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Abstract
Weprovide analytical results for a static portfolio optimization problemwith twocoherent risk
measures. The use of two risk measures is motivated by joint decision-making for portfolio
selection where the risk perception of the portfolio manager is of primary concern, hence, it
appears in the objective function, and the risk perception of an external authority needs to
be taken into account as well, which appears in the form of a risk constraint. The problem
covers the risk minimization problem with an expected return constraint and the expected
return maximization problem with a risk constraint, as special cases. For the general case of
an arbitrary joint distribution for the asset returns, under certain conditions, we characterize
the optimal portfolio as the optimal Lagrangemultiplier associated to an equality-constrained
dual problem. Then, we consider the special case of Gaussian returns for which it is possible
to identify all cases where an optimal solution exists and to give an explicit formula for the
optimal portfolio whenever it exists.

Keywords Portfolio optimization · Coherent risk measure · Mean-risk problem · Markowitz
problem

Mathematics Subject Classification 90C11 · 90C20 · 90C90 · 91B30 · 91G10

1 Introduction

The mean-variance portfolio selection problem introduced in the seminal work Markowitz
[12] is one of the most well-studied optimization problems. In the basic static version of the
problem, one considers multiple correlated assets with known expected returns and covari-
ances, and looks for an allocation of these assets. Considering the trade-off between the linear
expected return and the quadratic variance, the problem can be formulated as a biobjective
optimization problem whose efficient solutions form the so-called efficient frontier on the
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mean-variance (or mean-standard deviation) plot of all portolios. Merton [13] provides an
analytical derivation of the efficient frontier for the general case of n ≥ 2 assets.

The biobjectivemean-variance problem can also be studied in terms of a parametric family
of scalar (single-objective) problems. Among the popular scalarizations are the ones where
one minimizes variance over the set of all portfolios at a given expected return level, which is
used as the parameter of the scalar problem. Analogously, one can impose a constraint on the
variance using an upper bound parameter and maximizes expected return. Quite naturally,
both approaches can be used to verify the analytical results in Merton [13].

Started with Artzner et al. [1], the theory of coherent risk measures provides an axiomatic
approach to come up with functionals possessing desirable properties for risk measurement
purposes. Such properties include monotonicity and translativity (see Sect. 2.2 for precise
definitions), which are not satisfied by variance or standard deviation. Canonical examples
of coherent risk measures include (negative) expected value and average value-at-risk [16].
In addition, value-at-risk is also known to be a coherent risk measure when considered on a
space of Gaussian random variables. Each of these three risk measures is also law-invariant
in the sense that two random variables with the same distribution have the same risk.

With a coherent risk measure, one can formulate the corresponding mean-risk portfolio
optimization problem by replacing variance with the risk measure. For average value-at-risk,
this problem is considered in Rockafellar, Uryasev [15] in the form of risk minimization
subject to an expected return constraint. When jointly Gaussian asset returns are assumed,
the risk objective function reduces to the sum of a linear function and the square-root of a
quadratic form. The special structure of this case is exploited in Landsman [9], Owadally
[14], where analytical results are obtained. A more general objective function in which a
differentiable function of variance is added to a linear function is considered in Landsman,
Makov [10], which also provides closed-form solutions. It should be noted that all of these
works assume linear constraints.

In this paper,we consider a “risk-risk problem”where a coherent riskmeasure isminimized
subject to a constraint on a second coherent risk measure. The purpose of using two risk
measures is to take into account two risk perceptionswhen choosing a portfolio. The principle
risk measure to be minimized may reflect the risk perception of the portfolio manager while
the secondary riskmeasure in the constraint reflects that of an external authority. Similar to the
mean-variance case, the single-objective problem we consider can be seen as a scalarization
of a biobjective problem where the objectives are the risk measures of the two bodies who
are supposed to choose a portfolio jointly. One advantage of our framework is that it includes
both versions of the mean-risk problem as special cases: the one that minimizes risk as well
as the one that maximizes expected return.

We first study the risk-risk problem in a general setting where the underlying asset returns
are in some L p space with p ∈ [1,+∞] and they have an arbitrary joint distribution with
possible correlations. Assuming that the two risk measures are continuous from below so that
the suprema in the dual representations are attained at some dual probability measures, we
derive a simple dual problemwith a linear objective and a linear equality constraint in addition
to domain constraints for the dual variables. As the main result of Sect. 3, under certain
constraint qualifications, we show that an optimal solution for the portfolio optimization
problem can be obtained as the Lagrange multiplier of the equality constraint of the dual
problem at optimality.

At the technical level, the risk-risk problem is a finite-dimensional convex optimization
problem. We use the standard Slater’s condition (see Assumption 3.1 below) as a constraint
qualification to guarantee the existence of optimal Lagrange multipliers for the constraints.
Then, we work on the Lagrange dual problem and refine it further by introducing additional
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dual variables through the dual representations of the two coherent riskmeasures. This refine-
ment yields a finalized equality-constrained dual problem which is infinite-dimensional due
to the dual densities related to the risk measures. To guarantee the existence of an optimal
Lagrange multiplier attached to the equality constraint, we need a second constraint quali-
fication. However, the usual Slater’s condition with interiority assumptions for the domain
constraints is not suitable for this setting due to the fact that many sets in Lq (with 1

p + 1
q = 1),

even the positive cone Lq
+, may fail to have an empty interior. For this reason, we use the

notion of quasi relative interior and the related mild constraint qualification in Borwein,
Lewis [3] (see Assumption 3.2 below), which still guarantees the existence of an optimal
Lagrange multiplier.

In Sect. 4, we study the special case where the asset returns are jointly Gaussian and the
risk measures are law-invariant. By exploiting the properties of Gaussian distribution and
those of the risk measures, the portfolio optimization problem reduces to a problem only
with the square-root of a quadratic function and a linear function in the objective and in the
constraints. In particular, unlike the above-mentioned works for the Gaussian case, we have a
nonlinear constraint that imposes an upper bound on the sum of the square-root of a quadratic
form and a linear function.

In the Gaussian case, we observe that the problem can be solved with the help of the
hyperbola appearing in the analysis of the mean-variance problem as in Merton [13]. Indeed,
as an associated problem, we consider the minimization of a linear function subject to a linear
constraint over this hyperbola, which is simply a two-dimensional problem and has a clear
geometric interpretation. Using this problem, we provide a complete analysis of the main
problem. In particular, we identify all cases in which an optimal solution exists, a unique
optimal solution exists, the infimum is finite but not attained, and the problem is unbounded
(Sect. 4). We provide closed-form expressions for an optimal portfolio, whenever it exists.

2 Mathematical setup

2.1 Portfolios

We are concerned with various risk-averse versions of the portfolio selection problem on a
domain of finitely many risky assets with possibly correlated returns in a one-period market
model. To introduce the setup of the problem, we let n ≥ 2 be an integer denoting the number
of assets in the market and write N = {1, . . . , n} for the set of these assets. As usual, we
denote by R

n the n-dimensional real Euclidean space and by R
n+ the cone of all vectors

x = (x1, . . . , xn)T ∈ R
n with xi ≥ 0 for each i ∈ {1, . . . , n}. For x, z ∈ R

n , we define their
scalar product by xTz:=∑n

i=1 xi zi . Let us fix a probability space (�,F,P). We denote by
L0
n the space of all n-dimensional random vectors distinguished up to almost sure equality.

For each p ∈ [1,+∞), we define L p
n = {X ∈ L0

n | E [|X |p]} < +∞, and for p = +∞, we
define L∞

n = {
X ∈ L0

n | ∃c > 0 : P {|X | ≤ c} = 1
}
, where |·| is an arbitrary norm on R

n .
We write L p = L p

1 for each p ∈ {0} ∪ [1,+∞].
Let us fix p ∈ [1,+∞] and consider a possibly correlated random vector X =

(X1, . . . , Xn)
T ∈ L p

n . For each i ∈ N , the random variable Xi denotes the return of the
i th asset for a fixed period as a multiple of the initial price of that asset. In our context, a
portfolio is defined as a vector in R

n each of whose components denotes the weight of the
corresponding asset in the portfolio based on the asset prices at the beginning of the period.
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Hence, the set of all portfolios is the set

W:=
{

w ∈ R
n |

n∑

i=1

wi = 1

}

=
{
w ∈ R

n | 1Tw = 1
}

. (2.1)

When shortselling is not allowed, we will restrict ourselves to the portfolios in the subset

W+:=W ∩ R
n+, (2.2)

which is the (n − 1)-dimensional unit simplex. Note that, for a portfolio w ∈ W , we have
wTX ∈ L p , which denotes the return of the porfolio.

2.2 Risk measures

We provide a quick review of the theory of risk measures on L p with p ∈ [1,+∞]. The
reader is referred to Kaina, Rüschendorf [8] (for p ∈ [1,+∞)) and to Föllmer, Schied [5]
(for p = +∞) for a detailed account of the convex-analytic properties of risk measures on
L p .

For Y1, Y2 ∈ L p , we write Y1 ≤ Y2 if Y1(ω) ≤ Y2(ω) for P-almost every ω ∈ � and
Y1 ∼ Y2 if Y1 and Y2 are identically distributed. A functional ρ : L p → R∪ {+∞} is said to
be a coherent risk measure if it satisfies the following properties.

(i) Monotonicity: Y1 ≤ Y2 implies ρ(Y1) ≥ ρ(Y2) for every Y1, Y2 ∈ L p .
(ii) Translativity: It holds ρ(Y + y) = ρ(Y ) − y for every Y ∈ L p and y ∈ R.
(iii) Subadditivity: It holds ρ(Y1 + Y2) ≤ ρ(Y1) + ρ(Y2) for every Y1, Y2 ∈ L p .
(iv) Positive homogeneity: It holds ρ(λY ) = λρ(Y ) for every Y ∈ L p and λ ≥ 0.

Clearly, positive homogeneity implies the following property.

(v) Normalization: It holds ρ(0) = 0.

Moreover, it is easy to check that, under positive homogeneity, subadditivity is equivalent to
the following property.

(vi) Convexity: It holds ρ(λY1 + (1−λ)Y2) ≤ λρ(Y1)+ (1−λ)ρ(Y2) for every Y1, Y2 ∈ Y
and λ ∈ [0, 1].

Let ρ be a coherent risk measure. In Sect. 3, we need the following additional property:

(vii) Finiteness: ρ(Y ) < +∞ for every Y ∈ L p .

Let M1(P) denote the set of all probability measures on (�,F) that are absolutely con-
tinuous with respect to P. Let q ∈ [1,+∞] such that 1

p + 1
q = 1 and define

Mq
1(P):=

{

Q ∈ M1(P) | dQ
dP

∈ Lq
}

.

Note that Mq
1(P) = M1(P).

If p ∈ [1,+∞), then finiteness is equivalent to having a dual representation of the form

ρ(Y ) = max
Q∈QE

Q [−Y ] , Y ∈ L p, (2.3)

for some convex set Q ⊆ Mq
1(P) of probability measures such that the corresponding set

D(Q):=
{
dQ

dP
| Q ∈ Q

}
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of Radon-Nikodym derivatives is σ(Lq , L p)-compact; see ([8], Theorem 2.11). Moreover,
finiteness also implies that ρ satisfies the following property [8, Theorem 3.1]:

(viii) Continuity from below: If Y , Y1, Y2, . . . ∈ L p such that Y1 ≤ Y2 ≤ . . . and
limk→∞ Yk = Y P-almost surely, then limk→∞ ρ(Yk) = ρ(Y ).

If p = +∞, then monotonicity and translativity ensure that ρ(Y ) < +∞ for every
Y ∈ L∞ without an additional assumption. Nevertheless, if one further assumes continuity
from below, then a representation of the form (2.3) holds for some convex set Q ⊆ M1(P)

such that D(Q) is σ(L1, L∞)-compact; see ([8], Theorem 3.6).
Finally, we formulate the following additional property that will be needed in Sect. 4.

(ix) Law-invariance: Y1 ∼ Y2 implies ρ(Y1) = ρ(Y2) for every Y1, Y2 ∈ L p .

Let us recall three commonly used risk measures: negative expected value, value-at-risk
and average value-at-risk.

Example 2.1 (Negative expected value) Let p = 1 and takeρ(Y ) = E [−Y ] for everyY ∈ L1.
It is easy to check that ρ satisfies properties (i)–(viii) above. In the dual representation (2.3),
we simply have Q = {P} so that D(Q) = {1} ⊆ L∞.

Example 2.2 (Value-at-risk) Let p = 1. Let θ ∈ (0, 1)be a probability level. The value-at-risk
at level θ for a random variable Y ∈ L1 is defined as

V@Rθ (Y ):= sup {r ∈ R | P {Y + r ≤ 0} > θ} .

It is well-known that V@Rθ is a law-invariant positively homogeneous risk measure which
fails to be convex. However, if X is a Gaussian random vector andY is the Gaussian subspace
of L2 spanned by X1, . . . , Xn and the constant randomvariable 1, it holds (see Proposition 4.1
below)

V@Rθ (Y ) = �−1(1 − θ)
√
Var(Y ) − E [Y ]

for every Y ∈ Y , where � is the cumulative distribution function of a standard Gaussian
random variable Z . In particular, V@Rθ (Z) = �−1(1 − θ). As Y �→ √

Var(Y ) is a convex
function on L2, V@Rθ is a law-invariant coherent risk measure on Y .
Example 2.3 (Average value-at-risk) Let θ ∈ (0, 1) be a probability level. The average value-
at-risk at level θ for Y ∈ L1 is defined as

AV@Rθ (Y ):=1

θ

∫ θ

0
V@Ru(Y )du.

It is well-known that AV@Rθ is a law-invariant coherent risk measure on L1. In the dual
representation in (2.3), we may take Q = {Q ∈ M1(P) | P{ dQdP ≤ 1

θ
} = 1} so that

D(Q) =
{

V ∈ L∞ | P
{

0 ≤ V ≤ 1

θ

}

= 1

}

.

On the other hand, for everyY ∈ Y , whereY is theGaussian subspaceY of L2 in Example 2.2,
we have

AV@Rθ (Y ) = AV@Rθ (Z)
√
Var(Y ) − E [Y ] ,

where Z is a standard Gaussian random variable with

AV@Rθ (Z) =
∫ θ

0
�−1(1 − u)du.
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2.3 The portfolio optimization problem

In this section, we formulate the continuous portfolio optimization problem of our interest.
To model risk-aversion, let ρ1, ρ2 : L p → R be two arbitrary coherent risk measures. The

aim of the portfolio manager is to choose a portfolio w ∈ W that minimizes the type 1 risk
ρ1(w

TX) while controlling the type 2 risk ρ2(w
TX) within a fixed threshold level r ∈ R,

that is, while satisfying

ρ2(w
TX) ≤ r ,

which we refer to as the risk constraint. The use of two risk measures makes sense in cases
where the portfolio manager has the right to choose the portfolio using ρ1 as the suitable
risk measure for her risk perception but an external regulatory authority with a different
risk perception reflected by ρ2 imposes the risk constraint as an obligation for the portfolio
manager. It also makes sense when the portfolio manager wishes to work with two risk
measures, the principle one (ρ1) having a higher seniority than the other (ρ2). In particular,
this framework covers as special cases the problem of maximizing expected return subject
to a risk constraint if we take ρ1(Y ) = E [−Y ] for each Y ∈ L p , as well as the problem
of minimizing (the type 1) risk while maintaining a high-enough expected return if we take
ρ2(Y ) = E [−Y ] for each Y ∈ L p .

With these risk considerations, we formulate the continuous portfolio optimization prob-
lem with shortselling as

minimize ρ1(w
TX) (P(r))

subject to ρ2(w
TX) ≤ r

w ∈ W.

In this paper, we provide analytical results for (P(r)) in two cases:

– General case: For a random return vector X with an arbitrary distribution and assuming
that ρ1, ρ2 are continuous from below, we characterize an optimal solution for (P(r))
as a Lagrange multiplier of an associated dual problem in Sect. 3.

– Gaussian case: For a Gaussian random return vector X and assuming that ρ1, ρ2 are
law-invariant, we provide a complete analysis of the problem with explicit formulae for
an optimal solution and identify the cases where it exists and where it is unique in Sect. 4.

3 The portfolio optimization problem under an arbitrary joint
distribution

In this section,we assume that X ∈ L p
n for a fixed p ∈ [1,+∞] andρ1, ρ2 are arbitrary coher-

ent risk measures on L p that are finite and continuous from below. In particular, ρ1, ρ2 are
continuous on L p; see ([8], Corollary 2.3). Recalling (2.3), ρ1, ρ2 admit dual representations
of the form

ρ1(Y ) = max
Q1∈Q1

E
Q1 [−Y ] , ρ2(Y ) = max

Q2∈Q2
E
Q2 [−Y ] ,

for each Y ∈ L p , where Q1,Q2 are convex subsets of Mq
1(P) such that the corresponding

density sets D(Q1),D(Q2) are convex σ(Lq , L p)-compact subsets of Lq . For each j ∈
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{1, 2}, let us define the continuous convex function g j : Rn → R by

g j (w) = ρ j (w
TX) = max

V∈D(Q j )
E

[
−VwTX

]

for each w ∈ R
n .

As a preparation for the statement and the proof of the main result, we recall a few notions
and facts from convex analysis. Let X be an Hausdorff locally convex topological linear
space with topological dual Y and bilinear duality mapping 〈·, ·〉 : Y × X → R. For the
purposes of this paper, we are interested in three special cases:

(i) X = R
n with the usual topology, which yields Y = R

n together with 〈y, x〉 = yTx for
every x ∈ R

n, y ∈ R
n .

(ii) X = Lq with q ∈ [1,+∞) with the weak topology σ(Lq , L p), which yields Y = L p

together with 〈Y ,U 〉 = E [UY ] for every U ∈ Lq , Y ∈ L p .
(iii) X = L∞ with the weak topology σ(L∞, L1), which yields Y = L1 together with

〈Y ,U 〉 = E [UY ] for every U ∈ L∞, Y ∈ L1.

Let A ⊆ X be a set. cone(A):= {λx | λ ≥ 0, x ∈ A} is called the conic hull of A. If A is
convex, then cone(A) is a convex cone. For x ∈ A, the convex cone

NA(x):= {y ∈ Y | ∀x ′ ∈ A : 〈y, x〉 ≥ 〈y, x ′〉}

is called the normal cone of A at x . The function IA : X → R∪{+∞} defined by IA(x) = 0
for x ∈ A and IA(x) = +∞ for x ∈ X \ A is called the indicator function of A. Note
that A is convex if and only if IA is convex. Let g : X → R ∪ {+∞} be a function. For a
point x ∈ X , the set ∂g(x):= {y ∈ Y | ∀x ′ ∈ X : g(x ′) ≥ g(x) + 〈y, x ′ − x

〉}
is called the

subdifferential of g at x . If A is a nonempty convex set, then it is well-known that ([18],
Section 2.4) ∂ IA(x) = NA(x) for every x ∈ A, and ∂ IA(x) = ∅ for every x ∈ X \A. The
function g∗ : Y → R ∪ {±∞} defined by g∗(y):= supx∈X (〈y, x〉 − g(x)) for each y ∈ Y
is called the conjugate function of g. Note that y ∈ ∂g(x) holds if and only if x ∈ ∂g∗(y)
holds for every x ∈ X , y ∈ Y such that g is lower semicontinuous at x .

To formulate a second constraint qualification, we also need the following. For A ⊆ X ,
the set

qri(A):= {x ∈ A | NA(x) is a subspace of Y}
is called the quasi relative interior of A ([3], Proposition 2.8). When X = R

n , qri(A) coin-
cides with the relative interior of A. In this case, qri(A) �= ∅whenever A is nonempty, closed
and convex.WhenX = Lq (q ∈ [1,+∞]) is considered with the topology σ(Lq , L p) and A
is nonempty, closed and convex, one has qri(A) �= ∅ again thanks to [3, Theorem2.19]. In par-
ticular, if A = Lq

+:= {U ∈ Lq | P {U ≥ 0} = 1}, then qri(A) = {U ∈ Lq | P {U > 0} = 1}
by [3, Example 3.11]. (For q < +∞, considering the strong and weak topologies on Lq

yield the same quasi relative interior for a convex set by [3, Proposition 2.6].
To be able to study a dual problem with zero duality gap, we work under the following

constraint qualification for (P(r)).

Assumption 3.1 (Slater’s condition) There exists w ∈ W such that ρ2(wTX) < r .

The main theorem of this section is Theorem 3.3 below. In its proof, by constructing a
Lagrange dual problem for (P(r)) and exploiting the dual representations of ρ1, ρ2, we
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obtain the following finalized dual problem (D(r)) with an equality constraint.

maximize − rE [M] − λ (D(r))

subject to E [UX ] + E [MX ] − λ1 = 0

U ∈ D(Q1), M ∈ cone(D(Q2)), λ ∈ R.

The theorem states that an optimal solution for (P(r)) can be calculated as the Lagrange
multiplier of the equality constraint of (D(r)) at optimality.

In addition to Assumption 3.1 for (P(r)), we use in Theorem 3.3 the following constraint
qualification for (D(r)) based on quasi relative interior.

Assumption 3.2 [3, Corollary 4.8] There exist U ∈ qri(D(Q1)), M ∈ qri(cone(D(Q2))),
λ ∈ R such that

E [UX ] + E [MX ] − λ1 = 0.

Note that Assumption 3.2 simply states that one can find U ∈ qri(D(Q1)) and M ∈
qri(cone(D(Q2))) such that E [UX ] + E [MX ] is a constant vector in R

n . The comparison
of this assumption with the usual interior-based constraint qualifications is discussed in
Remark 3.8 after the examples. This remark is followed by Remark 3.9, where we comment
on the usefulness of Theorem 3.3 for computations.

Theorem 3.3 Under Assumptions 3.1 and 3.2, suppose that there exists an optimal solution
(U∗, M∗, λ∗) ∈ Lq × Lq × R of D(r). Then, there exists an optimal Lagrange multiplier
w∗ ∈ R

n associated to the equality constraint of D(r). Moreover, every w∗ ∈ R
n that is the

Lagrange multiplier of the equality constraint of D(r) at optimality is an optimal solution
for (P(r)).

We use the following lemma for the proof of Theorem 3.3, which should be known. For
completeness, we present its short proof.

Lemma 3.4 Let w ∈ R
n, j ∈ {1, 2}, and define the attainment set
V j (w):= argmaxV∈D(Q j )

E

[
−V XTw

]
. (3.1)

Then, one has

∂g j (w) = {E [−V X ] | V ∈ V j (w)
}
.

Proof Since ρ j is continuous from below,V j (w) �= ∅. Note that the linear operator A : Rn →
L p defined by Aw′:=XTw′ for w′ ∈ R

n has the adjoint operator A∗ : Lq → R
n given by

A∗V = E [V X ] for V ∈ Lq . (We consider the σ(L∞, L1) topology on L∞ when p = +∞
so that the dual space of L∞ is L1.) Let w ∈ R

n . Since we have g j = ρ j ◦ A and ρ j is
continuous on L p , by subdifferential calculus rules, e.g., by [18, Theorem 2.8.3(iii)],

∂g j (w) = {A∗V | V ∈ ∂ρ j (Aw)
} =

{
E [V X ] | V ∈ ∂ρ j (X

Tw)
}

.

On the other hand, since ρ j is continuous, for each Y ∈ L p and V ∈ Lq , we have V ∈ ∂ρ j (Y )

if and only if Y ∈ ∂ρ∗
j (V ). On the other hand, for each V ∈ Lq ,

ρ∗
j (V ) = sup

Y ′∈L p

(
E
[
VY ′]− ρ j (Y

′)
) = sup

Y ′∈L p

(

E
[
VY ′]+ inf

V ′∈D(Q j )
E
[
V ′Y ′]

)

= inf
V ′∈D(Q j )

sup
Y ′∈L p

E
[
(V + V ′)Y ′] = inf

V ′∈D(Q j )
I{−V ′}(V ) = I−D(Q j )(V ),
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where we use the minimax theorem [17, Corollary 3.3] for the third equality thanks to the
fact that D(Q j ) is a convex σ(Lq , L p)-compact set. As a result,

∂ρ∗
j (V ) = N−D(Q j )(V ) = {Y ∈ L p | ∀V ′ ∈ D(Q j ) : E [VY ] ≥ E

[−V ′Y
]}

if V ∈ −D(Q j ) and ∂ρ∗
j (V ) = ∅ if V ∈ Lq \−D(Q j ). Consequently,

∂g j (w) =
{
E [V X ] | V ∈ ∂ρ j (X

Tw)
}

=
{
E [V X ] | V ∈ −D(Q j ), XTw ∈ ∂ρ∗

j (V )
}

=
{
E [V X ] | V ∈ −D(Q j ),∀V ′ ∈ D(Q j ) : E

[
V XTw

]
≥ E

[
−V ′XTw

]}

=
{
E [−V X ] | V ∈ D(Q j ),∀V ′ ∈ D(Q j ) : E

[
−V XTw

]
≥ E

[
−V ′XTw

]}

= {E [−V X ] | V ∈ V j (w)
}

so that the result follows. ��
Proof of Theorem 3.3 Let us denote by p the optimal value of (P(r)). Thanks to Assump-
tion 3.1, by strong duality for convex optimization, for instance, by [18, Theorem 2.9.3], p
is equal to the optimal value of the corresponding Lagrange dual problem, that is,

p = sup
ν≥0,λ∈R

d(ν, λ), (3.2)

where, for each ν ≥ 0, λ ∈ R,

d(ν, λ):= inf
w∈Rn

(
ρ1(w

TX) + ν
(
ρ2(w

TX) − r
)

+ λ
(
1Tw − 1

))
.

Let us fix ν ≥ 0, λ ∈ R. Using the dual representations of ρ1, ρ2,

d(ν, λ) = inf
w∈Rn

(

max
U∈D(Q1)

E

[
−UwTX

]
+ ν max

V∈D(Q2)
E

[
−VwTX

]
+ λ1Tw

)

− rν − λ.

Let f (w,U , V ):=E
[−UwTX

]+νE
[−VwTX

]+λ1Tw for eachw ∈ R
n,U ∈ D(Q1), V ∈

D(Q2). Note that w �→ f (w,U , V ) is convex (affine) and continuous, (U , V ) �→
f (w,U , V ) is concave (affine) and σ(Lq , L p)-continuous (continuous), andD(Q1)×D(Q2)

is convex and σ(Lq , L p)-compact. Hence, the classical minimax theorem [17, Corollary 3.3]
ensures that

d(ν, λ) = sup
(U ,V )∈D(Q1)×D(Q2)

inf
w∈Rn

(
E

[
−UwTX

]
+ νE

[
−VwTX

]
+ λ1Tw

)
− rν − λ

= sup
(U ,V )∈D(Q1)×D(Q2)

inf
w∈Rn

(E [−UX ] + νE [−V X ] + λ1)T w − rν − λ.

Clearly, for every (U , V ) ∈ D(Q1) × D(Q2),

inf
w∈Rn

(E [−UX ] + νE [−V X ] + λ1)T w

=
{
0 if E [−UX ] + νE [−V X ] + λ1 = 0,

−∞ else.
(3.3)

It follows that

d(ν, λ) =
{

−rν − λ if ∃(U , V ) ∈ D(Q1) × D(Q2) : E [−UX ] + νE [−V X ] + λ1 = 0,

−∞ else.
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So the Lagrange dual problem in (3.2) takes the more explicit form

maximize − rν − λ (D̃(r))

subject to E [UX ] + νE [V X ] − λ1 = 0

U ∈ D(Q1), V ∈ D(Q2), ν ≥ 0, λ ∈ R.

To avoid the multiplication of the variables ν, V , we make the following change of variables:
Note that if M ∈ cone(D(Q2)), then there exist ν ≥ 0 and V ∈ D(Q2) such that M = νV :
we simply take ν = E [M], and V = M

ν
if ν > 0 and an arbitrary V ∈ D(Q2) if ν = 0.

Conversely, if ν ≥ 0 and V ∈ D(Q2), then M = νV ∈ cone(D(Q2)). These observations
allow us to reformulate (D̃(r)) as (D(r)). Note that both problems have p as their optimal
value.

Let (U∗, M∗, λ∗) ∈ Lq × Lq × R be an optimal solution for D(r). Thanks to Assump-
tion 3.2 and [3, Corollary 4.8], there is strong duality with the corresponding Lagrange dual
problem that relaxes the equality constraint, that is, we have

p = inf
w∈Rn

sup
U∈D(Q1),M∈cone(D(Q2)),λ∈R

(
−rE [M] − λ − wT (E [UX ] + E [MX ] − λ1)

)

= inf
w∈Rn

sup
U∈D(Q1),M∈cone(D(Q2)),λ∈R

(
−rE [M] − λ + E

[
−UwTX

]
+ E

[
−MwTX

]
+ λwT1

)
.

Moreover, [3, Corollary 4.8], also ensures that there exists an optimal Lagrange multiplier
w∗ ∈ R

n . By the first-order condition with respect to U = U∗, we have

0 ∈ −(w∗)TX − ND(Q1)(U
∗),

which means that

E

[
−U∗(w∗)TX

]
≥ E

[
−U ′(w∗)TX

]

for every U ′ ∈ D(Q1), that is,

ρ1((w
∗)TX) = E

[
−U∗(w∗)TX

]
.

We conclude that U∗ ∈ V1(w
∗), where V1(w

∗) is defined by (3.1). In particular, by
Lemma 3.4,

E
[−U∗X

] ∈ ∂g1(w
∗). (3.4)

Similarly, the first-order condition with respect to M = M∗ yields

E

[
−M∗ ((w∗)TX + r

)]
≥ E

[
−M ′ ((w∗)TX + r

)]

for every M ′ ∈ cone(D2), that is,

E

[
−M∗ ((w∗)TX + r

)]
= max

M ′∈cone(D(Q2))
E

[
−M ′ ((w∗)TX + r

)]
. (3.5)

Since cone(D2) is a cone, the quantity supM ′∈cone(D(Q2))
E
[−M ′((w∗)TX + r)

]
can either

take value 0 or +∞. Since E
[−M∗((w∗)TX + r)

]
is a finite number, both sides of (3.5)
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must be equal to zero. Moreover,

0 = max
M ′∈cone(D(Q2))

E

[
−M ′ ((w∗)TX + r

)]

=
(

sup
λ′≥0

λ′
)(

max
V ′∈D(Q2)

E

[
−V ′ ((w∗)TX + r

)])

= +∞ · ρ2((w
∗)TX + r) = +∞ ·

(
ρ2((w

∗)TX) − r
)

.

Hence, we have ρ2((w
∗)TX) = r .

Let ν∗ = E
[
M∗]. Suppose first that ν∗ > 0. Let V ∗:=M∗

ν∗ ∈ D(Q2). Then,

E

[
−M∗((w∗)TX + r)

]
= ν∗

E

[
−V ∗ ((w∗)TX + r

)]
= 0

so that E
[−V ∗(w∗)TX

] = r . Hence,

E

[
−V ∗(w∗)TX

]
= r = ρ2((w

∗)TX) = max
V ′∈D(Q2)

E

[
−V ′(w∗)TX

]
,

that is, V ∗ ∈ V2(w
∗). In particular,

E
[−V ∗X

] ∈ ∂g2(w
∗).

Next, suppose that ν∗ = 0, that is, M∗ = 0 P-almost surely. Let us pick some V ∗ ∈ V2(w
∗)

arbitrarily. (We know that V2(w∗) �= ∅ since ρ2 is assumed to be continuous from below.) In
both cases, we may write M∗ = ν∗V ∗ and

E
[−M∗X

] = ν∗
E
[−V ∗X

] ∈ ν∗∂g2(w∗). (3.6)

By the feasibility of (U∗, M∗, λ∗) for (D(r)),

E
[−U∗X

]+ E
[−M∗X

]+ λ∗1 = E
[−U∗X

]+ ν∗
E
[−V ∗X

]+ λ∗1 = 0. (3.7)

Hence, by (3.4), (3.6), (3.7), we conclude that

0 ∈ ∂g1(w
∗) + ν∗∂g2(w∗) + λ∗1.

Finally, by the first-order condition with respect to λ = λ∗, we get

1Tw∗ = 1,

that is, w∗ ∈ W . Therefore, we establish the Karush-Kuhn-Tucker conditions for (P(r)) at
w = w∗. By [18, Theorem 2.9.3], we conclude that w∗ is an optimal solution for (P(r)). ��
Remark 3.5 Let us comment on the roles of the two constraint qualifications and the assump-
tion about the existence of an optimal solution for (D(r)). In the proof of Theorem 3.3,
note that Assumption 3.1 already guarantees the existence of an optimal solution (ν̄, λ̄) for
the Lagrange dual problem in (3.2). Nevertheless, the reformulated problem (D̃(r)) has two
additional variables, U and V , which, together with ν, λ, combine into U , M, λ in the final-
ized dual problem (D(r)). As a result, the existence of an optimal solution for (D(r)) is not
guaranteed a priori. Once such an optimal solution is assumed, Assumption 3.2 automatically
yields the existence of an optimal Lagrange multiplier for the equality constraint in (D(r)),
which is shown to give an optimal solution for the original problem (P(r)).

In the following examples, we consider a few special choices of the risk measures. We
work with p = 1 in all examples.
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Example 3.6 Letρ1 be the average value-at-risk at a probability level θ ∈ (0, 1) (Example 2.3)
and ρ2 the negative expected value (Example 2.1). In this case:

D(Q1) =
{

U ∈ L∞ | P
{

0 ≤ U ≤ 1

θ

}

= 1

}

,

qri(D(Q1)) =
{

U ∈ L∞ | P
{

0 < U <
1

θ

}

= 1

}

,

cone(D(Q2)) = cone(1) = R+, qri(cone(D(Q2))) = (0,+∞),

where the quasi relative interiors can be calculated by following a similar procedure as in
[3, Example 3.11]. It is easy to observe that Assumption 3.2 is equivalent to the existence
of a probability measure Q on (�,F) that is equivalent to P such that dQ

dP ≤ 1
θ
P-almost

surely and E
Q [−X ] is in the conic convex hull of the set {E [X ] , 1,−1}. In particular, if

E [X1] = . . . = E [Xn], then this condition is satisfied byQ = P.Moreover, the dual problem
(D(r)) becomes

maximize − rm − λ

subject to E [UX ] + mE [X ] − λ1 = 0

E [U ] = 1

0 ≤ U ≤ 1

θ
P-almost surely

U ∈ L∞, m ≥ 0, λ ∈ R,

which is a linear programming problem in an infinite-dimensional setting. When (�,F,P)

is a finite probability space, it reduces to a finite-dimensional linear programming
problem.

Example 3.7 We switch the roles of negative expected value and average value-at-risk in
Example 3.6 so that

D(Q1) = qri(D(Q1)) = {1} ⊆ L∞,

cone(D(Q2)) =
{

M ∈ L∞ | P
{

0 ≤ M ≤ E [M]

θ

}

= 1

}

,

qri(cone(D(Q2))) =
{

M ∈ L∞ | P
{

0 < M <
E [M]

θ

}

= 1

}

.

In this case, Assumption 3.2 is equivalent to the existence of a finite measure with density
M such that θM < E [M] P-almost surely and E [−MX ] is in the unbounded polyhedral set
{E [X ]−λ1 | λ ∈ R}. In particular, if E [X1] = . . . = E [Xn], then this condition is satisfied
by M ≡ 1. Moreover, the dual problem (D(r)) becomes

maximize − rE [M] − λ

subject to E [X ] + E [MX ] − λ1 = 0

0 ≤ θM ≤ E [M] P-almost surely

M ∈ L∞, λ ∈ R,

which reduces to a finite-dimensional linear programming problemwhen (�,F,P) is a finite
probability space.

123



Journal of Global Optimization (2020) 78:597–626 609

Remark 3.8 Note that Assumption 3.2 is a constraint qualification for the dual problem
(D(r)). A more standard alternative of it would assume the existence of U ∈ int(D(Q1)),
M ∈ int(cone(D(Q2))),λ ∈ R such thatE [UX ]+E [MX ]−λ1 = 0,where int denotes topo-
logical interior. However, in infinite-dimensional spaces, many convex sets that show up in
applications have empty interior. For instance, it iswell-known that, forq ∈ [1,+∞),we have
int Lq

+ = ∅ unless Lq is a finite-dimensional space, that is, the underlying probability space is
isomorphic to a finite probability space (see, for instance, [7, Example 10.1.3] and [6, Exam-
ple 2.12]). Similarly, we have int(D(Q1)) = ∅ in Example 3.6 and int(cone(D(Q2))) = ∅ in
Example 3.7 unless Lq is a finite-dimensional space. Hence, the standard alternative is never
satisfied for our examples whenever we deviate from the finite-dimensional case. Hence,
Assumption 3.2, which uses quasi relative interior instead of usual interior, is much weaker
than its interior-based counterpart (see, for instance, [18, Theorem 2.9.6] for a strong duality
theorem with an interior-based constraint qualification).

Remark 3.9 Let us comment on the benefit of Theorem 3.3 for computing an optimal solution
for the primal portfolio optimization problem (P(r)). When (�,F,P) is a finite probability
space, the dual problem (D(r)) reduces to a finite-dimensional convex optimization problem
with the set constraints U ∈ D(Q1) and M ∈ cone(D(Q2)). If these constraints can be
represented by finitely many (convex) inequalities, then (D(r)) can be solved by commercial
software for convex optimization such as CVX, which also return the value of the Lagrange
multipliers for the constraints at (approximate) optimality. Hence, without an additional pro-
cedure, an optimal solution for (P(r)) is readily computed by the solver as the dualmultiplier
of the constraintE [UX ]+E [MX ]−λ1 = 0 at optimality. As noted in Examples 3.6 and 3.7,
when the classical coherent risk measures negative expected value and average value-at-risk
are used in the problem, the set constraints U ∈ D(Q1) and M ∈ cone(D(Q2)) are easily
represented by finitely many linear inequalities so that (D(r)) even reduces to a linear pro-
gramming problem. In this case, many more commerical solvers are available (for instance,
CPLEX, Gurobi) and they also return the values of the dual variables associated to the con-
straints at optimality. Hence, in the cases where (D(r)) reduces to a standard convex/linear
optimization problem and it has an optimal solution, thanks to Theorem 3.3, an optimal port-
folio for (P(r)) is returned by commercial solvers. It should also be noted that the idea of
recovering a primal optimal solution from the dual multipliers of the dual problem is pretty
well-known in the nonsmooth/stochastic optimization literature (see, [2,11], for instance).
Hence, at a high level, Theorem 3.3 can be considered as a result in the same spirit.

We finish this section by providing an analogous dual problem and an optimality result
for the case where shortselling is not allowed, namely, for the problem

minimize ρ1(w
TX) (P+(r))

subject to ρ2(w
TX) ≤ r

w ∈ W+,

where W+ is defined by (2.2). The analysis of (P+(r)) is very similar to that of (P(r))
and it yields the finalized dual problem

maximize − rE [M] − λ (D+(r))

subject to E [UX ] + E [MX ] − λ1 ≤ 0

U ∈ D(Q1), M ∈ cone(D(Q2)), λ ∈ R.

We have the following duality result which works under modified versions of Assump-
tions 3.1 and 3.2.
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Theorem 3.10 Assume that there exists w ∈ W+ such that ρ2(w
TX) < r and wi > 0 for

every i ∈ N . Assume further that there exist U ∈ qri(D(Q1)), M ∈ qri(cone(D(Q2))),
λ ∈ R such that E [UXi ] + E [MXi ] − λ < 0 for every i ∈ N . Suppose that there exists
an optimal solution (U∗, M∗, λ∗) ∈ Lq × Lq ×R of (D+(r)). Then, there exists an optimal
Lagrange multiplier w∗ ∈ R

n+ associated to the inequality constraint of (D+(r)), and w∗ is
an optimal solution for (P+(r)).

Proof The proof goes along the same lines as the proof of Theorem 3.3. The only important
change is in (3.3):

inf
w∈Rn+

(E [−UX ] + νE [−V X ] + λ1)T w =
{
0 if E [−UX ] + νE [−V X ] + λ1 ≥ 0,

−∞ else,

which is the reason for having an inequality constraint in (D+(r)). The rest follows in a
standard manner. ��

4 The portfolio optimization problem under themultivariate Gaussian
distribution

In this section, we study the problem (P(r)) under the special case that X is a Gaussian
random vector and ρ1, ρ2 are law-invariant. Under these assumptions, it turns out that the
analysis of (P(r)) can be performed in terms of the hyperbola appearing in the classical
Markowitz problem and an optimal solution for (P(r)) can be calculated with an explicit
formula whenever it exists. The aim of this section is to provide an analysis that is peculiar to
the Gaussian case; hence, we follow a route that is quite different from the general duality-
based approach in Sect. 3.

We assume that X = (X1, . . . , Xn)
T ∈ L2

n is a Gaussian random vector with mean
vector m = (m1, . . . ,mn)

T and covariance matrix C ∈ R
n×n . We further assume that m and

1:=(1, . . . , 1)T ∈ R
n are linearly independent and thatC is a nonsingular matrix with inverse

C−1. Hence, C is a symmetric positive definite matrix with strictly positive eigenvalues.
Note that, for a portfolio w ∈ W , its return wTX is a Gaussian random variable. A simple

calculation yields that the corresponding expected value and variance are given by

μw:=E

[
wTX

]
= mTw, σ 2

w:=Var(wTX) = wTCw, (4.1)

respectively. For every w ∈ W , we may write

wTX = E

[
wTX

]
+
√
Var(wTX)Z (4.2)

for some standard Gaussian random variable Z (with zero mean and unit variance). Using
this, we provide an explicit expression for the values of a generic law-invariant coherent risk
measure ρ next.

Proposition 4.1 Let ρ be a coherent, law-invariant and finite risk measure on L2. For every
w ∈ W , it holds

ρ(wTX) = ρ(Z)
√

wTCw − mTw,

where Z is an arbitrary standard Gaussian random variable.
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Proof Let w ∈ W . Using (4.2), we obtain

ρ(wTX) = ρ
(√

Var(wTX)Z + E

[
wTX

])
= ρ(Z)

√
Var(wTX) − E

[
wTX

]

thanks to the translativity and positive homogeneity of ρ. Finally, the number ρ(Z) is free of
the choice of the standard Gaussian random variable Z thanks to the law-invariance of ρ. ��

With a slight abuse of notation, we define ρ j :=ρ j (Z) ≥ 0 for each j ∈ {1, 2}, where Z
is a generic standard Gaussian random variable. Thanks to Proposition 4.1, we may rewrite
(P(r)) as

minimize ρ1

√
wTCw − mTw (P(r))

subject to ρ2

√
wTCw − mTw ≤ r

1Tw = 1

w ∈ R
n .

In what follows, we provide an analytical solution for (P(r)), whenever it exists, under
all possible relationships among the parameters m,C, r , ρ1, ρ2. To that end, let us introduce
the constants

α:=mTC−1m, β:=mTC−11 = 1TC−1m, γ :=1TC−11, δ:=αγ − β2,

which also appear in the analysis of the classical Markowitz problem. As a consequence of
the positive definiteness of C , it is well-known and easy to check that α, γ, δ > 0.

4.1 TheMarkowitz hyperbola

The analysis of the n-dimensional portfolio optimization problem (P(r)) is based on an
associated two-dimensional optimization problem whose decision variables stand for the
standard deviation and expected return of a portfolio. Note that every portfolio w ∈ W
induces a standard deviation-expected return pair (σw, μw) ∈ R

2 of (M (r)) through the
definitions σw = √

wTCw, μw = mTr . The structure of the set {(σw, μw) | w ∈ W} is very
well-known: this set is the convex hull of the right wing of a hyperbola. The precise version
of this classical result is recalled in the next lemma.

Lemma 4.2 Let μ ∈ R and consider the problem of finding the portfolio with minimum
variance among all the portfolios with expected return level μ:

minimize wTCw (A (μ))

subject to mTw = μ

1Tw = 1

w ∈ R
n .

The problem A (μ) has a unique optimal solution given by

w(μ):=1

δ

(
(γμ − β)C−1m + (α − βμ)C−11

)
(4.3)

with corresponding expected return μw(μ) = μ and standard deviation

σw(μ) =
√

1

γ
+ γ

δ

(

μ − β

γ

)2

.
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{
(σw(μ), μ) | μ ∈ R

} = H+:=H ∩ (R+ × R),

where H is a hyperbola defined by

H:=
{

(σ, μ) ∈ R
2 | σ 2 − γ

δ

(

μ − β

γ

)2

= 1

γ

}

,

whose asymptotes are specified by the equations

μ = β

γ
±
√

δ

γ
σ.

In particular, for every point (σ, μ) on the right wing H+, there exists a unique portfolio
w ∈ W such that (σ, μ) = (σw, μw). Hence, Let coH+ be the convex hull of H+, that is,

coH+ =
{

(σ, μ) ∈ R+ × R | σ 2 − γ

δ

(

μ − β

γ

)2

≥ 1

γ

}

.

For every (σ, μ) ∈ coH+, there exists a portfolio w ∈ W such that (σ, μ) = (σw, μw). In
particular,

{(σw, μw) | w ∈ W} = coH+. (4.4)

Proof These are well-known results from the analysis of the classical Markowitz problem.
The reader may refer to the original derivation in Merton [13] as well as many textbooks
covering portfolio optimization, for instance, [4, Chapter 3]. ��

Note that the point ( 1√
γ
,

β
γ
) is the corner point of the right wing H+; in particular, for

every (σ, μ) ∈ coH+, it holds σ ≥ 1√
γ
. For each σ ≥ 1√

γ
, let

μ(σ):=β

γ
+
√

δ

γ
σ 2 − δ

γ 2 .

In particular, for every (σ, μ) ∈ coH+, it holds μ ≤ μ(σ).

4.2 The associated two-dimensional problems

The relation (4.4) in Lemma 4.2 motivates us to introduce a related problem expressed as

minimize ρ1σ − μ (M (r))

subject to ρ2σ − μ ≤ r

(σ, μ) ∈ coH+.

Indeed, for every feasible solution w ∈ R
n of (P(r)), the point (σw, μw) is a feasible

solution of (M (r)) and the corresponding objective function values are equal. Moreover, by
the last part of Lemma 4.2, for every feasible solution (σ, μ) ∈ R

2 of (M (r)), there exists
a feasible solution w ∈ R

n of (P(r)) such that (σ, μ) = (σw, μw) and the corresponding
objective function values are equal. It follows that for an optimal solutionw ∈ R

n of (P(r)),
supposing that it exists, the induced feasible solution (σw, μw) of (M (r)) is also optimal for
(M (r)). On the other hand, since ρ1σ − μ ≥ ρ1σ − μ(σ) and r ≥ ρ2σ − μ ≥ ρ2σ − μ(σ)
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for every feasible solution (σ, μ) of (M (r)), an optimal solution of (M (r)), whenever it
exists, must be on the upper half of H+, that is, it must be of the form (σ, μ(σ )) for some
σ ≥ 1√

γ
. By the uniqueness part of Lemma 4.2, such an optimal solution corresponds to a

unique portfolio given by the formula in (4.3). Consequently, to figure out the optimal value
and the possible optimal solutions of (P(r)), it suffices to carry out the same analysis for
(M (r)) and then to recover an optimal solution of (P(r)) using (4.3) whenever there is an
optimal solution of (M (r)).

Before providing a joint analysis of (M (r)) and (P(r)), we start by solving an “uncon-
strained” problem, namely, the problem of minimizing the objective function of (M (r)) over
the whole set coH+, without the additional risk constraint.

Proposition 4.3 Consider the auxiliary problem

minimize ρ1σ − μ (MA )

subject to (σ, μ) ∈ coH+.

(i) Suppose that ρ1 <
√

δ
γ
. Then, (MA ) is an unbounded problem with optimal value −∞.

(ii) Suppose that ρ1 =
√

δ
γ
. Then, (MA ) has a finite infimum that is equal to − β

γ
but the

infimum is not attained by a feasible point.

(iii) Suppose that ρ1 >
√

δ
γ
. Then, the unique optimal solution of (MA ) is (σ ∗, μ∗), where

σ ∗:= ρ1
√

γρ2
1 − δ

, μ∗:=β

γ
+ δ

γ

√
γρ2

1 − δ

. (4.5)

Moreover, the unique portfolio w∗ with (σw∗ = σ ∗, μw∗ = μ∗) is given by

w∗ = w(μ∗) = 1
√

γρ2
1 − δ

C−1m +
⎛

⎝ 1

γ
− β

γ

√
γρ2

1 − δ

⎞

⎠C−11.

Proof (i) Suppose that ρ1 <
√

δ
γ
. A standard exercise in calculus yields that

lim
1√
γ

≤σ↑+∞
(ρ1σ − μ(σ)) = lim

σ+(r)≤σ↑+∞

(

ρ1σ − β

γ
−
√

δ

γ
σ 2 − δ

γ 2

)

= −∞.

Since the objective function diverges to −∞ on a subset of coH+, it follows that (MA )

is an unbounded problem with optimal value −∞.

(ii) Suppose that ρ1 =
√

δ
γ
. In this case, the limit evaluated in the previous case yields

lim
1√
γ

≤σ↑+∞
(ρ1σ − μ(σ)) = −β

γ
.

On theother hand, since thehyperbolaH and its asymptote
{
(σ, μ) ∈ R

2 |
√

δ
γ
σ − μ = − β

γ

}

do not intersect, there is no feasible solution (σ̄ , μ̄) of (MA ) such that

ρ1σ̄ − μ̄ =
√

δ

γ
σ̄ − μ̄ = −β

γ
.

Hence, the infimum of (MA ) is equal to − β
γ
but it is not attained by a feasible solution.
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(iii) Suppose that ρ1 >
√

δ
γ
. Since every point (σ, μ) ∈ coH+ has ρ1σ − μ ≥ ρ1σ − μ(σ),

if (σ, μ) is an optimal solution of (MA ), then it must satisfyμ = μ(σ). Moreover, since
coH+ is a convex set, by the well-known first-order condition, a point (σ, μ(σ )) is an
optimal solution of (MA ) if and only if the negative of the gradient of the objective
function at (σ, μ), which is (−ρ1, 1) in this case, is a normal direction of the feasible
region coH+ at (σ, μ), that is,

(−ρ1, 1) ∈
{

(x, y) ∈ R
2 | dμ(σ)

dσ
y + x = 0, x ≤ 0

}

,

where the derivative is calculated as

dμ(σ)

dσ
=
√

δ

γ

σ
√

σ 2 − 1
γ

.

Hence, (σ, μ(σ )) is an optimal solution of (MA ) if and only if
√

δ

γ

σ
√

σ 2 − 1
γ

= ρ1,

that is,

σ = σ ∗ = ρ1
√

γρ2
1 − γ

.

Consequently, we also have μ(σ) = μ∗. Hence, (σ ∗, μ∗) is the unique optimal solution
of (MA ). The corresponding portfoliow∗ = w(μ∗) can be calculated easily using (4.3).

��

4.3 Main theorems

In this section, we present complete solutions for (M (r)) and (P(r)). To that end,we provide
three main theorems based on the slope of the line

L(r):= {(σ, μ) ∈ R
2 | ρ2σ − μ = r

}

related to the risk constraint. It turns out that the comparison between the slope ρ2 of L(r)

and the (positive) slope
√

δ
γ
of the asymptote of H is critical for the analysis.

Theorem 4.4 Let r ∈ R and suppose that ρ2 <
√

δ
γ
. Then, the hyperbola H and the line

L(r) intersect at two distinct points (σ−(r), μ−(r)) and (σ+(r), μ+(r)) defined by

σ±(r):=
−(γ r + β)ρ2 ±

√
δ(γ r2 + 2βr + α − ρ2

2 )

δ − γρ2
2

, (4.6)

μ±(r):=
−δr − βρ2

2 ± ρ2

√
δ(γ r2 + 2βr + α − ρ2

2 )

δ − γρ2
2

. (4.7)

In particular, σ+(r) > 0 > σ−(r). Moreover, one of the following cases holds for (M (r)).
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(i) Suppose that ρ1 <
√

δ
γ
. Then, (M (r)) and (P(r)) are unbounded problems with com-

mon optimal value −∞.

(ii) Suppose that ρ1 =
√

δ
γ
. Then, (M (r)) and (P(r)) have a common finite infimum that

is equal to − β
γ
but the infimum is not attained by a feasible solution in both problems.

(iii) Suppose that ρ1 >
√

δ
γ
. Let

r∗:=ρ2σ
∗ − μ∗ = ρ1ρ2γ − δ

γ

√
γρ2

1 − δ

− β

γ
, r0:=ρ2σ0 − μ0 = ρ2√

γ
− β

γ
. (4.8)

It holds r∗ ≤ r0. Moreover, the unique optimal solution (σ ∗, μ∗) of (MA ) is also the
unique optimal solution of (M (r)) and the corresponding portfolio w∗ is the unique
optimal solution of (P(r)) if and only if r ≥ r∗. In particular, this is the case when
r ≥ r0. If r < r∗, then (σ+(r), μ+(r)) is the unique optimal solution of (M (r)) and

w+(r):=w(μ+(r)) = 1

δ − γρ2
2

[(

−γ r − β + γρ2

δ

√
δ(γρ2

2 + 2βr + α − ρ2
2 )

)

C−1m

+
(

βr + α − ρ2
2 − βρ2

δ

√
δ(γρ2

2 + 2βr + α − ρ2
2 )

)

C−11
]

is the unique optimal solution of (P(r)).

Proof By the definitions of H and L(r), a point (σ, μ) ∈ H ∩ L(r) must satisfy

σ 2 − γ

δ

(

μ − β

γ

)2

= σ 2 − γ

δ

(

ρ2σ − r − β

γ

)2

= 1

γ
,

that is,

(
1 − γ

δ
ρ2
2

)
σ 2 + 2

γ

δ

(

r + β

γ

)

ρ2σ − γ

δ

(

r + β

γ

)2

− 1

γ
= 0. (4.9)

Note that (4.9) is a quadratic equation in σ whose discriminant is given by

�(r):=4
γ 2

δ2

(

r + β

γ

)2

ρ2
2 + 4

(
1 − γ

δ
ρ2
2

)
[

γ

δ

(

r + β

γ

)2

+ 1

γ

]

= 4
γ

δ

(

r + β

γ

)2

+ 4
1

γ
− 4

1

δ
ρ2
2 (4.10)

= 4

δ

(

γ r2 + 2βr + β2 + δ

γ
− ρ2

2

)

= 4

δ

(
γ r2 + 2βr + α − ρ2

2

)
. (4.11)

Using (4.11), one can easily check that r �→ �(r) is a strictly convex quadratic function on
R whose minimum value is given by

min
r∈R �(r) = 4

δ

(
δ

γ
− ρ2

2

)

. (4.12)

Since ρ2 <
√

δ
γ
by assumption, we see that �(r) > 0 for every r ∈ R so that the quadratic

equation (4.9) has two distinct real solutions σ−(r), σ+(r) given by (4.6). Moreover, by
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(4.10) and the assumption that ρ2 <
√

δ
γ
, we have

δ
(
γ r2 + 2βr + α − ρ2

2

)

= δ2

4
�(r) > γ δ

(

r + β

γ

)2

≥ γ 2
(

r + β

γ

)2

ρ2
2 = (γ r + β)2ρ2

2 , (4.13)

which implies that σ−(r) < 0 and σ+(r) > 0. The corresponding expected return values
μ−(r), μ+(r) given by (4.7) are calculated from the defining equation of L(r) so that

H ∩ L(r) = {(σ−(r), μ−(r)), (σ+(r), μ+(r))} .

Next, we consider the three possible cases for (M (r)). As a preparation, we first claim
that every (σ̄ , μ̄) ∈ H+ with σ̄ ≥ σ+(r) is also a feasible solution of (M (r)). In other words,
we claim that the set

S:= {(σ̄ , μ̄) ∈ R+ × R | μ̄ = μ(σ̄ ), σ̄ ≥ σ+(r)}
is a subset of the feasible region of (M (r)), that is, ρ2σ̄ − μ̄ ≤ r for every (σ̄ , μ̄) ∈ S.
Indeed, since ρ2 ≤

√
δ
γ
, we have

d

dσ
(ρ2σ − μ(σ)) = ρ2 −

√
δ
γ
σ

√
σ 2 − 1

γ

≤
√

δ

γ

⎛

⎝1 − σ
√

σ 2 − 1
γ

⎞

⎠ < 0 (4.14)

for every σ > 1√
γ
. Since we also have μ(σ+(r)) ≥ μ+(r), it follows that every (σ̄ , μ̄) ∈ S

satisfies

r = ρ2σ+(r) − μ+(r) ≥ ρ2σ+(r) − μ(σ+(r)) > ρ2σ̄ − μ(σ̄ ) = ρ2σ̄ − μ̄

so that it is feasible for (M (r)). Hence, the claim follows.

(i) Suppose that ρ1 <
√

δ
γ
. A standard exercise in calculus yields that

lim
σ+(r)≤σ↑+∞ (ρ1σ − μ(σ)) = lim

σ+(r)≤σ↑+∞

(

ρ1σ − β

γ
−
√

δ

γ
σ 2 − δ

γ 2

)

= −∞.

Since the objective function diverges to −∞ on S, it follows that (M (r)) is an
unbounded problem with optimal value −∞.

(ii) Suppose that ρ1 =
√

δ
γ
. In this case, the limit evaluated in the previous case yields

lim
σ+(r)≤σ↑+∞ (ρ1σ − μ(σ)) = −β

γ
.

On the other hand, since the hyperbola H and its asymptote{
(σ, μ) ∈ R

2 |
√

δ
γ
σ − μ = − β

γ

}
do not intersect, there is no feasible solution (σ, μ)

of (M (r)) such that

ρ1σ − μ =
√

δ

γ
σ − μ = −β

γ
.

Hence, the infimum in (M (r)) is equal to− β
γ
but it is not attained by a feasible solution.
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(iii) Suppose that ρ1 >
√

δ
γ
. Note that the feasible region of (M (r)) is a subset of that

of (MA ). Hence, in view of Proposition 4.3, the unique optimal solution (σ ∗, μ∗) of
(MA ) is also the unique optimal solution of (M (r)) if and only if it is feasible for
(M (r)), that is,

r∗ = ρ2σ
∗ − μ∗ ≤ r ,

where r∗ is defined by (4.8).
Next, we show that r∗ ≤ r0, where r0 is defined by (4.8). So we show that

ρ1ρ2γ − δ

γ

√
γρ2

1 − δ

− β

γ
≤ ρ2√

γ
− β

γ
,

which is equivalent to

ρ1ρ2γ − δ ≤ ρ2
√

γ

√
γρ2

1 − δ. (4.15)

If γρ1ρ2 − δ ≤ 0, then (4.15) holds trivially. Suppose that γρ1ρ2 − δ > 0. In this case,
(4.15) is equivalent to

γ 2ρ2
1ρ

2
2 + δ2 − 2γ δρ1ρ2 = (γρ1ρ2 − δ)2 ≤ γρ2

2

(
γρ2

1 − δ
) = γ 2ρ2

1ρ
2
2 − γ δρ2

2 ,

which is equivalent to

δ − 2γρ1ρ2 + γρ2
2 ≤ 0.

But the last inequality follows from the supposition and the assumption thatρ1 >
√

δ
γ

>

ρ2 since

δ − 2γρ1ρ2 + γρ2
2 ≤ γρ1ρ2 − 2γρ1ρ2 + γρ2

2 = γρ2(ρ2 − ρ1) ≤ 0.

Consequently, (4.15) holds when γρ1ρ2 − δ > 0 as well. Hence, r∗ ≤ r0.
Finally, we consider the case r < r∗, that is, (σ ∗, μ∗) is not feasible for (M (r)). In this
case, we prove that (σ+(r), μ+(r)) is the unique optimal solution of (M (r)). To that
end, note that we have r < r0 in this case so that

ρ2σ+(r) − μ+(r) = r < r0 = ρ2σ0 − μ0 ≤ ρ2σ+(r) − μ0.

This implies μ+(r) > μ0. In particular, μ+(r) = μ(σ+(r)). Next, let (σ̄ , μ̄) be a
feasible solution of (M (r)) with (σ̄ , μ̄) �= (σ+(r), μ+(r)). We first claim that σ̄ >

σ+(r). To get a contradiction, suppose σ̄ ≤ σ+(r). By (4.14), σ �→ ρ2σ − μ(σ) is a
decreasing function. Using this and the fact that μ̄ ≤ μ(σ̄ ), we obtain

r ≥ ρ2σ̄ − μ̄ ≥ ρ2σ̄ − μ(σ̄ ) ≥ ρ2σ+(r) − μ+(r) = r ,

which yields ρ2σ̄ − μ̄ = r and μ̄ = μ(σ̄ ). This implies (σ̄ , μ̄) ∈ H ∩ L(r) and hence
(σ̄ , μ̄) = (σ+(r), μ+(r)), which is a contradiction. Hence, the claim follows. On the

other hand, using the assumption ρ1 >
√

δ
γ
, we notice that

d

dσ
(ρ1σ − μ(σ)) = ρ1 −

√
δ
γ
σ

√
σ 2 − 1

γ

> 0 ⇔ σ >
ρ1

√
γρ2

1 − δ

= σ ∗, (4.16)

that is σ �→ ρ1σ − μ(σ) is a strictly increasing function for σ > σ ∗. Moreover, we
have σ̄ > σ+(r) > σ ∗. Indeed, the first inequality is by the previous claim. The second
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inequality holds as otherwise, (σ ∗, μ∗)would be feasible for (M (r)) by the preparatory
claim preceding the analysis of the three cases, which is excluded by the assumption
r < r∗. Since we also have μ̄ ≤ μ(σ̄ ) and μ+(r) = μ(σ+(r)), it follows that

ρ1σ̄ − μ̄ ≥ ρ1σ̄ − μ(σ̄ ) > ρ1σ+(r) − μ(σ+(r)) = ρ1σ+(r) − μ+(r),

that is, (σ̄ , μ̄) is not optimal for (M (r)). Hence, (σ+(r), μ+(r)) is the unique optimal
solution of (M (r)).

��
Theorem 4.5 Let r ∈ R and suppose that ρ2 >

√
δ
γ
. Then, the hyperbola H and the line

L(r) intersect precisely at two points, (σ−(r), μ−(r)) and (σ+(r), μ+(r)) defined by (4.6),
if and only if r ≤ r− or r ≥ r+, where

r±:=
−β ±

√
γρ2

2 − δ

γ
. (4.17)

In particular, it holds σ+(r) ≤ σ−(r) < 0 if r ≤ r−, it holds 0 < σ+(r) ≤ σ−(r) if r ≥ r+.
Moreover, the points (σ−(r), μ−(r)) and (σ+(r), μ+(r)) are identical if and only if r = r− or
r = r+. The hyperbolaH and the line L(r) do not intersect at all if and only if r− < r < r+.
Consequently, (M (r)) is feasible if and only if r ≥ r+.

Suppose that r ≥ r+. Then, one of the following cases holds for (M (r)).

(i) Suppose that ρ1 ≤
√

δ
γ
. Then, (σ−(r), μ−(r)) is the unique optimal solution of (M (r))

and

w−(r):=w(μ−(r)) = 1

γρ2
2 − δ

[(

γ r + β + γρ2

δ

√
δ(γρ2

2 + 2βr + α − ρ2
2 )

)

C−1m

+
(

−βr − α + ρ2
2 − βρ2

δ

√
δ(γρ2

2 + 2βr + α − ρ2
2 )

)

C−11
]

is the unique optimal solution of (P(r)).

(ii) Suppose that ρ1 >
√

δ
γ
. Then, the unique optimal solution (σ ∗, μ∗) of (MA ) is also

the unique optimal solution of (M (r)) and the corresponding portfolio w∗ is the unique
optimal solution of (P(r)) if and only if r ≥ r∗, where r∗ is defined by (4.8).
It holds r+ = r∗ if ρ1 = ρ2 and r+ < r∗ if ρ1 �= ρ2. Suppose that ρ1 �= ρ2 and
r+ ≤ r < r∗. Then, one of the following cases holds for (M (r)).

(a) If ρ1 < ρ2, then (σ−(r), μ−(r)) is the unique optimal solution of (M (r)) andw−(r)
is the unique optimal solution of (P(r)).

(b) If ρ1 > ρ2, then (σ+(r), μ+(r)) is the unique optimal solution of (M (r)) andw+(r)
is the unique optimal solution of (P(r)).

Proof As in the proof of Theorem 4.4, a point (σ, μ) ∈ H ∩ L(r) satisfies (4.9), which is a

quadratic equation in σ with discriminant �(r) given by (4.11). However, since ρ2 >
√

δ
γ
,

the minimum in (4.12) is strictly negative: minr∈R �(r) < 0.Moreover, we have�(r) = 0 if
and only if r ∈ {r−, r+}, where r± are defined by (4.17);�(r) < 0 if and only if r− < r < r+;
�(r) > 0 if and only if r < r− or r > r+. Hence, H ∩ L(r) is nonempty if and only if
r ≤ r− or r ≥ r+, and the intersection consists of (σ−(r), μ−(r)), (σ+(r), μ+(r)) in this
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case. Mimicing the arguments for (4.13), this time with ρ2 >
√

δ
γ
, gives

δ(γ r2 + 2βr + α − ρ2
2 ) < (γ r + β)2ρ2

2 .

It follows thatσ+(r) ≤ σ−(r) < 0 if r ≤ r− ≤ − β
γ
and 0 < σ+(r) ≤ σ−(r) if r ≥ r+ ≥ − β

γ
.

The rest of the claims in the first paragraph of the theorem follows immediately.
For the rest of the proof, suppose that r ≥ r+. We consider the three possible cases for

(M (r)) next. As a preparation, we first show that μ(σ−(r)) = μ−(r). To that end, it suffices
to show that

δr + βρ2
2 + ρ2

√
δ(γ r2 + 2βr + α − ρ2

2 )

γρ2
2 − δ

= μ−(r) ≥ μ0 = β

γ
,

which is equivalent to

δγ r + γβρ2
2 + γρ2

√
δ(γ r2 + 2βr + α − ρ2

2 ) ≥ γβρ2
2 − δβ,

that is,

δ(γ r + β) + γρ2

√
δ(γ r2 + 2βr + α − ρ2

2 ) ≥ 0. (4.18)

On the other hand, since r ≥ r+, we have γ r + β ≥
√

γρ2
2 − δ > 0 from which (4.18)

follows. Hence, μ(σ−(r)) = μ−(r).

(i) Suppose that ρ1 ≤
√

δ
γ
. Let (σ̄ , μ̄) be a feasible solution of (M (r)) with (σ̄ , μ̄) �=

(σ−(r), μ−(r)). We claim that σ̄ ≤ σ−(r). To get a contradiction, suppose that σ̄ >

σ−(r). Similar to (4.16), we notice that σ �→ ρ2σ −μ(σ) is a strictly increasing function

for σ >
ρ2√

γρ2
2−δ

thanks to the assumption ρ2 >
√

δ
γ
. On the other hand, since we assume

that r ≥ r+, we have

σ−(r) =
(γ r + β)ρ2 +

√
δ(γ r2 + 2βr + α − ρ2

2 )

γρ2
2 − δ

≥ (γ r+ + β)ρ2

γρ2
2 − δ

= ρ2
√

γρ2
2 − δ

.

Since we also have μ̄ ≤ μ(σ̄ ) and μ(σ−(r)) = μ−(r), it follows that

r ≥ ρ2σ̄ − μ̄ ≥ ρ2σ̄ − μ(σ̄ ) > ρ2σ−(r) − μ(σ−(r)) = ρ2σ−(r) − μ−(r) = r ,

which is a contradiction. Hence, σ̄ ≤ σ−(r). Moreover, we further have σ̄ < σ−(r) as
otherwise σ̄ = σ−(r) would imply

r ≥ ρ2σ̄ − μ̄ = ρ2σ−(r) − μ̄ ≥ ρ2σ−(r) − μ(σ̄ ) = ρ2σ−(r) − μ−(r) = r

so that (σ̄ , μ̄) = (σ−(r), μ−(r)), which is a contradiction. On the other hand, similar to
(4.14), we can argue that σ �→ ρ1σ − μ(σ) is a strictly decreasing function for σ > 1√

γ

thanks to the assumption ρ1 ≤
√

δ
γ
. Consequently, σ̄ < σ−(r) implies

ρ1σ̄ − μ̄ ≥ ρ1σ̄ − μ(σ̄ ) > ρ1σ−(r) − μ(σ−(r)) = ρ1σ−(r) − μ−(r),

that is, (σ̄ , μ̄) is not optimal for (M (r)). Hence, (σ−(r), μ−(r)) is the unique optimal
solution of (M (r)).
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(ii) Suppose that ρ1 >
√

δ
γ
. In this case, as in the proof of (iii) of Theorem 4.7, we note

that the unique optimal solution (σ ∗, μ∗) of (MA ) is also the unique optimal solution
of (M (r)) if and only if r ≥ r∗, where r∗ is defined by (4.8). From the definitions, it is
clear that r+ = r∗ if ρ1 = ρ2. Suppose that ρ1 �= ρ2. We first claim that

r+ < r∗. (4.19)

Indeed, supposing otherwise would yield
√

(γρ2
1 − δ)(γρ2

2 − δ) ≥ ρ1ρ2γ − δ, which is

equivalent to (γρ2
1−δ)(γρ2

2−δ) ≥ (ρ1ρ2γ −δ)2 aswehaveρ1ρ2 > δ
γ
by the assumptions

on ρ1, ρ2. Further simplification would yield the inequality 0 ≥ γ δ(ρ1 − ρ2)
2, which is

a contradiction since ρ1 �= ρ2 by supposition. Hence, the claim follows.
In view of (4.19), it remains to figure out the optimal solution of (M (r)) under the
condition that

r+ ≤ r < r∗, (4.20)

which we assume for the rest of the proof.

(a) Let us assume that ρ1 < ρ2. We prove that (σ−(r), μ−(r)) is the unique optimal
solution of (M (r)). To that end, let (σ̄ , μ̄) be a feasible solution of (M (r)) such that
(σ̄ , μ̄) �= (σ−(r), μ−(r)). Following the same arguments as in the proof of (i), one
can check that σ̄ < σ−(r).
Next, we show σ−(r) < σ ∗. Note that σ−(r) < σ ∗ is equivalent to

(γ r + β)ρ2 +
√

δ(γ r2 + 2βr + α − ρ2
2 )

γρ2
2 − δ

<
ρ1

√
γρ2

1 − δ

,

that is,
√

δ(γ r2 + 2βr + α − ρ2
2 ) < (γ r + β)ρ2 − ρ1(γρ2

2 − δ)
√

γρ2
1 − δ

. (4.21)

However, (4.21) does not hold true when its right hand side is negative, that is, when

r ≥ r++:= ρ1(γρ2
2 − δ)

γρ2

√
γρ2

1 − δ

− β

γ
.

On the other hand, note that

r∗ < r++ ⇔ ρ1(γρ2
2 − δ)

γρ2

√
γρ2

1 − δ

− β

γ
>

ρ1ρ2γ − δ

γ

√
γρ2

1 − δ

− β

γ

⇔ γρ1ρ
2
2 − ρ1δ > γρ1ρ

2
2 − δρ2

⇔ ρ1 < ρ2. (4.22)

Hence, in view of (4.20), we always have r < r++ so that (4.21) can be rewritten as

δ(γ r2 + 2βr + α − ρ2
2 ) < (γ r + β)2ρ2

2

+ ρ2
1 (γρ2

2 − δ)2

(γρ2
1 − δ)

− 2(γ r + β)
ρ1ρ2(γρ2

2 − δ)
√

γρ2
1 − δ

,

(4.23)
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which is equivalent to

0 < γ r2 + 2

⎛

⎝β − γρ1ρ2
√

γρ2
1 − δ

⎞

⎠ r + α + ρ2
1 (γρ2

2 − δ)

γρ2
1 − δ

− 2βρ1ρ2
√

γρ2
1 − δ

.

(4.24)

The discriminant of the quadratic function of r in the right hand side of (4.24) is

calculated as 4δ2

γρ2
1−δ

> 0 so that this function has two distict real zeros and the

smaller of these zeros is precisely r∗. Since we assume (4.20), (4.24) always holds
and we have σ−(r) < σ ∗.
On the other hand, by (4.16), σ �→ ρ1σ − μ(σ) is a strictly decreasing function for
σ < σ ∗. Hence, σ̄ < σ−(r) < σ ∗ implies

ρ1σ̄ − μ̄ ≥ ρ1σ̄ − μ(σ̄ ) > ρ1σ−(r) − μ(σ−(r)) = ρ1σ−(r) − μ−(r).

(4.25)

We conclude that (σ̄ , μ̄) is not optimal for (M (r)). Hence, (σ−(r), μ−(r)) is the
unique optimal solution.

(b) Let us assume that ρ1 > ρ2. We prove that (σ+(r), μ+(r)) is the unique optimal
solution of (M (r)). To that end, let (σ̄ , μ̄) be a feasible solution of (M (r)) with
(σ̄ , μ̄) �= (σ+(r), μ+(r)). We claim that σ̄ ≥ σ+(r). To get a contradiction, suppose
that σ̄ < σ+(r).
Similar to the proof of (i), we notice that σ �→ ρ2σ − μ(σ) is a strictly decreasing
function for σ <

ρ2√
γρ2

2−δ
. Next, we show that

(γ r + β)ρ2 −
√

δ(γ r2 + 2βr + α − ρ2
2 )

γρ2
2 − δ

= σ+(r) ≤ ρ2
√

γρ2
2 − δ

, (4.26)

which is equivalent to

(γ r + β)ρ2 − ρ2

√
γρ2

2 − δ ≤
√

δ(γ r2 + 2βr + α − ρ2
2 ) (4.27)

It is easy to check that the left hand side of (4.27) is positive thanks to the assumption
r ≥ r+. Hence, (4.27) is equivalent to

ρ2
2

(
γ 2r2 + 2βr + β2)

+ρ2
2 (γρ2

2 − δ) − 2ρ2
2

√
γρ2

2 − δ(γ r + β) ≤ δ(γ r2 + 2βr + α − ρ2
2 ),

that is,

(γρ2
2 − δ)γ r2 + 2

(

β(γρ2
2 − δ) − γρ2

2

√
γρ2

2 − δ

)

r

+ρ2
2 (β

2 + γρ2
2 ) − αδ − 2βρ2

2

√
γρ2

2 − δ ≤ 0. (4.28)

One can check that the discriminant of the quadratic function of r on the left hand
side of (4.28) is calculated as 4δ2(γρ2

2 − δ) > 0 so that it has two distinct zeros
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which are given as

−β

γ
+ γρ2

2 ± δ

γ

√
γρ2

2 − δ

.

Hence, (4.28) holds if and only if r is between these two zeros. Note that the smaller
zero is equal to r+ and we have r ≥ r+ by assumption. Next, we show that

r∗ = −β

γ
+ ρ1ρ2γ − δ

γ

√
γρ2

1 − δ

< −β

γ
+ γρ2

2 + δ

γ

√
γρ2

2 − δ

, (4.29)

which is equivalent to
√

γρ2
1 − δ(γρ2

2 + δ) > (ρ1ρ2γ − δ)

√
γρ2

2 − δ. (4.30)

By the assumptions ρ1 >
√

δ
γ
, ρ2 >

√
δ
γ
, the right hand side of (4.30) is positive so

that (4.30) is equivalent to

(γρ2
1 − δ)(δ2ρ4

2 + δ2 + 2γ δρ2
2 ) > (γρ2

2 − δ)(γ 2ρ2
1ρ

2
2 + δ2 − 2γ δρ1ρ2),

that is,

δρ2
1 + 3γρ2

1ρ
2
2 − γρ4

2 − 3δρ2
2 + 2γρ1ρ

3
2 − 2δρ1ρ2

= δρ2
1 − γρ4

2 + 3ρ2
2 (γρ2

1 − δ) + 2ρ1ρ2(γρ2
2 − δ) > 0.

However, since ρ1 > ρ2, we have

δρ2
1 − γρ4

2 + 3ρ2
2 (γρ2

1 − δ) + 2ρ1ρ2(γρ2
2 − δ)

> δρ2
2 − γρ4

2 + 3ρ2
2 (γρ2

2 − δ) + 2ρ2
2 (γρ2

2 − δ)

= ρ2
2 (δ − γρ2

2 ) + 5ρ2
2 (γρ2

2 − δ)

= 4ρ2
2 (γρ2

2 − δ) > 0

so that (4.29) holds. Consequently, the assumption (4.20) guarantees that (4.26)
holds.
Next, we show that μ(σ+(r)) = μ+(r). To that end, it suffices to show that

δr + βρ2
2 − ρ2

√
δ(γ r2 + 2βr + α − ρ2

2 )

γρ2
2 − δ

= μ+(r) ≥ μ0 = β

γ
, (4.31)

which is equivalent to

δγ r + γβρ2
2 − γρ2

√
δ(γ r2 + 2βr + α − ρ2

2 ) ≥ γβρ2
2 − δβ,

that is,
√

δ(γ r + β) ≥ γρ2

√
γ r2 + 2βr + α − ρ2

2 . (4.32)

On the other hand, since r ≥ r+, we have γ r + β ≥
√

γρ2
2 − δ > 0 so that (4.32) is

equivalent to

0 ≥ −δ(γ 2r2 + β2 + 2γβr) + γ 2ρ2
2 (γ r

2 + 2βr + α − ρ2
2 ) (4.33)

= (γρ2
2 − δ)γ (γ r2 + 2βr) − δβ2 + γ 2ρ2

2 (α − ρ2
2 ). (4.34)
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Note that the discriminant of the quadratic function of r in (4.34) is 4γ 3ρ2
2 (γρ2

2 −
δ)2 > 0 so that it has two distinct zeros given by

−β

γ
± ρ2√

γ
.

Hence, the inequality in (4.33) holds if and only if r is between these two zeros.
Clearly, we have − β

γ
− ρ2√

γ
< − β

γ
≤ r+ ≤ r . On the other hand, note that the larger

zero is equal to r0 and it is easy to check that r∗ ≤ r0 if and only if ρ1 ≥ γρ2
2+δ

2γρ2

and we also have ρ2 >
γρ2

2+δ

2γρ2
since ρ2 >

√
δγ . Consequently, the assumption

ρ1 > ρ2 implies that r∗ ≤ r0 holds so that r is between the two zeros of the quadratic
function in (4.34). Hence, the inequality in (4.33) holds, (4.31) holds and we have
μ(σ+(r)) = μ+(r).
Hence, σ̄ < σ+(r) ≤ ρ2√

γρ2
2−δ

and μ(σ+(r)) = μ+(r) imply that

r ≥ ρ2σ̄ − μ̄ ≥ ρ2σ̄ − μ(σ̄ ) > ρ2σ+(r) − μ(σ+(r)) = ρ2σ+(r) − μ+(r) = r ,

which is a contradiction. Hence, σ̄ ≥ σ+(r). Moreover, we further have σ̄ > σ+(r)
as otherwise σ̄ = σ+(r) would imply

r ≥ ρ2σ̄ − μ̄ = ρ2σ+(r) − μ̄ ≥ ρ2σ+(r) − μ(σ̄ ) = ρ2σ+(r) − μ+(r) = r

so that (σ̄ , μ̄) = (σ+(r), μ+(r)), which is a contradiction.
In view of (4.22), we have r∗ > r++. We show that σ+(r) > σ ∗. Note that σ+(r) >

σ ∗ is equivalent to

(γ r + β)ρ2 −
√

δ(γ r2 + 2βr + α − ρ2
2 )

γρ2
2 − δ

>
ρ1

√
γρ2

1 − δ

,

that is,
√

δ(γ r2 + 2βr + α − ρ2
2 ) < (γ r + β)ρ2 − ρ1(γρ2

2 − δ)
√

γρ2
1 − δ

. (4.35)

Since r∗ > r++, the right hand side of (4.35) is strictly positive so that (4.35) is
equivalent to (4.23) as well as to (4.24). Repeating the same analysis of the quadratic
function in (4.24), we see that this function has two distinct real zeros and the smaller
of these zeros is precisely r∗. Since we assume (4.20), (4.24) always holds and we
have σ+(r) > σ ∗.
Consequently, σ̄ > σ+(r) > σ ∗ and the fact that σ �→ ρ1σ − μ(σ) is strictly
increasing for σ > σ ∗ imply

ρ1σ̄ − μ̄ ≥ ρ1σ̄ − μ(σ̄ ) > ρ1σ+(r) − μ(σ+(r)) = ρ1σ+(r) − μ+(r),

that is, (σ̄ , μ̄) is not optimal for (M (r)). Hence, (σ+(r), μ+(r)) is the unique optimal
solution of (M (r)).

��
Remark 4.6 Theorem 4.5 can be used to understand if solving a risk-risk problem is signif-
icantly different from solving a mean-risk problem in the following way. Suppose that the
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risk measure in the constraint satisfies ρ2 >
√

δ
γ
and we have r ≥ r+. When the risk measure

in the objective is simply the negative expected value, we have ρ1 = 0. In this case, by (i)
of Theorem 4.5, w−(r) is the unique optimal portfolio. However, the optimal portfolio does
not change at all even if we use a nontrivial coherent risk measure in the objective such as

value-at-risk or average value-at-risk as long as ρ1 ≤
√

δ
γ
. Hence, the risk-risk problem with

ρ1 ≤
√

δ
γ
is practically the same as the mean-risk problem. On the other hand, by (ii) of

Theorem 4.5, for ρ1 >
√

δ
γ
with r ≥ r∗, the risk-risk problem becomes significantly different

from the mean-risk problem since the unique optimal portfolio is w∗, which depends on the
choices of ρ1 and ρ2.

Theorem 4.7 Let r ∈ R and suppose that ρ2 =
√

δ
γ
. Then, the hyperbola H and the line

L(r) intersect precisely at the single point (σ̂ (r), μ̂(r)) defined by

σ̂ (r):=γ r2 + 2βr + α

2ρ2(γ r + β)
, μ̂(r):= α − γ r2

2(γ r + β)
(4.36)

if and only if r �= − β
γ
. In particular, σ̄ (r) < 0 if r < − β

γ
, it holds σ̄ (r) > 0 if r > − β

γ
. The

hyperbola H and the line L(r) do not intersect at all if and only if r = − β
γ
. Consequently,

(M (r)) is feasible if and only if r > − β
γ
.

Suppose that r > − β
γ
. Then, one of the following cases holds for (M (r)).

(i) Suppose that ρ1 <
√

δ
γ
. Then, (M (r)) and (P(r)) are unbounded problems with com-

mon optimal value −∞.

(ii) Suppose that ρ1 =
√

δ
γ
. Then, (M (r)) and (P(r)) have a common finite infimum that

is equal to − β
γ
but the infimum is not attained by a feasible solution in both problems.

(iii) Suppose that ρ1 >
√

δ
γ
. Then, the unique optimal solution (σ ∗, μ∗) of (MA ) is also

the unique optimal solution of (M (r)) and the corresponding portfolio w∗ is the unique
optimal solution of (P(r)) if and only if r ≥ r∗, where r∗ is defined by (4.8). If r < r∗,
then (σ̂ (r), μ̂(r)) is the unique optimal solution of (M (r)) and

ŵ(r):=w(μ̂) = 1

2δ

[(
δ

γ r + β
− γ r − β

)

C−1m +
(

α + γ r(βr + α)

γ r + β

)

C−11
]

is the unique optimal solution of (P(r)).

Proof As in the proof of Theorem 4.4, a point (σ, μ) ∈ H ∩ L(r) satisfies (4.9), which

reduces to a linear equation in σ as we have ρ2 =
√

δ
γ
. Suppose that r �= − β

γ
. Then, the

unique solution of this equation is given by

σ̂ (r) = r + β
γ

2ρ2
+

1
γ

2ρ2
γ
δ

(
r + β

γ

) = (γ r + β)2 + δ

2ρ2γ (rγ + β)
= γ r2 + 2βr + α

2ρ2(γ r + β)
. (4.37)

The corresponding mean value of the point is given by

μ̂(r) = ρ2σ̂ − r = γ r2 + 2βr + α − 2(γ r + β)r

2(γ r + β)
= α − γ r2

2(γ r + β)
.
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Hence,H∩L(r) = {(σ̂ (r), μ̂(r))
}
as defined by (4.36). Moreover, from the third expres-

sion in (4.37), it is clear that σ̂ (r) < 0 if r < − β
γ
and σ̂ (r) > 0 if r > − β

γ
. If r = − β

γ
, then

(4.9) has no solution so that H ∩ L(r) �= ∅. It follows that (M (r)) is feasible if and only if
r > − β

γ
.

For the rest of the proof, suppose that r > − β
γ
. Note that an analogue of the preparatory

claim in the proof of Theorem 4.4 can be shown here with the same arguments: every
(σ̄ , μ̄) ∈ H+ with σ̄ ≥ σ̂ (r) is also a feasible solution of (M (r)). Similarly, (i) and (ii)
here can be shown here by repeating the same arguments as in the proofs of (i) and (ii) of

Theorem 4.4. Hence, we consider only the case ρ1 >
√

δ
γ
here. As in the proof of (iii)

of Theorem 4.7, we note that the unique optimal solution (σ ∗, μ∗) of (MA ) is also the
unique optimal solution of (M (r)) if and only if r ≥ r∗, where r∗ is defined by (4.8). Since
ρ1 >

√
δ
γ

= ρ2, we have r∗ > − β
γ
. Suppose that r < r∗. In this case, (σ̂ (r), μ̂(r)) is the

unique optimal solution of (M (r)). This can be shown using similar arguments as in the
proof of (ii)b. of Theorem 4.5. To avoid repetitions, the details are omitted. ��

5 Conclusion

In this paper, we look at the static portfolio optimization problem with two coherent risk
measures. We consider the case where the asset returns take arbitrary joint distributions, and
characterize the optimal portfolio through the associated dual problem. The dual problem
is an infinite-dimensional convex optimization problem with a linear objective function and
a linear constraint besides the convex constraints on some dual variables. We detect some
special cases where the dual problem reduces to a linear programming problem. In the second
part of the paper, under the restriction that asset returns are jointly Gaussian, we identify all
parameter configurations under which an optimal portfolio exists and provide an explicit
formula for it.
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