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ABSTRACT
We investigate the impact of effective lifetime of items in an age-based control policy for perish-
able inventories, a so-called (Q, r, T) policy, with positive lead time and fixed lifetime. The exact
analysis of this control policy in the presence of a service level constraint is available in the
literature under the restriction that the aging process of a batch begins when it is unpacked for
consumption, and that at most one order can be outstanding at any time. In this work, we gener-
alize those results to allow for more than one outstanding order and assume that the aging pro-
cess of a batch starts since the time that it is ordered. Under this aging process, we derive the
effective lifetime distribution of batches at the beginning of embedded cycles in an embedded
Markov process. We provide the operating characteristic expressions and construct the cost rate
function by the renewal reward theorem approach. We develop an exact algorithm by investigat-
ing the cost rate and service level constraint structures. The proposed policy considerably domi-
nates its special two-parameter policies, which are time-dependent (Q, T) and stock-dependent (Q,
r) policies. Numerical studies demonstrate that the aging process of items significantly influences
the inventory policy performance. Moreover, allowing more than one outstanding order in the sys-
tem reaps considerable cost savings, especially when the lifetime of items is short and the service
level is high.
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1. Introduction

The increasing amounts of perishability that are the result of
population growth and rising income levels has prompted
inventory managers to develop cost-effective ordering poli-
cies in order to reduce their operational costs and enhance
sustainability. Vegetables, fruits, milk, meat, seafood, blood,
chemical materials, pharmaceuticals, and high-tech products
are a few examples of perishable products. Perishable inven-
tories constitute a large portion of total stocks held by firms.
As reported by the U.S. Department of Agriculture in
FirstResearch (2019), the U.S. wholesale food distribution
industry includes about 660 000 restaurants that use perish-
able food. Of all the food produced in the worldwide food
supply chain, around 24% is wasted (Kummu et al., 2012).
It is estimated that a reduction of 15% in food waste, would
make it possible to feed more than 25 million people in the
U.S. every year (Gunders & Bloom, 2017). Nowadays, the
entities of a supply chain make their decisions interdepend-
ently to reduce or even avoid spoilage; for example, Nestl�e
and Unilever as leading food manufacturers have incorpo-
rated waste elimination in their policies (Kirci and
Seifert, 2015).

Replenishment policies for perishable products that are
based solely on inventory levels are employed in many

industry practices and constitute the majority of works in
the literature. Due to the limited lifetime nature of perish-
able inventories, a created control policy must take into
account not only the on-hand stock but also the remaining
lifetime of products while making ordering decisions. On
the other hand, in many practical situations, perishable
inventories start decaying as soon as they are produced/
issued by the manufacturer/supplier. With deployment of
advanced techniques for recording product information such
as Internet-of-Things technologies, the need to created an
intelligent inventory control policy that takes into account
the remaining lifetime of products when they join invento-
ries is of considerable interest in perishable inven-
tory management.

Due to demand uncertainty and multiple in-transit orders
over time, the nature of the aging process of perishable
products can significantly affect the dynamics of inventory
systems. In view of this, one can analyze a replenishment
control policy under two aging processes. Aging process
type 1: the aging process of items in a batch begins when
the batch becomes unpacked. In this case, all items in the
batch have an identical fixed lifetime upon unpacking.
Aging process type 2: the aging process of items in a batch
begins once the batch is issued from the outside supplier so
that an order joining stock has aged for the lead time.
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In this article, we consider a single-item single-location
inventory system with aging process type 2, consisting of
perishable products with fixed lifetimes and Poisson
demands. We use a continuous review (Q, r, T) policy for
replenishment of perishable products that works as follows.
An order of size Q is placed whenever the inventory position
(stock on hand plus outstanding orders) reaches r, or T units
of time have elapsed since the last instance at which the
batch under consumption is depleted by demand or perishes,
whichever occurs first. The proposed replenishment policy
allows for more than one outstanding order and bases reor-
dering decisions on both the inventory position and the time
elapsed to consume the items in a batch. Tracing the remain-
ing lifetime of multiple outstanding orders along with stock
on hand and considering a general aging process structure
poses substantial technical difficulties in our analysis.

Our study generalizes and improves on previous work in
several aspects. First, we investigate the impact of the struc-
ture of the aging process on the performance of a (Q, r, T)
policy in a perishable inventory system consisting of prod-
ucts with fixed lifetimes. Second, we elicit the effective life-
time distribution by utilizing the concept of the embedded
Markov process. Third, we derive explicit expressions for
the expected cost rate and the operating characteristics of
our model. Fourth, we capture the effect of allowing
for multiple outstanding orders in the system. Fifth, we
develop an exact algorithm by investigating the cost rate
and the service level constraint structures guaranteeing glo-
bal optimality.

Our numerical experiments reveal that when the lifetime
of products is short, the unit perishing cost is large, and the
service level is high, the inventory manager needs to place
orders with a higher frequency, which results in multiple
outstanding orders over the time in the system. Examples of
products with short lifetimes are fish, seafood, and platelets,
which are highly perishable products whose quality deterio-
rates very quickly (Ashie et al., 1996). Fresh fruits and vege-
tables are also highly perishable products with relatively
short lifetimes. They are subject to continuous change after
harvestting (Yahia, 2019). In the blood and pharmaceutical
industries, the inventory system requires a very high service
level, and in case of shortages, the system incurs huge short-
age costs. Numerical results indicate that allowing for more
than one outstanding order in the system can result in up to
43.26% (on average 13.14%) cost savings. To capture the
impact of incorporating information related to ages of items
in the control policy (i.e., exercising the (Q, r, T) policy), we
address two special two-parameter policies. One is the (Q,
T) policy, in which orders are placed by tracking time, and
the other one is the classic (Q, r) policy, which is solely
based on the inventory position. Our results demonstrate
that the (Q, r, T) policy always dominates its special policies,
and this dominance becomes significant when the lifetime of
products is short and the unit perishing cost is high. We
observe that the percentage cost deviations between the (Q,
r, T) policy and (Q, T) and (Q, r) policies can get as large as
49.26% and 15.68% (on average 10.33% and 4.02%), respect-
ively. Moreover, the (Q, T) policy outperforms the (Q, r)

policy only when the system requires a very high service
level and the unit perishing cost is small. Hence, depending
on the input parameters of the system, one can decide on
which policy between two-parameter policies should be
implemented.

The remainder of this article is organized as follows. We
briefly review the related literature in Section 2. In
Section 3, we provide the basic assumptions of our model
and describe the characteristics of the age-based control pol-
icy. In this section the effective lifetime distribution of items
is also derived. We provide the exact operating characteristic
and the expected cost rate expressions in Section 4. The
sub-optimal policies elicited from our proposed policy are
analyzed in Section 5. We propose our solution method-
ology for finding the optimal policy parameters in Section 6.
In Section 7, we present our numerical study and, finally,
we conclude in Section 8 with directions for future research.

2. Literature review

In stochastic perishable inventories with periodic review,
when items can be held in stock no more than a period, the
replenishment decisions in successive periods are independ-
ent and the problem reduces to a sequence of simple news-
vendor-type models (Arrow et al., 1958). Van Zyl (1964),
Nahmias and Pierskalla (1973), Fries (1975), and Nahmias
(1975a) consider a more complicated situation, wherein they
analyze the structure of the optimal policy for perishable
inventories with the two-period and m-period lifetimes
under finite horizon and periodic review settings. Due to
the complex structure of the optimal policy for perishable
inventories with fixed lifetimes in the presence of non-negli-
gible lead times, researchers have focused on developing
heuristic policies; see, for example, Nahmias (1975b), Cohen
(1976), Nahmias (1977, 1978), Nahmias and Wang (1979),
Nandakumar and Morton (1993), and Williams and Patuwo
(2004). Nahmias (1982) and Bakker et al. (2012) provide
extensive reviews of fixed-lifetime models under a periodic
review setting.

Schmidt and Nahmias (1985) analyze a continuous review
ðS� 1, SÞ policy for perishable inventory models with fixed
lead time. In their proposed policy, known as a lot-for-lot
policy, an order is placed immediately whenever a depletion
either by demand or perishing occurs. Olsson and Tydesj€o
(2010) consider the same policy with backorders for perish-
able inventories. They show that finding the exact optimal
solution is not easy when backorders are allowed. Kalpakam
and Sapna (1995) also survey the continuous review ðS�
1, SÞ policy, with exponential lifetime and non-Markovian
lead times; and Liu and Cheung (1997) consider the same
policy with exponential lead time. Kalpakam and Shanthi
(2000) analyze a modified continuous review ðS� 1, SÞ pol-
icy in which an order is placed when the inventory level
depletes by one unit due to the demand, but not perishabil-
ity. In another research work, Kalpakam and Shanthi (2001)
work on the same policy with a general distribution for the
lead time.
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Weiss (1980) introduces a continuous review (S, r) pol-
icy with Poisson demand in an infinite planning horizon,
zero lead time, and fixed lifetime setting. Extensions of
this policy to different aspects are as follows. Kalpakam
and Sapna (1994) and Liu and Yang (1999) extend this
policy to the case with both exponential lifetime and lead
time. Liu and Shi (1999) address this model with a general
renewal demand process. Further, Lian and Liu (1999)
extend this policy to a model with perishable inventories,
geometric inter-demand times, and batch demands. Liu
and Lian (1999) analyze this policy to provide a closed-
form solution for the steady-state probability distribution
of the stock level by using a Markov renewal approach.
Lian and Liu (2001) consider this policy and add a positive
lead time to the model and propose a heuristic algorithm.
Kalpakam and Shanthi (2006) introduce a new perishing
process called discrete point perishability for perishable
inventories operating under this control policy. This con-
trol policy is extended by G€urler and €Ozkaya (2008) to a
perishable inventory system with a general lifetime distri-
bution. Lian et al. (2009) analyze this policy based on the
Markovian renewal demand process with a general distri-
bution for inter-demand time. Barron and Baron (2020)
analyze a continuous review (S, s) policy in perishable
inventory systems with random lead times and times to
perishability, and a state-dependent Poisson demand.
Under this policy, when the inventory level hits the
reorder point s, an order is placed to bring the inventory
up to level S. They use the Queueing and Markov Chain
Decomposition methodology to derive the stationary dis-
tributions of the inventory level, and show that variability
of the lead time is more costly than that of perishability
time. Barron (2019) revises the work of Barron and Baron
(2020) by allowing demand uncertainty, random batch
demands, and random perishability.

Chiu (1995) approximates the expected total cost and
operating characteristics of a perishable inventory system
under a continuous review (Q, r) policy. This policy works
as follows. An order of size Q is placed whenever the inven-
tory position drops to r. He shows that this policy does not
provide significant improvement compared with the con-
tinuous review (S, r) policy. Berk and G€urler (2008) deal
with the perishable inventory problem under a continuous
review (Q, r) policy with positive lead time and fixed life-
time by introducing a new concept pertaining to the lifetime
distribution modeled by the embedded Markov process
approach. Kouki et al. (2015) consider the continuous
review (Q, r) policy when analyzing a model with continu-
ous demand distribution, constant lifetime, and constant
lead time. Poormoaied and Atan (2019) analyze this policy
under the multi-attribute utility approach for perishable
inventories.

The age of items was not considered in policies until
Tekin et al. (2001) introduced an age-based control policy
for perishable inventories, namely a continuous review (Q, r,
T) policy, wherein they analyze their proposed policy under
at most one order outstanding restriction (r < Q), and with
a special aging process in which the lifetime of a new order

starts when it is unpacked (referred to as the aging process
type 1). Lowalekar and Ravichandran (2017) propose a simi-
lar policy, in which the lifetime of items is taken into
account when placing orders. In their proposed policy, an
order of size Q is placed whenever the inventory level hits r
or T units of time have elapsed since the time we receive
the batch, whichever occurs first. One of the shortcomings
in this policy is that it is not able to analyze inventory sys-
tems with more than one outstanding order. They applied a
simulation-based optimization to analyze their model.
Abouee-Mehrizi et al. (2019) present a single-item multi-
period stochastic inventory control problem where a firm
faces multiple priority classes that require products of differ-
ent ages. They characterize the structure of the optimal
ordering, allocation, and disposal policies, and show that the
optimal order quantity is more sensitive to the inventory
level of fresher products, as well as the optimal allocation
policy is a sequential rationing policy. Interested readers are
referred to Karaesmen et al. (2011), Janssen et al. (2016),
Chaudhary et al. (2018), and Duong et al. (2018) for exten-
sive literature reviews of periodic and continuous review
inventory models for perishable inventories.

Our analysis of the continuous review (Q, r, T) policy is
different from the one in Tekin et al. (2001). We assume
that the aging of the products in a batch starts once it is
issued by the supplier (referred to as the aging process type
2), whereas in the model of Tekin et al. (2001), the lifetime
of a new order starts when it is unpacked (i.e., aging process
type 1). The system analysis demonstrates that the structure
of the aging process influences the dynamics of the system,
in the sense that distinct state variables are required to ana-
lyze our model. Analogous to Tekin et al. (2001), we utilize
the renewal reward theorem to derive the operating charac-
teristics of the system. As in our model the aging of items
in a batch begins as it is ordered, the lifetime of items at the
moment that the batch is unpacked is a random variable
(referred to as the effective lifetime). Due to the nature of
the aging process in our model, we trace both the inventory
position and the effective lifetime of items to construct the
sequence of regenerative points, which is different from the
model of Tekin et al. (2001), wherein one can define regen-
erative points by solely taking into account the inventory
level. Due to perishability, the system may observe multiple
outstanding orders over time, in order to satisfy the target
service level. In this respect, we generalize the model of
Tekin et al. (2001) by relaxing the restriction on the number
of outstanding orders. This also makes our analysis more
challenging, due to the multi-dimensional nature of the
effective lifetime process. Again, we need to rely on the
inventory position instead of the inventory level in order to
have tractable analytical results. We show that allowing for
multiple outstanding orders in the system influences the
effective lifetime of the current batch, which can reap sub-
stantial benefits.

Berk and G€urler (2008) is also another study similar to
ours, in which the aging process of type 2 in the classic (Q, r)
policy is taken into consideration. They use the concept of
the embedded Markov process to analyze the system and
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elicit the effective lifetime distribution of the current batch
under one order outstanding restriction; and extend their
study to a multiple outstanding orders setting without the
service level constraint in Berk et al. (2020). The control poli-
cies studied in Berk and G€urler (2008) and Berk et al. (2020)
are solely based on the inventory level/inventory position,
whereas we incorporate the effective lifetime of the current
batch into the policy definition and propose the (Q, r, T) pol-
icy. Our analysis reveals that the effective lifetime of the cur-
rent batch plays an important role in characterizing the
system behavior. In the (Q, r, T) policy, the effective lifetime
of the current batch appears to be completely different from
the one in the (Q, r) policy. This fact can affect the system
dynamics over time and result in substantial cost savings. To
the best of our knowledge, no study deals with age-based
control policy of the (Q, r, T) with aging process type 2 and
no restriction on the number of outstanding orders.

3. Model and analysis

In subsection 3.1, we address characteristics of the inventory
system under consideration and propose the age-based con-
trol policy with multiple outstanding orders at any time. We
derive the effective lifetime distribution of items in subsec-
tion 3.2.

3.1. System description

We consider a single-item single-location inventory system
with perishable products facing unit external demands gen-
erated by a Poisson process with mean k in an infinite time
horizon setting. The inventory system receives orders
(batches) from an outside supplier, and then items in the
batch are picked from the stock based on the First-In-First-
Out (FIFO) policy by end-customers. Products have a fixed
and finite lifetime s upon arrival at the inventory system,
beyond which they are no longer usable. We assume that
lifetimes of all items in the batch are identical. We use the
term perishing when all the remaining items in a batch per-
ish before complete consumption. Procurement lead time
L> 0 is assumed to be positive and fixed. The inventory sys-
tem incurs a fixed replenishment cost of K per replenish-
ment order, an inventory holding cost of h per unit per unit
time, and the perishing cost p charged per unit that perishes
in stock. Demands are immediately satisfied if the stock level
is strictly positive, otherwise they are lost. There is no direct
cost for lost sales. Instead, a service level that requires a
fraction of unmet demand not to exceed a threshold value
a, is imposed on the inventory system. Thus, the expected
fixed ordering cost, expected on-hand inventory, and
expected number of perishing items are the operating char-
acteristics of the inventory system under consideration.

At a specific time epoch, the batch which is in stock and
under consumption is called the current batch (or the oldest
batch), and the batch which is already placed, but has not
yet joined the inventory is called the outstanding batch. It is
assumed that the inventory system allows for an unlimited
number of outstanding orders at any time. Among multiple

outstanding orders, we will refer to the most recent one as
the youngest batch. We use the term depletion when all
items in a batch are consumed by demands without perish-
ing. We employ the continuous review (Q, r, T) policy
which works as follows. An order of size Q is placed when-
ever the inventory position hits/crosses r by demand or perish-
ing, or T units of time elapse since the time that the last
batch under consumption was depleted or perished, whichever
occurs first. The goal, in our study, is to minimize the
expected total cost rate under the service level constraint,
where Q and r are two non-negative integer decision varia-
bles and T is the only continuous decision variable.

When a batch is under consumption in the system (i.e.,
the current batch in the system), a new order among out-
standing orders may join inventories before complete con-
sumption of the current batch. Based on the FIFO issuing
policy, the consumption of the new batch begins when the
current batch is completely depleted by demand or perishes.
Since demand is stochastic, the time between the arrival
time of the new batch and complete consumption of the
current batch is random. Therefore, when a new batch is
unpacked, all items in the batch have an identical random
lifetime (effective lifetime). Hence, under aging process type
2, we need to track both the arrival time of the new batch
and the time it becomes unpacked in order to measure its
effective lifetime. That is the reason why we record the life-
time of a batch, as it is issued from the supplier. However,
under aging process type 1, we do not need to trace the
arrival time of the new batch to inventories, since whenever
it is unpacked its aging process starts. In what follows, we
define the state variables, the regenerative points and
address different realizations of the system that works under
the (Q, r, T) policy with aging process type 2.

We use IP(t), IL(t), and O(t) to denote the inventory pos-
ition, inventory level, and number of outstanding orders at
time t � 0, respectively, where IPðtÞ ¼ ILðtÞ þ OðtÞ in inven-
tory systems with lost sales. In the inventory system under
consideration, the number of outstanding orders, the inven-
tory level (or the inventory position), the age of items, and
the remaining delivery time of outstanding orders are the var-
iables changing over time and can be used to define the state
of the system. Since analyzing and deriving the operating
characteristics of the system are easily obtained by taking the
inventory position and the age of items into account, we
define the state of the system at time t based on the inventory
position and the remaining lifetime of items at time t. Our
analysis regarding the age of batches in the (Q, r, T) policy
reveals that in order to characterize the system behavior with
lost sales, we need to track the age of m batches over the
time simultaneously, where m ¼ dr=Qe, which represents the
smallest integer strictly greater than r=Q:

According to the state definition of the system, regenera-
tive points are instances at which the inventory position hits
mQ and the remaining lifetimes of items have a specific
value. At these instances, the inventory system renews itself.
Therefore, a cycle is defined as the time interval between
two consecutive regenerative points. Our analysis demon-
strates that tracking the operating characteristics of the
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systems and deriving the cost function by considering the
cycle definition is not an easy task. Hence, we base our ana-
lysis on embedded cycles. An embedded cycle is defined as
the time interval between two consecutive instances
(embedded regenerative points) at which the inventory pos-
ition hits mQ. Thus, a cycle includes a number of embedded
cycles. According to the embedded cycle definition, the
remaining lifetimes of items at embedded regenerative
points yield a vector of random variables.

For illustration purposes, we depict a sample path of the
inventory position and the inventory level for the (Q, r, T)
policy in Figure 1, where Q¼ 4, r¼ 6, and T¼ 1.5. The
blue, black, and red lines represent the inventory level,
inventory position, and perishing occurrence, respectively
(see the online version). Without loss of generality, we
assume that the generated sample path commences with one
outstanding order, and the inventory level at time 0 is Q¼ 4
(i.e., IPðt1Þ ¼ mQ ¼ 8); and also assume that the oldest and
youngest batch effective lifetimes are 2.4 and 3.3, respect-
ively. The consecutive instances of embedded cycle begin-
nings (embedded regenerative points) are shown by bold
circles (�), at which the inventory position is mQ¼ 8. Let
CLn denote the nth embedded cycle length, which is the
time interval between two consecutive embedded regenera-
tive points, and let Un denote a period of time measured
from the beginning of embedded cycle n to the instance a
new order is placed (reorder point).

At time epoch t1 (beginning of embedded cycle 1), we
have a batch that is under consumption; this batch is the
oldest batch and the outstanding order is the youngest

batch. In embedded cycle 1, the inventory position drops
from mQ¼ 8 to r¼ 6 before T units of time elapse since the
beginning of the embedded cycle. The remaining r � ðm�
1ÞQ ¼ 2 units are depleted by demand before they perish,
and embedded cycle 1 ends. Then, embedded cycle 2 begins
with a stock-out period. The outstanding order during
embedded cycle 1 and the order placed within embedded
cycle 1 are the oldest and the youngest batches at the begin-
ning of embedded cycle 2, respectively. A new order is
placed in embedded cycle 2 when the inventory position
hits r before T units of time elapse since the beginning of
this embedded cycle, and some of the Q units (in this case,
2 units) in the current batch perish. The orders that are
placed within embedded cycles 1 and 2 are the oldest and
the youngest batches at the beginning of embedded cycle 3,
respectively. In embedded cycle 3, a new order is issued
when T units of time elapse before the inventory position
drops to r. This embedded cycle ends when some of the Q
units (in this case, 3 units) in the current batch perish.
Then, embedded cycle 4 starts. The orders that are placed
within embedded cycles 2 and 3 are the oldest and the
youngest batches at the beginning of embedded cycle 4,
respectively. The dynamics of the system in embedded cycle
4 are the same as those in embedded cycle 2, with the differ-
ence that in embedded cycle 4 only one item perishes. The
orders that are placed within embedded cycles 3 and 4 are
the oldest and the youngest batches at the beginning of
embedded cycle 5, respectively. Embedded cycle 5 begins
with a stock-out period. In this embedded cycle, a new order
is issued when T units of time elapse before the inventory

Figure 1. A sample path of the inventory position and the inventory level for Q¼ 4, r¼ 6 (m¼ 2), T¼ 1.5, L¼ 2, and s¼ 2 in the (Q, r, T) policy.
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position drops to r, and the embedded cycle ends when all Q
units are depleted by demand before they perish. Then,
embedded cycle 6 starts. The orders that are placed within
embedded cycles 4 and 5 are the oldest and the youngest
batches at the beginning of embedded cycle 6, respectively. In
embedded cycle 6, some of the Q items perish before T units
of time, which drops the inventory position below r (i.e., the
inventory position crosses r). In this case, when a new order
is placed the inventory position immediately hits mQ and
embedded cycle 6 ends. The orders that are placed within
embedded cycles 5 and 6 are the oldest and the youngest
batches at the beginning of embedded cycle 7, respectively.
The dynamics of the system in embedded cycle 7 are the
same as those in embedded cycle 3, with the difference that
in embedded cycle 7 two items perish. Embedded cycle 8
begins with a stock-out period. The dynamics of the system
in embedded cycle 8 are the same as those in embedded cycle
1. The process continues in this fashion. We will later refer to
Figure 1 for more illustration purposes.

We can generalize our observations from the sample path
above as follows:

1. At the beginning of embedded cycle n, we need to trace
the effective lifetime of the last m ¼ d rQe ¼ d64e ¼ 2
batches ordered in the past.

2. A new order is placed whenever the inventory position
crosses r¼ 6 by demand or perishing, or T¼ 1.5 units
of time elapse since the beginning of an embedded
cycle, whichever occurs first.

3. An embedded cycle ends when the current batch with
size Q is depleted by demand or perishes. For example,
embedded cycles 1, 5, and 8 end by depletion, where all
Q units are depleted by demand; and embedded cycles
2, 3, 4, 6, and 7 end by perishing, where some of the Q
items perish.

4. One can see that the inventory position lies on inter-
val ½r þ 1, ðmþ 1ÞQ� ¼ ½7, 12�:

5. During an embedded cycle, we may receive at most
mþ 1 outstanding orders.

6. An embedded cycle begins with a stock-out period
when the oldest batch at the beginning of the embedded
cycle is still an outstanding batch, and the length of the
stock-out period is equal to the remaining lead time at
the beginning of the embedded cycle.

We define the effective lifetime of a batch at the begin-
ning of an embedded cycle as sþ L minus the time that
elapsed since the order time of that particular batch.
According to the embedded cycle definition, the effective
lifetime of a batch at the beginning of an embedded cycle is
the remaining lifetime of the batch if that batch is already in
stock and is the remaining lead time plus s if that batch is
still outstanding. Based on the embedded cycle and effective
lifetime definitions, one can observe that at the beginning of
any embedded cycle the inventory position is mQ, but the
remaining lifetimes of the items are random variables.
Hence, the system under consideration can be fully charac-
terized by an m-dimensional array of the effective lifetimes

of m batches at the beginning of the embedded cycle.
Effective lifetime of batches over embedded cycle beginnings
yields a sequence of random variables referred to as the
sequence of effective lifetime vector. Let Zi

n denote the effect-
ive lifetime of batch i, i ¼ 1, :::,m at the beginning of
embedded cycle n, where m � 1: Then, fZ1 ¼ ðZ1

1,Z
2
1,

:::,Zm
1 Þ,Z2 ¼ ðZ1

2,Z
2
2, :::,Z

m
2 Þ,Z3 ¼ ðZ1

3,Z
2
3, :::,Z

m
3 Þ, :::g yield a

sequence of vectors of random variables; where Z1
n and Zm

n
are the oldest and the youngest batches at the beginning of
the embedded cycle n, respectively. The oldest batch is the
one that is currently under consumption during an
embedded cycle (referred to as the current batch). In the
next subsection, we derive the effective lifetime distribution
of items at the beginning of embedded cycles.

To illustrate the cycle definition, suppose that in Figure 1
the remaining lifetime of items at the beginning of
embedded cycle 1 is Z1 ¼ ðZ1

1,Z
2
1Þ ¼ ð1:2, 2:3Þ, and suppose

that for the first time we observe that the remaining lifetime
of items at the beginning of embedded cycle 3 is Z3 ¼
ðZ1

3,Z
2
3Þ ¼ ð1:2, 2:3Þ, and we observe for the second time

that the remaining lifetime of items at the beginning of
embedded cycle 7 is Z7 ¼ ðZ1

7,Z
2
7Þ ¼ ð1:2, 2:3Þ: Then, one

observes the first cycle with length
P2

n¼1 CLn including two
embedded cycles 1 and 2 and the second cycle with lengthP6

n¼3 CLn including four embedded cycles 3, 4, 5, and 6.

3.2. Effective lifetime distribution

Let ftn, n � 1g be the sequence of time epochs at which the
inventory position hits mQ for the nth time starting with
t1 ¼ 0: Assuming that the inventory system starts with m
batches in the system at time 0, IPðtnÞ ¼ mQ for all n � 1:
The time interval between tnþ1 and tn represents the nth
embedded cycle length for n � 1: One can see the time
epochs tn for n � 1 in Figure 1.

For each i � 1, let Xi be the random variable denoting
the arrival time of the ith demand since a pre-specified time
origin which is taken as the beginning of an embedded cycle
(after the completion of a possible stock-out period) unless
stated otherwise. Since demand is generated by a Poisson
process with rate k, the arrival time for ith demand which is
measured from the beginning of an embedded cycle has an
Erlang distribution with parameters k and i. For an Erlang i
variable, its probability density function (p.d.f) is denoted by
fið:Þ, cumulative distribution function (c.d.f) by Fið:Þ, and
complementary c.d.f by �Fið:Þ: Furthermore, let N(t) be the
counting process of the arrivals in ð0, t�: Then, ftn, n � 1g is
a sequence of stopping times for ðNðtÞÞt�0:

Let fZn, n � 1g be the sequence of effective lifetimes of
m batches in the system at time tn, where Zn ¼
fZ1

n,Z
2
n, :::,Z

m
n g; and zn ¼ fz1n, z2n, :::, zmn g denote a particular

realization of Zn, where 0 � z1n � z2n � ::: � zmn � sþ L:
Our analysis states that when z1n > s, the current batch is an
outstanding batch at the beginning of the embedded cycle.
That particular batch will join the inventory after z1n � s
units of time and upon its arrival, it is a fresh batch. Hence,
we have a stock-out period with a length of the remaining
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lead time (i.e., z1n � s) at the beginning of the embedded
cycle. Any demand arrival during the stock-out period is
lost. For instance, in Figure 1, we have a stock-out period
at the beginning of embedded cycles 2, 5, and 8. And
when z1n � s, it implies that the current batch is in the
stock and under consumption at the beginning of the
embedded cycle (i.e., it is not a fresh batch). In this case,
we do not have any lost sales at the beginning of the
embedded cycle. Hence, the system loses the demands
that occur, if any, during the segment wðZ1

nÞ,
where wðZ1

nÞ ¼ maxf0,Z1
n � sg:

To derive the effective lifetime distribution of the batches,
we need to show the Markovian property of fZn, n � 1g: To
do so, we address different realizations of the system and
the effective lifetime expression by which we can show the
Markovian property. In Figures 2 to 6, we illustrate possible
realizations of the stochastic process under the proposed
policy. In these realizations, we assume that we are currently
at the beginning of embedded cycle n and the current batch
has the effective lifetime of z1n as well as we assume that,
without loss of generality, the embedded cycle n begins with
a stock-out period wðz1nÞ: Thus, the nth embedded cycle
length and the effective lifetime of the current batch at the
beginning of embedded cycle ðnþ 1Þ are provided for each
realization. We refer to these realizations as Event 1 through
Event 5. Recall that Un is a period of time measured from
the beginning of embedded cycle n to the instance a new
order is placed (reorder point), and XmQ�r is the time period
during which mQ – r items are consumed by demands,
which is measured (after the completion of a possible stock-
out period) from the beginning of embedded cycle n. A new
order with size Q is placed whenever the inventory position
hits r or T units of time elapse since the beginning of the
embedded cycle n, whichever occurs first. Following

different realizations, one can see that a new order is placed
whenever (i) the inventory position hits r by depletion
(Events 1 and 2), (ii) T units of time has elapsed since the
beginning of the embedded cycle (Events 3 and 4), or (iii)
the inventory position crosses r (drops below r) by perishing
(Event 5).

In Event 1, as shown in Figure 2, mQ – r demands have
arrived before T units of time and the remaining r � ðm�
1ÞQ units are also depleted by demand before perishing.
This realization can be characterized by the events wðz1nÞ þ
XmQ�r < T and wðz1nÞ þ XQ < z1n: In this realization, Un ¼
wðz1nÞ þ XmQ�r and CLn ¼ wðz1nÞ þ XQ: Event 2 (Figure 3) is
analogous to Event 1 with a difference that some of Q items
perish before complete depletion. This realization can be
characterized by the events wðz1nÞ þ XmQ�r < T and wðz1nÞ þ
XQ > z1n: In this realization, Un ¼ wðz1nÞ þ XmQ�r and CLn ¼
z1n: In Event 3, as shown in Figure 4, we hit T before mQ –
r demand arrivals, and the embedded cycle ends by com-
plete depletion. This realization can be characterized by the
events wðz1nÞ þ XmQ�r > T and wðz1nÞ þ XQ < z1n: In this
realization, Un ¼ T and CLn ¼ wðz1nÞ þ XQ: Event 4 (Figure
5) is analogous to Event 3 with a difference that some of Q
items perish before complete depletion. This realization can
be characterized by the events wðz1nÞ þ XmQ�r > T and
wðz1nÞ þ XQ > z1n: In this realization, Un ¼ T and CLn ¼ z1n:
Finally, in Event 5 (Figure 6), before mQ – r demand arriv-
als and before we hit T, some of the Q items perish and the
inventory position drops below r. This realization can be
characterized by the events wðz1nÞ þ XmQ�r > z1n and z1n < T:
In this realization, Un ¼ z1n and CLn ¼ z1n: It is worthwhile
to note that in this event, Zm

nþ1 ¼ sþ L: In the sample path
depicted in Figure 1, embedded cycles 1 and 8 illustrate
Event 1; embedded cycles 2 and 4 illustrate Event 2;

Figure 2. Event 1, wðz1nÞ þ XmQ�r < T and wðz1nÞ þ XQ < z1n; Un ¼ wðz1nÞþ
XmQ�r and CLn ¼ wðz1nÞ þ XQ; Zinþ1 ¼ Ziþ1n � ½wðz1nÞ þ XQ�, for i ¼ 1, :::,m� 1,
and Zmnþ1 ¼ sþ L� ½XQ � XmQ�r �:

Figure 3. Event 2, wðz1nÞ þ XmQ�r < T and wðz1nÞ þ XQ > z1n; Un ¼ wðz1nÞþ
XmQ�r and CLn ¼ z1n; Zinþ1 ¼ Ziþ1n � z1n , for i ¼ 1, :::,m� 1, and Zmnþ1 ¼
sþ L� ½z1n� ðwðz1nÞ þ XmQ�rÞ�:
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embedded cycle 5 illustrates Event 3; embedded cycles 3 and
7 illustrate Event 4; and embedded cycle 6 illustrates
Event 5.

Following different realizations described above, one can
easily verify that:

Un ¼ minfZ1
n,wðZ1

nÞ þ XmQ�r,Tg, (1)

and

CLn ¼ wðZ1
nÞ þminfZ1

n, s,XQg: (2)

Furthermore, one can find the effective lifetime of items at
the beginning of the embedded cycle nþ 1 by

Zi
nþ1 ¼ Ziþ1

n � CLn, for i ¼ 1, 2, :::,m� 1,

Zm
nþ1 ¼ sþ L� ðCLn � UnÞ:

(3)

Equation (3) indicates that the youngest effective lifetime at
the beginning of the embedded cycle nþ 1, Zm

nþ1, is sþ L
minus the time period that begins from the reorder point
till the end of the embedded cycle n, i.e., CLn � Un:
Moreover, the effective lifetime of batch i, for i ¼
1, 2, :::,m� 1, at the beginning of the embedded cycle nþ 1,
Zi
nþ1, is the effective lifetime of batch iþ 1 at the beginning

of the embedded cycle n minus the nth embedded cycle
length. One can see z1n and z2n, n ¼ 1, :::, 8, for the sample
path depicted in Figure 1. According to (3), we can con-
clude that the effective lifetime vector Znþ1 at the beginning
of the ðnþ 1Þth embedded cycle is completely determined
by Zn and the Poisson demand arrival process after the
stopping time tn. Therefore, the embedded process fZn, n �
1g has the Markovian property. Moreover, we can easily
verify that 0 � Zi

n � sþ L, for i ¼ 1, 2, :::,m� 1, and L �
Zm
n � sþ L:
Next, we show that the union of Events 1 to 5 contains

the entire space. To do so, we consider two cases: (i) When
T � z1n, the following events may occur:

E1a :¼ fXmQ�r � T;XQ � z1ng,
E2a :¼ fXmQ�r � T;XQ > z1ng,
E3 :¼ fT < XmQ�r < z1n;XQ � z1ng,
E4a :¼ fT < XmQ�r < z1n;XQ > z1ng,
E4b :¼ fXmQ�r > z1ng,

(4)

where events E1a and E2a correspond to Event 1 and Event
2, respectively; event E3 describes Event 3, and both events
E4a and E4b represent Event 4. Hence,

Figure 4. Event 3, wðz1nÞ þ XmQ�r > T and wðz1nÞ þ XQ < z1n; Un ¼ T and CLn ¼
wðz1nÞ þ XQ; Zinþ1 ¼ Ziþ1n � ½wðz1nÞ þ XQ�, for i ¼ 1, :::,m� 1, and Zmnþ1 ¼
sþ L� ½wðz1nÞ þ XQ � T�:

Figure 5. Event 4, wðz1nÞ þ XmQ�r > T and wðz1nÞ þ XQ > z1n; Un ¼ T and CLn ¼
z1n; Z

i
nþ1 ¼ Ziþ1n � z1n , for i ¼ 1, :::,m� 1, and Zmnþ1 ¼ sþ L� ðz1n � TÞ:

Figure 6. Event 5, wðz1nÞ þ XmQ�r > z1n and z1n < T; Un ¼ z1n and CLn ¼ z1n;
Zinþ1 ¼ Ziþ1n � z1n , for i ¼ 1, :::,m� 1, and Zmnþ1 ¼ sþ L:
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PfXg ¼ Pf[Eig ¼
ðT
0

ðz1n�t
0

fr�ðm�1ÞQðuÞdu

"

þ
ð1
z1n�t

fr�ðm�1ÞQðuÞdu
#
fmQ�rðtÞdt

þ
ðz1n
T

ðz1n�t
0

fr�ðm�1ÞQðuÞdu

"

þ
ð1
z1n�t

fr�ðm�1ÞQðuÞdu
#
fmQ�rðtÞdt

þ
ð1
z1n

fmQ�rðtÞdt

¼
ðT
0
fmQ�rðtÞdt þ

ðz1n
T
fmQ�rðtÞdt

þ
ð1
z1n

fmQ�rðtÞdt ¼ 1:

(5)

(ii) When T > z1n, the following events may occur:

E1b :¼ fXmQ�r � z1n;XQ � z1ng,
E2b :¼ fXmQ�r � z1n;XQ > z1ng,
E5 :¼ fXmQ�r > z1ng,

(6)

where events E1b, E2b, and E5 describe Events 1, 2, and 5,
respectively. Hence,

PfXg ¼ Pf[Eig ¼
ðz1n
0

ðz1n�t
0

fr�ðm�1ÞQðuÞdu

"

þ
ð1
z1n�t

fr�ðm�1ÞQðuÞdu
#
fmQ�rðtÞdt

þ
ð1
z1n

fmQ�rðtÞdt ¼
ðz1n
0
fmQ�rðtÞdt

þ
ð1
z1n

fmQ�rðtÞdt ¼ 1:

(7)

The state space of the system is A ¼ fðx1, x2, :::, xmÞ : 0 �
xi � sþ L, i ¼ 1, :::,mg: Let Bm be the Borel r-algebra gen-
erated by the subsets of A. Without loss of generality, we
consider the sets A 2 Bm which are in the form A ¼
ð0, z1� � ð0, z2� � � � � � ð0, zm�, where 0 � zi � sþ L, i ¼
1, :::,m: Let x ¼ ðx1, x2, :::, xmÞ and z ¼ ðz1, z2, :::, zmÞ; and
for the ease of exposition, we define the following notations:
fx ¼ max1�i�m�1fxiþ1 � zig and fxy ¼ minfx, yg; more spe-

cifically, fx
1

s ¼ minfx1, sg and fx
1

T ¼ minfx1,Tg: Let ‘ ¼
maxffx þ fx

1

s � x1, sþ L� zm þ fx
1

s þ fx
1

T � x1g and 1f:g be
the indicator function. Then, considering the realizations of the
system, and the Markovian property of the lifetime distribu-
tion, we have the following result which finds the transition
probability function of effective lifetimes, i.e., PfAjxg 	
PfZnþ1 � zjZn ¼ xg 	 PfZi

nþ1 � zi, i ¼ 1, :::,mjx ¼ ðx1,
x2, :::, xmÞg: That is, we find the effective lifetime distribution
at the beginning of embedded cycle nþ 1, Znþ1 � z, given
that the effective lifetimes at the beginning of embedded cycle
n is Zn ¼ x:

Our analysis reveals that when r ¼ ðm� 1ÞQ, the system
behaves differently from the case where ðm� 1ÞQ < r <
mQ in the sense that some realizations of the system would
not occur when r ¼ ðm� 1ÞQ: For example, if r ¼
ðm� 1ÞQ, then Events 1 and 2, depicted in Figures 2 and 3
respectively, would not occur. Therefore, we analyze the
proposed policy when r ¼ ðm� 1ÞQ, separately. We call
this case as a special region. When 0 � r < Q, then m¼ 1
and the special region is r¼ 0; when Q � r < 2Q, then
m¼ 2 and the special region is r ¼ Q, and so on. In what
follows, we present the transition probability function for
the case where ðm� 1ÞQ < r < mQ and postpone the deriv-
ation of that of the special region (when r ¼ ðm� 1ÞQ) to
the end of this section.

Theorem 1. (Transition probability function of Zn for ðm�
1ÞQ < r < mQ).

For x1 < fx, PfAjxg ¼ 0 and for x1 � fx we have:

PfAjxg ¼ 1fx1�fx1T �sþL�zmgðfx1s
fx

1
s þfx

1
T �x1

�Fr�ðm�1ÞQð‘� tÞdFmQ�rðtÞ þ �FmQ�rðfx
1

s Þ

" #

þ
ðminffx1s �ðsþL�zmÞ, fx

1
s þfx

1
T �x1g

0

�Fr�ðm�1ÞQðmaxffx

þ fx
1

s � x1 � t, sþ L� zmgÞdFmQ�rðtÞ:
(8)

All proofs are provided in Appendix A.

Theorem 2. (Ergodicity). The process fZn, n � 1g is ergodic.

Theorem 2 ensures that the limiting distribution of the
effective lifetime process exists. Hence, we let limn!1
Gnþ1 ¼ limn!1 Gn 	 G and obtain the limiting distributions
in terms of implicit integral equations as follows:

GðzÞ ¼ Gðz1, z2, :::, zmÞ ¼
ðsþL
xm¼0

:::

ðsþL
x2¼0

ðsþL
x1¼0

PfAjx ¼ ðx1, x2, :::, xmÞgdGðx1, x2, :::, xmÞ,
(9)

where PfAjx ¼ ðx1, x2, :::, xmÞg is given by Equation (8).
Our analysis shows that the limiting distribution of the
effective lifetime is a continuous function on Zi for i ¼
1, 2, :::,m� 1, and it is a mixture function on Zm with only
one mass point at Zm ¼ sþ L: The mass point on Zm is due
to Event 5 (Figure 6), in which the youngest batch has the
effective lifetime of Zm ¼ sþ L: Since the limiting distribu-
tion of the effective lifetime is unknown, solving the integral
equation in (9) is not an easy task. Thus, to find the limiting
distribution of the effective lifetime, we discretize the sup-
port of the limiting distribution, GðzÞ, which is in both
sides of Equation (9); however, it is a continuous distribu-
tion function. To this end, we suppose that the limiting dis-
tribution includes several mass points (i.e., ðz1, z2, :::, zmÞ
and ðx1, x2, :::, xmÞ in Equation (9) are assumed to be mass
points) and then for all combinations of mass points we
construct a set of linear equations by (9). Given the set of
linear equations and knowing the fact that the sum of limit-
ing probabilities is equal to one, we can find the limiting
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probabilities of mass points. A greater number of mass
points requires more time to solve the resultant set of equa-
tions, however, it results in more accurate computa-
tional results.

For the sake of clarity, we describe our discretization
approach in more detail as follows and provide a numerical
example in Appendix B for the illustration purpose. Suppose
that vector Zi is discretized to Si mass points for i ¼
1, 2, :::,m: Let k1, k2, :::, km represent the mass point indices
over vectors Z1,Z2, :::,Zm, respectively, with its correspond-
ing mass point ðx1, x2, :::, xmÞ: Thus, ki 2 f1, 2, :::, Sig for i ¼
1, 2, :::,m: Denote the corresponding probability of the mass
point ðx1, x2, :::, xmÞ by Pk1, k2, :::, km , which is a decision vari-
able. Furthermore, suppose that e1, e2, :::, em is the corre-
sponding index of a given mass point ðz1, z2, :::, zmÞ: Then,
for any given mass point ðz1, z2, :::, zmÞ in the discretized
vector space, we construct the set of linear equations as fol-
lows:X

k1�e1

X
k2�e2

:::
X
km�em

Pk1, k2, :::, km

¼
XS1
k1¼1

XS2
k2¼1

:::
XSm
km¼1

PfAjðx1, x2, :::, xmÞg �Pk1, k2, :::, km ,

(10)
where PfAjðx1, x2, :::, xmÞg is computed by Equation (8) for

a given effective lifetime ðx1, x2, :::, xmÞ: Moreover, we need
to include a single equation as below to the set of linear
equations in (10), that accounts for the fact that the sum of
probabilities is one:

XS1
k1¼1

XS2
k2¼1

:::
XSm
km¼1

Pk1, k2, :::, km ¼ 1: (11)

The left-hand side of Equation (10) is equivalent to that of
Equation (9), indicating the sum of probabilities of mass
points which are less than or equal to a given mass point
ðz1, z2, :::, zmÞ: Similarly, the right-hand side of Equation
(10) is equivalent to that of Equation (9), expressing the
transition probabilities for all set of mass points in the dis-
cretized vector space.

Figure 7 demonstrates the joint distribution function,
gZ1,Z2ðz1, z2Þ, and Figure 8 depicts its corresponding mar-
ginal effective lifetime distributions at the beginning of
embedded cycles in the (Q, r, T) policy for a particular data
set, where m¼ 2, and Z1 and Z2 are discretized by 30 and
20 mass points, respectively.

Next, we derive the transition probability function for the
case with at most one outstanding order, m¼ 1. Let
fZn, n � 1g be the sequence of effective lifetimes of the current
batch in the system at time tn, and zn denote a particular realiza-
tion of Zn, where 0 � zn � sþ L: Considering different realiza-
tions for the case where m¼ 1, we can conclude that the
ðnþ 1Þth effective lifetime vector can be expressed as

Znþ1 ¼ sþ L� ðCLn � UnÞ, (12)

where Un ¼ minfZn,wðZnÞ þ XQ�r,Tg and CLn ¼ wðZnÞþ
minfZn, s,XQg: The transition probability function for the
case where m¼ 1 is found by

PfAjxg ¼ PfZnþ1 < zjZn ¼ xg

¼ 1fx�fxT�sþL�zg

ðfxs
fxsþfxT�x

�Frð‘� tÞdFQ�rðtÞ þ �FQ�rðfxsÞ
" #

þ �Frðsþ L� zÞFQ�rðminffxs � ðsþ L� zÞ, fxs þ fxT � xgÞ,
(13)

where ‘ ¼ sþ L� z þ fxs þ fxT � x: The proof is similar to
Theorem 1, so it is omitted. Note that one can find the tran-
sition probability function for the case where m¼ 1 by that

Figure 7. Joint distribution function of effective lifetime for Q¼ 5, r¼ 7, T¼ 0.3, L¼ 1, s¼ 2, and k¼ 3.

Figure 8. Effective lifetime distribution for Q¼ 5, r¼ 7, T¼ 0.3, L¼ 1, s¼ 2,
and k¼ 3.
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of the case where m> 1 by setting fx ¼ 0, zm ¼ z, x1 ¼ x,
and ‘ ¼ sþ L� z þ fxs þ fxT � x in Equation (8), which
reduces to Equation (13).

Our results show that in the case where m¼ 1, we have two
mass points at T and sþ L: In Event 5, the effective lifetime of
a new embedded cycle turns out to be sþ L: On the other
hand, if an embedded cycle begins with effective lifetime of sþ
L, a new batch is ordered by hitting T, and the embedded cycle
ends by perishing (i.e., Event 4 occurs), then Znþ1 ¼
sþ L� ðCLn � UnÞ ¼ Znþ1 ¼ sþ L� ðsþ L� TÞ ¼ T,
implying that we have a mass point at T. Therefore, we have
two mass points at T and sþ L in the case where m¼ 1.
Figure 9 depicts a sample of effective lifetime distribution for
Q¼ 9, r¼ 7, T¼ 1.2, L¼ 0.5, s ¼ 1:5, and k¼ 1, where we
have two mass points at T¼ 1.2 and sþ L ¼ 2:

Now, we investigate the system characteristics by consid-
ering the special region of r ¼ ðm� 1ÞQ, i.e., when r is an
integer multiple of Q. In the following, we provide some
main results for the special region r ¼ ðm� 1ÞQ analogous
to the case where ðm� 1ÞQ < r < mQ: Given that the state
spaces for the cases r ¼ ðm� 1ÞQ and ðm� 1ÞQ < r < mQ
are identical, we have the following result.

Theorem 3. (Transition probability function of Zn for
r ¼ ðm� 1ÞQ).

For x1 < fx, PfAjxg ¼ 0, and for x1 � fx we have:

PfAjxg ¼ FQðfx
1

s Þ � FQðmaxffx þ fx
1

s � x1, sþ L� zm

þ fx
1

s þ fx
1

T � x1gÞ
þ 1fx1�fx1T �sþL�zmg

�FQðfx
1

s Þ

þ 1fzm¼sþLg FQðfx
1

s þ fx
1

T � x1Þ � FQðfx þ fx
1

s � x1Þ
h i

:

(14)

Proof is similar to Theorem 1, so it is omitted. And, for the
case where m¼ 1 (i.e., the ðQ, 0,TÞ policy), we have

PfAjxg ¼ FQðfxsÞ � FQðsþ L� z þ fxs þ fxT � xÞ
þ 1fx�fxT�sþL�zg

�FQðfxsÞ
þ 1fz¼sþLgFQðfxs þ fxT � xÞ: (15)

Similar to the case where ðm� 1ÞQ < r < mQ, we use
the discretization approach for finding the limit distribution
of the effective lifetime in case where r ¼ ðm� 1ÞQ:

4. Operating characteristics and the objective
function

Having the steady-state effective lifetime distribution, we
next derive the operating characteristics of the system,
including the expected embedded cycle length, number of
lost sales, number of perishing items, as well as on-hand
inventory for a given lifetime Z ¼ z ¼ ðz1, z2, :::, zmÞ: Our
analysis reveals that only the current batch lifetime affects
the operating characteristics of the system. Therefore, in the
following, we derive the operating characteristics for a given
current batch lifetime Z1 ¼ z1:

Considering the events depicted in Figures 2 to 6, we can
write the conditional embedded cycle length for a given cur-
rent batch lifetime Z1 ¼ z1:

CLjz1
� �

¼
minfXQ, z1g if z1 < s,

z1 � sþminfXQ, sg if z1 � s:

(
(16)

After some modification, we can rewrite Equation (16) as
follows:

CLjz1
� �

¼
XQ þ wðz1Þ if XQ < z1 � wðz1Þ,
z1 if XQ � z1 � wðz1Þ:

(
(17)

Therefore, the conditional expected embedded cycle length
is obtained as follows:

E CLjz1
� �

¼
ðz1�wðz1Þ
0

ðyþ wðz1ÞÞdFQðyÞ þ
ð1
z1�wðz1Þ

z1dFQðyÞ

¼ Q
k
FQþ1ðz1 � wðz1ÞÞ þ wðz1ÞFQðz1 � wðz1ÞÞ

þ z1�FQðz1 � wðz1ÞÞ:
(18)

Note that z1 � wðz1Þ ¼ minfz1, sg ¼ fz
1

s : Thus, we can sim-
plify Equation (18) as follows:

E CLjz1
� �

¼ Q
k
FQþ1ðfz

1

s Þ � fz
1

s FQðfz
1

s Þ þ z1: (19)

We have a stock-out period at the beginning of the
embedded cycle with length z1 � s if z1 > s: Then, the con-
ditional expected number of lost sales in an embedded cycle
is obtained as follows:

E LSjz1
� �

¼ kwðz1Þ: (20)

The conditional number of perishing items can be calculated as:

Pjz1
� �

¼ 0 if XQ < z1 � wðz1Þ,
Q� Nðz1 � wðz1ÞÞ if XQ � z1 � wðz1Þ,

�
(21)

where Nðz1 � wðz1ÞÞ represents the number of demand arrivals
during z1 � wðz1Þ units of time. Then, the conditional expected
number of perishing items is obtained as follows:

Figure 9. Effective lifetime distribution for Q¼ 9, r¼ 7, T¼ 1.2, L¼ 0.5, s ¼
1:5, and k¼ 1.
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E Pjz1
� �

¼
XQ�1
n¼0
ðQ� nÞe�kfz

1
s
ðkfz1s Þ

n

n!
: (22)

Without loss of generality, we charge the holding cost as an
item is withdrawn from stock either through demand occurrence
or perishing. We can do this because Little’s Law holds for the erg-
odic system at hand. To find the conditional expectation of the
time over which inventory is held, we find the average time that
the items are retained in stock before they are either consumed by
demand or perish. To this end, we consider two cases:

1. If z1 > s and n demands have arrived at the system after
the end of the stock-out period during an embedded
cycle, where n � Q, the waiting time of the item con-
sumed by the nth demand is Xn and Q – n items will be
left at the end of the embedded cycle and they will be
retained s units of time in the stock within the
embedded cycle. Therefore, the expected waiting time of
products is given by ðx1 þ x2 þ � � � þ xnÞ þ ðQ� nÞs:

2. If z1 < s and n demands arrive at the system during an
embedded cycle, where n � Q, all of the n items wait for
s� z1 units of time before the embedded cycle starts; and
item n waits Xn units of time during the embedded cycle
till it is depleted by demand. Moreover, the waiting time of
the Q – n items is s. Therefore, the expected waiting time
of products is given by nðs� z1Þ þ ðx1 þ x2 þ � � � þ
xnÞ þ ðQ� nÞs ¼ ðx1 þ x2 þ � � � þ xnÞ þ Qs� nz1:

Considering the two cases above and having the joint dis-
tribution of arrival times of Q demands, f ðx1, x2, :::, xQÞ ¼
kQe�kxQ where 0 < x1 < x2 < � � � < xQ <1 (Ross et al.,
1996), we can obtain the expected waiting time of products
for a given effective lifetime vector Z ¼ z ¼ ðz1, z2, :::, zmÞ
and given n as follows:

E OHnjz1
� �

¼
ð
0<x1<���<xn<fz

1
s <xnþ1<���<xQ

ðx1 þ x2 þ � � � þ xnÞ þ ðQs� nfz
1

s Þ
h i

kQe�kxQdx1:::dxQ,

(23)

and the expected on-hand inventory for a given z1 is
obtained as

E OHjz1
� �

¼
XQ
n¼0

E OHnjz1
� �

¼ Qðs� fz
1

s Þ þ
1
k

XQ�1
k¼0

ðQ� kÞ
k!

cðkþ 1, kfz
1

s Þ,

(24)

where

cðkþ 1, kfz
1

s Þ ¼
ðkfz1s
0

xke�xdx: (25)

The derivation of (24) is provided in Appendix C.
Finally, we can find the expected value of operating char-

acteristics as

E CL½ � ¼
ð
z1
E CLjz1
� �

dGðz1Þ,

E LS½ � ¼
ð
z1
E LSjz1
� �

dGðz1Þ,

E P½ � ¼
ð
z1
E Pjz1
� �

dGðz1Þ,

E OH½ � ¼
ð
z1
E OHjz1
� �

dGðz1Þ:

(26)

The approach to construct the objective function is simi-
lar to Berk and G€urler (2008), Berk et al. (2020) and is
motivated by the results of Ross (1970) and Tijms and
Tijms (1994). After them, we have the following argument.
Let Ci 	 CiðZi,XÞ and Li 	 LiðZi,XÞ be the cost and the
length of the ith embedded cycle for i � 1, where X denotes
the array of inter-arrival times of Poisson demands within
the ith embedded cycle, independent of ðZ1, :::,ZiÞ: Also, let
CðzÞ ¼ E½CiðZi,XÞjZi ¼ z� and LðzÞ ¼ E½LiðZi,XÞjZi ¼ z�
for i � 1: The expectations are independent of the index i
when Zi ¼ z is given and are calculated with respect to the
inter-arrival times of Poisson demands X. Then, we use the
following objective function:

/ ¼
Ð
z CðzÞdGðzÞÐ
z LðzÞdGðzÞ

: (27)

That is, we use the ratio of the expected cost of an
embedded cycle in the limit divided by the length of such
an embedded cycle in the limit. We do not provide a rigor-
ous proof here, but the use of this objective function is
motivated by:

1. The results of Ross (1970) where it is shown that under
a mild regularity condition which states that transitions
in the embedded Markov process do no occur too
quickly, it holds that:

/1ðxÞ ¼ lim
t!1

E
CðtÞ
t
jZ1 ¼ x

� �
¼ /2ðxÞ

¼ lim
n!1

E
Pn

i¼1CiðZi,XÞjZ1 ¼ x
� �

E
Pn

i¼1LiðZi,XÞjZ1 ¼ x
� � , (28)

where C(t) is the cost incurred in interval ½0, t�:
2. As we have shown fZn, n � 1g converges in distribu-

tion, and we have Zn ! Z and Gn ! G: Since fZn, n �
1g is a bounded sequence, we have E½Zn� ! E½Z� by
bounded convergence theorem.

3. Finally, since both the cost and the length of the
embedded cycles are continuous and bounded, we
assume that E 1

n

Pn
i¼1 CiðZi,XÞjZ1 ¼ z

� �
!E CðZ,XÞ½ � ¼

E E CðZ,XjZÞ½ �½ � ¼ E CðZÞ½ � ¼
Ð
z CðzÞdGðzÞ:

The objective function given in Equation (27) implicitly
involves the policy parameters (Q, r, T). Hence, we explicitly
write the objective function of our policy as

/ ¼ E TCðQ, r,TÞ½ � ¼ K þ hE OH½ � þ pE P½ �
E CL½ � , (29)

and the optimization problem is

232 S. POORMOAIED ET AL.



ðPÞ :min
Q, r,T

E TCðQ, r,TÞ½ �,

subject to :

E LS½ �
kE CL½ � � a,

where E½LS�=kE½CL� represents the fraction of demands lost
over a long time, which is denoted by FLðQ, r,TÞ: For the
ease of exposition, we use E½TCðQ, r,TÞ� and E½TC�
interchangeably.

Since in the case where m¼ 1 we have only one batch
on hand, the effective lifetime of the current batch Z ¼ z
affects the operating characteristics. Therefore, z1 and z
are equivalent and the operating characteristics expres-
sions are the same in both cases m¼ 1 and m> 1 as
expressed in Equations (19), (20), (22), and (24). It should
be noted that both operating characteristic expressions
for a given Z ¼ z and the objective function structures
for the cases ðm� 1ÞQ < r < mQ and r ¼ ðm� 1ÞQ
are identical.

5. Special policies

In this section, we address two special policies which are
either a stock-based or an age-based policy. The (Q, r, T)
policy has a special case, namely the (Q, r) policy, which
works as follows: an order of size Q is placed whenever the
inventory position hits r. The (Q, T) policy is another special
case of the (Q, r, T) policy which works as follows: an order
of size Q is placed whenever T units of time elapse since the
beginning of the embedded cycle. For the general case m � 1,
the (Q, r) and (Q, T) policies can be achieved by setting
T ¼ sþ L and r ¼ – 1 in the (Q, r, T) policy, respectively.
The exact analysis of the (Q, r) policy with the effective life-
time consideration is studied by Berk et al. (2020). In what
follows, we provide the exact analysis of the (Q, T) policy.
As shown later in Section 6, the (Q, T) policy performs well
for inventory systems that hold perishable items with a short
lifetime (such as flowers, bread, fruits, milk products, vegeta-
bles, fish, and foodstuffs). This means that when the lifetime
of products is short, tracking only the age of items for trig-
gering a new order is sufficient. Furthermore, our analysis
reveals that the computation time for calculating the operat-
ing characteristics under this policy is negligible, so that
when a large number of outstanding orders is required, this
policy is applicable.

In the (Q, T) policy, we only consider the case where
m¼ 1. There exist three realizations in this policy. In Event
1, after reordering, Q items are depleted. In Event 2, after
reordering, a number of Q items perish. In Event 3, Q items
are either depleted or perish before reordering. Considering
the different events above, we can conclude that the
ðnþ 1Þth effective lifetime can be expressed as

Znþ1 ¼ sþ L� ðCLn � UnÞ, (30)

where Un ¼ T and CLn ¼ maxfwðZnÞ þminfZn, s,XQg,Tg;
and the transition probability function is given by the fol-
lowing result.

Theorem 4. (Transition Probability Function of Zn).

PfAjxg ¼ 1fz¼sþLgFQðfxs þ fxT � xÞ þ 1fx�fxT�sþL�zg
�FQðfxsÞ

þ FQðfxsÞ � FQðsþ L� z þ fxs þ fxT � xÞ:
(31)

The limiting distributions in terms of implicit integral
equations is found by

GðzÞ ¼
ðsþL
0

PfAjxgdGðxÞ: (32)

Similar to the (Q, r, T) policy, we use the discretization
approach to find the limiting distributions. We observe that
in the (Q, T) policy we have at most two mass points at T
and sþ L:

In the following, we provide the operating characteristics
of the (Q, T) policy (see Appendix D for their derivations).
Our analysis reveals that the operating characteristics for T
< L and T � L are different. Then, we need to consider
E½CL� and E½LS� in two cases:

(i) If T < L,

E CL½ � ¼
ðT
0
TdGðzÞ þ

ðs
T

TFQðTÞ
�

þQ
k

FQþ1ðzÞ � FQþ1ðTÞ
� �

þ z�FQðzÞ
�
dGðzÞ

þ
ðsþT
s

TFQðT � z þ sÞ
�

þðz � sÞ FQðsÞ � FQðT � z þ sÞ
� �

þQ
k

FQþ1ðsÞ � FQþ1ðT � z þ sÞ
� �

þ z�FQðsÞ
�
dGðzÞ

þ
ðsþL
sþT

z � sFQðsÞ þ
Q
k
FQþ1ðsÞ

� �
dGðzÞ:

(33)

E LS½ � ¼
ðT
0

kT � QFQþ1ðzÞ � kz�FQðzÞ
� �

dGðzÞ

þ
ðs
T

kTFQðTÞ � QFQþ1ðTÞ
� �

dGðzÞ

þ
ðsþT
s

kTFQðT � z þ sÞ � QFQþ1ðT � z þ sÞ
�

þkðz � sÞ�FQðT � z þ sÞ
�
dGðzÞ

þ
ðsþL
sþT

kðz � sÞdGðzÞ:

(34)
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(ii) If T � L,

E CL½ � ¼
ðT
0
TdGðzÞ þ

ðs
T

h
TFQðTÞ

þ Q
k

FQþ1ðzÞ � FQþ1ðTÞ
� �

þ z�FQðzÞ
i
dGðzÞ

þ
ðsþL
s

h
TFQðT � z þ sÞ

þ ðz � sÞ FQðsÞ � FQðT � z þ sÞ
� �

þ Q
k

FQþ1ðsÞ � FQþ1ðT � z þ sÞ
� �

þ z�FQðsÞ
i
dGðzÞ:

(35)

E LS½ � ¼
ðT
0

kT � QFQþ1ðzÞ � kz�FQðzÞ
� �

dGðzÞ

þ
ðs
T

kTFQðTÞ � QFQþ1ðTÞ
� �

dGðzÞ

þ
ðsþL
s

kTFQðT � z þ sÞ � QFQþ1ðT � z þ sÞ
�

þkðz � sÞ�FQðT � z þ sÞ
�
dGðzÞ:

(36)

Note that E½P� and E½OH� in the (Q, T) policy are the same
as those in the (Q, r, T) policy. Finally, it is worthwhile to
note that the structures of the objective function and the
service level constraint for all proposed policies are the
same; and in all policies, the discretization approach is used
to find the limit distribution of the effective lifetime.

6. Solution approach

In this section, we present our solution methodology for
finding the global optimal solution of the nonlinear opti-
mization problem (P). Since the effective lifetime distribu-
tion is not explicitly attainable, it is difficult to provide an
explicit expression for the optimal solution. We develop an
exact algorithm that is based on the structures of the object-
ive function and the service level constraint.

As Q and r are integer decision variables, we can execute
an exhaustive search on different values of Q and r over a
specific search space; however, enumerating the continuous
variable T is not an easy task, which makes the optimization

problem (P) sophisticated. Thus, we try to capture the
behaviors of the expected cost rate function and the service
level constraint with respect to T. Now, we present our
main result in the following proposition.

Proposition 1. E½TCðQ, r,TÞ� and FLðQ, r,TÞ are decreasing
and increasing in T, respectively.

Since the explicit expressions of E½TCðQ, r,TÞ� and
FLðQ, r,TÞ are not attainable, we use the sample-path ana-
lysis for the proof (see Appendix A). One can argue the
proposition above as follows. By fixing Q and r and increas-
ing T, we expect to have a lower expected on-hand inven-
tory because we postpone reordering. Therefore, by
increasing T we expect to have less holding costs and conse-
quently fewer operating costs over time. On the other hand,
late reordering leads to late delivery of ordered batches
which results in more unmet demands during the lead time,
and consequently a lower service level (higher FLðQ, r,TÞ)
in the system. Figure 10 illustrates the behaviors of the
expected total cost rate and the fraction of lost sales with
respect to (w.r.t) T for a particular data set: k¼ 5, L¼ 1,
s¼ 2, h¼ 1, p¼ 50, and K¼ 100. From Figure 10, we can
see that after some point, an increase in T does not have an
impact on the expected total cost rate and the fraction of
lost sales. The reason for this behavior is that when T
becomes large, a new batch is always placed when the inven-
tory position hits r and any increase in T does not affect the
reorder point.

To achieve the minimum objective value, we should
increase T as much as possible, since the expected total cost
rate is decreasing in T (by Proposition 1). Adversely, by
increasing T, FLðQ, r,TÞ increases and the service level con-
straint may be violated accordingly. Therefore, for given Q
and r, the optimal T binds the service level constraint. Thus,
we conclude the following result.

Corollary 1. With given Q and r, the optimal value of T is
obtained by solving FLðQ, r,TÞ ¼ a:

We utilize the result of Corollary 1 to propose an exact
algorithm for finding the optimal threshold time in the (Q,
r, T) policy given Q and r as follows. Let Q
, r
, and T


denote the optimal values of the control policy parameters.
Since the explicit expression of the FLðQ, r,TÞ function w.r.t

Figure 10. The behaviors of (a) E½TCðQ, r, TÞ� and (b) FLðQ, r, TÞ w.r.t T.
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T is unavailable, we apply the iterative interpolation algo-
rithm over the interval ½0, sþ L� to find the desired feasible
region for the optimal T, T
 2 ½TL,TU �: In the first iteration
of the interpolation method, we set the new value of T to
the midpoint of the interval ½0, sþ L�, i.e., T ¼ ðsþ LÞ=2: If
T ¼ ðsþ LÞ=2 satisfies the service level constraint, then the
new interval for search will be ½TL,TU � ¼ ½ðsþ LÞ=2, sþ L�,
otherwise ½TL,TU � ¼ ½0, ðsþ LÞ=2�: Then, we select T as the
midpoint of the new interval and continue this procedure
while the desired range including the lower bound TL and
the upper bound TU is attained. Then, by doing an enumer-
ation search over the feasible region ½TL,TU � we can find
T
: We iterate the interpolation algorithm till the interval
½TL,TU � contains 10 mass points. That is, TU � TL ¼ 10� d:
The interval ½TL,TU � might contain a higher number of
mass points. With a more extensive feasible region, the algo-
rithm converges faster, but it needs to search a higher num-
ber of solutions on the interval ½TL,TU � after convergence.
Note also that in any iteration, T is set to the nearest mul-
tiple of d.

Now, we can develop our exact algorithm as Algorithm
1, which is based on an exhaustive search over Q and r and
finding the corresponding optimal time threshold T
 by the
iterative interpolation algorithm described above. We search
over the range ½1,QU � for Q and the range ½0, rU � for r,
where QU and rU are set to arbitrary values and the search
is conducted on an increment size of one unit. Noting that
the effective lifetime distribution is different in the special
region r ¼ ðm� 1ÞQ, we find the optimal solution of the
special region, separately. Then, the global optimal solution
is obtained by comparing the optimal solutions of two cases
r ¼ ðm� 1ÞQ and ðm� 1ÞQ < r < mQ:

Algorithm 1. The pseudo code of the exact algorithm.

Initialization: Set k, L, s, h, p, K, a, d, E½TC
�  1;
for Q ¼ 1 : QU do
for r ¼ 0 : rU do
TL  0;
TU  sþ L;
while TU � TL � 10� d do

T ¼ dTLþTU
2d e � d;

if FLðQ, r,TÞ < a then
TL  T;

else
TU  T;

end if
end while
for T ¼ TL : d : TU do

if FLðQ, r,TÞ � a then
T
1  T;

end if
end for
Calculate E½TCðQ, r,T
1Þ�;
if E½TCðQ, r,T
1Þ� < E½TC
� then

E TC
½ �  E TCðQ, r,T
1Þ
� �

;

Q
  Q;
r
  r;

T
  T
1 ;
end if

end for
end for
Return: Q
, r
, T
, and E½TC
�;

The computation time of the exact algorithm depends on
the shape of FLðQ, r,TÞ, especially its shape close to the
optimal T. There are some cases in which the exact algo-
rithm returns the optimal T for given Q and r after five iter-
ations and in some cases after 20 iterations. The proposed
exact algorithm is fast enough for finding the optimal solu-
tion, as for given Q and r, we do not need to search over all
possible values of the continuous variable T.

It is worthwhile to note that by adding a direct cost for lost
sales, instead of the service level constraint, the expected total
cost per unit time is no longer decreasing in T (i.e.,
Proposition 1 does not hold). We can use the sample-path
analysis to demonstrate this argument. According to Figure 11,
in the appendix, by increasing the time threshold T by DT
time units the probability of experiencing a stock-out situation
increases (see embedded Cycle 3 in Figure 11); however, as
shown in the proof of Proposition 1, the expected on-hand
inventory decreases. Hence, by involving the lost sale costs in
the objective function, the expected cost per unit time is not
decreasing in T any more. Our numerical experiences reveal
that by adding a direct cost for lost sales, the cost rate function
is neither convex nor concave in T.

7. Numerical study

We conduct our numerical study to gain insight into when
our model is economically worthwhile and to address the
following research questions:

1. How does the age-based policy of (Q, r, T) work under
the aging process type 2 compared to its special policies?

2. How much and when does the relaxation on number of
outstanding orders bring benefits for the inven-
tory system?

For this purpose, we use the data set proposed by Tekin
et al. (2001) as it is provided in Table 1.

We do not impose any restriction on Q and r values.
That is, r and Q can take any non-negative integer value
resulting in m outstanding orders, where m � 1: We use the
exact algorithm to find the optimal solution of control poli-
cies. We set d ¼ 0:01 in this algorithm. In the (Q, r, T) pol-
icy, to find the effective lifetime distribution in cases where
m¼ 1, we use 200 mass points in the discretization
approach; and in cases where m¼ 2, we use 120 and 80
mass points over the oldest and youngest batch effective life-
time distributions. Our numerical results reveal that we have
at most two outstanding orders in the (Q, r, T) policy. In
the (Q, r) policy, we have up to three outstanding orders in
the system. We use the discretization profile provided in
Berk et al. (2020) for the (Q, r) policy. Finally, in the (Q, T)
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policy, we use 200 mass points for discretization. We specify
the number of mass points mentioned above in such a way
that convergence in the effective lifetime distribution
is observed.

7.1. The ðQ, r, TÞ policy performance

To capture the efficiency of the (Q, r, T) policy, we compare
it with two special policies of (Q, T) and (Q, r) under differ-
ent settings. We base our analysis by varying the input
parameters K, p, s, and a. In Tables 2 and 3, we report the
optimal policy parameters of different policies for K¼ 50
and K¼ 100, respectively, where E½TCi� denotes the
expected total cost per unit time for policy i. The index of
i¼ 1, 2, and 3 are reserved to represent the optimal solution
of the (Q, r, T), (Q, T), and (Q, r) policies, respectively. Dij

represents the percentage deviation between two polices i
and j and it is computed as

Dij ¼
E TCj
� �

�E TCi½ �
E TCi½ � � 100:

In these tables, the bold numbers are the average gaps for
different s, and the bold numbers in parentheses are the
average gaps for different p.

Recall that m ¼ dr=Qe: In cases with a short lifetime,
high service level and high unit perishing cost, the system
requires more frequent orders, which leads to a higher num-
ber of outstanding orders over time. Moreover, as the fixed
ordering cost increases, the batch size increases, which
results in a fewer number of outstanding orders (compare
the results in Tables 2 and 3).

From our numerical results in Table 2, one can see that
we have maximum number of outstanding orders when
K¼ 50, p¼ 50, s¼ 2, and a ¼ 0:005: In this case, we have a
m¼ 2 outstanding orders in the optimal (Q, r, T) policy,
where Q
1 ¼ 6, r
1 ¼ 10, and T
1 ¼ 0:42, and m¼ 3 out-
standing orders in the optimal (Q, r) policy, where Q
3 ¼
5, r
3 ¼ 11: As expected, the variable T in the (Q, r, T) pol-
icy can result in a reduction in the optimal reorder point r
1 :
Therefore, we have fewer number of outstanding orders in
the (Q, r, T) policy compared with the (Q, r) policy.

As in the (Q, T) policy at most one order can be out-
standing, the maximum gap between (Q, r, T) and (Q, T)
policies occurs when the inventory system requires multiple
outstanding orders. The reason for this behavior is that in
cases where we need multiple outstanding orders, the opti-
mal batch size in the (Q, T) policy is high, and in the case
of perishing, large perishing costs are incurred by the sys-
tem. From our numerical results in Table 2, one can see

that when p¼ 50, s¼ 2, and a ¼ 0:005 the optimal batch size
in the (Q, r, T) policy is six, whereas it is 11 in the (Q, T) pol-
icy. That is why we observe a huge gap in the optimal costs of
these two policies (D12 ¼ 49:26% when K¼ 50 and D12 ¼
22:77% when K¼ 100). As a result, the (Q, r, T) policy signifi-
cantly outperforms the (Q, T) policy when multiple outstand-
ing orders are in the system, and this dominance becomes
more considerable as the unit perishing cost increases.

Our numerical experiment shows that the (Q, r) policy per-
forms well when the lifetime of items is long so that in this case,
the (Q, r, T) policy converges to the (Q, r) policy. Therefore the
maximum gap between (Q, r, T) and (Q, r) policies occurs when
the lifetime of products is short (D13 ¼ 14:07% when K¼ 50,
and D13 ¼ 15:68% when K¼ 100).

The (Q, T) policy dominates the (Q, r) policy (D23 is
positive) when the unit perishing cost is low, the lifetime of
items is short and the service level is high. As the unit per-
ishing cost increases, the performance of the (Q, T) policy
declines and it cannot dominate the (Q, r) policy even if the
lifetime of items is short and the service level is high.

Regarding the computation time, as the number of out-
standing orders increases, finding the vector of effective life-
time distribution takes more time. Overall, the computation
time for finding the operating characteristic values (the
expected cost rate values) in the (Q, T) policy is less than
that of the (Q, r) policy. Due to the complexity of the transi-
tion probability function of the (Q, r, T) policy, the compu-
tation time in this policy is more than the other policies.
Suppose that in the discretization approach, the vector Zi is
discretized to Si mass points for i ¼ 1, 2, :::,m: Then, we
need to solve a set of S1 � S2 � � � � � Sm þ 1 linear equations
in order to find the effective lifetime distribution. Thus, the
computational time for finding the effective lifetime distri-
bution increases exponentially with the value of m.
Moreover, the computation time in the (Q, r, T) policy is
less than that of the (Q, r) policy, as we observe a lower
number of outstanding orders m in the (Q, r, T) policy
compared with the (Q, r) policy. Our numerical study shows
that even in extreme cases, it is a rare event to experience
more than four outstanding orders at the same time in the
inventory system (i.e., m � 4), and also reveals that for m �
4, the computation time for finding the effective lifetime
distribution is reasonable. For instance, it takes 38 seconds
on average (programmed with Gurobi Cþþ interface on a
personal computer with speed of 2.71GHz) to find the
effective lifetime for m¼ 4 with 50 mass points on each vec-
tor in the (Q, r, T) policy. Since in the (Q, T) policy we
need to track only the current batch effective lifetime, deriv-
ing the effective lifetime distribution even for a large num-
ber of mass points is fast (on average 1.04 seconds for 500
mass points). Thus, this policy can be considered as a heur-
istic if we observe m> 4 in the (Q, r, T) policy.

As a result, the inventory manager always prefers imple-
menting the (Q, r, T) policy in order to achieve the min-
imum expected cost per unit time, especially if one holds
perishable items with a short lifetime and requires a high
service level. Further, if one relies on only two-parameter
policies, one needs to compare the expected cost rate

Table 1. Test parameters.

Notation Values

L 1
h 1
k 5
K 50, 100
p 1, 10, 50
s 2, 4, 6
a 0.005, 0.01, 0.02, 0.05, 0.1
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associated with each policy and select the best one.
However, one can exercise the (Q, T) policy when the life-
time of items is short and the unit perishing cost is low.
Finally, one can adopt the classic (Q, r) policy when the life-
time of items is long enough (such as conserved products
and beans).

7.2. Relaxation on number of outstanding orders

From numerical results in Tables 2 and 3, we select the cases
with multiple outstanding orders and compare those results
with the case with one outstanding order restriction. In Tables
4 and 5, we report the optimal policy parameters and the opti-
mal expected cost rates for the cases m> 1 and m¼ 1, where

Table 2. Comparison of policies for K¼ 50 (k¼ 5, L¼ 1, h¼ 1).

(Q, r, T) Policy (Q, T) Policy (Q, r) Policy

a ðQ1, r1, T1Þ E½TC1� (Q2, T2) E½TC2� (Q3, r3) E½TC3� D12 D13 D23

p¼ 1 s¼ 2 0.005 (11, 10, 0.17) 45.18 (11, 0.06) 46.30 (11, 11) 47.26 2.48 4.60 2.07
0.01 (11, 9, 0.29) 43.13 (11, 0.17) 44.35 (10, 10) 45.90 2.83 6.42 3.49
0.02 (11, 8, 0.48) 40.57 (12, 0.39) 42.36 (10, 9) 42.21 4.41 4.04 �0.35
0.05 (11, 7, 0.91) 36.55 (11, 0.55) 39.06 (10, 8) 38.89 6.87 6.40 �0.44
0.1 (11, 5, 1.29) 32.49 (11, 0.85) 35.65 (11, 7) 34.17 9.73 5.17 �4.15

5.26 5.33 0.13
s¼ 4 0.005 (16, 9, 1.68) 30.10 (15, 0.86) 32.34 (14, 10) 31.73 7.44 5.42 �1.89

0.01 (16, 8, 1.98) 28.61 (17, 1.34) 31.04 (15, 9) 29.71 8.49 3.84 �4.28
0.02 (17, 7, 2.44) 27.00 (16, 1.42) 29.50 (16, 8) 27.86 9.26 3.19 �5.56
0.05 (18, 5, 3.06) 24.57 (17, 2.00) 27.12 (16, 6) 25.23 10.38 2.69 �6.97
0.1 (18, 3, 3.56) 22.53 (17, 2.56) 24.39 (16, 4) 22.72 8.26 0.84 �6.85

8.77 3.19 25.11
s¼ 6 0.005 (22, 8, 3.27) 26.70 (19, 1.58) 29.71 (21, 9) 27.07 11.27 1.39 �8.89

0.01 (21, 7, 3.36) 25.56 (19, 1.80) 28.54 (22, 8) 25.97 11.66 1.60 �9.00
0.02 (21, 6, 3.75) 24.40 (20, 2.26) 27.20 (22, 7) 24.91 11.48 2.09 �8.42
0.05 (22, 4, 4.26) 22.79 (20, 2.80) 24.85 (21, 5) 22.85 9.04 0.26 �8.05
0.1 (20, 3, 6.00) 20.92 (21, 3.66) 22.41 (20, 3) 20.92 7.12 0.00 �6.65

10.11 1.07 28.20
(8.05) (3.20) (24.40)

p¼ 10 s¼ 2 0.005 (9, 10, 1.46) 60.92 (11, 0.06) 67.52 (11, 11) 69.49 10.83 14.07 2.92
0.01 (8, 9, 1.44) 56.93 (10, 0.06) 61.27 (10, 10) 63.04 7.62 10.73 2.89
0.02 (9, 8, 0.30) 52.50 (9, 0.10) 54.85 (10, 9) 56.03 4.48 6.72 2.15
0.05 (9, 7, 1.15) 45.72 (8, 0.20) 48.80 (8, 7) 46.68 6.74 2.10 �4.34
0.1 (9, 5, 1.11) 39.24 (8, 0.46) 44.15 (9, 6) 40.87 12.51 4.15 �7.43

8.44 7.56 20.76
s¼ 4 0.005 (13, 9, 1.46) 33.33 (12, 0.42) 35.65 (14, 10) 35.26 6.96 5.79 �1.09

0.01 (14, 8, 1.84) 31.26 (12, 0.58) 34.17 (14, 9) 32.99 9.31 5.53 �3.45
0.02 (14, 7, 2.26) 29.27 (13, 0.94) 32.46 (15, 8) 30.90 10.90 5.57 �4.81
0.05 (15, 5, 2.54) 26.40 (14, 1.50) 29.62 (15, 6) 27.09 12.20 2.61 �8.54
0.1 (15, 4, 4.00) 23.90 (14, 1.98) 26.53 (15, 4) 23.90 11.00 0.00 �9.91

10.07 3.90 25.56
s¼ 6 0.005 (19, 8, 2.61) 27.40 (17, 1.26) 30.46 (19, 9) 27.86 11.17 1.68 �8.54

0.01 (21, 7, 3.36) 26.24 (17, 1.46) 29.26 (19, 8) 26.61 11.51 1.41 �9.06
0.02 (21, 6, 3.75) 24.89 (18, 1.90) 27.86 (19, 7) 25.39 11.93 2.01 �8.87
0.05 (20, 5, 6.00) 23.09 (18, 2.38) 25.49 (20, 5) 23.09 10.37 0.00 �9.40
0.1 (20, 3, 6.00) 21.02 (19, 3.20) 22.90 (20, 3) 21.02 8.94 0.00 �8.20

10.78 1.02 28.81
(9.76) (4.16) (25.05)

p¼ 50 s¼ 2 0.005 (6, 10, 0.42) 107.90 (11, 0.06) 161.05 (5, 11) 115.26 49.26 6.82 �28.43
0.01 (7, 9, 0.98) 98.73 (10, 0.06) 133.08 (5, 10) 103.87 34.79 5.21 �21.95
0.02 (7, 8, 1.40) 83.64 (9, 0.10) 105.22 (5, 9) 90.14 25.80 7.77 �14.33
0.05 (6, 6, 1.20) 67.91 (7, 0.04) 72.45 (6, 7) 69.65 6.69 2.56 �3.86
0.1 (7, 5, 0.56) 55.43 (6, 0.12) 59.10 (7, 6) 58.25 6.62 5.09 �1.44

24.63 5.49 214.00
s¼ 4 0.005 (11, 9, 1.06) 39.61 (10, 0.12) 41.14 (11, 10) 43.83 3.86 10.65 6.54

0.01 (12, 8, 1.48) 37.00 (10, 0.25) 39.24 (10, 9) 39.35 6.05 6.35 0.28
0.02 (12, 7, 1.66) 33.72 (10, 0.41) 37.24 (11, 8) 36.12 10.44 7.12 �3.01
0.05 (12, 6, 3.34) 30.46 (11, 0.92) 33.96 (12, 6) 30.47 11.49 0.03 �10.28
0.1 (13, 4, 3.48) 26.06 (11, 1.32) 30.31 (14, 4) 26.41 16.32 1.35 �12.87

9.63 5.10 23.87
s¼ 6 0.005 (16, 9, 3.51) 29.25 (14, 0.76) 31.82 (16, 9) 29.30 8.79 0.17 �7.92

0.01 (16, 8, 3.96) 27.72 (14, 0.94) 30.59 (16, 8) 27.78 10.35 0.22 �9.19
0.02 (17, 7, 5.01) 26.25 (15, 1.34) 29.14 (17, 7) 26.28 11.01 0.12 �9.81
0.05 (18, 5, 5.94) 23.55 (16, 1.98) 26.57 (18, 5) 23.55 12.82 0.00 �11.37
0.1 (19, 3, 5.34) 21.39 (17, 2.76) 23.69 (20, 3) 21.46 10.75 0.33 �9.41

10.75 0.17 29.54
(15.00) (3.59) (29.14)

Max: 49.26 14.07 6.54
Min: 2.48 0.00 �28.43
Ave: 10.94 3.65 �6.19
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ðQ
5, r
5 ,T
5Þ is the optimal solution of the (Q, r, T) policy
under one order outstanding restriction. Numerical results
indicate that relaxation on the number of outstanding orders
can bring up to 43.26% cost savings for the system. As
expected, we observe significant cost savings in cases with high
unit perishing cost, short lifetime, and high service level.

The interesting result is that the optimal reorder points in
both cases m> 1 and m¼ 1 are the same, i.e., r
5 ¼ r
1 : Despite

the equality of reorder points for the instances analyzed here,
it is not necessarily the case in general. The optimal time
threshold for reordering in case where m¼ 1, T
5 , is smaller
than that in case where m> 1, T
1 (i.e., T
5 < T
1 ). The reason
is that when the system requires multiple outstanding orders
over time, but we are allowed to have at most one outstanding
order, we need to decrease T in order to increase the inventory
on-hand and satisfy the service level target.

Table 3. Comparison of policies for K¼ 100 (k¼ 5, L¼ 1, h¼ 1).

(Q, r, T) Policy (Q, T) Policy (Q, r) Policy

a ðQ1, r1, T1Þ E½TC1� (Q2, T2) E½TC2� (Q3, r3) E½TC3� D12 D13 D23

p¼ 1 s¼ 2 0.005 (15, 10, 0.39) 76.58 (15, 0.36) 77.27 (11, 11) 81.14 0.90 5.95 5.01
0.01 (13, 9, 0.41) 73.29 (15, 0.44) 75.23 (10, 10) 80.27 2.65 9.52 6.70
0.02 (13, 8, 0.57) 69.71 (13, 0.44) 72.28 (10, 9) 74.38 3.69 6.70 2.91
0.05 (13, 7, 0.94) 63.13 (13, 0.72) 66.42 (10, 8) 69.03 5.21 9.35 3.93
0.1 (13, 5, 1.34) 56.78 (13, 1.02) 61.18 (11, 7) 60.22 7.75 6.06 �1.57

4.04 7.52 3.39
s¼ 4 0.005 (20, 8, 1.90) 46.26 (19, 1.39) 49.11 (14, 10) 50.90 6.16 10.03 3.64

0.01 (20, 8, 2.22) 44.12 (20, 1.70) 47.30 (15, 9) 47.44 7.21 7.52 0.30
0.02 (20, 7, 2.56) 41.91 (19, 1.82) 45.29 (16, 8) 44.28 8.06 5.65 �2.23
0.05 (20, 5, 3.16) 38.40 (20, 2.40) 41.85 (19, 7) 39.65 8.98 3.26 �5.26
0.1 (20, 3, 3.74) 35.35 (21, 3.22) 37.54 (20, 5) 35.96 6.20 1.73 �4.21

7.32 5.64 21.55
s¼ 6 0.005 (24, 8, 3.60) 37.80 (23, 2.24) 42.04 (21, 9) 39.20 11.22 3.70 �6.76

0.01 (25, 7, 4.05) 36.37 (24, 2.64) 40.50 (22, 8) 37.49 11.36 3.08 �7.43
0.02 (25, 6, 4.50) 34.90 (24, 2.94) 38.79 (24, 7) 35.53 11.15 1.81 �8.40
0.05 (26, 4, 5.25) 32.53 (25, 3.72) 35.62 (26, 5) 32.79 9.50 0.80 �7.94
0.1 (26, 2, 5.97) 30.32 (25, 4.52) 32.12 (26, 3) 30.66 5.94 1.14 �4.53

9.83 2.10 27.01
(7.06) (5.09) (21.72)

p¼ 10 s¼ 2 0.005 (10, 10, 1.34) 96.98 (11, 0.06) 100.56 (11, 11) 103.36 3.69 6.58 2.78
0.01 (10, 9, 0.26) 90.90 (10, 0.07) 94.45 (10, 10) 97.40 3.91 7.15 3.12
0.02 (9, 8, 0.39) 85.29 (9, 0.10) 88.98 (10, 9) 88.20 4.33 3.41 �0.88
0.05 (10, 7, 0.93) 75.66 (10, 0.44) 81.72 (10, 8) 80.16 8.01 5.95 �1.91
0.1 (10, 5, 1.24) 66.07 (10, 0.75) 73.68 (9, 6) 69.74 11.52 5.55 �5.35

6.29 5.73 20.45
s¼ 4 0.005 (15, 9, 1.62) 51.63 (14, 0.72) 55.87 (14, 10) 54.43 8.21 5.42 �2.58

0.01 (16, 8, 1.98) 48.80 (15, 1.04) 53.52 (15, 9) 50.79 9.67 4.08 �5.10
0.02 (16, 7, 2.40) 45.96 (16, 1.40) 51.09 (16, 8) 47.50 11.16 3.35 �7.03
0.05 (17, 5, 2.92) 41.64 (17, 1.98) 46.84 (16, 6) 42.74 12.49 2.64 �8.75
0.1 (17, 3, 3.40) 38.02 (17, 2.56) 41.72 (16, 4) 38.44 9.73 1.10 �7.86

10.25 3.32 26.26
s¼ 6 0.005 (23, 8, 3.51) 39.46 (20, 1.74) 44.66 (21, 9) 40.28 13.18 2.08 �9.81

0.01 (23, 7, 3.81) 37.81 (20, 1.98) 42.83 (22, 8) 38.54 13.28 1.93 �10.02
0.02 (23, 6, 4.26) 36.11 (21, 2.44) 40.83 (24, 7) 36.86 13.07 2.08 �9.72
0.05 (24, 4, 4.86) 33.63 (21, 2.98) 37.51 (24, 5) 34.00 11.54 1.10 �9.36
0.1 (24, 2, 5.58) 31.12 (22, 3.88) 33.48 (24, 3) 31.47 7.58 1.12 �6.00

11.73 1.66 28.98
(9.42) (3.57) (25.23)

p¼ 50 s¼ 2 0.005 (7, 10, 0.72) 158.28 (11, 0.06) 194.32 (5, 11) 174.62 22.77 10.32 �10.14
0.01 (8, 9, 1.44) 139.50 (10, 0.06) 166.86 (5, 10) 161.37 19.61 15.68 �3.29
0.02 (8, 8, 2.00) 127.02 (9, 0.11) 138.63 (7, 9) 133.29 9.14 4.94 �3.85
0.05 (8, 7, 1.80) 107.12 (7, 0.04) 110.57 (8, 7) 107.12 3.22 0.00 �3.12
0.1 (8, 5, 0.91) 87.23 (7, 0.30) 98.03 (8, 6) 93.32 12.38 6.98 �4.80

13.42 7.58 25.04
s¼ 4 0.005 (12, 9, 1.42) 62.29 (11, 0.26) 66.57 (12, 10) 67.13 6.87 7.77 0.84

0.01 (13, 8, 1.74) 57.96 (11, 0.42) 63.45 (12, 9) 62.14 9.47 7.21 �2.06
0.02 (13, 7, 2.00) 53.74 (12, 0.76) 60.58 (13, 8) 57.53 12.73 7.05 �5.03
0.05 (14, 5, 2.26) 48.12 (12, 1.12) 54.99 (14, 6) 49.38 14.28 2.62 �10.20
0.1 (14, 4, 4.00) 42.72 (13, 1.76) 49.06 (14, 4) 42.69 14.84 �0.08 �12.99

11.64 4.91 25.89
s¼ 6 0.005 (20, 8, 2.91) 43.09 (17, 1.26) 48.76 (18, 9) 43.75 13.16 1.53 �10.27

0.01 (21, 7, 3.36) 41.22 (17, 1.46) 46.69 (19, 8) 41.65 13.27 1.04 �10.79
0.02 (21, 6, 3.75) 38.84 (18, 1.90) 44.50 (19, 7) 39.62 14.57 2.01 �10.97
0.05 (21, 5, 5.91) 35.89 (18, 2.38) 40.61 (21, 5) 35.89 13.15 0.00 �11.62
0.1 (21, 3, 6.00) 32.65 (20, 3.44) 36.04 (21, 3) 32.65 10.38 0.00 �9.40

12.91 0.92 210.61
(12.66) (4.47) (27.18)

Max: 22.77 15.68 6.70
Min: 0.90 �0.08 �12.99
Ave: 9.71 4.38 �4.71

238 S. POORMOAIED ET AL.



7.3. Observations

The optimal r in the (Q, r) policy is always greater than or
equal to that of the (Q, r, T) policy (i.e., r
3 � r
1). Since r is an
integer decision variable, reordering at point r
 � 1 may violate
the service level constraint, and at point r
 þ 1 may increase
the holding cost. Hence, by incorporating the variable T into
the (Q, r, T) policy, we can have reordering at any time epoch.
By doing so, we can bind the service level constraint and have
an opportunity to decrease r in order to have a lower holding
cost. Therefore, we can conclude that the optimal r in the (Q,
r) policy is an upper bound for the one in the (Q, r, T) policy.

From our numerical results, one can see that T
1 � T
2 :
The reason is that in the (Q, r, T) policy we have two con-
trol variables r and T for triggering orders, while in (Q, T)
policy we have only the variable T. Regarding the batch sizes
in different policies, we do not observe any monotonic
behavior. Moreover, non-monotonic behavior in gap values
is due to the integrality of decision variables Q and r.

8. Concluding remarks

In this article, we study the age-based control policy of (Q,
r, T) which is proposed by Tekin et al. (2001). We utilize
the embedded Markov process to analyze this policy by con-
sidering the effective lifetime distribution of items. We
derive the effective lifetime distribution of items at the
beginning of embedded cycles by which we find the exact
explicit expressions for operating characteristics and the
expected cost rate function. Investigating the structures of
the expected cost rate and the fraction of lost sales with
respect to the time threshold T, we develop an exact algo-
rithm guaranteeing the global optimality. Our numerical
results show that the effective lifetime of items significantly
affects the optimal policy parameters and the expected cost
rate, especially when we have products with short lifetimes
and a high target service level. We consider two special poli-
cies of (Q, r) and (Q, T) which are sub-optimal policies. We
observe that as the lifetime of items increases the (Q, r, T)
policy performance declines and it converges to the classic
stock-based policy of (Q, r), and it converges to the (Q, T)

policy under no condition. The (Q, T) policy dominates the
(Q, r) policy when the lifetime of items is very short and the
target service level is high. An interesting property of the (Q,
T) policy is that we only need to track the effective lifetime of
the current batch; however, in (Q, r, T) and (Q, r) policies, we
need to track multiple orders’ effective lifetime under specific
circumstances. Therefore, under the (Q, r, T) policy, when the
inventory system requires a high number of outstanding orders
(m> 4), the (Q, T) policy can be considered as a heuristic.
Moreover, we relax the one order outstanding restriction and
analyze the system under multiple outstanding orders setting.
In cases with a high unit perishing cost, short product lifetime,
and high target service level, we observe multiple outstanding
orders in the system. As the unit perishing cost and the service
level increase, the higher number of outstanding orders we
would observe in the system. In conclusion, the (Q, r, T) policy
is preferred over other control policies since it provides the
minimum expected total cost per unit time; and if the inven-
tory manager decides to apply a two-parameter control policy,
the (Q, r) and (Q, T) policies are proposed for inventory sys-
tems with long and short lifetimes, respectively. Having the
effective lifetime of items at the beginning of embedded cycles,
we can develop a remaining lifetime-based control policy,
which is left for future study.
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Appendices

Appendix A: Proofs

Proof of Theorem 1
We can rewrite Zi

nþ1 for i ¼ 1, :::,m� 1 and Zm
nþ1 as follows:

PfAjxg ¼ PfZ1
nþ1 � z1;Z2

nþ1 � z2; :::;Zm
nþ1 � zmjZn ¼ ðx1, x2, :::, xmÞg

¼ Pfx2 � CLn � z1; x3 � CLn � z2; :::; sþ L� ðCLn � UnÞ � zmg
¼ PfCLn � max1�i�m�1fxiþ1 � zig;CLn � Un � sþ L� zmg
¼ PfCLn � fx;CLn � Un � sþ L� zmg:

(37)

Using Equation (37) and considering different realizations of CLn and
Un for different regions A, B, and C expressed below, we can derive
the transition probability function. Let us denote XmQ�r by t and
Xr�ðm�1ÞQ by u.
For Region A:

A1.

PfAjxg ¼ PfXmQ�r < T � ðx1 � sÞ; x1 � s

þminfs,XQg � fx;minfs,XQg � t � sþ L� zmg

¼ PfXmQ�r < T � ðx1 � sÞ; x1 � fx; s � sþ L� zm þ t;

XQ � fx þ fx
1

s � x1;XQ � sþ L� zm þ tg

¼
ðminfzm�L, T�ðx1�sÞg

0

ð1
maxffxþfx1s �x1�t, sþL�zmg

dFr�ðm�1ÞQðuÞdFmQ�rðtÞ:

A2.

PfAjxg ¼ PfT � ðx1 � sÞ < XmQ�r < s; x1 � sþminfs,XQg � fx;

x1 � sþminfs,XQg � T � sþ L� zmg
¼ PfT � ðx1 � sÞ < XmQ�r < s; x1 � fx;

s � sþ L� zm þ fx
1

s � x1 þ T;

XQ � fx þ fx
1

s � x1;XQ � sþ L� zm þ fx
1

s � x1 þ Tg

¼ 1fx1�T�sþL�zmg

ðs
T�ðx1�sÞ

�Fr�ðm�1ÞQð‘� tÞdFmQ�rðtÞ,

where ‘ ¼ maxffx þ fx
1

s � x1, sþ L� zm þ fx
1

s � x1 þ Tg:

A3.

PfAjxg ¼ PfXmQ�r > s; x1 � fx; x1 � s � sþ L� zmg

¼ 1fx1�T�sþL�zmg

ð1
s
dFmQ�rðtÞ:

Then, we can simply express the transition probability function for
Region A as follows:

PfAjxg ¼ 1fx1�T�sþL�zmg

ðs
T�ðx1�sÞ

�Fr�ðm�1ÞQð‘� tÞdFmQ�rðtÞ þ �FmQ�rðsÞ
" #

þ
ðminfzm�L, T�ðx1�sÞg

0

ð1
maxffxþfx1s �x1�t, sþL�zmg

dFr�ðm�1ÞQðuÞdFmQ�rðtÞ:

Similarly, we can derive the transition probability function for Regions
B and C. Finally, we can express all regions by a single term as
Equation (8). Also, note that any negative term, for example the term
T � ðx1 � sÞ, should be equalized to zero, if there is any. w

Proof of Theorem 2
Recall that if there are no closed classes in a Markov chain, except for
the entire class of states, the chain is irreducible (Cinlar (2013), p.127).

A: maxfT, sg < x1 � sþ L
A1. If t < T � ðx1 � sÞ, CLn ¼ x1 � sþminfs,XQg

and Un ¼ x1 � sþ t:
A2. If T � ðx1 � sÞ < t < s, CLn ¼ x1 � sþminfs,XQg and Un ¼ T.
A3. If s < t, CLn ¼ x1 and Un ¼ T.

B: minfT, sg < x1 � maxfT, sg
B1. If t < minfT, sg, CLn ¼ x1 � fx

1

s þminffx1s ,XQg
and Un ¼ x1 � fx

1

s þ t:
B2. If minfT, sg < t < fx

1

s , CLn ¼ minfx1,XQg and Un ¼ T.
B3. If fx

1

s < t, CLn ¼ x1 and Un ¼ fx
1

T :
C: 0 � x1 � minfT, sg
C1. If t < x1, CLn ¼ minfx1,XQg and Un ¼ t.
C2. If t > x1, CLn ¼ x1 and Un ¼ x1:
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Inspecting (8), we see that for any A 2 Bm, there exists some x 2 A
such that PfAjxg ¼ 0: In particular, for any x that satisfies xi � zi, i ¼
1, :::,m and x1 < fx, PfAjxg ¼ 0: That is, PfZnþ1 2 AjZn ¼ xg ¼ 0
and Znþ1 gets out of the subset A: This implies that a set of the form
A given above is not closed. Similarly, it is easy to check that
PfAjxg ¼ 1 if zi ¼ sþ L, i ¼ 1, :::,m, in which case, A is the entire
state space. Hence, irreducibility follows.

We use ls to denote the mean hitting time, which is defined as the
mean time between two consecutive embedded cycles at the beginning of
which the vectors of effective lifetimes are the same. To confirm the ergo-
dicity of the process, we need to show that the mean hitting time is
bounded. First, consider the case where m¼ 1. Denote the probability that
the embedded cycle nþ 1 starts with a fresh batch if the embedded cycle
n starts with a fresh batch (Zn ¼ s) by pg. This event occurs if:

1. we hit r before s� L time units and the remaining r units are
depleted during the lead time L; or

2. we hit r after s� L time units and the remaining r units will per-
ish before complete depletion. Hence, pg ¼ FQ�rðs� LÞFrðLÞ þ
�FQ�rðs� LÞ ¼ 1� �FrðLÞFQ�rðs� LÞ <1: Now, suppose that an
embedded cycle starts with a fresh batch; the number of embedded
cycles required to observe for the first time an embedded cycle with
a fresh batch has a geometric distribution with probability of success
pg. Then, the expected number of embedded cycles required to reach,
hitting time is 1=pg (i.e., mean of geometric distribution with param-
eter pg). On the other hand, from Equation (16), one can see that the
maximum length of an embedded cycle is sþ L: Thus, to derive an
upper bound for the mean hitting time, we can assume that all the
embedded cycles occurring during the hitting time take maximum
value of sþ L: Then, we have:

ls �
sþ L
pg

<1, (38)

which implies that the mean hitting time is bounded above.
Analogously, we can apply this approach to find an upper bound
for the mean hitting time in the case where m> 1. The only dif-
ference is the derivation of pg. In what follows, we approximate pg
by using the discretization approach. Following Equation (3), one
can see that a neighborhood w can be defined such that, if the
embedded cycle n starts with effective lifetime vector w, it is pos-
sible for the effective lifetime vector to visit the same neighbor-
hood after two transitions (at the beginning of embedded cycle
nþ 2) with the following probability:

pg ¼
X
x

PfZnþ2 ¼ wjZnþ1 ¼ x,Zn ¼ wg �PfZnþ1 ¼ xjZn ¼ wg:
w

Proof of Theorem 4
Similar to the (Q, r, T) policy, we can derive different regions:

For Region A:
A1.

PfAjxg ¼ PfXQ < T � ðx� sÞ;CLn � Un � sþ L� zg
¼ PfXQ < T � ðx� sÞ; 0 � sþ L� zg

¼ 1fz¼sþLg

ðT�ðx�sÞ
0

dFQðyÞ:

A2.

PfAjxg ¼ PfT � ðx� sÞ < XQ < s;CLn � Un � sþ L� zg
¼ PfT � ðx� sÞ < XQ < s; x� sþ XQ � T � sþ L� zg
¼ PfT � ðx� sÞ < XQ < s;XQ � sþ L� zþ fxs � xþ Tg

¼
ðs
sþL�zþfxs�xþT

dFQðyÞ:

A3.

PfAjxg ¼ PfXQ > s; x� T � sþ L� zg ¼ 1fx�T�sþL�zg

ð1
s
dFQðyÞ:

Then, we can simply express the transition probability function for
Region A as follows:

PfAjxg ¼ 1fz¼sþLgFQðT � ðx� sÞÞ þ 1fx�T�sþL�zg�FQðsÞ þ FQðsÞ
� FQðsþ L� z þ fxs � xþ TÞ:

Similarly, we can derive the transition probability function for Regions
B and C. Finally, we can express all regions by a single term as
Equation (31). w

Proof of Proposition 1.
We provide a sketch of the proof for this proposition by using the
sample-path analysis, which is based on imposing a perturbation into
the sample path and tracing its effect (Ho and Cao, 1983; Fu, 1994).
Under this approach, we increase the time threshold T by DT time
units and investigate the effect of this change on the expected total
cost rate and the fraction of lost sales.

Figure 11 depicts a particular sample path, where dotted and solid
black lines represent the inventory position and the inventory level,
respectively. Blue lines depicted below the time threshold T and lead
time L are the perturbed ones resulting from an increase in T by DT
time units. Moreover, the hatched blue areas are the reduction in on-
hand inventories due to the perturbation. Perishing occurrences are
shown by red lines. In this sample path, we depict all possibilities that
may occur due to the perturbation in T.

Without loss of generality, we assume that the sample path begins
with one outstanding order. Suppose that the outstanding order in
embedded cycle 1 is triggered by the time threshold T and increasing
the time threshold T by DT does not affect the reorder point. Thus,
the arrival time of outstanding order in embedded cycle 1 is postponed
up to DT time units which results in less inventory on-hand. The
hatched blue area in embedded cycle 1 illustrates this reduction in on-
hand inventory.

Within embedded cycle 1, a new order is placed by hitting the time
threshold T, which joins inventories during embedded cycle 3. When T
is increased by DT in embedded cycle 1, a new order is placed by
crossing the inventory position r. This change in reorder point post-
pones the arrival time of the new batch during embedded cycle 3 and
shifts the inventory level, which causes less on-hand inventories. The
hatched blue area in embedded cycle 3 represents the decrease in on-
hand inventory due to the increase in T in embedded cycle 1. Note
that the shift in the inventory level is less than the perturbation
amount DT: Moreover, a perturbation in T in embedded cycle 1 results
in a longer stock-out period at the beginning of embedded cycle 3
(compare the black stock-out period with the blue stock-out period).

A: maxfT, sg < x � sþ L
A1. If XQ < T � ðx� sÞ, CLn ¼ T and Un ¼ T.
A2. If T � ðx� sÞ < XQ < s, CLn ¼ x� sþ XQ and Un ¼ T.
A3. If s < XQ , CLn ¼ x and Un ¼ T.

B: minfT, sg < x � maxfT, sg
B1. If XQ < minfT, sg, CLn ¼ T and Un ¼ T.
B2. If minfT, sg < XQ < fxs , CLn ¼ XQ and Un ¼ T.
B3. If fxs < XQ , CLn ¼ T þ x� fxT and Un ¼ T.

C: 0 � x � minfT, sg
C1. If XQ < x, CLn ¼ T and Un ¼ T.
C2. If XQ > x, CLn ¼ T and Un ¼ T.
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Hence, a perturbation in T in embedded cycle 1 causes more lost sales
and less stock on-hand in embedded cycle 3.

In embedded cycle 2, before reordering the current batch perishes
and the embedded cycle ends. Thus, T does not play any role in trig-
gering an order in this embedded cycle and the increase in T is not
influential. In embedded cycle 3, a new batch is ordered when T time
units elapse since the beginning of this embedded cycle and it arrives
during embedded cycle 4. Perturbing T by DT in this embedded cycle
postpones the reorder point by DT as well. Thus, in this case, the
arrival time of the batch is postponed by DT time units, which leads to
a decrease in on-hand inventories in embedded cycle 4 (see the
hatched blue area in embedded cycle 4). The shift in the inventory
level is the same as the perturbation amount DT: Finally, in embedded
cycle 4, since a new order is placed by hitting the inventory position r,
perturbing T does not influence the reorder point and consequently
the dynamics of the system.

As a result, we conclude that perturbing T can have three types
of effects:

1. The reorder point changes so that a new order is placed when the
inventory position hits r (like embedded cycle 1). In this case, the
shift in inventory level is less than the perturbation amount.

2. Reordering occurs by hitting T and by perturbing T the new batch
is yet triggered by crossing T (like embedded cycle 3). In this
case, the inventory level is shifted by the perturbation amount.

3. The perturbation in T does not influence the reorder point
(like embedded cycles 2 and 4), and no shift in the inventory
level is observed. Therefore, a perturbation in T decreases the
expected on-hand inventory and hence the expected total costs
per unit time. Moreover, in some instances, the shift in the
inventory level may result in longer stock-out periods (like
embedded cycle 3), which increases the fraction of lost sales
over time.

It should be noted that an increase in T causes an increase in the
current batch effective lifetime Z1. One can easily verify this fact by fol-
lowing the recursive equations in (3). As the effective lifetimes get
larger, the expected embedded cycle length increases and consequently
the fixed ordering cost incurred to the system per unit time reduces.
Our analysis reveals that changing the effective lifetime at the begin-
ning of embedded cycles can only change the time epochs of shifts in
the inventory level; however, we yet observe these shifts in the sample
path. Therefore, the cost savings obtained by a perturbation in T is
greater than the one depicted in Figure 11. w

Proof of Corollary 1
As shown in Proposition 1, the expected total cost rate is decreasing
in T and the fraction of unmet demands is increasing in T.
Therefore, the maximum value of T satisfying the service level con-
straint is the optimal T. This maximum value binds the service
level constraint. w

Figure 12. Discretized vector space.

Figure 11. Effect on sample path of the inventory position and the inventory level when T is perturbed for Q¼ 4, r¼ 6, T¼ 1.5, and L¼ 3.
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Appendix B: An illustrative example for
discretization approach

In the following, we provide an illustrative example to clarify our dis-
cretization approach. We consider the case with m¼ 2, where we
have two vectors of remaining lifetimes. Without loss of generality,
suppose that the support of vectors Z1 and Z2 are ½1:0, 1:4� and
½0:0, 1:6�, respectively. Vector Z1 is discretized to three mass points
1.0, 1.2, and 1.4; and vector Z2 is discretized to three mass points 0.0,
0.8, and 1.6. Thus, we have nine mass points in total, as depicted in
Figure 12. The blue bullets represent the set of mass points with cor-
responding probability values, which are indeed the set of deci-
sion variables.

Now, we select two mass points from the set of mass points and
write their corresponding linear equations.

Example 1: Given ðz1, z2Þ ¼ ð1:2, 1:6Þ, we have

P11 þP12 þP13 þP21 þP22 þP23

¼ PfAjð1:0, 0ÞgP11 þPfAjð1:0, 0:8ÞgP12 þPfAjð1:0, 1:6ÞgP13

þPfAjð1:2, 0ÞgP21 þPfAjð1:2, 0:8ÞgP22 þPfAjð1:2, 1:6ÞgP23

þPfAjð1:4, 0ÞgP31 þPfAjð1:4, 0:8ÞgP32 þPfAjð1:4, 1:6ÞgP33:

(39)

Example 2: Given ðz1, z2Þ ¼ ð1:4, 0:0Þ, we have

P11 þP21 þP31

¼ PfAjð1:0, 0ÞgP11 þPfAjð1:0, 0:8ÞgP12 þPfAjð1:0, 1:6ÞgP13

þPfAjð1:2, 0ÞgP21 þPfAjð1:2, 0:8ÞgP22 þPfAjð1:2, 1:6ÞgP23

þPfAjð1:4, 0ÞgP31 þPfAjð1:4, 0:8ÞgP32 þPfAjð1:4, 1:6ÞgP33:

(40)

Note that PfAjðx1, x2Þg with given ðx1, x2Þ is a function of
ðz1, z2Þ and is computed by Equation (8). We should write these sets
of linear equations for all nine mass points, which eventually results
in nine linear equations. Then, given that the sum of probabilities is
one, we can find the mass point probabilities by solving lin-
ear equations.

Appendix C: Derivation of expected on-hand inventory,
Equation (24)

The expected waiting time of products for a given effective life-
time vector Z ¼ z ¼ ðz1, z2, :::, zmÞ and given n are found as
follows:

E OHnjz1
� �

¼
ð
0<x1<���<xn<fz

1
s <xnþ1<���<xQ

ðQs� nfz
1

s Þ þ ðx1 þ x2 þ � � � þ xnÞ
h i

�kQe�kxQdx1:::dxQ
¼

ð
0<x1<���<xn<fz

1
s <xnþ1<���<xQ

ðQs� nfz
1

s Þk
Qe�kxQdx1:::dxQ

þ
ð
0<x1<���<xn<fz

1
s <xnþ1<���<xQ

�ðx1 þ x2 þ � � � þ xnÞkQe�kxQdx1:::dxQ: (41)

Let R be the region 0 < x1 < ::: < xn < fz
1

s < xnþ1 < � � � < xQ <1,
and denote the first and second term of Equation (41) by T 1

n and T 2
n,

respectively. Then, E½OHjz1� ¼
PQ

n¼0 E½OHnjz1�, where E½OHnjz1� ¼
T 1

n þ T
2
n: In what follows, we derive T 1

n and T 2
n expres-

sions, separately.
We first provide the following lemma for deriving T 1

n:

Lemma 1. For n ¼ 0, 1, :::,Q� 1:

I ¼
ð
R
kQe�kxQdx1dx2:::dxQ

¼
ðfz1s
xn¼0

:::

ðx3
x2¼0

ðx2
x1¼0

ð1
xnþ1¼fz

1
s

ð1
xnþ2¼xnþ1

:::

ð1
xQ¼xQ�1

kQe�kxQdxQ:::dxnþ1dx1:::dxn

¼ e�kf
z1
s
ðkfz1s Þ

n

n!
:

(42)

And for n ¼ Q:

I ¼
ð
R
kQe�kxQdx1:::dxQ ¼

ðfz1s
xQ¼0

ðxQ
xQ�1¼0

:::

ðx3
x2¼0

ðx2
x1¼0

kQe�kxQdx1dx2:::dxQ

¼ 1�
XQ�1
i¼0

e�kf
z1
s
ðkfz1s Þ

i

i!
¼ FQðfz

1

s Þ:

(43)

Then, using the result of Lemma 1, T 1
n is given by

T 1
n ¼

ðQs� nfz
1

s Þe�kf
z1
s
ðkfz1s Þ

n

n!
for n ¼ 0, 1, :::,Q� 1,

Qðs� fz
1

s ÞFQðfz
1

s Þ for n ¼ Q:

8><
>: (44)

In the following, we derive the T 2
n expression.

For n ¼ 1, 2, :::,Q� 1:

T 2
n ¼

Xn
i¼1

ðfz1s
xn¼0

ðxn
xn�1¼0

:::

ðx3
x2¼0

ðx2
x1¼0

xik
ne�kf

z1
s dx1dx2:::dxn

¼ e�kf
z1
s kn

Xn
i¼1

ðfz1s
xn¼0

:::

ðxiþ1
xi¼0

xi
xi�1i

ði� 1Þ! dxidxiþ1:::dxn

¼ e�kf
z1
s kn

Xn
i¼1

iðfz1s Þ
nþ1

ðnþ 1Þ! ¼
nfz

1

s

2
e�kf

z1
s
ðkfz1s Þ

n

n!
:

(45)

And for n ¼ Q:

T 2
Q ¼

ðfz1s
xQ¼0

ðxQ
xQ�1¼0

:::

ðx3
x2¼0

ðx2
x1¼0
ðx1 þ x2 þ � � � þ xQÞkQe�kxQdx1dx2:::dxQ

¼
XQ
i¼1

ðfz1s
xQ¼0

ðxQ
xQ�1¼0

:::

ðxiþ1
xi¼0

:::

ðx2
x1¼0

xik
Qe�kxQdx1:::dxi:::dxQ

¼
XQ
i¼1

i
k
FQþ1ðfz

1

s Þ ¼
QðQþ 1Þ

2k
FQþ1ðfz

1

s Þ:

(46)

Then,

E OHjz1
� �

¼
XQ
n¼0

E OHnjz1
� �

¼
XQ
n¼0
ðT 1

n þ T 2
nÞ

¼
XQ�1
n¼0

Qs� nfz
1

s

2

� �
e�kf

z1
s
ðkfz1s Þ

n

n!
þ Qðs� fz

1

s ÞFQðfz
1

s Þ

þQðQþ 1Þ
2k

FQþ1ðfz
1

s Þ: (47)

Substituting FQðfz
1

s Þ by 1�
PQ�1

n¼0 e
�kfz1s ðkf

z1
s Þ

n

n! and FQþ1ðfz
1

s Þ by 1�PQ
n¼0 e

�kfz1s ðkf
z1
s Þ

n

n! , after some simplifications we have

E OHjz1
� �

¼
XQ
n¼0

E OHnjz1
� �

¼ Qðs� fz
1

s Þ þ
1
k

XQ�1
k¼0

ðQ� kÞ
k!

cðkþ 1, kfz
1

s Þ,

(48)

where

cðkþ 1, kfz
1

s Þ ¼
ðkfz1s
0

xke�xdx: (49)
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Appendix D: Derivation of operating characteristics of
the ðQ, TÞ policy
Considering different regions presented in proof of Theorem 4, we can
derive the E½CL� as following.

E CL½ � ¼
ðminfT, sg

0
TdGðzÞ þ

ðmaxfT, sg

minfT, sg

ðminfT, sg

0
TdFQðyÞ

"

þ
ðfzs
minfT, sg

ydFQðyÞ þ
ð1
fzs

ðT þ z� fzTÞdFQðyÞ�dGðzÞ

þ
ðsþL
maxfT, sg

ðTþfzs�z
0

TdFQðyÞ þ
ðs
Tþfzs�z

ðz� fzs þ yÞdFQðyÞ
"

þ
ðsþL
s

zdFQðyÞ�dGðzÞ: (50)

Similarly for E½LS�, we can consider the same regions:

Then, we have:

E LS½ � ¼
ðminfT, sg

0

ðz
0
kðT � yÞdFQðyÞ þ

ð1
z
kðT � zÞdFQðyÞ

� �
dGðzÞ

þ
ðmaxfT, sg

minfT, sg

ðminfT, sg

0
kðT � yÞdFQðyÞ þ

ð1
fzs

kðT �minfT, sgÞdFQðyÞ
" #

dGðzÞ

þ
ðsþL
maxfT, sg

ðTþfzs�z
0

kðT � yÞdFQðyÞ þ
ð1
Tþfzs�z

kðz � sÞdFQðyÞ
" #

dGðzÞ:

(51)

Note that in the (Q, T) policy, T þ fzs � z can take negative value. In
this case, we set it to zero.

Our analysis indicates that when T � s the operating characteristics
are different from the case where T > s: In what follows, we provide

the operating characteristic when T � s: Then, one can analyze the
case where T > s similarly.

Suppose that T � s in the (Q, T) policy. Then, we need to consider
E½CL� and E½LS� in two cases T < L and T � L as follows.

If T < L:

E CL½ � ¼
ðT
0
TdGðzÞ þ

ðs
T

TFQðTÞ þ
Q
k

FQþ1ðzÞ � FQþ1ðTÞ
� �

þ z�FQðzÞ
� �

dGðzÞ

þ
ðsþT
s

TFQðT � z þ sÞ þ ðz � sÞ FQðsÞ � FQðT � z þ sÞ
� ��

þQ
k

FQþ1ðsÞ � FQþ1ðT � zþ sÞ
� �

þ z�FQðsÞ�dGðzÞ

þ
ðsþL
sþT

z� sFQðsÞ þ
Q
k
FQþ1ðsÞ

� �
dGðzÞ: (52)

E LS½ � ¼
ðT
0

kT � QFQþ1ðzÞ � kz�FQðzÞ
� �

dGðzÞ

þ
ðs
T

kTFQðTÞ � QFQþ1ðTÞ
� �

dGðzÞ

þ
ðsþT
s

kTFQðT � z þ sÞ � QFQþ1ðT � z þ sÞ
�

þkðz� sÞ�FQðT � zþ sÞ�dGðzÞ

þ
ðsþL
sþT

kðz � sÞdGðzÞ: (53)

If T � L :

E CL½ � ¼
ðT
0
TdGðzÞ þ

ðs
T

TFQðTÞ þ
Q
k

FQþ1ðzÞ � FQþ1ðTÞ
� �

þ z�FQðzÞ
� �

dGðzÞ

þ
ðsþL
s

TFQðT � zþ sÞ þ ðz � sÞ FQðsÞ � FQðT � zþ sÞ
� ��

þQ
k

FQþ1ðsÞ � FQþ1ðT � zþ sÞ
� �

þ z�FQðsÞ�dGðzÞ: (54)

E LS½ � ¼
ðT
0

kT � QFQþ1ðzÞ � kz�FQðzÞ
� �

dGðzÞ

þ
ðs
T

kTFQðTÞ � QFQþ1ðTÞ
� �

dGðzÞ

þ
ðsþL
s

kTFQðT � zþ sÞ � QFQþ1ðT � zþ sÞ
�

þkðz� sÞ�FQðT � zþ sÞ�dGðzÞ: (55)

A: maxfT, sg < x � sþ L
A1. If XQ < T � ðx� sÞ, E½LSjx� ¼ kðT � XQÞ:
A2. If T � ðx� sÞ < XQ < s, E½LSjx� ¼ kðx� sÞ:
A3. If s < XQ , E½LSjx� ¼ kðx� sÞ:

B: minfT, sg < x � maxfT, sg
B1. If XQ < minfT, sg, E½LSjx� ¼ kðT � XQÞ:
B2. If minfT, sg < XQ < fxs , E½LSjx� ¼ 0:
B3. If fxs < XQ , E½LSjx� ¼ kðT �minfT, sgÞ:

C: 0 � x � minfT, sg
C1. If XQ < x, E½LSjx� ¼ kðT � XQÞ:
C2. If XQ > x, E½LSjx� ¼ kðT � xÞ:
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