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Abstract Scalar dynamic risk measures for univariate positions in continuous time
are commonly represented via backward stochastic differential equations. In the mul-
tivariate setting, dynamic risk measures have been defined and studied as families
of set-valued functionals in the recent literature. There are two possible extensions
of scalar backward stochastic differential equations for the set-valued framework:
(1) backward stochastic differential inclusions, which evaluate the risk dynamics on
the selectors of acceptable capital allocations; or (2) set-valued backward stochastic
differential equations, which evaluate the risk dynamics on the full set of accept-
able capital allocations as a singular object. In this work, the discrete-time setting is
investigated with difference inclusions and difference equations in order to provide
insights for such differential representations for set-valued dynamic risk measures in
continuous time.
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1 Introduction

1.1 Literature review

The seminal work of Artzner et al. [3] introduced coherent risk measures in an ax-
iomatic framework to provide capital requirements for financial portfolios. The co-
herence axiom was relaxed to convexity in Föllmer and Schied [24], [25, Chap. 4].
Each of these works considers risk measured at a single time point for frictionless
claims. These convex and coherent risk measures were placed in a dynamic system
in which the capital requirements for portfolios and contingent claims are updated
in time as new information becomes available. The relation of these risks over time
is a key property of study; this so-called time-consistency property has been stud-
ied in e.g. Bion-Nadal [8], Cheridito et al. [11], Detlefsen and Scandolo [14], Riedel
[46], Ruszczyński and Shapiro [48].

For the purposes of this work, the relevant literature is more specialised. It has
been noted for almost as long as dynamic risk measures have been studied that cer-
tain nonlinear (g-)expectations have all the properties of a time-consistent convex
risk measure, and vice versa. In this way, convex risk measures can be represented
as solutions to backward stochastic differential equations (see e.g. Barrieu and El
Karoui [4, 5], Jiang [32], Peng [44], Rosazza Gianin [47]). This representation al-
lows the detailed study of dynamic risk measures in continuous time as well as their
efficient computation. We take our motivation for this work from Stadje [49] who
considers the problem of representing a discrete-time dynamic risk measure as the
solution of a backward stochastic difference equation. That work further provides
the L2-convergence of the drivers and solutions of backward stochastic difference
equations to the corresponding backward stochastic differential equation with desired
driver, as the number of time steps (on a finite time horizon) grows to infinity.

Scalar risk measures have been extended to consider multivariate portfolios as
well. Often, and with particular relevance to this work, they are studied as set-valued
risk measures. Such set-valued risk measures were first introduced in a coherent set-
ting in Jouini et al. [33]. This was extended to consider convex risk measures in
Hamel et al. [27]. Such risk measures have been applied, primarily, in two settings:

– Portfolios with frictions: Due to transaction costs, valuing a portfolio by a nu-
méraire leads to a non-unique value (e.g. mark-to-market or liquidation value). Each
choice of valuation by a numéraire results in an intrinsic misspecification of risk.
For example, mark-to-market valuation provides an overestimate of the true value of
the portfolio and thus an underestimate of the risk; liquidation valuation provides an
underestimate of the true value of the portfolio and thus an overestimate of the risk.
A market with frictions is the prototypical case for set-valued risk measures as studied
in Hamel et al. [27]. Specifically, due to transaction and market impact costs, there is a
misspecification of value in using any numéraire to hedge a risky portfolio. In order to
compensate for these frictions, capital requirements in that specific numéraire must
be larger than the current value of the hedging portfolio. Set-valued risk measures
approach this problem by considering the set of all risk-compensating portfolios, for
which there is unlikely to be a uniquely minimal choice, so as to more accurately
capture the riskiness of the original portfolio. In order to provide a numéraire-free
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representation, a portfolio is represented by a random vector in physical units, i.e.,
the ith component of the random vector denotes the number of asset i held in the
portfolio.

– Systemic risk: Due to the interaction between banks, the capital requirements for
any institution will ultimately depend on the health of all other institutions. This is
presented in a set-valued setting in Biagini et al. [7], Feinstein et al. [23]. Specifically,
capital cannot be freely transferred between banks, but due to e.g. default contagion
(see Eisenberg and Noe [15]), the capital requirements for one institution intrinsi-
cally depend on the health of all other banks. Due to this coupling of the health of
all banks in the system, capital requirements for the different institutions cannot be
determined independently. In particular, this generates an efficient frontier of capital
requirements for all banks in the financial system, and as such, such objects are nat-
urally described by the set of all acceptable (system-wide) capital requirements. The
collection of wealths for the financial system is presented as a random vector, i.e., the
ith component of the random vector denotes the wealth of bank i in the system.

There are analogues of many scalar risk measures in the set-valued framework.
For instance, superhedging was considered in Hamel et al. [27], Löhne and Rudloff
[41], and shortfall and divergence risk measures were considered in Ararat et al. [2].

The typical analogue of time-consistency in the set-valued setting is “multiportfo-
lio time-consistency” as first defined in Feinstein and Rudloff [16]. This was shown
to be equivalent to a variation of the time-consistency property in Ben Tahar and
Lépinette [6] for the random set approach in Feinstein and Rudloff [18]. Addi-
tional properties for multiportfolio time-consistency were studied in e.g. Feinstein
and Rudloff [17, 20–22] and have been utilised directly for computing such risk mea-
sures in discrete time in Feinstein and Rudloff [19]. Though not the focus of this
work, multiportfolio time-consistency has been extended to risk measures for pro-
cesses in Chen and Hu [10].

Time-consistency for risk measures more generally relates to the dynamic pro-
gramming principle from optimisation. Optimal control problems are typically for-
mulated using backward stochastic differential equations in continuous time. In fi-
nance, the relation between time-consistency, the dynamic programming principle
and backward stochastic differential equations was highlighted in e.g. Karnam et al.
[34], Lépinette and Molchanov [40]. By considering multiportfolio time-consistency
and the relation to the dynamic programming principle as espoused in Feinstein and
Rudloff [19], we wish to further investigate this relationship for set-valued processes.

1.2 Motivation

The backward stochastic differential equation (BSDE) representation of scalar risk
measures in continuous time is fundamental to our understanding of how risks prop-
agate over time. We briefly recall this representation. Under the augmented filtration
of a standard m-dimensional Brownian motion W = (Wt)t∈[0,T ], let us consider the
solution (YX,ZX) of the BSDE

YX
t = −X +

∫ T

t

g(s,ZX
s )ds −

∫ T

t

ZX
s dWs, t ∈ [0, T ], (1.1)
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for each terminal value X in the L2-space of FT -measurable (univariate) random
variables. As shown in Rosazza Gianin [47], the family of these solutions indexed by
the terminal value gives rise to a time-consistent dynamic risk measure via the map-
ping X �→ ρt (X) := YX

t , provided that the driver function g : � × [0, T ] ×R
m → R

is convex in the last variable and satisfies further regularity properties (e.g. Lips-
chitz in the last variable) to ensure the existence of a unique solution for the BSDE.
Conversely, a given dynamic time-consistent convex risk measure ρ = (ρt )t∈[0,T ]
for which ρ0 satisfies two additional conditions (i.e., strict monotonicity and dom-
inatedness, see Rosazza Gianin [47, Proposition 20] for details) can be represented
as ρt (X) = YX

t through a family of BSDEs with a common driver g as described
above.

In contrast, no such representation is known for set-valued dynamic risk measures
for random vectors. As a starting point, one can restrict attention to set-valued risk
measures that can be written as the sum of a vector-valued function and the cone of
positive random vectors, which is essentially equivalent to defining risk measures as
vector-valued functions. In this case, as studied in Xu [50], a natural candidate that
extends (1.1) is a multidimensional BSDE which has the same form as (1.1), but with
a vector-valued driver function g and a vector-valued terminal value X. However,
the only vector-valued functions that can be seen as risk measures (i.e., monotone,
translative, convex) are the trivial ones whose coordinates are risk measures on in-
dividual coordinate spaces; this was observed in Xu [50] in the dynamic setting via
BSDE arguments and a more direct proof in the static setting was given recently in
Molchanov and Mühlemann [43]. Hence, multidimensional BSDEs have very limited
use for the representation of dynamic risk measures in the multivariate framework.
This motivates us to consider more general structures that we describe next.

In set-valued stochastic analysis, stochastic differential inclusions and set-valued
stochastic differential equations appear as natural ways of extending stochastic differ-
ential equations to the set-valued framework. In the forward case, with the develop-
ments in set-valued stochastic integration, a theory of such inclusions and set-valued
equations was developed in the last two decades; the reader is referred to Kisielewicz
[37, Chap. 4] and the references therein for a detailed treatment. For set-valued risk
measures, we consider the versions of these two structures that move backward in
time:

– Backward stochastic differential inclusions: The vector-valued selectors of a set-
valued process propagate backward in time with the path of the specific solution being
of fundamental importance; this is a suitable choice if one is interested in character-
ising a path moving inside the dynamic set-valued risk measure.

– Set-valued backward stochastic differential equations: The entire set-valued pro-
cess propagates backward in time with no specific selector itself deemed to be im-
portant; this is a more sophisticated structure as it characterises the entire set-valued
process that corresponds to the dynamic set-valued risk measure. It is the understand-
ing of these representations that motivates us in our current work.

Despite the considerable literature on forward inclusions and set-valued equations,
at least in the case of driver functions with compact values, their backward counter-
parts are quite new in the literature. The few works dealing with backward stochastic
differential inclusions are due to Kisielewicz [35, 36], who also assumed compact
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values for the driver. To the best of our knowledge, set-valued backward stochas-
tic differential equations have not been studied in the literature yet. Hence, though
we are motivated by the continuous-time representations of risk measures described
above, such differential inclusions and set-valued differential equations fall beyond
the scope of this work.

In order to begin understanding the continuous-time setting, we investigate the
discrete-time approximation. As such, in this work, we consider backward stochastic
difference inclusions (Sect. 4) and set-valued backward stochastic difference equa-
tions (Sect. 5) in order to understand fundamental questions about the representation
of dynamic risk measures via a differential system, e.g. what mathematical form such
a representation may take and which approach (inclusion or set-valued equation) is
more appropriate. This permits us to both begin the study of continuous-time mul-
tivariate risk measures and at the same time direct the theoretical research towards
usable applications.

It should be noted that the fundamental BSDE representation in (1.1), which works
under the filtration of a multidimensional Brownian motion, already covers a rich
class of applications; see for instance Rosazza Gianin [47, Sect. 3]. In our discrete-
time framework, we consider a multidimensional Bernoulli random walk as a stan-
dard discretisation of Brownian motion. This is in line with the approach in Stadje
[49] for univariate risk measures. The multidimensional random walk models the un-
derlying source of randomness and admits a predictable representation property in a
generalised sense. This property is the key to having the representations via difference
inclusions in Sect. 4 and via set-valued difference equations in Sect. 5. In Remark 3.3,
we outline a more general setting where the Bernoulli random walk is replaced with
a multidimensional square-integrable martingale in discrete time. In this case, a more
abstract version of the predictable representation property is available and can be used
in order to extend the results of this paper.

Beyond the immediate applications for risk measures, BSDEs are strongly related
with the dynamic programming principle. The mean–variance and mean–risk prob-
lems are well known to generally be time-inconsistent and do not follow the dynamic
programming principle, as noted in Karnam et al. [34]. However, by considering a
multiobjective formulation, Kováčová and Rudloff [38] have found that the dynamic
programming principle in the mean–risk problem is satisfied in discrete time. There-
fore, the insights we gain on expanding the BSDE representation of the dynamic
programming principle to multivariate problems through either backward stochastic
differential inclusions or set-valued backward stochastic differential equations is of
wider interest and importance.

This work has two primary contributions we wish to highlight. First, we present
backward stochastic difference inclusion and set-valued backward stochastic differ-
ence equation representations for set-valued dynamic risk measures. These are found
in Sects. 4 and 5, respectively. Second, because neither inclusion nor set-valued equa-
tion representations have been studied in applications, we use set-valued risk mea-
sures in order to determine which generalisation of BSDEs is a more promising
avenue for considering the dynamic programming principle. Specifically, as high-
lighted in this work, backward stochastic differential inclusions appear to be the
proper methodology for future studies of the dynamic programming principle.
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2 Background

Fix T > 0 and let T be a finite subset of [0, T ] with T ∈ T. Let (�,F , (Ft )t∈T,P) be
a filtered probability space and d ≥ 1 an integer. Let G be a sub-σ -algebra of F . We
denote by L0

d(G) the space of all G-measurable random variables X : � → R
d , where

two elements are distinguished only up to P-almost sure equality. For p ∈ [1,+∞),
we denote by L

p
d (G) the set of all X ∈ L0

d(G) for which E[|X|p] < +∞, where | · | is
a fixed norm on R

d . We denote by L∞
d (G) the set of all X ∈ L0

d(G) for which |X| is
P-essentially bounded. For ease of notation, throughout the rest of this paper, we
define L

p
d,+(G) := {X ∈ L

p
d (G) : P[X ∈ R

d+] = 1}.
For C,D ⊆ L0

d(FT ), the set C + D := {X + Y : X ∈ C,Y ∈ D} is the Minkowski
sum of C,D. If Z ∈ L0

1(FT ), then ZC := CZ := {ZX : X ∈ C} is the set of pointwise
products.

Let p ∈ [1,+∞]. As defined in Feinstein and Rudloff [16, 17], a conditional risk
measure at time t ∈ T is a mapping

Rt : Lp
d (FT ) → P+

(
L

p
d (Ft )

) := {C ⊆ L
p
d (Ft ) : C = C + L

p
d,+(Ft )}

of random vectors into upper sets. As described above, we consider risk measures
as functions of random vectors; the interpretation of these vectors depends on the
context of the problem, i.e., markets with frictions, systemic risk, etc. If the input can
be aggregated into a single random variable (d = 1) without loss of information, then
univariate risk measures (Riedel [46]) can be applied instead. Throughout this work,
we focus solely on normalised convex risk measures, i.e., those that are

1) normalised: Rt(0) �= ∅, P[R̃t (0) = R
d ] = 0 (where R̃t (0) is an Ft -measurable

random set such that Rt(0) = {u ∈ L
p
d (Ft ) : P[u ∈ R̃t (0)] = 1} and which exists

due to the properties below and Molchanov [42, Theorem 2.1.10]), and for any
X ∈ L

p
d (FT ), Rt(X) = Rt(0) + Rt(X);

2) translative: Rt(X + u) = Rt(X) − u for any X ∈ L
p
d (FT ) and u ∈ L

p
d (Ft );

3) monotone: Rt(X) ⊆ Rt(Y ) for any X,Y ∈ L
p
d (FT ) with Y − X ∈ L

p
d,+(FT );

4) conditionally convex:

Rt

(
λX + (1 − λ)Y

) ⊇ λRt(X) + (1 − λ)Rt (Y )

for any X,Y ∈ L
p
d (FT ) and λ ∈ L

p

1 (Ft ) with P[0 ≤ λ ≤ 1] = 1;
5) closed: the set

graphRt := {(X,u) ∈ L
p
d (FT ) × L

p
d (Ft ) : u ∈ Rt(X)}

is closed in the product topology, and as a consequence, Rt(X) is closed for every
X ∈ L

p
d (FT ). A dynamic risk measure R = (Rt )t∈T is a sequence of conditional risk

measures over time.
Let R = (Rt )t∈T be a dynamic risk measure. By construction (see e.g. Feinstein

and Rudloff [16, Proposition 2.8] and Feinstein and Rudloff [18, Lemma 3.6]), R is
decomposable, i.e.,

Rt(1AX + 1AcY ) = 1ARt(X) + 1AcRt (Y )

for every X,Y ∈ L
p
d (FT ),A ∈ Ft , t ∈ T, where 1A denotes the probabilistic indicator

function of the event A.
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Remark 2.1 Although we present all results in this paper for set-valued risk mea-
sures, these results apply equally for utility functionals Ut : Lp

d (FT ) � X �→ −Rt(X).
In Hamel and Wang [29], a (nontranslative) set-valued utility functional is defined
based on expected utility and the associated utility maximisation problem is stud-
ied. An axiomatic treatment of (translative) set-valued utility functionals defined on a
set of closed convex random sets is given in Molchanov and Mühlemann [43] under
the name superlinear set-valued expectations; coherent set-valued risk measures for
random vectors can be embedded into that framework. As our constructions rely on
some earlier results on set-valued risk measures (e.g. Feinstein and Rudloff [16, 18]),
we consider these functionals in the current work for consistency with the literature
most relevant for us.

With the introduction of dynamic risk measures, the manner in which risks change
over time is fundamentally important. As studied in Ben Tahar and Lépinette [6],
Chen and Hu [10], Feinstein and Rudloff [16, 19], multiportfolio time-consistency
provides the appropriate definition from a mathematical and computational perspec-
tive. A dynamic risk measure R = (Rt )t∈T is said to be multiportfolio time-consistent
if for any X ∈ L

p
d (FT ) and Y ⊆ L

p
d (FT ),

Rs(X) ⊆ Rs[Y] :=
⋃
Y∈Y

Rs(Y ) =⇒ Rt(X) ⊆ Rt [Y]

for all times t, s ∈ T with t < s. To clarify the notation, the functions Rt(·) are applied
to random vectors, whereas the Rt [·] are applied to sets of random vectors as the
union over each element as defined above. Multiportfolio time-consistency states that
if every risk compensating portfolio for X at time s also compensates for the risk of
some portfolio Y ∈ Y, then that same relation holds for any time t < s. That is, the
risk of baskets of portfolios is consistent over time. This version of time-consistency
is related to the dynamic programming principle through the recursive relation

Rt(X) = Rt,s[−Rs(X)] (2.1)

for every X ∈ L
p
d (FT ), t, s ∈ T with t < s. This recursive formulation is constructed

via the stepped risk measure Rt,s : L
p
d (Fs) → P+(L

p
d (Ft )) which is defined as the

restriction of the conditional risk measure Rt to the domain L
p
d (Fs) ⊆ L

p
d (FT ),

i.e.,

Rt,s(u) = Rt(u)

for every u ∈ L
p
d (Fs).

To consider local versions of the difference equations and inclusions, it is prefer-
able to consider the random set approach to conditional risk measures. By the equiv-
alence between closed decomposable sets of random vectors and closed random sets
(see e.g. Molchanov [42, Theorem 2.1.10]) as applied to set-valued risk measures in
Feinstein and Rudloff [18], there exists a random set R̃t (X) (i.e., R̃t (X)(ω) ⊆ R

d for
every ω ∈ �) such that

Rt(X) = {u ∈ L
p
d (Ft ) : P[u ∈ R̃t (X)] = 1}
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for every X ∈ L
p
d (FT ), t ∈ T. As the rest of the work is concerned solely with a

finitely generated filtration, we abuse notation to define

Rt(X)(ω) := R̃t (X)(ω)

for every X ∈ L
p
d (FT ), t ∈ T,ω ∈ �. These definitions are given likewise for the

stepped risk measures Rt,s with t, s ∈ T and t < s.

3 Discrete-time setting

In this section, we present the mathematical notation and setting for the discrete-
time stochastic processes of interest. In particular, we introduce an m-dimensional
Bernoulli random walk and consider the predictable representation property with re-
spect to this process. We present these results for completeness and to assist in no-
tation later in this paper; more details can be found in Protter [45, Sect. IV.3]. We
wish to highlight the need for the orthogonal martingale term when considering an
m-dimensional Bernoulli random walk with m > 1, which complicates the setting
from e.g. Stadje [49]. Such considerations are similarly required if a different ran-
dom walk is chosen as the driving process; see Remark 3.3 for more details. We
focus on the Bernoulli random walk both because it presents a simple mathematical
setting that allows an explicit orthogonal process and because of its ubiquity as a
discrete-time representation whose limit is Brownian motion.

Let T > 0 be a fixed time. Let m,K ≥ 1 be integers and consider the dis-
crete time set T = {t0, . . . , tK }, where 0 = t0 < t1 < · · · < tK−1 < tK = T . Let us
write �tk := tk − tk−1 for k ∈ {1, . . . ,K}. Let (�,F ,P) be a probability space on
which there exist independent m-dimensional random vectors B1, . . . ,BK with val-
ues in {−1,+1}m, where the components of Bk = (B1

k , . . . ,Bm
k )� are possibly cor-

related symmetric Rademacher random variables for k ∈ {1, . . . ,K}. We define an
m-dimensional random walk M = (M1

t , . . . ,Mm
t )t∈T by Mi

t0
:= 0 and

Mi
tk

:= Mi
tk−1

+√
�tkB

i
k (3.1)

for k ∈ {1, . . . ,K} and i ∈ {1, . . . ,m}. For notational simplicity, set

�Mtk := Mtk − Mtk−1 = √
�tkBk.

Let (FM
t )t∈T be the natural filtration of M , that is, FM

t0
:= {∅,�} and

FM
tk

:= σ(Mt1, . . . ,Mtk ) = σ(B1, . . . ,Bk)

for k ∈ {1, . . . ,K}.
Let k ∈ {1, . . . ,K}. Since FM

tk
is generated by finitely many events, every real-

valued random variable that is measurable with respect to FM
tk

is bounded. Hence,
L0

d(FM
tk

) = L
p
d (FM

tk
) for p ∈ [1,+∞]. To simplify notation for the remainder of this

work, we define

Ld
tk

:= L0
d(FM

tk
).
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When m = 1, every X ∈ Ld
tk

can be written as

X = ξ + ψ�Mtk (3.2)

for some ξ,ψ ∈ Ld
tk−1

(see e.g. Föllmer and Schied [25, Theorem 5.38]). This is called
the predictable representation property of the one-dimensional random walk M . For
m ≥ 2, the analogous representation

ξ +
m∑

i=1

ψi�Mi
tk

(3.3)

with ξ,ψ1, . . . ,ψm ∈ Ld
tk−1

fails to equal X ∈ Ld
tk

in general.
Instead of (3.3), a proper generalisation of (3.2) should take into account the

“cross-terms” created by the m components of the vector-valued random walk M

(i.e., M1, . . . ,Mm). To that end, let us denote by I the set of all nonempty subsets of
{1, . . . ,m}. For each I ∈ I , we define a process MI = (MI

t )t∈T by MI
t0

:= 0 and

�MI
tk

:= MI
tk

− MI
tk−1

= √
�tkB

I
k , where BI

k :=
∏
i∈I

Bi
k

for k ∈ {1, . . . ,K}. In addition to the earlier processes M{i} = Mi , i ∈ {1, . . . ,m},
this definition creates 2m − m − 1 new processes. Moreover, when the components
of Bk are independent for each k ∈ {1, . . . ,K}, all the 2m − 1 processes are martin-
gales that are orthogonal. The new form of predictable representation is stated in the
next lemma.

Lemma 3.1 Let k ∈ {1, . . . ,K}. Every Y ∈ Ld
tk

can be written as

Y = ξ +
∑
I∈I

ψI�MI
tk

for some ξ,ψI ∈ Ld
tk−1

, I ∈ I .

Remark 3.2 For d = 1, the result appears as Lemma 6.1 of a preprint version of
Cheridito et al. [12]; its proof there is based on a spanning argument for the finite-
dimensional vector space L1

tk
assuming k = 1. We provide a more elementary and

complete proof below with an explicit derivation of the predictable representation.
Unlike the proof in the preprint version of Cheridito et al. [12], our proof is also valid
without assuming that the components of the random walk are independent.

Proof of Lemma 3.1 Assume that d = 1. As a first step, let Y ∈ L0
1(σ (Bk)). Note that

σ(Bk) is generated by 2m events of the form {Bk = b} with vectors b of the form
b = (b1, . . . , bm) ∈ {−1,+1}m that partition �. Hence we may write

Y =
∑

b∈{−1,+1}m
cb1{Bk=b} =

∑
b∈{−1,+1}m

cb

m∏
i=1

1{Bi
k=bi }
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for some cb ∈ R, with b ∈ {−1,+1}m. Note that 1{Bi
k=bi } = (1 + biBi

k)/2 for

i ∈ {1, . . . ,m} and b ∈ {−1,+1}m. Hence,

Y =
∑

b∈{−1,+1}m
cb

m∏
i=1

1 + biBi
k

2
.

One can rewrite the above sum in the form of a polynomial of B1
k , . . . ,Bm

k . The
constant term of this polynomial is

ξ := 1

2m

∑
b∈{−1,+1}m

cb.

On the other hand, each functional term of the polynomial is of the form ψ̃IBI
k ,

where I ∈ I and

ψ̃I := 1

2m

∑
b∈{−1,+1}m

cb

∏
i∈I

bi .

Taking ψI := ψ̃I /
√

�tk for I ∈ I , we obtain

Y = ξ +
∑
I∈I

ψ̃IBI
k = ξ +

∑
I∈I

ψI�MI
tk
.

If k = 1, the conclusion of the lemma follows by the first step since FM
t1

= σ(B1).
Next, suppose that k ∈ {2, . . . ,K} and let Y ∈ L1

tk
. Hence, we may write

Y = f ◦ (B1, . . . ,Bk)

for some (Borel-measurable) function f : {−1,+1}km →R. In particular,

Y =
∑

b1∈{−1,+1}m
· · ·

∑
bk−1∈{−1,+1}m

f ◦ (b1, . . . , bk−1,Bk)1{B1=b1,...,Bk−1=bk−1}. (3.4)

Let b1, . . . , bk−1 ∈ {−1,+1}m. Since f ◦ (b1, . . . , bk−1,Bk) ∈ L0
1(σ (Bk)), by the first

step, there exist g(b1, . . . , bk−1) ∈ R, hI (b1, . . . , bk−1) ∈R for each I ∈ I such that

f ◦ (b1, . . . , bk−1,Bk) = g(b1, . . . , bk−1) +
∑
I∈I

hI (b1, . . . , bk−1)�MI
tk
. (3.5)

Then (3.4) and (3.5) imply that

Y = g ◦ (B1, . . . ,Bk−1) +
∑
I∈I

hI ◦ (B1, . . . ,Bk−1)�MI
tk
.

The functions g,hI : {−1,+1}(k−1)m → R, I ∈ I , are Borel-measurable since they
are defined on finite sets. Hence by taking

ξ := g ◦ (B1, . . . ,Bk−1) ∈ L1
tk−1

, ψI := hI ◦ (B1, . . . ,Bk−1) ∈ L1
tk−1

, I ∈ I,

the conclusion of the lemma follows for d = 1.
For arbitrary d ≥ 1, applying the result for d = 1 to each component of Y ∈ Ld

tk
gives the claimed representation. �
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Remark 3.3 One can consider a more general setting in which M is a square-integra-
ble martingale such as a symmetric random walk with an arbitrary distribution for
its increments; e.g. M can be a symmetric Gaussian random walk. In this case, the
simple predictable representation in (3.3) fails to hold in general even for m = 1.
Nevertheless, when the m components of M are independent, by the results in Protter
[45, Sect. IV.3], one has the more general form

X = ξ +
m∑

i=1

ψi�Mi
tk

+ �Ntk , (3.6)

where ξ,ψ1, . . . ,ψm ∈ Ld
tk−1

, �Ntk = Ntk − Ntk−1 and N = (N1
t , . . . ,Nd

t )t∈T is a

square-integrable martingale orthogonal to M , i.e., E[�Mi
tk
�N

j
tk

|Ftk−1] = 0 for ev-
ery combination of indices i ∈ {1, . . . ,m}, j ∈ {1, . . . , d}, k ∈ {1, . . . ,K}. The repre-
sentation in Lemma 3.1 above can be seen as a special case of (3.6) for the Bernoulli
random walk, but it also provides the explicit structure of the orthogonal term as

�Ntk =
∑

I∈I\{{1},...,{m}}
ψI�MI

tk
. (3.7)

When M is a general square-integrable martingale, Jacod et al. [31, Proposition 2.1]
has an explicit formula for the integrands ψ1, . . . ,ψm; however, the structure in (3.7)
for the orthogonal term is very specific to the Bernoulli case. Similarly, for a Gauss-
ian random walk, the orthogonal term in (3.6) is referred to as the martingale rep-
resentation error in Akahori et al. [1] and is made explicit via a discrete version of
the Clark–Ocone formula [1, Theorem 2.1]. The Bernoulli random walk makes it
possible to express the sum of the stochastic integral (with respect to M) and the
orthogonal terms in (3.6) compactly as

∑
I∈I ψI�MI

tk
, which simplifies notation in

the backward stochastic difference inclusions and set-valued backward stochastic dif-
ference equations to follow. On the other hand, when passing to continuous time, we
may use a sequence of Bernoulli random walks in order to approximate Brownian
motion, which is the underlying process of the fundamental BSDE representations in
continuous time (see (1.1)). For these reasons, we prefer to work within the Bernoulli
framework and use the predictable representation in Lemma 3.1.

Remark 3.4 Within this paper, we consider a discrete-time model driven by a
Bernoulli random walk. This lends itself to financial settings due to its convergence
to Brownian motion as �t tends to 0. We wish to note that for such a convergence in
the multidimensional case, other processes may perform better. We refer to e.g. the
He-type multinomial approximation; see He [30] and Grépat and Kabanov [26].

We conclude this section with an illustrative example to be developed further in
the later sections.

Example 3.5 We consider a simple market model with proportional transaction costs.
For notational simplicity, we set tk = k so that �tk = 1 for k ∈ {1, . . . ,K}. The market
is driven by m = d − 1 symmetric and correlated random walks, and it has d assets.
Asset 0 is a riskless bond with no transaction costs; its (deterministic) price process
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(At )t∈T is given by At = A0(1 + r)t , t ∈ {1, . . . ,K}, where A0 > 0 is the initial
bond price and r > −1 is the periodic interest rate. To simplify the presentation, let
us assume that A0 = 1 and r = 0 so that At = 1 for t ∈ {1, . . . ,K}. In addition, for
i ∈ {1, . . . , d − 1}, asset i is a risky stock with proportional transaction costs; its mid-
market price process (Si

t )t∈T, denoted in terms of the numéraire of the bond, follows
a Cox–Ross–Rubinstein model given by

Si
t = Si

0e
σ iMi

k , t ∈ {1, . . . ,K},
where Si

0 > 0 is the initial mid-market price and σ i > 0 is the volatility coefficient.
Furthermore, there is a fixed transaction cost rate λi ≥ 0 for the stock, which is the
same for all periods for simplicity. Hence, the bid and ask prices at time t ∈ T are
given by

S
i,b
t = Si

t (1 − λi), S
i,a
t = Si

t (1 + λi),

respectively. Let us define the price (row) vectors

Sb
t := (S

1,b
t , . . . , S

d−1,b
t ), Sa

t := (S
1,a
t , . . . , S

d−1,a
t ).

For simplicity, we assume that all transactions are performed via the bond, that is,
a direct conversion between any two risky assets is not allowed. For t ∈ T and ω ∈ �,
we denote by Kt(ω) the solvency cone of all d-dimensional portfolio vectors that
can be exchanged into nonnegative portfolio vectors. In our case (see Feinstein and
Rudloff [19, Sect. 7] and Löhne and Rudloff [41, Sect. 5]), Kt(ω) is the convex cone
generated by the columns of the matrix(−Sb

t (ω) Sa
t (ω)

Id−1 −Id−1

)
, (3.8)

where Id−1 is the (d − 1) × (d − 1) identity matrix. From the structure of the Cox–
Ross–Rubinstein model, it is clear that Kt(ω) depends on ω only through Mt(ω), the
realisation of the underlying m-dimensional random walk. Hence, by a slight abuse
of notation, we write

Kt(ω) = Kt(c) (3.9)

whenever Mt(ω) = c.
When d = 2, we write σ = σ 1, Sb

t = S
1,b
t , Sa

t = S
1,a
t and from (3.8), we have

Kt(ω) = co

{(−Sb
t (ω)

1

)
,

(
Sa

t (ω)

−1

)}
,

where co denotes the convex conic hull operator; when d = 3, we have

Kt(ω) = co

{(−S
1,b
t (ω)

1
0

)
,

(−S
2,b
t (ω)

0
1

)
,

(
S

1,a
t (ω)

−1
0

)
,

(
S

2,a
t (ω)

0
−1

)}
.

For t ∈ T, let us define

L0
d(FM

t ,Kt ) := {
Y ∈ Ld

t : P[{ω ∈ � : Y(ω) ∈ Kt(ω)}] = 1
}
,
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the set of all measurable selectors of the random set Kt . Let

Ct,T := −
T∑

s=t

L0
d(FM

s ,Ks),

which is the set of all self-financing portfolios in this market. Then for a multidimen-
sional claim X ∈ Ld

t , the set

SHPt (X) := {Y ∈ Ld
t : X ∈ Y + Ct,T }

is the set of all superhedging portfolios of X at time t ∈ T. Letting

RSHP
t (X) := SHPt (−X),

the family RSHP = (RSHP
t )t∈T is a coherent multiportfolio time-consistent dynamic

risk measure as studied in Feinstein and Rudloff [17, Example 5.4].

4 Backward stochastic difference inclusion

In this section, we show that a given dynamic set-valued risk measure in discrete
time gives rise to a backward stochastic difference inclusion (BS�I). Since we do not
consider the continuous-time limits of these risk measures, we derive a BS�I with-
out scaling and tilting the original risk measure as was done in Stadje [49]. BS�Is
present a recursive formulation for the computation of the set-valued risk measure
as a collection of selectors. As such, the proposed BS�I provides a methodology for
studying singular capital allocation strategies over time to manage risk. Because a risk
manager would only ever implement a single strategy, such a construction provides
exactly the dynamics an investor would need to consider. Therefore, in this section,
we are interested in the backward stochastic difference inclusion that encodes the
dynamic programming principle of multiportfolio time-consistency.

As in Sect. 3, we work with the filtered probability space (�,F , (FM
t )t∈T,P),

where M is the m-dimensional random walk defined in (3.1). Let us consider a multi-
portfolio time-consistent dynamic set-valued convex risk measure R = (Rt )t∈T with
one-step conditional risk measures Rtk−1,tk : Ld

tk
→ P+(Ld

tk−1
), k ∈ {1, . . . ,K}. For

the terminal risk measure RtK : Ld
tK

→ P+(Ld
tK

), we have RtK (X) = −X + RtK (0)

for X ∈ Ld
tK

.
We first relate R to a BS�I with a nonlocal driver. To that end, let us introduce

the domain

D := {
(t,ψ) : t ∈ {t0, . . . , tK−1}, ψ = (ψI )I∈I ∈ (Ld

t )I
}

(4.1)

and define the set-valued driver G : D → 2L
d

by

G(tk−1,ψ) := 1

�tk
Rtk−1,tk

(
−

∑
I∈I

ψI�MI
tk

)
(4.2)

for each (tk−1,ψ) ∈ D with k ∈ {1, . . . ,K}. Note that G is adapted in the sense that
G(t,ψ) ∈ P+(Ld

t ) whenever (t,ψ) ∈ D.
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Proposition 4.1 Let k ∈ {1, . . . ,K} and Ytk ∈ Ld
tk

. Consider the one-step BS�I

Ytk−1 ∈ Ytk + G(tk−1,ψtk−1)�tk −
∑
I∈I

ψI
tk−1

�MI
tk

(4.3)

for some ψtk−1 ∈ (Ld
tk−1

)I . Then the set Rtk−1,tk (−Ytk ) coincides with the reachable
set of (4.3), that is,

Rtk−1,tk (−Ytk ) = {Ytk−1 ∈ Ld
tk−1

: (4.3) holds for some ψtk−1 ∈ (Ld
tk−1

)I}.
Proof Let Ytk−1 ∈ Rtk−1,tk (−Ytk ). By Lemma 3.1, Ytk has the predictable representa-
tion

Ytk = ξtk−1 +
∑
I∈I

ψI
tk−1

�MI
tk

for some ξtk−1 ,ψ
I
tk−1

∈ Ld
tk−1

, I ∈ I . By (4.2), we have

Ytk−1 − Ytk ∈ Rtk−1,tk (−Ytk ) − Ytk

= Rtk−1,tk

(
− ξtk−1 −

∑
I∈I

ψI
tk−1

�MI
tk

)
− ξtk−1 −

∑
I∈I

ψI
tk−1

�MI
tk

= Rtk−1,tk

(
−

∑
I∈I

ψI
tk−1

�MI
tk

)
−

∑
I∈I

ψI
tk−1

�MI
tk

= G(tk−1,ψtk−1)�tk −
∑
I∈I

ψI
tk−1

�MI
tk
.

Hence (4.3) holds.
Conversely, let Ytk−1 ∈ Ld

tk−1
satisfy the BS�I (4.3) for some ψtk−1 ∈ (Ld

tk−1
)I . By

the BS�I, there exists Vtk−1 ∈ G(tk−1,ψtk−1) such that

Ytk−1 = Ytk + Vtk−1�tk −
∑
I∈I

ψI
tk−1

�MI
tk
,

that is, Ytk has the predictable representation

Ytk = ξtk−1 +
∑
I∈I

ψI
tk−1

�MI
tk
,

where ξtk−1 := Ytk−1 −Vtk−1�tk ∈ Ld
tk−1

. Recalling the definition of the driver in (4.2),
the BS�I yields

Ytk−1 ∈ Ytk + Rtk−1,tk

(
−

∑
I∈I

ψI
tk−1

�MI
tk

)
−

∑
I∈I

ψI
tk−1

�MI
tk

= Ytk + Rtk−1,tk (−Ytk + ξtk−1) −
∑
I∈I

ψI
tk−1

�MI
tk

= Ytk + Rtk−1,tk (−Ytk ) − ξtk−1 −
∑
I∈I

ψI
tk−1

�MI
tk

= Ytk + Rtk−1,tk (−Ytk ) − Ytk = Rtk−1,tk (−Ytk ),

which completes the proof. �
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Corollary 4.2 Let X ∈ Ld
tK

. If (Yt )t∈T is a process such that

YtK ∈ RtK (X) and Ytk−1 ∈ Rtk−1,tk (−Ytk ), k ∈ {1, . . . ,K}, (4.4)

then there exists ψtk−1 ∈ (Ld
tk−1

)I for k ∈ {1, . . . ,K} such that the BS�I

Ytk−1 ∈ Ytk + G(tk−1,ψtk−1)�tk −
∑
I∈I

ψI
tk−1

�MI
tk
, k ∈ {1, . . . ,K},

YtK ∈ −X + RtK (0)

holds. Conversely, if there exist an adapted process (Yt )t∈T and ψtk−1 ∈ (Ld
tk−1

)I

for k ∈ {1, . . . ,K} such that the above BS�I holds, then the recursive relation (4.4)
holds. In each case, the multi-step version of the BS�I

Ytk ∈ YtK +
K∑


=k+1

G(t
−1,ψt
−1)�t
 −
K∑


=k+1

∑
I∈I

ψI
t
−1

�MI
t

, k ∈ {0, . . . ,K − 1},

YtK ∈ −X + RtK (0)

holds as well.

Proof By translativity, RtK (X) = −X + RtK (0). From this and Proposition 4.1, the
two claims about the one-step BS�I follow immediately. The claim about the multi-
step BS�I follows by iterating the one-step version. Indeed, for k ∈ {0, . . . ,K − 1},
we have

Ytk = YtK +
K∑


=k+1

(Yt
−1 − Yt
)

∈ YtK +
K∑


=k+1

G(t
−1, (ψ
I
t
−1

)I∈I)�t
 −
K∑


=k+1

∑
I∈I

ψI
t
−1

�MI
t

,

as desired. �

Note that Corollary 4.2 shows that each process (Yt )t∈T that is a solution of the
one-step BS�I is a “path” in the dynamic risk measure evaluated at X, and vice
versa. Moreover, such processes are also solutions of the multi-step BS�I. The next
corollary provides a partial converse to the latter statement.

Corollary 4.3 Let X ∈ Ld
tK

and k ∈ {0, . . . ,K}. Consider the multi-step BS�I

Ytk ∈ YtK +
K∑


=k+1

G(t
−1,ψt
−1)�t
 −
K∑


=k+1

∑
I∈I

ψI
t
−1

�MI
t

. (4.5)

Then the set Rtk (X) coincides with the reachable set of (4.5), that is,

Rtk (X) =
{
Ytk ∈ Ld

tk
: (4.5) holds for some YtK ∈ −X + RtK (0),

ψtk ∈ (Ld
tk
)I , . . . ,ψtK−1 ∈ (Ld

tK−1
)I

}
. (4.6)
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Proof For k ∈ {0, . . . ,K − 1}, let us denote by R̄tk (X) the reachable set on the
right-hand of (4.6). We show that R̄tk (X) = Rtk (X) for k ∈ {0, . . . ,K − 1} by back-
ward induction on k. For the base case, we have R̄tK−1(X) = RtK−1(X) directly
from Corollary 4.2. For the inductive case, let k ∈ {1, . . . ,K − 1} and assume that
R̄tk (X) = Rtk (X). Consider the inclusion (4.5) at time tk−1, i.e., the inclusion

Ytk−1 ∈ YtK +
K∑


=k

G(t
−1,ψt
−1)�t
 −
K∑


=k

∑
I∈I

ψI
t
−1

�MI
t

. (4.7)

Then

R̄tk−1(X)

=
{
Ytk−1 ∈ Ld

tk−1
: (4.7) holds for some YtK ∈ −X + RtK (0),

ψtk−1 ∈ (Ld
tk−1

)I ,ψtk ∈ (Ld
tk
)I , . . . ,ψtK−1 ∈ (Ld

tK−1
)I

}

=
{
Ytk−1 ∈ Ld

tk−1
: Ytk−1 ∈ Ytk + G(tk−1,ψtk−1)�tk −∑

I∈I ψI
tk−1

�MI
tk

holds for some Ytk ∈ Rtk (X), ψtk−1 ∈ (Ld
tk−1

)I

}

= {Ytk−1 ∈ Rtk−1,tk (−Ytk ) : Ytk ∈ Rtk (X)}
= Rtk−1,tk [−Rtk (X)] = Rtk−1(X).

In this calculation, the second equality follows from applying the induction hy-
pothesis, the third from Proposition 4.1, and the last from multiportfolio time-
consistency. �

The driver function G defined in (4.2) can be considered nonlocal for the following
two reasons: its second argument is a (d × |I|)-dimensional random vector (rather
than a deterministic vector), and its output is a set of random vectors (rather than a
deterministic set). We first aim to rewrite the BS�I in Corollary 4.2 using a semi-
local driver g whose second argument is a deterministic vector, but whose output is

still a set of random vectors. Let us define g : {t0, . . . , tK−1} × (Rd)I → 2L
d
tK by

g(tk−1, z) = 1

�tk
Rtk−1,tk

(
−

∑
I∈I

zI�MI
tk

)
(4.8)

for k ∈ {0, . . . ,K − 1}, z = (zI )I∈I ∈ (Rd)I .
To connect the two drivers G,g, we also define a special type of composition

of g, through its second argument, with a random vector. Let 
 ∈ {0, . . . ,K} and
denote by At
 ⊆ 2� the partition of � that generates FM

t

, which is of size 2
m. Let

ψ = (ψI )I∈I ∈ (Ld
t

)I . Given I ∈ I and A ∈ At
 , note that ψI is constant on A so

that by a slight abuse of notation, we can define

ψI (A) := ψI (ω)

for some ω ∈ A (chosen arbitrarily in A) and write ψ(A) = (ψI (A))I∈I ∈ (Rd)I .
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For k ∈ {1, . . . ,K} and ψ ∈ (Ld
tk−1

)I , we define

g ◦ (tk−1,ψ) :=
∑

A∈Atk−1

g
(
tk−1,ψ(A)

)
1A.

The next lemma states that this composition coincides with the nonlocal driver G

in (4.2).

Lemma 4.4 For k ∈ {1, . . . ,K} and ψ = (ψI )I∈I ∈ (Ld
tk−1

)I , we have

G(tk−1,ψ) = g ◦ (tk−1,ψ).

Proof By the decomposability of R, we have

G(tk−1,ψ) = 1

�tk
Rtk−1,tk

(
−

∑
I∈I

ψI�MI
tk

)

= 1

�tk
Rtk−1,tk

( ∑
A∈Atk−1

(
−

∑
I∈I

ψI�MI
tk

)
1A

)

= 1

�tk
Rtk−1,tk

( ∑
A∈Atk−1

(
−

∑
I∈I

ψI (A)�MI
tk

)
1A

)

= 1

�tk

∑
A∈Atk−1

Rtk−1,tk

(
−

∑
I∈I

ψI (A)�MI
tk

)
1A

=
∑

A∈Atk−1

g
(
tk−1,ψ(A)

)
1A = g ◦ (tk−1,ψ),

from which the result follows. �

Thanks to Lemma 4.4, the one-step BS�I in Corollary 4.2 can be rewritten as

Ytk−1 ∈ Ytk + g ◦ (tk−1,ψtk−1)�tk −
∑
I∈I

ψI
tk−1

�MI
tk
, k ∈ {1, . . . ,K},

YtK ∈ −X + RtK (0).

Note that this BS�I is a functional inclusion where one random vector is included in
a set of random vectors. In Proposition 4.6 below, we present an alternative, defining
BS�I that is a random inclusion. This alternative BS�I has a completely local driver
ĝ : � × {t0, . . . , tK−1} × (Rd)I → P+(Rd) defined by

ĝ(ω, tk−1, z) := g(tk−1, z)(ω) = 1

�tk
Rtk−1,tk

(
−

∑
I∈I

zI�MI
tk

)
(ω)

for ω ∈ �,k ∈ {1, . . . ,K}, z = (zI )I∈I ∈ (Rd)I . To begin with, we formulate the
connection between the drivers G and ĝ in the next lemma.
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Lemma 4.5 Let k ∈ {1, . . . ,K} and ψ = (ψI )I∈I ∈ (Ld
tk−1

)I . For each ω ∈ �,
we have

G(tk−1,ψ)(ω) = ĝ
(
ω, tk−1,ψ(ω)

)
.

Proof Let ω ∈ �. We claim that

G(tk−1,ψ)(ω) =
( ∑

A∈Atk−1

g
(
tk−1,ψ(A)

)
1A

)
(ω) = ĝ

(
ω, tk−1,ψ(ω)

)
.

The first equality is from the calculation in the proof of Lemma 4.4. To prove the
second, let Ā be the unique set in Atk−1 for which ω ∈ Ā. Let

u ∈
( ∑

A∈Atk−1

g
(
tk−1,ψ(A)

)
1A

)
(ω). (4.9)

Hence

u1{ω} ∈
∑

A∈Atk−1

g
(
tk−1,ψ(A)

)
1A1{ω} = g

(
tk−1,ψ(Ā)

)
1Ā1{ω}

= g
(
tk−1,ψ(Ā)

)
1{ω}.

This shows that u ∈ g(tk−1,ψ(Ā))(ω) = g(tk−1,ψ(ω))(ω) = ĝ(ω, tk−1,ψ(ω)).
Conversely, let u ∈ ĝ(ω, tk−1,ψ(ω)) = g(tk−1,ψ(Ā))(ω). So

u1{ω} ∈ g
(
tk−1,ψ(Ā)

)
1{ω} =

( ∑
A∈Atk−1

g
(
tk−1,ψ(A)

)
1A

)
1{ω},

which shows that (4.9) holds for u. �

With Lemma 4.5, we are ready to formulate the random BS�I.

Proposition 4.6 Let X ∈ Ld
tK

. Consider a process (Yt )t∈T satisfying the rela-
tion (4.4), i.e., YtK ∈ RtK (X) and Ytk−1 ∈ Rtk−1,tk (−Ytk ) for k ∈ {1, . . . ,K}. Then there
exist ψtk = (ψI

tk
)I∈I ∈ (Ld

tk
)I for k ∈ {1, . . . ,K} such that the random BS�I

Ytk−1(ω) ∈ Ytk (ω) + ĝ
(
ω, tk−1,ψtk−1(ω)

)
�tk −

∑
I∈I

ψI
tk−1

(ω)�MI
tk
(ω),

YtK (ω) ∈ −X(ω) + RtK (0)(ω)

holds for every ω ∈ �, k ∈ {1, . . . ,K}. Conversely, if there exist an adapted pro-
cess (Yt )t∈T and ψtk−1 ∈ (Ld

tk−1
)I for k ∈ {1, . . . ,K} such that the above random

BS�I holds for every ω ∈ �, then YtK ∈ RtK (X) and Ytk−1 ∈ Rtk−1,tk (−Ytk ) for
k ∈ {1, . . . ,K}. In each case, the multi-step version of the random BS�I

Ytk (ω) ∈ YtK (ω) +
K∑


=k+1

ĝ
(
ω, t
−1,ψt
−1(ω)

)
�t
 −

K∑

=k+1

∑
I∈I

ψI
t
−1

(ω)�MI
t

(ω)

holds for every k ∈ {0, . . . ,K − 1} and ω ∈ �.
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Proof Let k ∈ {0, . . . ,K − 1}. We rewrite the BS�I in Corollary 4.2 as

Ytk−1 − Ytk +
∑
I∈I

ψI
tk−1

�MI
tk

∈ G(tk−1,ψtk−1)�tk.

By the decomposability of R, it follows that the set on the right is decomposable.
Hence the above inclusion is equivalent to

Ytk−1(ω) − Ytk (ω) +
∑
I∈I

ψI
tk−1

(ω)�MI
tk
(ω) ∈ G(tk−1,ψtk−1)(ω)�tk,

which is equivalent to the random one-step inclusion in the statement of the proposi-
tion, by the definition of ĝ. Similarly, it can be checked that the multi-step inclusion
in Corollary 4.2 is equivalent to the random multi-step inclusion in the statement
of the proposition. All the claims follow immediately from these equivalences and
Corollary 4.2. �

Remark 4.7 To consider the local analogue of Corollary 4.3, we utilise a notation
from Feinstein and Rudloff [19], Löhne and Rudloff [41] on the finitely generated
filtration considered herein. As this filtration is generated by the Bernoulli random
walk, we can view our processes as taking values on a tree. With that in mind, we
present this local analogue of Corollary 4.3 using the concept and notation of a tree.
Recall that At
 ⊆ 2� denotes the set of all atoms of FM

t

for 
 ∈ {0, . . . ,K}, and for a

given Z ∈ Ld
t


, we denote by Z(A) the constant value of Z on A ∈ At
 . Additionally,
when 
 ≤ K − 1, we denote the “successor” nodes at time t
+1 of A
 ∈At
 by

succ(A
) = {A
+1 ∈ At
+1 : A
+1 ⊆ A
}.
Fix X ∈ Ld

tK
. In this atomised notation, the one-step random BS�I from Proposi-

tion 4.6 for k ∈ {1, . . . ,K} can be rewritten as

Ytk−1(Ak−1) ∈
⋂

Ak∈succ(Ak−1)

(
Ytk (Ak) + ĝ

(
Ak−1, tk−1,ψtk−1(Ak−1)

)
�tk−1

−
∑
I∈I

ψI
tk−1

(Ak−1)�MI
tk
(Ak)

)
,

YtK (AK) ∈ −X(AK) + RtK (0)(ωK)

for every Ak−1 ∈ Atk−1 . In this way, we can consider the multi-step inclusion at time
tk with k ∈ {0, . . . ,K − 1} and Ak ∈ Atk as

y ∈
⋂

Ak+1∈succ(Ak),...,
AK∈succ(AK−1)

(
YtK (AK) +

K∑

=k+1

ĝ
(
A
−1, t
−1,ψt
−1(A
−1)

)
�t


−
K∑


=k+1

∑
I∈I

ψI
t
−1

(A
−1)�MI
t

(A
)

)
(4.10)
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for some ψt
−1 ∈ (Ld
t
−1

)I , 
 ∈ {k + 1, . . . ,K}. (This representation is an example
of the conditional core introduced in Lépinette and Molchanov [39]; we conjecture
that the conditional core may be useful for extending (4.10) to e.g. the continuous-
time limit.) Similarly to Corollary 4.3, given Ak ∈ Atk , it can be checked that the set
R

Ak
tk

(X) := Rtk (X)(ω), ω ∈ Ak , coincides with the reachable set of (4.10), that is,

R
Ak
tk

(X) =
⎧⎨
⎩y ∈R

d :
(4.10) holds for some YtK (AK) ∈ −X(AK) + R

AK
tK

(0),

ψtk (Ak), . . . ,ψtK−1(AK−1) ∈ (Rd)I ,

for all Ak+1 ∈ succ(Ak), . . . ,AK ∈ succ(AK−1)

⎫⎬
⎭ .

We conclude this section with two examples on superhedging as a follow-up to
the model introduced in Example 3.5.

Example 4.8 In the setting of Example 3.5, let us calculate the semi-local driver gSHP

of the superhedging risk measure RSHP when d = 2 and m = 1. Following (4.8) and
the definitions in Example 3.5, for t ∈ {0, . . . , T − 1} and z ∈ R

2, we have

gSHP(t, z)

= RSHP
t,t+1(−z�Mt+1) = SHPt (zBt+1)

=
{
Y ∈ L2

t : Y ∈ zBt+1 +
T∑

s=t

L0
d(FM

s ,Ks)

}

= L0
d(FM

t ,Kt ) +
{
Y ∈ L2

t : Y ∈ zBt+1 +
T∑

s=t+1

L0
d(FM

s ,Ks)

}

= L0
d(FM

t ,Kt ) +
{

Y ∈ L2
t : Y = zBt+1 +

T∑
s=t+1

(
bs

(−Sb
s

1

)
+ as

(
Sa

s

−1

))
,

as, bs ∈ L2
s,+, s ∈ {t + 1, . . . , T }

}
.

Note that for s ∈ {t + 1, . . . , T }, we have

Sb
s = Sb

t eσBt+1eσ(Ms−Mt+1), Sa
s = Sa

t eσBt+1eσ(Ms−Mt+1).

Let us denote by ĝSHP the local driver. By the structure of the solvency cones, it fol-
lows that ĝSHP(ω, t, z) depends on ω only through Mt(ω). Hence similarly to (3.9),
we write

ĝSHP(ω, t, z) = ĝSHP(c, t, z)
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whenever Mt(ω) = c. The above calculations for the semi-local driver gSHP im-
ply that

ĝSHP(c, t, z)

= Kt(c) +
((

z +
T∑

s=t+1

⋂
bt+2,...,bs∈{−1,+1}

Ks(c + 1 + bt+2 + · · · + bs)
)

∩
(

− z +
T∑

s=t+1

⋂
bt+2,...,bs∈{−1,+1}

Ks(c − 1 + bt+2 + · · · + bs)
))

.

Note that for s ∈ {t + 1, . . . , T }, the intersection over bt+2, . . . , bs ∈ {−1,+1} has
s − t different cones due to the dependence on the sum bt+2 + · · · + bs .

As a special case, assume that T = 2. Then the general expression for ĝSHP yields

ĝSHP(0,0, z) = K0 +
((

z + K1(1) + (
K2(2) ∩ K2(0)

))

∩
(

− z + K1(−1) + (
K2(0) ∩ K2(−2)

)))
,

ĝSHP(1,1, z) = K1(1) +
((

z + K2(2)
)∩ (− z + K2(0)

))
,

ĝSHP(−1,1, z) = K1(−1) +
((

z + K2(0)
)∩ (− z + K2(−2)

))
.

In this example, the driver is the intersection of two “affine” set-valued functions
of z. In the univariate setting d = m = 1 with no transaction costs, it is worth noting
that the hedging example considered in Rosazza Gianin [47, Sect. 3] has a driver that
is linear in z.

Example 4.9 The calculations in Example 4.8 can be extended to the case with d = 3
and m = 2. In addition to the principal random walks M1,M2, we also need the
process M{1,2} whose increments are of the form �M

{1,2}
t = B

{1,2}
t = B1

t B2
t . Let

t ∈ {0,1, . . . , T − 1} and z = (z1, z2, z12) ∈ (R3)I . For the semi-local driver, similar
calculations as in Example 4.8 yield

gSHP(t, z) =
{
Y ∈ L3

t : Y ∈ z1B1
t+1 + z2B2

t+1 + z12B
{1,2}
t+1 +

T∑
s=t

L0
d(FM

s ,Ks)

}
.

For u ∈N, let us define the set

Su :=
{ u∑

s=1

bs : bs ∈ {−1,+1}, s ∈ {1, . . . , u}
}
.

For instance, S1 = {−1,+1}, S2 = {−2,0,+2}, S3 = {−3,−1,+1,+3}. For conve-
nience, we set S0 = {0}. Let ω ∈ �. To express the local driver ĝSHP, we write

Kt(ω) = Kt(c
1, c2), ĝSHP(ω, t, z) = ĝSHP(c1, c2, t, z)
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whenever M1
t (ω) = c1 and M2

t (ω) = c2. Then ĝSHP is given by

ĝSHP(c1, c2, t, z)

= Kt(c
1, c2)

+
((

z1 + z2 + z12 +
T∑

s=t+1

⋂
b1,b2∈Ss−t−1

Ks(c
1 + 1 + b1, c2 + 1 + b2)

)

∩
(
z1 − z2 − z12 +

T∑
s=t+1

⋂
b1,b2∈Ss−t−1

Ks(c
1 + 1 + b1, c2 − 1 + b2)

)

∩
(

− z1 + z2 − z12 +
T∑

s=t+1

⋂
b1,b2∈Ss−t−1

Ks(c
1 − 1 + b1, c2 + 1 + b2)

)

∩
(

− z1 − z2 + z12 +
T∑

s=t+1

⋂
b1,b2∈Ss−t−1

Ks(c
1 − 1 + b1, c2 − 1 + b2)

))
.

As a special case, for T = 2, we obtain

ĝSHP(0,0,0, z)

= K0 +
((

z1 + z2 + z12 + K1(1,1)

+ (
K2(2,2) ∩ K2(2,0) ∩ K2(0,2) ∩ K2(0,0)

))

∩
(
z1 − z2 − z12 + K1(1,−1)

+ (
K2(2,0) ∩ K2(2,−2) ∩ K2(0,0) ∩ K2(0,−2)

))

∩
(

− z1 + z2 − z12 + K1(−1,1)

+ (
K2(0,2) ∩ K2(−2,2) ∩ K2(0,0) ∩ K2(−2,0)

))

∩
(

− z1 − z2 + z12 + K1(−1,−1)

+ (
K2(0,0) ∩ K2(0,−2) ∩ K2(−2,0) ∩ K2(−2,−2)

)))

for t = 0 and

ĝSHP(1,1,1, z)

= K1(1,1) +
((

z1 + z2 + z12 + K2(2,2)
)∩ (

z1 − z2 − z12 + K2(2,0)
)

∩ (− z1 + z2 − z12 + K2(0,2)
)∩ (− z1 − z2 + z12 + K2(0,0)

))
,
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ĝSHP(1,−1,1, z)

= K1(1,−1) +
((

z1 + z2 + z12 + K2(2,0)
)∩ (

z1 − z2 − z12 + K2(2,−2)
)

∩ (− z1 + z2 − z12 + K2(0,0)
)

∩ (− z1 − z2 + z12 + K2(0,−2)
))

,

ĝSHP(−1,1,1, z)

= K1(−1,1) +
((

z1 + z2 + z12 + K2(0,2)
)∩ (

z1 − z2 − z12 + K2(0,0)
)

∩ (− z1 + z2 − z12 + K2(−2,2)
)

∩ (− z1 − z2 + z12 + K2(−2,0)
))

,

ĝSHP(−1,−1,1, z)

= K1(−1,−1) +
((

z1 + z2 + z12 + K2(0,0)
)∩ (

z1 − z2 − z12 + K2(0,−2)
)

∩ (− z1 + z2 − z12 + K2(−2,0)
)

∩ (− z1 − z2 + z12 + K2(−2,−2)
))

for t = 1.

5 Set-valued backward stochastic difference equation

In this section, we show that a given dynamic set-valued risk measure in discrete
time gives rise to a set-valued backward stochastic difference equation (SV-BS�E).
In contrast to the BS�I presented in the previous section, which is evaluated for the
selectors of the solution set, an SV-BS�E provides the dynamics for the entire set
as a “singular” object. As shown in (2.1), multiportfolio time-consistency provides
a recursive relation for the set of acceptable capital allocations. Therefore, since the
dynamic programming principle for set-valued risk measures is defined for the full set
rather than selectors, we wish to consider the SV-BS�E which encodes the defining
relation of multiportfolio time-consistency for dynamic risk measures.

We wish to highlight that the general theory of set-valued difference and differen-
tial equations is typically restricted to the space of compact and convex sets. How-
ever, as previously discussed, risk measures are naturally upper sets and thus require
further consideration. As far as the authors are aware, the method for constructing a
set-valued difference (or differential in the limit) equation via an intersection of half-
spaces is novel to this work. We wish to note that set-valued (Dini) directional deriva-
tives have been studied with respect to halfspaces in e.g. Crespi et al. [13], Hamel and
Schrage [28].

As in Sect. 3, we work with the filtered probability space (�,F , (FM
t )t∈T,P),

where M is the m-dimensional Bernoulli random walk defined in (3.1). Con-
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sider a multiportfolio time-consistent dynamic set-valued convex risk measure
R = (Rt )t∈T with one-step conditional risk measures Rtk−1,tk : Ld

tk
→ P+(Ld

tk−1
),

k ∈ {1, . . . ,K}. For the terminal risk measure RtK : Ld
tK

→ P+(Ld
tK

), we have
RtK (X) = −X + RtK (0) for X ∈ Ld

tK
.

As with our discussion of the BS�I, we relate R to an SV-BS�E with a nonlocal
driver. To that end, let us introduce the domain

DE := {
(tk,ψ,w) : k ∈ {0, . . . ,K − 1}, ψ = (ψI )I∈I ∈ (Ld

tk
)I , w ∈ Ld

tk+1,+
}
.

Note that this domain has an additional variable compared to the domain for the BS�I
introduced by (4.1) in the previous section. With this, we define the set-valued driver
GE : DE → 2L

d
by

GE(tk−1,ψ,w) := 1

�tk
Rtk−1,tk

[
−

∑
I∈I

ψI�MI
tk

− �tk (w)

]
(5.1)

for each (tk−1,ψ,w) ∈ DE with k ∈ {1, . . . ,K} and where

�tk (w) := {u ∈ Ld
tk

: w�u ≥ 0}. (5.2)

Note that GE is adapted so that GE(t,ψ,w) ∈ P+(Ld
t ) whenever (t,ψ,w) ∈DE .

The following lemma is required for the results about SV-BS�Es. We separate it
from the main results for readability.

Lemma 5.1 Let X ∈ Ld
tK

and define

Htk (X,wtk ) := cl
(
Rtk (X) + �tk (wtk )

)

for wtk ∈ Ld
tk,+, where the conditional halfspace �tk (wtk ) is defined by (5.2). Then for

any k ∈ {1, . . . ,K}, we have the relation

Rtk−1(X) =
⋂

wtk
∈Ld

tk ,+

Rtk−1,tk [−Htk (X,wtk )]. (5.3)

Proof First notice that Htk (X,wtk ) = {u ∈ Ld
tk

: w�
tk

u ≥ ρtk (X,wtk )} for the scalari-
sation

ρtk (X,wtk ) := ess inf
u∈Rtk

(X)
w�

tk
u.

Therefore, by Feinstein and Rudloff [18, Lemma 3.18],

Rtk (X) =
⋂

wtk
∈Ld

tk ,+

Htk (X,wtk ).
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Next, we prove the “⊆” part of (5.3). By multiportfolio time-consistency, mono-
tonicity and the above notes,

Rtk−1(X) = Rtk−1,tk [−Rtk (X)] = Rtk−1,tk

[ ⋂
wtk

∈Ld
tk ,+

−Htk (X,wtk )

]

⊆
⋂

wtk
∈Ld

tk ,+

Rtk−1,tk [−Htk (X,wtk )].

Finally, we prove the “⊇” part of (5.3). To get a contradiction, suppose that there
exists u /∈ Rtk−1(X) with

u ∈
⋂

wtk
∈Ld

tk ,+

Rtk−1,tk [−Htk (X,wtk )].

In particular, for every wtk ∈ Ld
tk,+, there exists Z(wtk ) ∈ Htk (X,wtk ) such that

u ∈ Rtk−1,tk

(− Z(wtk )
)
. (5.4)

Before continuing, we first need to introduce some notation. Let M be the space of
all probability measures that are absolutely continuous with respect to P. For any
Q ∈Md , v ∈ Ld

tk−1
and 
 ∈ {k, . . . ,K}, define w

t

tk−1

(Q, v) ∈ Ld
t


by

w
t

tk−1

(Q, v)i =

⎧⎪⎨
⎪⎩

viE[ dQi
dP

|FM
t


]
E[ dQi

dP
|FM

tk−1
] on {E[ dQi

dP
| FM

tk−1
] > 0},

vi on {E[ dQi

dP
| FM

tk−1
] = 0}.

Define the space of set-valued dual variables

Wtk−1 := {(Q, v) ∈Md ×Ld
tk−1,+ : w

tK
tk−1

(Q, v) ∈ Ld
tK ,+}

and the projection

Wtk−1(v) := {Q ∈ Md : (Q, v) ∈Wtk−1}.
Note that for any choice of dual variables (Q, v) ∈Wtk−1 , we have w

tk
tk−1

(Q, v) ∈ Ld
tk,+

so that Z(w
tk
tk−1

(Q, v)) ∈ Htk (X,w
tk
tk−1

(Q, v)), that is,

w
tk
tk−1

(Q, v)�Z
(
w

tk
tk−1

(Q, v)
) ≥ ρtk

(
X,w

tk
tk−1

(Q, v)
)

(5.5)

for every (Q, v) ∈ Wtk−1 . From Feinstein and Rudloff [18, Lemma 3.18] and [22,
Theorem 5.3],

u /∈ Rtk−1(X) =
⋂

v∈Ld
tk−1,+

Htk−1(X,v)

⇒ ∃v ∈ Ld
tk−1,+ : P[v�u < ρtk−1(X,v)] > 0

⇒ ∃v ∈ Ld
tk−1,+ :

P

[
v�u < ess sup

Q∈Wtk−1 (v)

(
− αtk−1,tk (Q, v) +E

[
ρtk

(
X,w

tk
tk−1

(Q, v)
) ∣∣FM

tk−1

])]
> 0.
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This implies that there exists some (Q∗, v) ∈Wtk−1 such that

P

[
v�u < −αtk−1,tk (Q

∗, v) +E
[
ρtk

(
X,w

tk
tk−1

(Q∗, v)
)∣∣FM

tk−1

]]
> 0;

fix this choice of dual variables. By (5.5), it then follows that

P

[
v�u < −αtk−1,tk (Q

∗, v) +E
[
ρtk

(
X,w

tk
tk−1

(Q∗, v)
) ∣∣FM

tk−1

]]
> 0

⇒ P

[
v�u < −αtk−1,tk (Q

∗, v) +E
[
w

tk
tk−1

(Q∗, v)�Z
(
w

tk
tk−1

(Q∗, v)
) ∣∣FM

tk−1

]]
> 0

⇒ P

[
v�u < −αtk−1,tk (Q

∗, v) + v�
E
Q

∗[
Z
(
w

tk
tk−1

(Q∗, v)
) ∣∣FM

tk−1

]]
> 0

⇒ P

[
v�u < ess sup

Q∈Wtk−1 (v)

(
− αtk−1,tk (Q, v) + v�

E
Q
[
Z
(
w

tk
tk−1

(Q∗, v)
) ∣∣FM

tk−1

])]
> 0

⇒ P

[
v�u < ρv

tk−1

(
− Z

(
w

tk
tk−1

(Q∗, v)
))]

> 0

⇒ u /∈ Rtk−1

(
− Z

(
w

tk
tk−1

(Q∗, v)
))

,

which is a contradiction to (5.4). �

The next proposition provides an SV-BS�E associated to R which is analogous
to the BS�I in Proposition 4.6. The “difference” in the SV-BS�E is formulated by
the notion of geometric difference between sets: for C,D ⊆ Ld , we define their geo-
metric difference by

C −• D := {u ∈ Ld : u + D ⊆ C}.
Fix k ∈ {1, . . . ,K} and suppose that C,D ⊆ Ld

tk
. We often want to consider the dif-

ference modified by the halfspace
(

cl
(
C + �tk (w)

)−• D
)

∩Ld
tk−1

for some w ∈ Ld
tk,+. It can be checked that

(
cl
(
C + �tk (w)

)−• D
)

∩Ld
tk−1

=
(

cl
(
C + �tk (w)

)−• cl
(
D +Ld

tk,+
))∩Ld

tk−1

=
(

cl
(
C + �tk (w)

)−• cl
(
D + �tk (w)

))∩Ld
tk−1

.

Proposition 5.2 Let X ∈ Ld
tK

. If (Yt )t∈T is a process such that Ytk = Rtk (X) for
k ∈ {0, . . . ,K}, then the SV-BS�E

Ytk−1 =
⋂

wtk
∈Ld

tk ,+,

ψ∈tk−1 (wtk
)

(
GE(tk−1,ψ,wtk )�tk
+(cl[Ytk + �tk (wtk )] −• [∑I∈I ψI�MI

tk
+Ld

tk,+]) ∩Ld
tk−1

)
,

YtK = −X + RtK (0)
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holds, where

tk−1(wtk ) (5.6)

:=
⋃

ξ∈Ld
tk−1

{
ψ ∈ (Ld

tk−1
)I : ξ +

∑
I∈I

ψI�MI
tk

+ �tk (wtk ) = cl
(
Ytk + �tk (wtk )

)}
.

In the above SV-BS�E, we make the convention that the intersection over tk−1(wtk )

gives Ld
tk−1

in case tk−1(wtk ) = ∅.

Conversely, if there exist a set-valued process (Yt )t∈T and tk−1(wtk ) ⊆ (Ld
tk−1

)I

for each k ∈ {1, . . . ,K} and wtk ∈ Ld
tk,+ such that the above SV-BS�E holds, then

Ytk = Rtk (X) for k ∈ {0, . . . ,K}.

Proof Let (Yt )t∈T be a process such that Ytk = Rtk (X) for k ∈ {0, . . . ,K}. By con-
struction of the risk measure, the terminal condition of the SV-BS�E trivially holds.
Consider now k ∈ {1, . . . ,K}. If Ytk = ∅, then by multiportfolio time-consistency,
Ytk−1 = ∅ as well. Thus the SV-BS�E is satisfied trivially prior to tk ; for the remain-
der of this proof, we therefore assume that Ytk �= ∅.

Utilising Lemma 5.1, where Htk (X,wtk ) = cl(Ytk + �tk (wtk )), we get

Ytk−1 =
⋂

wtk
∈Ld

tk ,+

Rtk−1,tk [−Htk (X,wtk )].

Let

Wtk (X) := {w ∈ Ld
tk,+ : Htk (X,wtk )(ω) �= R

d, ∀ω ∈ �}. (5.7)

We claim that

Ytk−1 =
⋂

wtk
∈Wtk

(X)

Rtk−1,tk [−Htk (X,wtk )]. (5.8)

The “⊆” part of (5.8) is clear. To prove the “⊇” part, let wtk ∈ Ld
tk,+ \ Wtk (X).

Recall from the previous section that Atk denotes the partition of � that generates
FM

tk
. Given A ∈ Atk , note that Ytk (ω) is the same nonempty subset of R

d for all
ω ∈ A; let us denote this set by Ytk (A). First, we assume that Ytk (A) �= R

d . Since
Ytk (A) /∈ {∅,Rd}, there exists wA ∈R

d+\{0} such that

inf
u∈Ytk

(A)

(
(wA)�u

) ∈R.

Similarly, let us denote Htk (X,wtk )(A) = Htk (X,wtk )(ω) for all ω ∈ A, A ∈ Atk .
Since wtk /∈ Wtk (X), the set B = {A ∈Atk : Htk (X,wtk )(A) = R

d} is nonempty. Let

w̃tk :=
∑
A∈B

wA1A +
∑

A∈Atk
\B

wtk1A ∈ Wtk (X).
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Then it can be checked that Htk (X,wtk ) ⊇ Htk (X, w̃tk ). By monotonicity, it follows
that

Rtk−1,tk [−Htk (X,wtk )] ⊇ Rtk−1,tk [−Htk (X, w̃tk )].
Hence the “⊇” part of (5.8) follows as long as Ytk (A) �= R

d for every A ∈ Atk . This
must be true due to the construction of Ytk . In particular,

Ytk = Rtk (X) ⊆ Rtk (‖X‖∞) = Rtk (0) − ‖X‖∞

due to monotonicity and translativity of the risk measure with

‖X‖∞ :=
(

max
ω∈�

|X1(ω)|, . . . ,max
ω∈�

|Xd(ω)|
)
.

Therefore, for any A ∈ Atk and ω ∈ A, Ytk (A) = R
d implies that Rtk (0)(ω) = R

d .
However, this violates that the risk measure is normalised, and so Ytk (A) �= R

d for
every A ∈ Atk .

Let wtk ∈ Wtk (X). By the construction of Htk (X,wtk ) and Lemma 3.1, Htk (X,wtk )

has the predictable representation

Htk (X,wtk ) =
(

ξtk−1(wtk ) +
∑
I∈I

ψI
tk−1

(wtk )�MI (tk)

)
+ �tk (wtk )

for some ξtk−1(wtk ),ψ
I
tk−1

(wtk ) ∈ Ld
tk−1

, I ∈ I . Consider the set tk−1(wtk ) of all con-
structors of Htk (X,wtk ) defined by (5.6). By construction, for ψ ∈ tk−1(wtk ), there
exists some ξtk−1(wtk ,ψ) ∈ Ld

tk−1
such that

Htk (X,wtk ) = ξtk−1(wtk ,ψ) +
∑
I∈I

ψI�MI
tk

+ �tk (wtk ).

Therefore,

Rtk−1,tk [−Htk (X,wtk )]

=
⋂

ψ∈tk−1 (wtk
)

Rtk−1,tk

[
− ξtk−1(wtk ,ψ) −

∑
I∈I

ψI�MI
tk

− �tk (wtk )

]

=
⋂

ψ∈tk−1 (wtk
)

Rtk−1,tk

[
− ξtk−1(wtk ,ψ) −

∑
I∈I

ψI�MI
tk

− �tk (wtk ) − �tk−1(wtk )

]

=
⋂

ψ∈tk−1 (wtk
)

(
Rtk−1,tk

[
−

∑
I∈I

ψI�MI
tk

− �tk (wtk )

]

+ ξtk−1(wtk ,ψ) + �tk−1(wtk )

)
.
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Let ψ ∈ tk−1(wtk ). By the construction of �tk−1(wtk ) = �tk (wtk ) ∩Ld
tk−1

and the
set-valued subtraction, we have

�tk−1(wtk ) = (
�tk (wtk ) −• �tk (wtk )

)∩Ld
tk−1

since �tk (wtk ) is a convex cone. This allows us to recover the representation

Rtk−1,tk

[
−

∑
I∈I

ψI�MI
tk

− �tk (wtk )

]
+ ξtk−1(wtk ,ψ) + �tk−1(wtk )

= GE(tk−1,ψ,wtk )�tk + ξtk−1(wtk ,ψ)

+
∑
I∈I

ψI�MI
tk

+ �tk−1(wtk ) −
∑
I∈I

ψI�MI
tk

= GE(tk−1,ψ,wtk )�tk + Htk (X,wtk ) −
∑
I∈I

ψI�MI
tk

= GE(tk−1,ψ,wtk )�tk +
(

Htk (X,wtk ) −•
(∑

I∈I
ψI�MI

tk
+ �tk (wtk )

))
∩Ld

tk−1

= GE(tk−1,ψ,wtk )�tk

+
(

cl
(
Ytk + �tk (wtk )

)−•
(∑

I∈I
ψI�MI

tk
+ �tk (wtk )

))
∩Ld

tk−1

= GE(tk−1,ψ,wtk )�tk

+
(

cl
(
Ytk + �tk (wtk )

)−•
(∑

I∈I
ψI�MI

tk
+Ld

tk,+
))

∩Ld
tk−1

.

Combining the above calculations yields

Ytk−1

=
⋂

wtk
∈Wtk

(X),

ψ∈tk−1 (wtk
)

(
GE(tk−1,ψ,wtk )�tk
+(cl(Ytk + �tk (wtk )) −• (

∑
I∈I ψI�MI

tk
+Ld

tk,+)) ∩Ld
tk−1

)
.

Note that for wtk ∈ Ld
tk,+ \Wtk (X), the definition in (5.6) gives tk−1(wtk ) = ∅ as

desired, since no constructor of Htk (X,wtk ) exists in this case. Hence with our con-
vention that the intersection in the SV-BS�E over an empty index set gives Ld

tk
, it

follows that the SV-BS�E is satisfied.
Finally, the converse follows by the same logic as above since the construc-

tion of tk−1(wtk ) guarantees that it is part of a predictable representation of
Htk (X,wtk ). �

Corollary 5.3 Fix some positive vector r ∈ R
d++. Let X ∈ Ld

tK
. Let (Yt )t∈T be a

process such that Ytk = Rtk (X) for k ∈ {0, . . . ,K}. Then for each k ∈ {1, . . . ,K},
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there exists a nonempty set Wtk ⊆ Ld
tk

such that for each wtk ∈ Wtk , there exists a

unique pair (ξ̂tk−1(wtk ), ψ̂tk−1(wtk )) ∈ Ltk−1 × (Ltk−1)
I satisfying

(
ξ̂tk−1(wtk ) +

∑
I∈I

ψ̂I
tk−1

(wtk )�MI
tk

)
r + �tk (wtk ) = cl

(
Ytk + �tk (wtk )

)
, (5.9)

and there exists no such pair for wtk ∈ Ld
tk,+ \ Wtk . Moreover, the reformulated

SV-BS�E

Ytk−1 =
⋂

wtk
∈Wtk

(GE(tk−1, ψ̂tk−1(wtk )r,wtk )�tk

+(cl(Ytk + �tk (wtk )) −• (
∑
I∈I

ψ̂I
tk−1

(wtk )r�MI
tk

+Ld
tk,+)) ∩Ld

tk−1

)
,

YtK = −X + RtK (0)

holds.

Proof Let us take Wtk = Wtk (X), where Wtk (X) is defined by (5.7). Fixing the
direction r ∈ R

d++ guarantees the uniqueness of the predictable representation of
Htk (X,wtk ) for wtk ∈ Wtk in the form (5.9). As noted in the proof of Proposition 5.2,
no predictable representation exists for Htk (X,wtk ) when wtk ∈ Ld

tk,+\Wtk . It follows
that the reformulated SV-BS�E is equivalent to that given in Proposition 5.2. �

Remark 5.4 The SV-BS�Es given in Proposition 5.2 and all subsequent results of
this section can utilise the dual variables (Q,wtk−1) ∈ Wtk−1 in place of wtk ∈ Ld

tk,+
by considering wtk := w

tk
tk−1

(Q,wtk−1). This follows from an application of Feinstein
and Rudloff [17, Lemma A.1].

Remark 5.5 While in the BS�I framework, we introduce semi-local and local ver-
sions, this does not appear to be possible for the SV-BS�E setup. Specifically, the
Minkowski difference restricted to an earlier time point as taken in the SV-BS�E can-
not readily be defined ω-wise. Conceptually, this can be viewed as akin to the work
of Ben Tahar and Lépinette [6] insofar as the recursive formulation of multiportfolio
time-consistency is defined with respect to the selectors rather than the random sets.

We conclude this section with a continuation of Examples 3.5 and 4.8 on the su-
perhedging risk measure.

Example 5.6 In the setting of Example 3.5, let us calculate the set-valued driver GSHP
E

of the superhedging risk measure RSHP when d = 2 and m = 1. Recall that as pro-
vided in Example 3.5 and presented in Example 4.8, for s ∈ {t + 1, . . . , T }, we have

Sb
s = Sb

t eσBt+1eσ(Ms−Mt+1), Sa
s = Sa

t eσBt+1eσ(Ms−Mt+1).

As with Examples 4.8 and 4.9, we can generalise to larger number of assets and
random walks, but focus on this simple case for illustrative purposes. Following (5.1)
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and the definitions in Example 3.5, for t ∈ {0, . . . , T − 1}, ψ ∈ L2
t and w ∈ L2

t+1,+,
we have

GSHP
E (t,ψ,w)

= RSHP
t,t+1[−ψ�Mt+1 − �t+1(w)] = SHPt [ψBt+1 + �t+1(w)]

=
{
Y ∈ L2

t : Y ∈ ψBt+1 + u +
T∑

s=t

L0
d(FM

s ,Ks), u ∈ L2
t+1, w�u ≥ 0

}

= L0
d(FM

t ,Kt ) +
{
Y ∈ L2

t : Y ∈ ψBt+1 + u +
T∑

s=t+1

L0
d(FM

s ,Ks),

u ∈ L2
t+1, w�u ≥ 0

}

= L0
d(FM

t ,Kt ) +
{

Y ∈ L2
t : Y = ψBt+1 + u +

T∑
s=t+1

(
bs

(−Sb
s

1

)
+ as

(
Sa

s

−1

))
,

as, bs ∈ L2
s,+, s ∈ {t + 1, . . . , T },

u ∈ L2
t+1, w�u ≥ 0

}
.

As stated previously, unlike in the BS�I setup of Sect. 4, no local driver can be given
for the SV-BS�E formulation of the superhedging risk measure.

6 Discussion

In this work, we have introduced two backward representations for multiportfolio
time-consistent dynamic set-valued risk measures: a BS�I and an SV-BS�E. Though
both of these representations provide an equivalent dynamic risk measure, these for-
mulations provide important insights for considering dynamic risk measures in con-
tinuous time where T = [0, T ]. Specifically, in continuous time, either a backward
stochastic differential inclusion (BSDI) or a set-valued backward stochastic differ-
ential equation (SV-BSDE) could potentially be used to characterise a dynamic risk
measure. This has yet to be examined in the literature. Our work on studying differ-
ence inclusions and equations provides the initial insights for when these concepts
are appropriate to be applied. In this way, we gain knowledge of the (likely) best ap-
proach for studying risk measures in continuous time. In fact, based on the preceding
analysis, it is the opinion of the authors that BSDIs are the proper methodology to
consider. While presented only for risk measures, our results provide insights for the
dynamic programming principle in multivariate problems more generally.

By studying both the BS�I and SV-BS�E, we begin to understand when these ap-
proaches are appropriate. Namely, the inclusion appears to be the appropriate method
if we care specifically about singular paths. For instance, risk measures are used to
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compute capital requirements. Ultimately, the singular, implemented capital invest-
ment over time is the important result for a practitioner rather than the entire set of
acceptable requirements. In contrast, a set-valued equation appears to be the appro-
priate method if we care about the “mass” of the set itself over time, rather than any
specific value in that set. Such concepts are important beyond the immediate study
of risk measures, for instance for the mean–risk problem in Kováčová and Rudloff
[38], where the dynamic programming principle holds for the multiobjective version
but not the traditional scalar approach. These results indicate that the BSDI is likely
to be the appropriate approach for that problem; this is left for future study.

Following from the interpretation of risk measures, we talk about the set of ac-
ceptable capital requirements. Thus the individual requirements are the important
notion themselves in our setting. This leads to the notion that BSDIs appear to be
the appropriate methodology for us to consider. Though our recursive formulation
of multiportfolio time-consistency and the dynamic programming principle are de-
fined with respect to the risk measure of sets (i.e., Rt(X) = Rt,s[−Rs(X)]), this is
ultimately defined element-wise. We conjecture that SV-BSDEs would be the only
available method if set-valued portfolios (e.g. Cascos and Molchanov [9]) or, gener-
ally, functions of sets were considered themselves.

While we are able to construct an SV-BS�E for this setting, this does not permit
an immediate integral (summation in the discrete setting) representation when incre-
menting from time t to T directly. To pass to the continuous-time BSDI limit of the
BS�I, we propose following the approach of Stadje [49] in which the risk measures
are “scaled and tilted” first. We conjecture that convergence of the BS�I should be
sought for the space of reachable sets as constructed in Corollary 4.3; this is in con-
trast to studying the individual paths. However, we leave that consideration for future
works.
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