielding a value of − 1 whenever
the RSI is above 80%. These additional features are created for both 9- and 14-days RSI
values.

Furthermore, the rate of change (ROC) indicator is utilized with 9 and 14 day periods,
which is calculated based on the following formula

ROC(n) = −100 × (Last close − Price n days ago)/Price n days ago. (4)

Finally, William’s percentage R is used as another technical indicator based on the past
high and low prices over n-days window as

%R = High(n) − Last close

High(n) − Low(n)
, (5)

where n is set equal to 14 trading days window.
Finally, detailed explanation and list of formulas for a wide range of technical indicators

can be found in Achelis (1995).
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Table 7 Set of features utilized in the classification algorithms

Feature name Number of lags/window size Number of features

Open, high, low, close Last one period 4

High–low Last one period 1

# of trades, US dollar volume and
cryptocurrency volume (for all
trades)

Last one period 3

# of trades, US dollar volume and
cryptocurrency volume (for buyer
initiated trades)

Last one period 3

Returns (rt−1, . . . , rt−5) Last five periods 5

Moving average (MA) Last 5days 1

Correlation MA and close Last one value 1

�k = ∑N
t=k rt−1 + · · · + rt−k ,

k = 3, 5
Last 3/5days 2

�5 − �3 Last 3/5days 1

Relative strength index (RSI) Window size = 6, 14 2

1(RSI 6) < 20%, 1(RSI 14) < 20% Buy signals w.r.t. the RSIs 2

−1(RSI 6) > 80%,−1(RSI 14) >

80%
Sell signals w.r.t. the RSIs 2

Moving average convergence
divergence (MACD)

Fast period = 5, slow = 10,
signal period = 5

3

Rate of change, rate of change return Window = 9, 14 2

Exponential weighted moving
average (EWMA)

λ = 0.9 1

Momentum indicator Window = 5 1

Average true range Window = 5, 10 2

Williams’ %R Window = 14 1

Aroon stochastic oscillator Window = 14 1

Commodity channel index Window = 14 1

Double exponential moving average
(DEMA)

Window = 10 1

3 Classification algorithms

There are four time intervals used to calculate the target returns and depending on the return
calculated at different time horizons, the binary classification problem is considered. There-
fore, the binary target variable is denoted as 1 if the next time step return is up and denoted
as − 1 if the next step return is down. Thus, the target variable in the classification algorithm
is defined as

yt =
{
1 if Close > Open

−1 if Close ≤ Open.
(6)

Four different frequency of returns are utilized including the daily, 15-, 30-, and 60-min
returns. By considering the cross-section of twelve cryptocurrencies and a wide range of time

123



Annals of Operations Research (2021) 297:3–36 15

frequencies, we characterize the predictability and forecasting power of supervised machine
learning algorithms.

There are four different classification algorithms tested for classifying the target vari-
ables at different time frequencies. The implementation of classification algorithms including
logistic regression, support vector machines, artificial neural networks and random forest
algorithm, are done with the Python’s well-known scikit-learn package.6 In this section, we
briefly discuss the application of these classification algorithms without much details but
references are provided for detailed discussions of these algorithms in the existing literature.

3.1 Logistic regression

The logistic regression is a widely used classification algorithmwhich can also be considered
as a single layer neural network with binary response variable.

Given the binary classification problem of identifying the next return as up or down, the
logistic regression assigns probabilities to each row of the features matrix X . Let’s denote
the sample size of the dataset with N and thus we have N rows of the input vector. Given the
set of d features, i.e. x = (x1, ..., xd), and parameter vector w, the logistic regression with
the penalty term minimizes the following optimization problem:

min
w,c

wTw

2
+ C

N∑

i=1

log(exp(−yi (x
T
i w + c)) + 1) (7)

where the optimal value of C is selected via the built in cross validation in the logistic
regression function of scikit-learn package in Python. Naturally, the value of C determined
using the in-sample portion of the dataset and this value is utilized in the out-of-sample
predictions.

Inmost of the scientific computing software there are well-developed packages for logistic
regression and other machine learning classification algorithms as well. The main advantage
of the logistic regression model is due to its parsimony and speed of implementation. Due to
its less number of parameters to be estimated, it is also less prone to the over-fitting problem
compared to the artificial neural networks.

3.2 Support vector machines

Support vector machine forecasting algorithms have been successfully used in the literature
and such examples can be found in Kim (2003), Huang et al. (2005), Kumar and Thenmozhi
(2006), Patel et al. (2015), Lee (2009), and Ince and Trafalis (2008). In particular, support
vectormachines are suggested toworkwellwith small or noisy data and thus have beenwidely
used in the asset return prediction problems. As discussed in the literature, support vector
machine classification has the advantage of yielding globally optimal values. However, still
the results of the support vector machines are dependent on the choice of the kernel functions.
In this study, the Gaussian (rbf) kernel is utilized however the average performance under
the linear kernel is also comparable with the Gaussian kernel in the support vector machines
classification.

6 The logistic regression and other classification algorithms are implemented in Python 3.7 with the scikit-
learn package available on the following website: https://scikit-learn.org/.
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Given the training vectors xi for i = 1, 2, ..., N with a sample size of N observations, the
support vector machine classification algorithm solves the following problem given by

min
w,h,ξ

wTw

2
+ C

N∑

i=1

ξi (8)

subject to yi (wTφ(xi )) ≥ 1− ξi and ξi ≥ 0, i = 1, 2, ..., N . The dual of the above problem
is given by

min
α

αT Qα

2
− eTα (9)

subject to yTα = 0 and 0 ≤ αi ≤ C for i = 1, 2, ..., N , where e is the vector of all ones,
C > 0 is the upper bound. Q is an n by n positive semi-definite matrix. Qi j = yi y j K (xi , x j ),
where K (xi , x j ) = φ(xi )Tφ(x) is the kernel. Here training vectors are implicitly mapped
into higher dimensional space by the function φ. The decision function in the support vector
machines classification is given by

sign

(
N∑

i=1

yiαi K (xi , x) + ρ

)

. (10)

The optimization problem in Eq. 8 can be solved globally using the Karush–Kuhn–Tucker
(KKT) conditions and the details of the derivation can be found in Huang et al. (2005).

3.3 Random forest

Random forest is a learning method that operates by constructing multiple decision trees.
The final decision is made based on the majority of the trees and is chosen by the random
forest. The main advantage in the use of random forest algorithm is that it reduces the risk
of overfitting and the required training time. Random foreast algorithm offers a high level of
accuracy and runs efficiently in large datasets while it can be used both in classification and
regression problems. Decision trees, which is the building block of random forest algorithm,
can be used for various machine learning applications. But trees that are grown really deep
to learn highly irregular patterns tend to overfit the training sets. A slight noise in the data
may cause the tree to grow in a completely different manner. This is because of the fact that
decision trees have very low bias and high variance. Random Forest overcomes this problem
by training multiple decision trees on different subspace of the feature space at the cost of
slightly increased bias. This means none of the trees in the forest sees the entire training data.
The data is recursively split into partitions. At a particular node, the split is done by asking
a question on an attribute. The choice for the splitting criterion is based on some impurity
measures such as Shannon Entropy or Gini impurity.

Random forests or random decision forests are an ensemble learning method for classifi-
cation, regression and other tasks, that operate by constructing amultitude of decision trees at
training time and outputting the class that is the mode of the classes (classification) or mean
prediction (regression) of the individual trees. Random decision forests correct for decision
trees’ habit of overfitting to their training set. Although the use of random forest directly in
the return classification is less common compared to the support vector machines or artificial
neural networks, promising results have been reported for a few stocks from the US equity
market in the recent study by Khaidem et al. (2016).
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In random forest method as proposed by Breiman (2001), a random vector θk is generated,
independent of the past randomvectors θ1, ..., θk−1 butwith the samedistribution; and a tree is
grown using the training set and θk resulting in a classifier h(x, θk)where x is an input vector.
In random selection, θ consists of a number of independent random integers between 1 and
K . The nature and dimensionality of θ depends on its use in tree construction. After a large
number of trees are generated, they vote for the most popular class. This procedure is called
random forests. A random forest is a classifier consisting of a collection of tree structured
classifiers h(x, θ), k = 1, ... where the θk’s are independent identically distributed random
vectors and each tree casts a unit vote for the most popular class at input x .

3.4 Artificial neural networks

The multilayer perceptron is one of the most commonly used and flexible architecture of
neural networks.Multilayer perceptron is capable of approximating awide range of functions
(seePrincipe et al. 1999).Multilayer perceptron’s ability to capture nonlinearity is achievedby
the use of smooth activation functions connecting different layers, where common choices
of activation functions are the logistic or hyperbolic tangent functions. Furthermore, any
element of a given layer feeds all the elements of the next layer. MLPs are normally trained
with the backpropagation algorithm. The back propagation rule propagates the errors through
the network and allows adaptation of the hidden PEs. The multilayer perceptron is trained
with error correction learning, which means that the desired response for the system must be
known.

In this study, we utilize the widely used multilayer perceptron (MLP) model of artificial
neural networks. In the artificial neural network model, we utilize two hidden layers with
forty and two nodes in these layers, i.e. (40, 2), respectively. The number of hidden layers
is sufficient to capture potential non-linear relations between the input features, whereas
the number of nodes is consistent with the number of features tested. In terms of mapping
abilities, the MLP is believed to be capable of approximating arbitrary functions (Principe
et al. 1999). This has been important in the study of nonlinear dynamics, and other function
mapping problems. Two important characteristics of the multilayer perceptron are: (i) its
nonlinear processing elements (PEs) which have a non-linearity that must be smooth (the
logistic function and the hyperbolic tangent are the most widely used); and (ii) their massive
inter-connectivity, i.e. any element of a given layer feeds all the elements of the next layer
(Principe et al. 1999). MLPs are normally trained with the backpropagation algorithm. The
backpropagation rule propagates the errors through the network and allows adaptation of
the hidden PEs. The multilayer perceptron is trained with error correction learning, which
means that the desired response for the systemmust be known. An example of artificial neural
networks successfully utilized in the prediction of the stock returns is given by Kara et al.
(2011).

4 Empirical results

As stated earlier, four different classification algorithms are tested at four different time scales
including the daily, and the 15-, 30-, 60-min time intervals. The target variable in all these
forecasting problems is the open to close return in the next time period. For example, for
the daily time horizon we predict the next day’s open to close log-returns. The format of our
dataset is the same including the open, high, low, and close prices at different frequencies.
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For example, for the 5 min level, we predict the open to close return of the next 5 min. The
training sample size for all the daily prediction time horizons is set as 80% of the total sample
size rounded to the closest integer value, whereas the remaining 20% is utilized as the out-
of-sample dataset. Since there is a big difference between the number of observations in the
daily versus minute level data, the minute level dataset is split into three different sub-periods
for robustness check as well. For example, the results in Table 8 are organized in the order of
daily, 60-, 30-, and 15-min. The in sample and out of sample results are given in the first two
rows for the 80% versus 20% split of the in-sample and out-of-sample sizes, respectively.
The columns in Table 8 show the accuracy of the logistic regression results for different
coins considered. Although the accuracy across all the coins are not the same, support vector
machines and the logistic regression seem to work in yielding predictive success rate that is
always higher than 50% except very few cases. The accuracy rates for the daily timescale
can reach over 60% although the dataset has relatively small size and no fine tuning or
customization is done for each coin separately.

Alternatively, sub-periods with increasing number of out-of-sample sizes are considered
with 200, 400, and 600 observations to verify the performance in different sub-periods. Due to
the large number of observations in the minute level data, we also consider a 90% versus 10%
split for the in-sample and out-of-sample separation of the dataset separately as presented in
the results. The sub-periods that are formed by leaving the 200, 400 or 600 observations out
as the out-of-sample part of the data are utilized as well. For each sub-period, we consider
a shifted starting point for the training and out-of-sample backtesting. Numerical results
are produced with an iMac 3.7 GHz Intel Core i5 computer utilizing the python 3.7 with
the sklearn machine learning package. Running the algorithms at the daily timescale can be
completed in the order of seconds, whereas at higher frequencies, such as the 15min sampling
frequency, the computational time requirements for training and prediction increases to the
order of minutes for the multi-layer artificial neural networks models. In particular, logistic
regression and random forest algorithms are much faster in terms of training the models and
producing predictions.

As given in Table 8, the logistic regression classifier provides out-of-sample accuracy
that is often around 55% with little deviation across different time scales. Depending on the
specific coin, the accuracy can also be higher than 60%. Furthermore, it can be noted that with
specific model selection methods applied for each cryptocurrency, the performance of the
logistic regression can be boosted as well. Overall, the performance of the logistic regression
is consistent across most of the cryptocurrencies and different timescales.

In Table 9, the accuracy results obtained from the support vector machine classification
algorithm are presented. Compared to the logistic regression classification, support vector
machine algorithm provides slightly better performance both on average and also in terms
of the best performing case in different cryptocurrencies. The best performance is obtained
for the ETH and XMR both at the daily time scale with 69% for both. The last four columns
dedicated to the mean, median, minimum and maximum values of each row across different
cryptocurrencies. Therefore, when the average performance of the support vector machines
classification is compared with the other algorithms, the average accuracy of the support
vector machine algorithm is very stable and consistently outperforming the alternatives con-
sidered.

The results for the artificial neural networks are given in the Table 10. The accuracy
obtained from the artificial neural networks is also at a slightly lower level compared with the
support vector machines and the logistic regression. Although the artificial neural networks
utilize a more complex model structure and potential to capture the non-linear relationships,
there is not any significant or systematic gain from the use of artificial neural networks in

123



Annals of Operations Research (2021) 297:3–36 19

Ta
bl
e
8

L
og
is
tic

re
gr
es
si
on

cl
as
si
fic
at
io
n:

in
-s
am

pl
e
an
d
ou
t-
of
-s
am

pl
e
ac
cu
ra
cy

re
su
lts

L
og
is
tic

B
C
H

B
T
C

D
SH

E
O
S

E
T
C

E
T
H

IO
T

LT
C

O
M
G

X
M
R

X
R
P

Z
E
C

A
cr
os
s
cr
yp
to
cu
rr
en
cy

M
ea
n

M
ed
ia
n

M
in

M
ax

D
ai
ly

0.
8-
0.
2
in
-s

0.
62

0.
59

0.
67

0.
64

0.
63

0.
60

0.
66

0.
59

0.
66

0.
66

0.
62

0.
64

0.
63

0.
63

0.
59

0.
67

D
ai
ly

0.
8-
0.
2
ou

t-
s

0.
48

0.
55

0.
62

0.
53

0.
55

0.
53

0.
59

0.
57

0.
55

0.
57

0.
59

0.
55

0.
56

0.
55

0.
48

0.
62

60
m
in

0.
9-
0.
1
in
-s

0.
55

0.
56

0.
53

0.
55

0.
55

0.
54

0.
55

0.
55

0.
55

0.
54

0.
55

0.
54

0.
55

0.
55

0.
53

0.
56

60
m
in

0.
9-
0.
1
ou

t-
s

0.
55

0.
55

0.
48

0.
54

0.
54

0.
54

0.
55

0.
57

0.
56

0.
53

0.
57

0.
57

0.
55

0.
55

0.
48

0.
57

60
m
in

ou
t-
s
su
b1

0.
61

0.
52

0.
46

0.
57

0.
54

0.
55

0.
56

0.
56

0.
57

0.
57

0.
59

0.
55

0.
55

0.
56

0.
46

0.
61

60
m
in

ou
t-
s
su
b2

0.
56

0.
52

0.
48

0.
56

0.
53

0.
53

0.
56

0.
56

0.
56

0.
55

0.
57

0.
55

0.
54

0.
55

0.
48

0.
57

60
m
in

ou
t-
s
su
b3

0.
56

0.
53

0.
48

0.
53

0.
52

0.
54

0.
57

0.
56

0.
57

0.
54

0.
56

0.
54

0.
54

0.
54

0.
48

0.
57

30
m
in

0.
9-
0.
1
in
-s

0.
54

0.
55

0.
53

0.
53

0.
53

0.
53

0.
54

0.
53

0.
53

0.
52

0.
54

0.
53

0.
53

0.
53

0.
52

0.
55

30
m
in

0.
9-
0.
1
ou

t-
s

0.
55

0.
56

0.
50

0.
54

0.
52

0.
54

0.
54

0.
55

0.
55

0.
52

0.
55

0.
52

0.
54

0.
54

0.
50

0.
56

30
m
in

ou
t-
s
su
b1

0.
51

0.
53

0.
53

0.
57

0.
57

0.
51

0.
56

0.
57

0.
57

0.
51

0.
56

0.
51

0.
54

0.
54

0.
51

0.
57

30
m
in

ou
t-
s
su
b2

0.
53

0.
56

0.
51

0.
57

0.
54

0.
53

0.
57

0.
56

0.
55

0.
52

0.
57

0.
53

0.
54

0.
54

0.
51

0.
57

30
m
in

ou
t-
s
su
b3

0.
56

0.
55

0.
52

0.
55

0.
54

0.
53

0.
55

0.
57

0.
55

0.
52

0.
56

0.
52

0.
54

0.
55

0.
52

0.
57

15
m
in

0.
9-
0.
1
in
-s

0.
52

0.
54

0.
53

0.
53

0.
53

0.
52

0.
54

0.
53

0.
53

0.
53

0.
53

0.
53

0.
53

0.
53

0.
52

0.
54

15
m
in

0.
9-
0.
1
ou

t-
s

0.
54

0.
54

0.
55

0.
54

0.
50

0.
53

0.
53

0.
54

0.
54

0.
53

0.
53

0.
55

0.
54

0.
54

0.
50

0.
55

15
m
in

ou
t-
s
su
b1

0.
59

0.
59

0.
55

0.
59

0.
54

0.
55

0.
50

0.
61

0.
62

0.
57

0.
56

0.
60

0.
57

0.
57

0.
50

0.
62

15
m
in

ou
t-
s
su
b2

0.
56

0.
57

0.
54

0.
57

0.
52

0.
56

0.
54

0.
59

0.
62

0.
54

0.
57

0.
60

0.
56

0.
56

0.
52

0.
62

15
m
in

ou
t-
s
su
b3

0.
53

0.
56

0.
56

0.
54

0.
52

0.
54

0.
53

0.
57

0.
60

0.
55

0.
55

0.
59

0.
55

0.
55

0.
52

0.
60

T
he

nu
m
be
rs
in

bo
ld

in
di
ca
te
th
e
m
ax
im

um
va
lu
e
of

th
e
nu

m
be
rs
in

th
at
ro
w

123



20 Annals of Operations Research (2021) 297:3–36

Ta
bl
e
9

Su
pp
or
tv

ec
to
r
m
ac
hi
ne

(S
V
M
)
cl
as
si
fic
at
io
n:

in
-s
am

pl
e
an
d
ou
t-
of
-s
am

pl
e
ac
cu
ra
cy

re
su
lts

SV
M

B
C
H

B
T
C

D
SH

E
O
S

E
T
C

E
T
H

IO
T

LT
C

O
M
G

X
M
R

X
R
P

Z
E
C

A
cr
os
s
cr
yp
to
cu
rr
en
cy

M
ea
n

M
ed
ia
n

M
in

M
ax

D
ai
ly

0.
8-
0.
2
in
-s

0.
70

0.
69

0.
72

0.
72

0.
70

0.
72

0.
69

0.
67

0.
78

0.
71

0.
69

0.
70

0.
71

0.
70

0.
67

0.
78

D
ai
ly

0.
8-
0.
2
ou

t-
s

0.
57

0.
52

0.
62

0.
60

0.
53

0.
69

0.
47

0.
55

0.
66

0.
69

0.
53

0.
60

0.
59

0.
59

0.
47

0.
69

60
m
in

0.
9-
0.
1
in
-s

0.
61

0.
63

0.
60

0.
60

0.
61

0.
61

0.
60

0.
61

0.
61

0.
61

0.
61

0.
59

0.
61

0.
61

0.
59

0.
63

60
m
in

0.
9-
0.
1
ou

t-
s

0.
56

0.
54

0.
51

0.
51

0.
54

0.
52

0.
55

0.
55

0.
50

0.
53

0.
57

0.
55

0.
54

0.
54

0.
50

0.
57

60
m
in

ou
t-
s
su
b1

0.
55

0.
53

0.
54

0.
54

0.
54

0.
55

0.
55

0.
52

0.
59

0.
55

0.
60

0.
60

0.
55

0.
55

0.
52

0.
60

60
m
in

ou
t-
s
su
b2

0.
54

0.
51

0.
52

0.
54

0.
53

0.
53

0.
55

0.
53

0.
54

0.
49

0.
55

0.
53

0.
53

0.
53

0.
49

0.
55

60
m
in

ou
t-
s
su
b3

0.
57

0.
53

0.
50

0.
52

0.
53

0.
53

0.
55

0.
55

0.
54

0.
52

0.
57

0.
55

0.
54

0.
54

0.
50

0.
57

30
m
in

0.
9-
0.
1
in
-s

0.
58

0.
61

0.
58

0.
59

0.
59

0.
59

0.
58

0.
58

0.
59

0.
58

0.
58

0.
58

0.
59

0.
58

0.
58

0.
61

30
m
in

0.
9-
0.
1
ou

t-
s

0.
55

0.
55

0.
53

0.
54

0.
51

0.
54

0.
55

0.
55

0.
54

0.
51

0.
55

0.
53

0.
54

0.
54

0.
51

0.
55

30
m
in

ou
t-
s
su
b1

0.
54

0.
53

0.
56

0.
58

0.
51

0.
53

0.
58

0.
58

0.
58

0.
49

0.
58

0.
54

0.
55

0.
55

0.
49

0.
58

30
m
in

ou
t-
s
su
b2

0.
58

0.
55

0.
53

0.
56

0.
50

0.
56

0.
56

0.
58

0.
56

0.
51

0.
58

0.
55

0.
55

0.
56

0.
50

0.
58

30
m
in

ou
t-
s
su
b3

0.
58

0.
52

0.
53

0.
54

0.
49

0.
53

0.
55

0.
57

0.
56

0.
50

0.
56

0.
52

0.
54

0.
54

0.
49

0.
58

15
m
in

0.
9-
0.
1
in
-s

0.
57

0.
59

0.
57

0.
57

0.
57

0.
58

0.
57

0.
58

0.
58

0.
58

0.
57

0.
57

0.
57

0.
57

0.
57

0.
59

15
m
in

0.
9-
0.
1
ou

t-
s

0.
55

0.
54

0.
56

0.
53

0.
51

0.
50

0.
53

0.
55

0.
55

0.
53

0.
53

0.
55

0.
54

0.
54

0.
50

0.
56

15
m
in

ou
t-
s
su
b1

0.
58

0.
58

0.
51

0.
57

0.
56

0.
57

0.
54

0.
57

0.
63

0.
57

0.
57

0.
56

0.
57

0.
57

0.
51

0.
63

15
m
in

ou
t-
s
su
b2

0.
56

0.
56

0.
54

0.
56

0.
53

0.
54

0.
57

0.
58

0.
62

0.
54

0.
56

0.
58

0.
56

0.
56

0.
53

0.
62

15
m
in

ou
t-
s
su
b3

0.
54

0.
54

0.
55

0.
54

0.
52

0.
53

0.
56

0.
55

0.
60

0.
54

0.
56

0.
58

0.
55

0.
55

0.
52

0.
60

T
he

nu
m
be
rs
in

bo
ld

in
di
ca
te
th
e
m
ax
im

um
va
lu
e
of

th
e
nu

m
be
rs
in

th
at
ro
w

123



Annals of Operations Research (2021) 297:3–36 21

Ta
bl
e
10

A
rt
ifi
ci
al
N
eu
ra
lN

et
w
or
ks

cl
as
si
fic
at
io
n:

in
-s
am

pl
e
an
d
ou
t-
of
-s
am

pl
e
ac
cu
ra
cy

re
su
lts

A
N
N

B
C
H

B
T
C

D
SH

E
O
S

E
T
C

E
T
H

IO
T

LT
C

O
M
G

X
M
R

X
R
P

Z
E
C

A
cr
os
s
cr
yp
to
cu
rr
en
cy

M
ea
n

M
ed
ia
n

M
in

M
ax

D
ai
ly

0.
8-
0.
2
in
-s

0.
97

0.
97

0.
89

0.
94

0.
91

0.
96

0.
94

0.
95

0.
96

0.
98

0.
80

0.
71

0.
91

0.
94

0.
71

0.
98

D
ai
ly

0.
8-
0.
2
ou

t-
s

0.
31

0.
53

0.
53

0.
62

0.
48

0.
59

0.
59

0.
55

0.
66

0.
52

0.
60

0.
55

0.
54

0.
55

0.
31

0.
66

60
m
in

0.
9-
0.
1
in
-s

0.
72

0.
74

0.
71

0.
72

0.
71

0.
73

0.
74

0.
70

0.
73

0.
71

0.
66

0.
72

0.
71

0.
72

0.
66

0.
74

60
m
in

0.
9-
0.
1
ou

t-
s

0.
52

0.
53

0.
53

0.
52

0.
53

0.
53

0.
50

0.
51

0.
52

0.
51

0.
52

0.
49

0.
52

0.
52

0.
49

0.
53

60
m
in

ou
t-
s
su
b1

0.
46

0.
57

0.
55

0.
54

0.
51

0.
51

0.
53

0.
55

0.
54

0.
49

0.
54

0.
51

0.
52

0.
53

0.
46

0.
57

60
m
in

ou
t-
s
su
b2

0.
46

0.
54

0.
49

0.
53

0.
54

0.
51

0.
51

0.
57

0.
54

0.
49

0.
52

0.
52

0.
52

0.
52

0.
46

0.
57

60
m
in

ou
t-
s
su
b3

0.
52

0.
52

0.
53

0.
51

0.
52

0.
52

0.
48

0.
51

0.
53

0.
53

0.
51

0.
49

0.
51

0.
52

0.
48

0.
53

30
m
in

0.
9-
0.
1
in
-s

0.
64

0.
66

0.
65

0.
66

0.
65

0.
65

0.
65

0.
66

0.
66

0.
66

0.
65

0.
65

0.
65

0.
65

0.
64

0.
66

30
m
in

0.
9-
0.
1
ou

t-
s

0.
53

0.
51

0.
52

0.
52

0.
51

0.
51

0.
53

0.
53

0.
52

0.
52

0.
51

0.
51

0.
52

0.
52

0.
51

0.
53

30
m
in

ou
t-
s
su
b1

0.
51

0.
55

0.
55

0.
55

0.
55

0.
52

0.
54

0.
53

0.
54

0.
50

0.
48

0.
56

0.
53

0.
54

0.
48

0.
56

30
m
in

ou
t-
s
su
b2

0.
53

0.
56

0.
54

0.
51

0.
52

0.
52

0.
53

0.
54

0.
51

0.
51

0.
54

0.
51

0.
52

0.
52

0.
51

0.
56

30
m
in

ou
t-
s
su
b3

0.
52

0.
51

0.
53

0.
51

0.
52

0.
51

0.
54

0.
55

0.
53

0.
51

0.
51

0.
52

0.
52

0.
52

0.
51

0.
55

15
m
in

0.
9-
0.
1
in
-s

0.
61

0.
62

0.
61

0.
61

0.
61

0.
60

0.
60

0.
61

0.
60

0.
61

0.
61

0.
61

0.
61

0.
61

0.
60

0.
62

15
m
in

0.
9-
0.
1
ou

t-
s

0.
53

0.
52

0.
52

0.
52

0.
50

0.
50

0.
51

0.
53

0.
51

0.
53

0.
52

0.
52

0.
52

0.
52

0.
50

0.
53

15
m
in

ou
t-
s
su
b1

0.
50

0.
52

0.
52

0.
55

0.
58

0.
58

0.
57

0.
55

0.
63

0.
56

0.
57

0.
61

0.
56

0.
56

0.
50

0.
63

15
m
in

ou
t-
s
su
b2

0.
54

0.
55

0.
51

0.
52

0.
52

0.
55

0.
54

0.
54

0 .
64

0.
52

0.
51

0.
56

0.
54

0.
54

0.
51

0.
64

15
m
in

ou
t-
s
su
b3

0.
53

0.
55

0.
50

0.
49

0.
55

0.
53

0.
54

0.
54

0.
61

0.
52

0.
53

0.
53

0.
53

0.
53

0.
49

0.
61

T
he

nu
m
be
rs
in

bo
ld

in
di
ca
te
th
e
m
ax
im

um
va
lu
e
of

th
e
nu

m
be
rs
in

th
at
ro
w

123



22 Annals of Operations Research (2021) 297:3–36

the prediction of cryptocurrency returns. This might indicate that the more complex model
structure might be easily yielding local optima and has lower ability to generalize in the out-
of-sample periods. Furthermore, considering the complexity of the artificial neural networks
applied in our relatively small sample sizes increases the possibility of achieving sub-optimal
results and lower generalization ability. In a larger dataset, it is possible to get better results
from the artificial neural network models. In this regard, due to the global optimality of the
support vector machines classification, the results confirm the use of support vector machines
instead of artificial neural networks given the accuracy results and higher robustness in terms
of low variation across different cryptocurrencies and out-of-sample periods.

Finally, the results for the random forest classification algorithm are presented in Table 11.
As can be noted in Table 11, the in-sample fit of the random forest algorithm is the highest,
however, the out-of-sample performance is drastically lower than the in-sample fits. This
indicates the high variance in the random forest classification with high in sample fit to the
noisy data but lower out-of-sample performance.

In Table 12, performances of four different models are averaged. First, it is noted that
when we consider an ensemble of all the four classification algorithms with the naive equally
weights, then all the prediction accuracy results are above 50%. This implies the features
utilized, which are various transformations derived from past prices, contain predictive infor-
mation regarding the direction of the next return. Furthermore, the average accuracy of
different classification algorithms across different time scales is consistently above 50% as
well, indicating that the past prices contain significant information that yields predictive
power of the next time steps’ trends.

In our analysis, machine learning algorithms generate consistent results across different
cryptocurrencies and over different out-of-sample backtesting samples. However, it is inter-
esting to verify the performance of the machine learning algorithms with some benchmarks
like random walk and the traditional time series methods such as autoregressive integrated
moving average (ARIMA) models. Since there is no need for in-sample training and out-of-
sample testing for the random walk, we consider the whole data set for each time frequency.
For each coin and each time scale, we simulate the random walk 1000 times and then com-
pute the average success ratio over these simulations. The results are presented in Table 13.
As expected, the success ratios for minute data at higher frequency are very close to 0.5
but for daily time scale the ratios slightly deviate from 0.5 because of a small number of
observations. However, the average value across the coins is again 0.5.

For the ARIMAmethod, we choose the best model by minimizing the Akaike information
criterion for the in-sample period. In Table 13, the prediction accuracies in all the out-of-
sample backtests are presented for all the cryptocurrencies in the dataset. Comparing the
machine learning results versus the ARIMA prediction, it is clear that the ARIMA based
models are giving accuracy values scattered around 0.5 indicating that the predictions are no
better than the coin toss to estimate the direction of the market. More detailed statistical tests
are presented in the rest of the paper to verify whether the differences between the considered
methods are statistically different.

In this study, trading strategies are not considered in detail, however, the average accu-
racies obtained from the four different classification algorithms are all above 50% accuracy
regardless of the timescale and cryptocurrency. Also noting that it is possible to improve
the results for each cryptocurrency by focusing on the different feature selection methods
for each coin separately much higher average accuracies can be obtained. In summary, the
average results indicate the inherent predictability of the next period’s return directions via
transformations of the past price and volume information. Therefore, trading strategies can
be designed to exploit the inherent predictability of future price directions.
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In the context of machine learning estimations, it is important to verify the consistency of
predictive power over different products and sub-periods. Furthermore, generalization of the
algorithms in new dataset is desirable for robustness. In order to verify the robustness of our
empirical results, we not only adopt various statistical tests but also construct two different
cryptocurrency indices, namely equally weighted and market capitalization weighted, to
verify the predictive power of alternative machine learning models. By constructing these
indices, we can test the generalization property of our machine learning model with respect
to new data.

In Table 16, t test is applied to check the statistical significance of the estimation results
between alternative algorithms. We compare the methods by using the results for each in-
sample and out-of-sample sub-period for the same time scale across different coins. For
instance, in order to compare Logistic and ARIMA models for daily 0.8–0.2 in-sample
period, we use the values from the same daily 0.8–0.2 in-sample period across different
cryptocurrencies. We test the null hypothesis that the difference of the values computed from
Logistic and ARIMA models comes from a normal distribution with mean equal to zero
and unknown variance. The results show that the difference between these algorithms are
statistically significant. Similarly, we also use Wilcoxon signed rank test as an alternative
testing method. In Table 17 the results are presented for the signed rank test, which tests the
null hypothesis that the difference between different models for each in-sample and out-of-
sample period comes from a distribution with zero median. In this way we can check whether
the accuracies obtained in different experiments are significantly different from each other
for each subperiod. The results obtained from the signed rank test are similar with the results
from the t test indicating that statistically significant differences are observed between the
algorithms including the ARIMA models.

As a further analysis of the results, we implement the Model Confidence Set (MCS)
procedure developed by Hansen et al. (2011). This procedure consists of a sequence of tests
which permits to construct a set of superior models, where the null hypothesis of Equal
Predictive Ability (EPA) is not rejected at a certain confidence level. The EPA statistic tests
is calculated based on a loss function and MCS identifies the subset of models with superior
performance accordingly. The advantage of this test is that it takes into account the time
series of individual loss functions and not just the overall average over all methods.7 In our
case of sign prediction, we construct a loss function such that it takes the value of zero when
the predicted sign is correct and one if the predicted sign is wrong. For each time interval
under consideration, we stack the loss functions of each coin vertically in order to form the
complete loss function of a particular prediction method. For instance, for the 60 min out-s
sub1, we stack the loss functions of size 200 coming from ANN method for each coin to
construct the complete loss function of size 2400 for ANN method for that particular time
scale. Furthermore, similar toHansen et al. (2011), we produce the results for 75% confidence
level. Table 14 presents the best performing models for the coins from MCS procedure with
TR statistic and 10,000 bootstraps. It is observed that there are only two best performing
methods i.e. logistic and random forest at 75% confidence level. Although these methods
clearly dominate the others in terms of minimizing the loss function for each time scale,
there is no clear distinction between them. Indeed, in almost half of the time scales, six out
of thirteen, random forest is the best performing method but in the others, logistic is the best
performing one. These results are also consistent with those coming from t test andWilcoxon
test as they show that the methods produce significantly different outcomes from each other.

7 A recent application of MCS test to cryptocurrency markets to determine the drivers of bitcoin volatility
can be found in Walther et al. (2019).
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Table 14 Model confidence set (MCS) test results at each time scale

1st best model 2nd best model

Daily 0.8-0.2 out-s Random forest (1)

60 min 0.9-0.1 out-s Logistic (1)

60 min out-s sub1 Random forest (1) Logistic (0.77)

60 min out-s sub2 Logistic (1)

60 min out-s sub3 Logistic (1)

30 min 0.9-0.1 out-s Random forest (1)

30 min out-s sub1 Random forest (1)

30 min out-s sub2 Random forest (1)

30 min out-s sub3 Logistic (1)

15 min 0.9-0.1 out-s Random forest (1) Logistic (0.90)

15 min out-s sub1 Logistic (1)

15 min out-s sub2 Logistic (1)

15 min out-s sub3 Logistic (1) Random forest (0.83)

Values in the parenthesis correspond to the p values fromMCS with TR statistic and 10,000 bootstraps at 75%
confidence level for the specified loss function

To verify whether the proposed methodology and model can predict the performance of a
new dataset, we construct two types of cryptocurrency indices. First, we consider the equal
weighted cryptocurrency index where the market index is calculated by the average of scaled
prices of each cryptocurrency over the same sample period. Once the average scaled price is
obtained for the equal weighted market index, then the exact same features are calculated for
this index as given in Table 7. Second, amarket capitalizationweighted index is utilizedwhere
the weights are calculated with respect to the historical average market capitalization of each
cryptocurrency. The prediction results for the same algorithms considered are presented for
these two types of indices in Table 15. The results for both the equally weighted (EW) and
market capitalization weighted (MCW) indices at the daily timescale provide high accuracy
for almost all the algorithms in the in-sample and out-of-sample backtesting. Different from
the prediction of individual cryptocurrencies, the formation of the index offers smoothed time
series. Furthermore, the series is smoother at the daily timescale and less volatile than the
higher time frequency of index returns. Therefore, a higher predictive power can be achieved
using the same models for the prediction of cryptocurrency indices. Finally, the statistical
significance between the alternative algorithms are tested using t test and signed rank test
and the results are presented in Table 18. Similar to the previous results, most of the relative
differences between the accuracy of alternative models are statistically different from each
other.

We also apply MCS procedure to find the best performing methods for both the equally
weighted and market capitalization weighted indices in terms of the loss minimization. The
results from MCS methodology are presented as superscripts in Table 15. Different from the
MCS results for coins, there are now up to five best performing methods at 75% confidence
interval for equally weighted index. Among them, SVM is the best performing method for
more than half of the time scales and it is followed by ANN for only three of the time
scales. For the MCW index, SVM is still the most frequent best performing method. It is also
observed that there are not as many as best performing models other than the first best for the
MVW index compared to EW index. Again these results also show that there are significant
differences between methods in terms of the loss minimization as well.
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5 Conclusion

Cryptocurrency markets attract attention due to the recent advances in their underlying tech-
nology and investors consider this as a part of the alternative investments space. With this
increasing attention from the investment community, cryptocurrency markets constitute an
important asset class both for researchers and traders. In this study, we consider twelve
major cryptocurrencies and study their predictability using machine learning classification
algorithms over four different time scales, including the daily, 15-,30-, and 60- min returns.
Numerical experiments conducted for four different classification algorithms, namely, logistic
regression, support vector machines, artificial neural networks, and random forest algorithms
demonstrate the predictability of the upward or downward price moves. The best performing
and robust models in the prediction of the next day’s return is the support vector machines
with consistently above 50%fit, low variation across all the products and different timescales,
and good generalization ability to different sub-periods consistently. Although the perfor-
mance of classification algorithms are not uniform over different coins, in many occasions
predictive accuracy over 69% is achieved without fine tuning or specifically searching differ-
ent variations of the features for each coin. This implies that with extra fine tuning of model
selection step, the machine learning algorithms and space of features can easily achieve over
70% predictive accuracy. The results indicate that the use of machine learning is promising
for short term forecasting of trends in the cryptocurrency markets. Finally, the predictive
accuracy is not too volatile across different forecasting horizons. However, due to the higher
sample size of observations at the minute level frequencies, more complex models or higher
number of features can be adopted at the high frequency of returns to generate models with
even better predictive accuracy at shorter time intervals.

Findings have important implications with regards to market efficiency. First, if the cryp-
tocurrency markets were efficient in the weak form, their past price movements would not
help us to forecast the future returns. However, our findings imply that applying machine
learning tools on historical prices enables one to predict cryptocurrency returns with success-
ful accuracy at the intraday level. Considering the fact that financialmarkets have significantly
evolved over the past decade, driven by new technologies in automated trading and financial
infrastructure, our finding is particularly important for algorithmic trading purposes since
deciding when to buy and sell cryptocurrencies within the day can successfully be automated
with machine learning algorithms. The success of such newly developed algorithms might
also cause more high-tech dominant financial markets. Second, even though cryptocurrency
markets are far from being able to be regulated, policy makers still need to pay attention to
these markets. The reason is that CBOE and CME introduced Bitcoin futures in December
2017, thus, it would be realistic to assume that in the near future, Bitcoin options might also
be introduced. Earlier studies show that in the presence of weak form inefficiency, the meth-
ods used to price financial derivatives, such as the Black-Scholes model, tend to be heavily
biased and may not be useful anymore. Therefore, mispriced derivatives might let investors
to take excessive risk (more than they think) in the market and also make it hard to track the
systemic risk carried in the overall market.

Appendix

See Tables 16, 17 and 18.
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