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Abstract

An approach to the quantum phase, taking into account the process of light generation and extending in this way the
operational approach, is proposed. The cosine and sine operators of the phase difference of the two circularly polarized
modes are determined with the aid of a polar decomposition of the angular momentum of radiative transition and
conservation of the total angular momentum. Application of the approach to the Jaynes—~Cummings mode! for an electric
dipole transition shows consistency with the classical definition of the phase difference and with the results of standard

operational approach as well.
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The main idea of the operational approach to the
quantum phase of light [1-3] is to define the phase opera-
tor in terms of quantities that can be measured in real
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measurements represent an important method of opera-
tional definition of the phase difference between two circu-
larly orthogonal polarized modes [2-5]. The analysis of
various schemes of measurement has shown that there is

no unigue nhase gperator at all ['71 Then, consideration of
no unique pnase opera 120N, consiceralion

the so-called intrinsic and operational observables [6] has
lead to the conclusion that there should be a unique
intrinsic phase operator corresponding to the set of opera-
tional quantities (see also discussion in Refs. [7-9]). Fur-
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proach and the method, based on the phase distributions
[10,11] has shown that the moments of periodic functions
of the measured phase difference are those calculated from
the appropriate integrated Wigner or Q functions [12~14].
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photon counting measurement which includes interaction
of light with a macroscopic detecting device. In this case,
it is supposed that the light is prepared initially in some

aguantum state. IIndoubtedly thig state is a recult of some
quantum state. Undoudtedly, this state 18 a result of some

interactions. The process of generation of photons by a
microscopic source such as an atom is the most important
among them. Therefore, it seems to be quite natural to
extend the operational approach and examine the phase

nroblem in terms of what can be oenerated
prooiem in terms ¢ gencrateg.

The aim of this paper is to discuss the relation between
the phase properties of an atomic transition responsible for
the generation of photons and the phase difference of the
two circularly orthogonal polarizations. The phase proper-

tiac af the atamics radiative trancition can he sacily definad
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by a polar decomposition of corresponding SU(2) algebra
[15], describing the angular momentum of the transition.
Any photon in the process of generation takes away the
angular momentum of the radiative transition responsible
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momentum is conserved [16]. Unfortunately, the polar
decomposition of SU(2) algebra cannot be performed in
the case of photons. The point is that there is no isotype
[17] representation of a sub-algebra SU(2) in the Weyl-
Heisenberg algebra describing the photons. In other words,
the Casimir operator of an enveloping algebra cannot be
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uniquely determined in the whole Hilbert space corre-
spondmg to the photons.

Let us stress here, that although the recent attempt
[5,18] to use the polar decomposition of the Stokes opera-
tors first in an arbitrary subspace #(" and then to extend
the definition of phase operators on the whole Hilbert
space by summation over index n, describing the total
number of photons, from n=0 to = have led to some
interesting physical results, it cannot be considered as a
rigorous mathematical construction because the uniqueness
of this decomposition is not proven.

At the same time, the conservation of the total angular
momentum can be used in order to define the quantum
phase difference of light in the operational meaning. A
simple example of some considerable interest, illustrating
the above statement, is provided by an atom interacting
with the cavity field. This system is described by the
Jaynes—Cummings model, a convenient form of which is
afforded by taking the basis of spherical photons [19].

Suppose that a dipole transition is responsible for the
creation of the cavity photons. Then, the angular momen-
tum of the transition can be represented as follows

] =R .—R ] =y2(R o+ Ry)
vz TR, e F 40 -/
J~=ﬁ(Ro++R—o)v (1

where R, =lj=1my{j=1Lnm, (m=0,%+1) are the
atomic operators. It is not difficult to see that the operators
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algebra. By performing a similar analysis to that described
in the Ref. [15], we can construct the polar decomposition
of (1) and determine the cosine and sine operators of the

Hermitian atomic phase in the form

L i .
C=—fx,+J )+ E(e"”R‘++ e R, ),

22

| )
ﬂJ_)-l-E;(e"”RﬂL—e_'“‘RﬁL,), )

]

i (Vs
where ¢ is an arbitrary real parameter (the reference
phase). It is clear that C2 + §2 =1 and [C,§1=0, and the
constructions (2) are Hermitian operators.

In turn, the angular momentum of the cavity field is
represented by the foilowing generators

+1
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where a, a,, are the operators of spherical photons with
angular momentum 1 and projection m. Since the total

angular momentum of the system described by the stan-
dard Hamiltonian

1
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is conserved [16] one can expect that the operators chosen
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to represent cosine and sine of the phase of the angular
momentum of the dipole radiation are of the form
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such that G+ % = const, §+. = const. Here K

constants. One can see that [‘7 C/] = 0 so that t]
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and sine (4) can be measured at once.

Let us stress here some likeness between the operators
(4) and the operational cosine and sine which have been
determined in Ref. [2] for the measurement scheme | and

which we denote here as f" and § respectively. In fact
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the operators (4) can be formally represented as
K_|{ M +M_\
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if we choose ¥ = A + /2 where 4 is the classical phase
difference considered in Ref. [2] for the scheme 1. Then, it
can be seen that the additional terms \IV1+‘!‘ M_)/ v/z
correct, in some sense, the commutation relations for C,,
§! which are originally similar to the Susskind—Glogower
relations [20] (see also Ref. [21]). It should be also men-
tioned that the numerical coefficients K _, K, are deter-
mined here in a standard way [2,21] to keep the expecta-
tion values of the operators (4) lying between — 1 and + 1
and to have the unit value for the sum of squared averages.

In order to illustrate the above approach and clarify the
physical meaning of the operators (4), let us specify the
transition under consideration as an eleciric dipole transi-
tion and suppose that the cavity photons propagate along
the Z-axis. Then, due to the selection rules the transition
(j=Lm=0)o (7 =0, =0)is forbidden [19]). Under
this condition, an effective Hamiltonian of the Jaynes—

m=-1 m=0 m=+1

N A

positive helicity negative helicity

i=0

m=0

Fig. 1. Two-level atom with the electric dipole transition interact-
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ing with two circularly polarized modes of the cavity field.
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two-level and two-mode system [22] (Fig. 1). With the
assumption that the initial state of the system is a coherent
mixture of two excited sub-levels of the atom and a
vacuum state of the cavity field, the time-dependent wave

functian can he ~hogan ag
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+ B,10:0)( pl1,0,0) + ¢l0.0,1))],

where p, g are complex numbers such that | p|* + |g|> =

Here ||I,+ 1) denotes the atomic state with the angular
momentum 1 and projections +1 while |n,,n,n_)
= nlnm> is the product of the number states for the

m
cavity photons with given projection of the angular mo-
mentum. Assuming for simplicity exact resonance, we
obtain E,=w+g, A;=A,= +1/V2, B,~ 1 /2 where

w is the transition Frpnnppry and g is thp counline con-

ransiion regue COUpIng Con

stant. Then, the vacuum-field induced Rabi oscillations of
cosine and sine (4) are described as follows

(#), = —((e“” Ta,+e ’“"aiaA)),
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where d = arg p — arggq.

Thus, the evolution of the cosine and sine (4) is com-
pletely determined by the parameters of the atomic system.
Taking into account that the operators a_, a_ correspond
to the photons with negative and positive helicity respec-
tively, it is not difficult to see that the expectation values
(5) coincide with the Stokes parameters s, and s, deter-
mined as the averages of the Stokes operators in the
circularly polarized basis [23]. Therefore, the expressions
(5) determine the classical cosine and sine of the phase
difference between two circularly polarized modes of the
cavity field in terms of the atomic parameter 3. We now
note that due to the specification of the system, the (M, +
M_)/V2 V2 terms do not contribute to the expectation values
(5) so that these expectation values formally coincide with
the averages of the operational cosine and sine ¢ , and S,
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both the cosine and sine (4) can be measured at once.

In conclusion, let us briefly summarize the results. The
description of the quantum phase properties of light in
terms of the polar decomposition of the angular momen-
tum using the conservation of the total angular momentum
in the system ""atom + radiation’, is proposed. Within

tho framawanrk of thic annraanh tha ~ncin nd gina ~
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phase difference of the two circularly orthogonal polariza-
tions are determined in terms of the angular momentum of
the field. Investigation of the electric dipole transition
shows that the above approach is consistent both with the
classical definition of the phase difference in terms of the
Stokes parameters and with the operational definition of
the phase in the standard form. This consideration can be
extended to an atom with transitions of different type and
to multi-atom systems. Let us emphasize that in the spirit
of ithe philosophy of Ref. {6), one can expect that the
quantum phase of the angular momentum may play the
role of an intrinsic observable corresponding to the mea-
sured operational phase. Detailed investigation of this as-
pect as well as the relation among the above approach, the
operational approach, and the method derives the phase
distribution via appropriate phase-space functions [10,14]
needs further discussion.
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