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a b s t r a c t 

The increase in the energy consumption puts pressure on natural resources and environment and results 

in a rise in the price of energy. This motivates residents to schedule their energy consumption through 

demand response mechanism. We propose a multi-stage stochastic programming model to schedule dif- 

ferent kinds of electrical appliances under uncertain weather conditions and availability of renewable 

energy. We incorporate appliances with chargeable and dischargeable batteries to better utilize the re- 

newable energy sources. Our aim is to minimize the electricity cost and the residents’ dissatisfaction. 

We use a scenario groupwise decomposition (group subproblem) approach to compute lower and upper 

bounds for instances with a large number of scenarios. The results of our computational experiments 

show that the approach is very effective in finding high quality solutions in small computation times. 

We provide insights about how optimization and renewable energy combined with batteries for storage 

result in peak demand reduction, savings in electricity cost and more pleasant schedules for residents 

with different levels of price sensitivity. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

World energy consumption is expected to grow by 48% between

012 and 2040 ( Conti et al., 2016 ). The increase in the energy

onsumption results in a rise in the price of energy by putting

ressure on natural resources and environment. Residential energy

onsumption grows with the population growth accompanied by

ewer occupants living in larger houses, the change in people’s life

tyle and a higher rate of utilization of electrical appliances. Since

ome of the electrical appliances, like plug-in hybrid vehicles, have

 potential to double residential energy consumption, demand side

anagement becomes more crucial. Managing the energy con-

umption by providing information to residents who can change

heir consumption patterns is called “demand response” and is one

f the demand side management approaches. 

Smart grids can play a significant role to provide a sustain-

ble future by integrating residents into the energy saving sys-

em through demand response mechanism. With an installation of

ome energy management system (HEMS), residents can monitor

he price information through the smart meters and control their

wn appliances. By the end of 2016, 47% of all residential con-

umers in U.S. have a smart meter in their homes ( EIA, 2017 ). Since
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mart meters provide information about the fluctuation of electric-

ty price between low-demand and high-demand hours, with the

elp of HEMS, residents can shift their demands to the off-peak

ours or hours with high renewable energy levels. 

The existing studies on scheduling smart home appliances vary

n the types of electrical appliances they consider. Based on the

nergy consumption characteristics, the appliances can be classi-

ed under two major types: appliances with continuous or dis-

rete level energy consumption. While the energy consumption

mount of the appliances with continuous level energy consump-

ion can vary during the operation, this amount is fixed for the

ppliances with discrete level energy consumption. In Mohsenian-

ad et al. (2010a) , energy consumption scheduling scheme for ap-

liances with continuous level energy consumption is proposed for

 distributed generation system. A game theoretic approach is used

o formulate the problem where the customers are players whose

trategy is to schedule their appliances with the aim of minimiz-

ng total energy cost. Later, this study is extended in Mohsenian-

ad et al. (2010b) to consider the peak-to-average ratio (PAR) min-

mization problem and it is shown that strategies that minimize

otal energy cost lead to lower PAR values as well. The schedul-

ng of appliances with continuous level energy consumption with

he aim of minimizing the summation of disutility and electricity

ost of users while keeping total consumption below the generated

lectricity amount is considered in Samadi et al. (2010) . Different

rom these studies, Gatsis and Giannakis (2011) consider the case
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2 M.K. Ş ahin, Ö. Çavu ̧s and H. Yaman / Computers and Operations Research 118 (2020) 104928 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

B  

s  

a  

H  

t  

a  

a  

t  

i  

t  

t  

p

 

a  

b  

A  

i  

r  

n  

i  

n  

t  

u  

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

f  

s  

s  

t  

t  

c

2

 

t  

H  

v  

f  
where the load of appliances with continuous level energy con-

sumption is interruptible. The authors show that if the problem is

formulated over a continuous time horizon, although the resulting

formulation is non-convex, it has zero duality gap. Therefore, La-

grangian relaxation methods can be used to solve the model. While

studies mentioned above consider the deterministic case, uncer-

tainty in the task duration of appliances with continuous level en-

ergy consumption is considered in Chen et al. (2013) . 

The coordination of appliances with discrete level en-

ergy consumption is studied in Goudarzi et al. (2011) and

Zhao et al. (2013) . While Zhao et al. (2013) propose a genetic

algorithm, Goudarzi et al. (2011) define a rank-based scheduling

heuristic for the fixed price case and force-directed scheduling

heuristic for the time-of-use pricing case. 

The scheduling of appliances with both continuous and discrete

level energy consumption is considered in Mohsenian-Rad and

Leon-Gracia (2010) under price uncertainty. To handle the un-

known price parameters, a price prediction capability is added to

the proposed model. The differences in the scheduling strategies

of appliances both with continuous and discrete level energy con-

sumption for residents with different price sensitivities are inves-

tigated in Ma et al. (2016) . 

The energy consumption of appliances that control the temper-

ature of the environment comprises 40% of total residential energy

consumption ( Energy, 2010 ). This points out the need of schedul-

ing this type of appliances as done by Althaher et al. (2015) ,

Nguyen et al. (2015) , Tiptipakorn and Lee (2007) , Li et al. (2011) ,

Tsui and Chan (2012) and Shafie-Khah and Siano (2018) . How-

ever, except Nguyen et al. (2016) and Shafie-Khah and Siano

(2018) , these studies ignore the randomness in weather condi-

tions and model the problem in a deterministic setting. While

Tiptipakorn and Lee (2007) focus only on the scheduling of air

conditioner/heater and water heater with the aim of minimiz-

ing the electricity cost and users’ discomfort, Li et al. (2011) in-

corporate also other types of appliances with continuous level

energy consumption in the presence of battery. In addition to

appliances that control the temperature of the environment,

Althaher et al. (2015) consider the scheduling of appliances both

with continuous and discrete level energy consumption with the

aim of minimizing the electricity cost while forcing users’ comfort

to be greater than a threshold value. 

Although one of the main purposes of HEMS is to better uti-

lize the renewable energy, renewable energy is not considered in

most of the mentioned studies. It is considered in a determin-

istic setting in Tsui and Chan (2012) , where a single household

equipped with appliances with both discrete and continuous level

energy consumption is taken into account. Also, the appliances

with chargeable and dischargeable batteries are incorporated to

the system. Since renewable energy must be consumed at the mo-

ment it is produced unless it is stored, using appliances that can

store energy helps to increase the use of renewable energy. While

Nguyen et al. (2015) propose a two-stage stochastic programming

model considering the uncertainty in renewable energy generation,

Chen et al. (2013) suggest a three phase algorithm to transform the

problem with uncertainties into a set of deterministic problems. In

addition to the uncertainty in renewable energy generation, Shafie-

Khah and Siano (2018) also consider the uncertainty in electric ve-

hicle availability. 

Even Chen et al. (2013) , Nguyen et al. (2015) and Shafie-

Khah and Siano (2018) address the uncertainty in renewable en-

ergy generation, our study is different than these studies in sev-

eral ways such as the types of electrical appliances considered,

the disutility functions and the way to model the uncertainty.

As different from Chen et al. (2013) , Nguyen et al. (2015) and

Shafie-Khah and Siano (2018) , we use multi-stage stochastic pro-

gramming. Uncertainty in renewable energy generation has been
onsidered in multi-stage problems by Aliasghari et al. (2018) ;

hattacharya et al. (2016) ; Hafiz et al. (2019, 2017) . The

cheduling of renewable energy sources and battery usage in

 single household is considered in Hafiz et al. (2017) . Later,

afiz et al. (2019) extend the study Hafiz et al. (2017) for mul-

iple houses where total electricity consumption of other appli-

nces is taken as a random parameter. Multiple houses model is

lso considered in Aliasghari et al. (2018) in the presence of elec-

ric vehicle and in Bhattacharya et al. (2016) where battery storage

s also a decision variable. However, these studies focus only on

he scheduling of renewable energy sources and battery where the

otal energy consumption of other appliances is considered as a

arameter. 

In Table 1 , we provide the classification of the studies that

re discussed above. In this study, we consider a real-time price

ased demand response program. For real-time pricing schemes,

llcott (2009) shows that checking time-varying prices and chang-

ng the energy consumption pattern manually are difficult for most

esidents due to the lack of time and knowledge. There arises a

eed for an automated system to better utilize the real-time pric-

ng schemes. For this purpose, we propose a multi-stage stochastic

onlinear mixed integer programming model that coordinates all

ypes of appliances mentioned above in the presence of weather

ncertainty. In particular, our major contributions are the follow-

ng: 

• We propose a novel model to schedule all types of electrical

appliances considered in the literature in the presence of re-

newable energy and batteries. 
• We use multi-stage stochastic programming to hedge against

the uncertainty in weather conditions, which is critical to

model accurately both the energy consumption of the appli-

ances that control the temperature and the availability of the

renewable energy. 
• Our model is a multi-stage stochastic nonlinear mixed integer

programming model. We use a scenario groupwise decompo-

sition (group subproblem) approach to obtain tight lower and

upper bounds for instances with large number of scenarios.

The results of our computational experiments show that the

stochastic demand response optimization problem is very dif-

ficult to solve exactly using a general purpose solver. The de-

composition approach, on the other hand, gives good quality

bounds in reasonable computation times. 
• Our computational results show that using the proposed model

results in significant improvements in electricity cost and disu-

tility for all types of residents. They also show that even though

using battery and renewable energy separately significantly im-

proves the objective function value for all types of residents,

residents can make a better use of them when they are com-

bined. 

The rest of the paper is organized as follows. In Section 2 ,

e describe the energy consumption characteristics and disutility

unctions for different appliance types and the electricity pricing

cheme. In Section 3 , we present our model. In Section 4 , we de-

cribe the scenario groupwise decomposition approach and present

wo different ways to construct group subproblems. We present

he results of our computational experiments in Section 5 . We con-

lude in Section 6 . 

. Problem setting 

We consider a smart home equipped with solar panel and elec-

rical appliances that are networked together and controlled by

EMS. While the bidirectional flow of price information is pro-

ided by the smart meter, the power can be transmitted only

rom the energy provider to residents. We consider a discrete-time
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u  
odel with a finite horizon, where scheduling horizon is divided

nto time slots. The energy consumption scheduling problem aims

o achieve a trade-off between minimizing the electricity cost and

inimizing the residents’ dissatisfaction due to loss of comfort. 

.1. Types of appliances 

Let A denote the set of appliances networked in this residen-

ial unit. An appliance a with discrete level energy consumption

nly operates in on or off statue and it consumes a fixed energy

evel of e a and e a in on and off modes, respectively. Consequently,

EMS decides only when this appliance should be in on mode. On

he other hand, for an appliance with continuous level energy con-

umption, HEMS needs to decide how much energy it consumes in

ach time period. Each appliance a operates within a user’s pre-

erred time interval T a which includes all integers in the range

 t a , t a ] . 

We classify the appliances with continuous level energy con-

umption under three categories as follows: 

Type 1 : This type of appliances are equipped with chargeable

nd dischargeable batteries. We denote the set of appliances with

attery by A B . 

Type 2 : This type of appliances control the temperature of the

nvironment. An example is air conditioner. We denote the set of

hese appliances by A T . 

Type 3 : This type includes the appliances with continuous level

nergy consumption that are not of Type 1 and Type 2 . Let A C de-

ote the set of appliances of Type 3 . An example of this type is

efrigerator. 

We classify the appliances with discrete level energy consump-

ion as follows: 

Type 4 : This type of appliances can be shut down during oper-

tion. This means that their loads are interruptible. An example is

 hair dryer. We denote the set of these appliances by A I . 

Type 5 : For this type of appliances, once the operation starts,

t should be run to completion. An example is a washing machine.

e denote the set of these appliances by A U . 

.2. Disutility functions 

The disutility can have different causes depending on the types

f appliances. For an appliance that controls the temperature, the

isutility is a result of the discomfort due to low or high inside

emperature, whereas for an appliance with discrete consumption,

he disutility is a function of earliness of the starting time or the

ateness of the finishing time. 

The disutility functions for different types of appliances are as

ollows: 

Appliances with discrete level energy consumption (types 4

nd 5): For each appliance a ∈ A I ∪ A U , the important decisions

re starting and finishing times. The disutility for appliance a if

t starts operating at time ˆ t a and finishes at time ˆ t a is given by

a ( ̂ t a , ̂  t a ) : 

a ( ̂ t a , ̂  t a ) = φ
D 

(
( t des 

a − ˆ t a ) + 
)

2 + φD 

(
( ̂ t a − t 

des 

a ) + 
)

2 , 

here [ t des 
a , t 

des 
a ] represents the most desirable time interval and

D 
and φD , respectively, are the weights of disutility for the ear-

iness of the starting time and the lateness of the finishing time.

ote that (x ) + := max { x, 0 } . 
Appliances that control temperature (type 2): For appliance

 ∈ A T , let h 
com f 
a be the most comfortable temperature and h in a,t 

e the inside temperature at the location of the appliance in

ime period t ∈ T a and τa,t (h in a,t ) be the disutility at time t . We

se the disutility function used in Li et al. (2011) and Tsui and
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Chan (2012) : 

τa,t (h 

in 
a,t ) = (h 

in 
a,t − h 

com f 
a ) 2 . 

Appliances with battery (type 1): As in Li et al. (2011) and

Tsui and Chan (2012) , the disutility ψ a,t (r a,t , r a,t+1 , b a,t ) for appli-

ance a ∈ A B with battery depends on r a,t , r a,t+1 and b a,t . Here, r a,t 

is the power charged to (when r a,t ≥ 0 ) or discharged from (when

r a,t ≤ 0 ) the appliance in period t ∈ T a and b a,t is the energy level

of appliance a in period t . The disutility is computed as 

ψ a,t (r a,t , r a,t+1 , b a,t ) = η1 (r a,t ) 
2 − η2 r a,t r a,t+1 + η3 ((δb a − b a,t ) + ) 2 ,

where η1 , η2 , η3 , and δ are positive constants and b a is the ca-

pacity of battery for appliance a . The first term penalizes the dam-

aging effect of charging and discharging, the second term penal-

izes charging-discharging cycles and the third term penalizes deep

discharging, which happens when the energy level of the battery

drops below δb a . The value of δ may vary according to the type of

battery. 

2.3. Electricity price 

Since electricity is perishable, the prices set by the electricity

retailers fluctuate between low-demand hours and high-demand

hours. The most common pricing schemes are real-time pricing

(RTP), day-ahead pricing (DAP), time-of-use pricing (TOUP), critical-

peak pricing (CPP) and inclining block rates (IBR), (see Mohsenian-

Rad and Leon-Gracia, 2010 for further references). In our study, as

in Chen et al. (2013) , Zhao et al. (2013) and Mohsenian-Rad and

Leon-Gracia (2010) , we consider a general hourly pricing function

that combines RTP and IBR schemes. It also has a DAP structure as

we assume that the future price parameters are known by the res-

idents ahead of time. In our price function, prices vary every hour

as in RTP, and beyond a certain threshold for total hourly residen-

tial load, the electricity price increases to a higher value as in IBR.

Note that, this threshold value is used to decide whether the elec-

tricity is charged at a higher price (as used by several power utili-

ties such as California-Pacific Gas and Electric, Southern California

Edison, and San Diego Gas and Electric, see Borenstein, 2008 ); it

does not limit the amount of electricity consumed by a resident.

The cost ρt ( u t ) of consuming u t units of electricity in period t is

c l t u t if u t ≤ u and c h t u t if u t > u . Here, u is a threshold, c l t is low unit

price and c h t is high unit price. In numerical studies, price data of

Illinois Power Company and British Columbia (BC) Hydro Company

are used ( Fig. 1 ). 

3. Multi-stage stochastic programming model 

In this section, we formulate the scheduling problem for smart

home appliances as a multi-stage stochastic nonlinear mixed inte-

ger program. We assume that the changes in the temperature and

in the power of renewable energy are uncertain and this uncer-

tainty is realized gradually at specific time periods called as stages.

We also assume that the random temperature and random renew-

able energy in each stage have discrete distributions with finite

number of realizations. Therefore, the uncertainty in the decision

process can be represented by a scenario tree. A scenario is de-

fined as a unique path from the root node to a terminal node. 

We denote the set of all scenarios by S and the set of scenarios

having the same history as scenario s up to stage t by S s,t . The

probabiliy of scenario s is represented by p ( s ) and the scheduling

horizon is represented by T . We use the following notation: 

Decision Variables 

• u l t (s ) : the net energy consumption at low price in period t ∈ T 

under scenario s ∈ S
• u h t (s ) : the net energy consumption at high price in period t ∈ T 

under scenario s ∈ S
• b a,t (s ) : the energy level of appliance a ∈ A B in period t ∈ T a
under scenario s ∈ S

• r a,t (s ) : the power charged/discharged for appliance a ∈ A B in

period t ∈ T a under scenario s ∈ S
• e a,t (s ) : the energy consumption of appliance a ∈ A \ A B in pe-

riod t ∈ T a under scenario s ∈ S
• e + a,t (s ) : the energy consumption for heating for appliance a ∈

A T in period t ∈ T a under scenario s ∈ S
• e −a,t (s ) : the energy consumption for cooling for appliance a ∈

A T in period t ∈ T a under scenario s ∈ S

• x a,t (s ) : 

⎧ ⎨ ⎩ 

1 , if appliance a ∈ A U ∪ A I starts operation in period 

t ∈ T a under scenario s ∈ S 
0 , otherwise 

• y a,t (s ) : 

⎧ ⎨ ⎩ 

1 , if appliance a ∈ A I is in on statue in period 

t ∈ T a under scenario s ∈ S 
0 , otherwise 

• z a,t (s ) : 

⎧ ⎨ ⎩ 

1 , if appliance a ∈ A I completes operation in period 

t ∈ T a under scenario s ∈ S 
0 , otherwise 

• w t (s ) : 

⎧ ⎨ ⎩ 

1 , if energy usage is charged at low price in period 

t ∈ T under scenario s ∈ S 
0 , otherwise 

• d a,t (s ) : (δb a − b a,t ) + deep discharging amount for appliance

a ∈ A B in period t ∈ T a under scenario s ∈ S
• h in a,t (s ) : the temperature inside the place of appliance a ∈ A T 

in period t ∈ T a under scenario s ∈ S

Parameters 

• e tot 
a : the total energy required for appliance a ∈ A C 

• b a, 0 : the initial energy level of the battery for appliance a ∈ A B 

• r a : the maximum charging amount for appliance a ∈ A B 

• r a : the maximum discharging amount for appliance a ∈ A B 

• e a : the minimum energy level required for appliance a ∈ A \
A B 

• e a : the maximum energy level required for appliance a ∈ A \
A B 

• b a : the battery capacity for appliance a ∈ A B 

• h a : the minimum comfortable temperature level for appliance

a ∈ A T 

• h a : the maximum comfortable temperature level for appliance

a ∈ A T 

• h 
com f 
a : the most comfortable temperature level for appliance

a ∈ A T 

• v t (s ) : the power of renewable energy source in period t ∈ T 

under scenario s ∈ S
• n a : the total number of time slots required for appliance a ∈

A I ∪ A U to complete its task 
• h out 

a,t (s ) : the temperature outside the location of appliance a ∈
A T in period t ∈ T a under scenario s ∈ S

• t des 
a : the most desirable starting time for appliance a ∈ A I ∪ A U 

• t 
des 
a : the most desirable finishing time for appliance a ∈ A I ∪
A U 

• h in 
a, 0 

(s ) : the initial room temperature for appliance a ∈ A T un-

der scenario s ∈ S
• αa , βa : the thermal characteristics of appliance a ∈ A T and the

environment in which appliance operates ( βa > 0 ) 
• p(s ) : the probability of scenario s ∈ S
• φ : the weight of disutility function 

• φ
D 

: the weight of disutility for the earliness of the starting

time for appliances in A I ∪ A U 

• φD : the weight of disutility for the lateness of the finishing

time for appliances in A ∪ A 
I U 
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Fig. 1. Examples of two-non flat pricing models. The real time prices are used by Illinois Power Company on December 15, ( Illinois, 2009 ). The inclining block rates are used 

by BC Hydro Company in December ( Hydro, 2009 ). (This figure is reproduced from Mohsenian-Rad and Leon-Gracia, 2010 ) . 
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• φT : the weight of disutility function for appliances in A T 

• φB : the weight of disutility function for appliances in A B 

An efficient energy consumption schedule can be obtained by

olving the following model: 

in 

∑ 

s ∈S 
p ( s ) 

⎛ ⎝ 

∑ 

t∈ T 

(
c l t u 

l 
t ( s ) + c h t u 

h 
t ( s ) 

)
+ φ

⎛ ⎝ 

∑ 

a ∈A I ∪A U 

⎛ ⎝ φ
D 

t des 
a ∑ 

t= t a 

(
t − t de

a 

+ φB 

∑ 

a ∈A B 

∑ 

t∈ T a 

(
η1 ( r a,t ( s ) ) 

2 − η2 r a,t ( s ) r a,t+1 ( s ) + η3 ( d a,t ( s ) ) 
2 
)

+

 . t . 

 a ≤ e a,t ( s ) ≤ e a , ∀ a ∈ A C , t ∈ T a , s ∈ S 
(2) 

 

∈ T a 
e a,t ( s ) = e tot 

a , ∀ a ∈ A C , s ∈ S (3) 

 a ≤ e + a,t ( s ) ≤ e a , ∀ a ∈ A T , t ∈ T a , s ∈ S (4) 

 a ≤ e −a,t ( s ) ≤ e a , ∀ a ∈ A T , t ∈ T a , s ∈ S (5) 

 a,t ( s ) = e −a,t ( s ) + e + a,t ( s ) , ∀ a ∈ A T , t ∈ T a , s ∈ S (6) 

 

in 
a,t ( s ) = h 

in 
a,t−1 ( s ) + αa 

(
h 

out 
a,t ( s ) − h 

in 
a,t−1 ( s ) 

)
+ βa 

(
e + a,t ( s ) − e −a,t ( s ) 

)
, ∀ a ∈ A T , t ∈ T a , s ∈ S (7) 

 a ≤ h 

in 
a,t ( s ) ≤ h a , ∀ a ∈ A T , t ∈ T a , s ∈ S (8) 

 a,t ( s ) = 

t ∑ 

u =1 

r a,u ( s ) + b a, 0 , ∀ a ∈ A B , t ∈ T a , s ∈ S (9) 

 ≤ b a,t ( s ) ≤ b a , ∀ a ∈ A B , t ∈ T a , s ∈ S (10) 
,t ( s ) + φD 

t a ∑ 

t= t des 
a 

(
t − t 

des 

a 

)2 

z a,t ( s ) 

⎞ ⎠ 

 

 ∈A T 

∑ 

t∈ T a 

(
h 

in 
a,t ( s ) − h 

comf 
a 

)2 

) ) 

(1) 

 a ≤ r a,t ( s ) ≤ r a , ∀ a ∈ A B , t ∈ T a , s ∈ S (11) 

 a,t ( s ) ≥ δ b a − b a,t ( s ) , ∀ a ∈ A B , t ∈ T a , s ∈ S (12) 

 a,t ( s ) ≥ 0 , ∀ a ∈ A B , t ∈ T a , s ∈ S (13) 

 a, t a +1 ( s ) = 0 , ∀ a ∈ A B , s ∈ S (14) 

 a,t ( s ) = e a + ( e a − e a ) y a,t ( s ) , ∀ a ∈ A I , t ∈ T a , s ∈ S (15) 

 

∈ T a 
y a,t ( s ) = n a , ∀ a ∈ A I , s ∈ S (16) 

 a −n a +1 ∑ 

u = t+1 

x a,u ( s ) + y a,t ( s ) ≤ 1 , ∀ a ∈ A I , t ∈ 

[
t a , t a − n a 

]
, s ∈ S (17) 

t−1 ∑ 

 = t a + n a −1 

z a,u ( s ) + y a,t ( s ) ≤ 1 , ∀ a ∈ A I , t ∈ 

[
t a + n a , t a 

]
, s ∈ S 

(18) 

t a ∑ 

= t a + n a −1 

z a,t ( s ) = 1 , ∀ a ∈ A I , s ∈ S (19) 
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o  
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b  

o  
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 a −n a +1 ∑ 

t= t a 
x a,t ( s ) = 1 , ∀ a ∈ A I ∪ A U , s ∈ S (20)

e a,t ( s ) = e a + ( e a − e a ) 

( 

t ∑ 

u = max { t a ,t−n a +1 } 
x a,u ( s ) 

) 

, 

∀ a ∈ A U , t ∈ T a , s ∈ S (21)

u 

l 
t ( s ) + u 

h 
t ( s ) ≥

∑ 

a ∈A\A B 
e a,t ( s ) + 

∑ 

a ∈A B 
r a,t ( s ) − v t ( s ) , ∀ t ∈ T , s ∈ S 

(22)

0 ≤ u 

l 
t ( s ) ≤ u w t ( s ) , ∀ t ∈ T , s ∈ S (23)

0 ≤ u 

h 
t ( s ) ≤ M ( 1 − w t ( s ) ) , ∀ t ∈ T , s ∈ S (24)

e a,t 

(
s ′ 
)

= e a,t ( s ) , ∀ a ∈ A \ A B , s ∈ S, s ′ ∈ S s,t , t ∈ T a (25)

e + a,t 

(
s ′ 
)

= e + a,t ( s ) , ∀ a ∈ A T , s ∈ S, s ′ ∈ S s,t , t ∈ T a (26)

e −a,t 

(
s ′ 
)

= e −a,t ( s ) , ∀ a ∈ A T , s ∈ S, s ′ ∈ S s,t , t ∈ T a (27)

r a,t 

(
s ′ 
)

= r a,t ( s ) , ∀ a ∈ A B , s ∈ S, s ′ ∈ S s,t , t ∈ T a (28)

x a,t ( s ) ∈ { 0 , 1 } , ∀ a ∈ A I ∪ A U , t ∈ T a , s ∈ S (29)

y a,t ( s ) ∈ { 0 , 1 } , ∀ a ∈ A I , t ∈ T a , s ∈ S (30)

z a,t ( s ) ∈ { 0 , 1 } , ∀ a ∈ A I , t ∈ T a , s ∈ S (31)

w t ( s ) ∈ { 0 , 1 } , ∀ t ∈ T , s ∈ S (32)

The objective function (1) is the sum of expected electricity cost

and expected dissatisfaction. 

For appliances of Type 3 , constraints (2) and (3) , respectively,

ensure that energy consumption is between minimum standby

power level and maximum power level and that the total energy

requirement is provided within the specified time interval. 

Constraints (4) –(8) are given for appliances of Type 2 . As above,

constraints (4) –(6) ensure that energy consumption is between

minimum and maximum levels. Constraints (7) are the balance

equations for inside temperature and energy consumption. Con-

straints (8) ensure that the temperature is in the range that user

defines as comfortable. 

Constraints (9) –(14) are for the appliances of Type 1 . Con-

straints (9) compute the battery energy level at each period. Con-

straints (10) ensure that the total charge stored in the battery

does not exceed its capacity. Constraints (11) bound the battery

charging/discharging amount. Constraints (12) and (13) compute

the amount of deep discharging. Constraints (14) ensure that disu-

tility does not occur outside the specified time interval. 

Constraints (15) –(20) are for appliances of Type 4 . Constraints

(15) compute the energy consumption: the energy consumption is
qual to the minimum standby power level if the appliance is off

nd it is equal to the maximum power level if the appliance is on.

onstraints (16) ensure that the appliance is on for the number

f periods required to fully complete its task. Constraints (17) and

18) allow operation of an appliance only between its starting and

nishing times. Constraints (19) and (20) ensure that there is one

tarting and one finishing time for each appliance. 

Constraints (20) and (21) are for appliances of Type 5 . One start-

ng time is chosen for each appliance due to constraints (20) . Once

n appliance starts, it operates consecutively for the required num-

er of periods. Constraints (21) compute the energy consumption

mount. 

Constraints (22) –(24) compute the energy consumption amount

t low and high prices. Constraints (22) give the relation between

he net energy request, energy consumption amount, and renew-

ble energy amount. Constraints (23) and (24) decide whether the

nergy usage is charged at low price with regard to threshold value

 . The value of big M is taken to be equal to the sum of the max-

mum energy level of all appliances that are not of Type 1 (appli-

nces with battery) and the maximum charging amount of appli-

nces with battery. 

Constraints (25) –(28) are non-anticipativity constraints to en-

ure that for any stage t , decision variables that have a common

istory of uncertainty till stage t must have the same value at that

tage. 

Finally, constraints (29) –(32) are variable restrictions. 

. Solution method 

Multi-stage stochastic programming problems are in the frame-

ork of extremely challenging problems since their size grows ex-

onentially with the number of stages. Our problem has additional

ifficulties due to nonlinear objective function and integer vari-

bles. Scenario groupwise decomposition approach, which is re-

ently proposed by Sandikçi and Özaltin (2017) can be used to ob-

ain bounds for multi-stage stochastic integer problems (see also

aggioni et al., 2016 and Maggioni and Pflug, 2016 ). In this ap-

roach, the problem is divided into smaller problems called as

roup subproblems. Group subproblems are defined over a reduced

umber of scenarios and each of them has the same number of

tages as the original problem. The problem is solved for each

roup subproblem separately rather than being solved for all sce-

arios simultaneously. Besides easy implementation, since it does

ot rely on restrictive assumptions such as stagewise indepen-

ency, complete recourse and convexity, scenario groupwise de-

omposition is applicable for a wide range of problems including

ur problem. 

.1. A lower bound 

In this section, we provide a lower bound on the optimal value

f our problem using the scenario groupwise decomposition ap-

roach of Sandikçi and Özaltin (2017) . In this method, a lower

ound is obtained by solving the problem separately for subsets

f the scenarios called as groups. We define the set of groups as a

artition of S . Note that S denotes the set of all scenarios. Let Ŝ 
e the set of groups and I ̂ S be the set of indices of groups in 

̂ S . A
ubset ̂ S i ⊆ S is called as a group for all i ∈ I ̂ S and the collection of

hese groups ̂ S = { ̂  S i } i ∈ I ̂ S 
is called as a scenario partition if it sat-

sfies ∪ i ∈ I ̂ S ̂
 S i = S and 

̂ S i ∩ ̂

 S j = ∅ for all { i, j} ⊆ I ̂ S such that i � = j .

ote that groups do not have to be disjoint to obtain valid bounds,

s mentioned in Sandikçi and Özaltin (2017) . However, for ease of

epresentation, we consider disjoint groups. The problem defined

ver a group, with original probabilities of the scenarios, is called

s group subproblem. 
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Fig. 2. Group subproblems of the consequtive and half-and-half methods for groups of two scenarios for a four stage problem. 
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After a partition is determined, the probability of each scenario

 ∈ S is adjusted to achieve a lower bound. The probability of each

roup 

̂ S i is the summation of the probabilities of scenarios in that

roup, that is, p( ̂  S i ) = 

∑ 

s ∈ ̂  S i 
p(s ) for all i ∈ I ̂ S . The adjusted proba-

ility of each scenario s is ˆ p (s ) = p(s ) /p( ̂  S i ) for all s ∈ 

̂ S i and i ∈ I ̂ S ,
hich is the ratio of the probability of the scenario to the proba-

ility of its group. Once the adjusted probabilities are calculated,

he weighted summation of the optimal values of the group sub-

roblems provides a lower bound for our minimization problem

s proved in Sandikçi and Özaltin (2017) . Let z ∗(S) be the opti-

al value of our problem with scenario set S and z ( ̂  S ) be a lower

ound on z ∗(S) obtained using scenario partition 

̂ S . The following

nequality is satisfied by all ̂ S selections as proved in Proposition

.4 of Sandikçi and Özaltin (2017) : 

 

(̂ S 
)

= 

∑ 

i ∈ I ̂ S 

p 
(̂ S i 

)
· z ∗

(̂ S i 
)

≤ z ∗( S ) . (33) 

The quality of the lower bound depends on the selection and

ize of groups as demonstrated in Sandikçi and Özaltin (2017) . To

ee the effect of different partition selections, we construct the

roup subproblems with size | ̂  S i | = |S| / | I ̂ S | for all i ∈ I ̂ S with fol-

owing two partition methods: 

1) Consecutive: We select |S| / | I ̂ S | consecutive scenarios using the

order that they appear in the scenario tree. This collection con-

structs the first group subproblem. We repeat this procedure

for the rest of the scenarios till all of them are selected. 

2) Half-and-half: We select |S| / | I ̂ S | scenarios half of which is taken

from the leaf nodes with the smallest indices and half is taken

from the largest indices. This collection constructs the first

group subproblem. We repeat this procedure for the rest of the

scenarios till all of them are selected. 

Since the consecutive method constructs the groups with sce-

arios having more common nodes, it is expected that consecutive

ethod has an advantage in computation time over the half-and-

alf method per group. On the other hand, grouping scenarios with
ess common nodes, as in the half-and-half method, shortens the

omputation time to compute an upper bound as will be explained

n detail in Section 4.2 . 

These partition strategies are explained in Fig. 2 over a four

tage scenario tree with two branches in each stage. The scenario

ree is provided in (a). The construction of groups of size two and

he adjusted probabilities of each scenario under this construction

re demonstrated in (b) and (c) for the consecutive and half-and-

alf strategies, respectively. 

.2. An upper bound 

We use an optimal solution of each group subproblem to gen-

rate a feasible solution to the original problem as in Sandikçi and

zaltin (2017) . Let x ∗( S, t ) be the restriction of an optimal solu-

ion of our problem with scenario set S ⊂ S to the first t stages.

or a given scenario partition 

̂ S , to obtain an upper bound for our

roblem, the optimal solution x ∗( ̂  S i , t) is substituted to the origi-

al problem one by one for each group of scenarios ̂ S i , i ∈ I ̂ S . Each

esulting problem is called as residual problem and denoted by

( ̂  S i , t) . Then, the residual problems are solved for the remaining

ecision variables. 

This procedure is explained in Fig. 3 for the four stage prob-

em provided in Fig. 2 . Residual problems obtained after the sub-

titution of x ∗( ̂  S 1 , 4) into the original problem are demonstrated

n (a) and (b) for consecutive and half-and-half methods, respec-

ively. Note that, residual problems involve only the decision vari-

bles and the constraints associated with the non-colored nodes;

on-anticipativity constraints regarding the non-colored nodes are

ept in the residual problems. 

After substitution, if P( ̂  S i , t) is feasible, its optimal value repre-

ented by z ∗( ̂  S i , t) is a valid upper bound on z ∗(S) . If P( ̂  S i , t) is in-

easible, then we set z ∗( ̂  S i , t) to ∞ . Note that, to reduce the possi-

ility of infeasibility, small t values can be used. Additionally, since

he number of fixed variables in P( ̂  S i , t) reduces as t decreases,

he resulting bound may get stronger. After solving P( ̂  S , t) for all
i 



8 M.K. Ş ahin, Ö. Çavu ̧s and H. Yaman / Computers and Operations Research 118 (2020) 104928 

Fig. 3. Problems solved to compute an upper bound in different selection strategies. 

Fig. 4. Scenario decomposition of P( ̂  S 1 , 4) for different selection strategies. 
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u  
̂ S i , i ∈ I ̂ S , the minimum of the obtained upper bounds is selected:

z ∗( ̂  S , t) = min 

i ∈ I ̂ S 
z ∗( ̂  S i , t) and z ∗( ̂  S , t) is the upper bound provided by

scenario partition 

̂ S . 
The residual problems have less decision variables and con-

straints compared to the original problem, furthermore, they are

decomposable into smaller problems. Therefore, each residual

problem may require far less computation time than the original

problem. Fig. 4 provides the scenario decompositions of the resid-

ual problems given in Fig. 3 . As seen in Fig. 4 , the consecutive and

half-and-half methods differ with regard to the number and sizes

of the problems obtained after decomposition. In the consecutive

method, since the scenarios in the group subproblems have more

common nodes, the sizes of the problems after decomposition are

greater. Consequently, we expect that solving the residual problem

in the half-and-half method takes less time compared to the con-

secutive method. 

5. Computational results 

In this section, we present the results of our computational ex-

periments. We first investigate the quality of bounds obtained with

the scenario groupwise decomposition. Second, we investigate the

gains of demand response optimization for residents with different

levels of price sensitivity. Third, we analyze the savings due to the

use of renewable energy and batteries. 
.1. Scenario generation 

We consider a time period of 24 hours and use equal number of

eriods in each stage. We consider the solar energy as our renew-

ble energy source. The power of renewable energy can be calcu-

ated using global horizontal irradiance (GHI) data (total amount of

olar irradiance on the horizontal surface of the ground Reno et al.

2012) ) and the features of the solar panel such as area, tilt an-

le and the conversion efficiency. To generate the data of temper-

ture and the power of renewable energy randomly, we use the

ourly temperature and GHI data obtained from the dataset of Na-

ional Renewable Energy Laboratory ( NREL, 2018 ). The correlation

etween GHI and temperature is calculated as 40% when consid-

ring the daytime data of the year 2005. Despite the positive cor-

elation, high temperature and low amount of solar radiation can

e observed at the same time because of the solar absorption by

louds, as mentioned in Cess et al. (1995) and Tsay et al. (2001) .

e use the real temperature and GHI data for each hour to take

nto account both the solar absorption and the positive correlation.

e provide two data sets generated by the following two methods:

Dataset 1 : This data set represents the cases with a good fore-

ast for temperature and GHI. During the data generation process,

he data of one month of a specific year are used. Firstly, a ran-

om day in the given month is chosen. For each hour of the first

tage, corresponding temperature and GHI values of this day are

sed. When the stage is over, two branches emanate: one branch
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Table 2 

Comparion of gaps and solution times for instances with six stages. 

group size number of stages fixed half-and-half method consecutive method 

time (s) opt gap (%) time (s) opt gap (%) 

2 1 2537.47 0.57 2269.42 0.68 

2 63.41 0.61 1063.85 0.63 

3 53.39 0.62 1057.05 0.63 

4 50.97 0.62 1054.83 0.63 

5 49.27 0.62 

4 1 2204.91 0.49 1711.04 0.60 

2 122.69 0.56 842.57 0.60 

3 115.6 0.58 793.80 0.60 

4 115.39 0.58 

8 1 2860.53 0.63 1722.61 0.41 

2 1274.68 0.71 880.56 0.45 

3 1270.76 0.73 

16 1 4259.95 1.92 4096.77 2.23 

2 3244.75 2.01 
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r  

i  
ontinues to use the data of this day and for the other branch, the

emperature of the last hour of previous stage is compared with

he temperature of the same hour of each day in the given month

nd the data of the day having closest temperature are used. The

ame procedure is applied for the rest of the stages. 

Dataset 2 : This data set represents the cases with a relatively

ad forecast for temperature and GHI. Different from dataset 1 , the

ata of a given month for different years are used. Data genera-

ion process is almost the same as dataset 1 : two branches em-

nate from each node, one branch continues to use the same year

ata of previous stage and for the other branch, the data of a ran-

omly selected day of a randomly selected year are assigned. 

For computational experiments, we consider a smart home

quipped with five electrical appliances, each from different types,

here HEMS is used to schedule their operations in a day in July. 

Our data is available at https://github.com/

emandResponseOptimization/datasets . 

.2. Computation times and quality of bounds 

All experiments are carried out on a 64-bit machine with Intel

eon E5-2630 v2 processor at 2.60 GHz and 96 GB of RAM using

ava and CPLEX 12.6. 

First, we analyze the impact of group size and the number of

tages for which the variables are fixed on the gap between lower

nd upper bounds. In Table 2 , we report the averages of results for

ix instances from dataset 1 with six stages (32 scenarios). The first

olumn gives the number of scenarios in each group and the sec-

nd column gives the number of stages for which we fix the vari-

bles to compute an upper bound. We give the computation times

nd the gaps obtained by the half-and-half and consecutive meth-

ds. We set time limit of one hour to compute the lower bound

nd one hour to compute the upper bound. Since each bound com-

utation requires solution of several problems, we distribute the

our equally for each problem. To compute an upper bound, we

et different time limits to each subproblem directly proportional

o their sizes. If subproblem is not solved to optimality within the

ime limit, the best bounds are used. 

If the half-and-half method is used, the smallest gap is observed

hen we solve subproblems of four scenarios and fix the variables

n the first stage. However, it takes a long time to compute the

ounds. The next best case arises again with subproblems of four

cenarios but this time we fix the variables in the first two stages

nd this saves a significant amount of computation time. A bet-

er gap is obtained by the consecutive method when the group size

s eight and the variables in the first two stages are fixed. How-

ver, this again requires a longer computation time compared to
he computation time of the half-and-half method with group size

f four and two fixed stages. Based on this analysis, we decided to

ook closely on different instances when we take group subprob-

ems of size four and fix the first two stages. To compute upper

ounds, we use the solutions from two randomly selected group

ubproblems. We report the results in Table 3 for 15 instances. For

ach instance, we report the lower and upper bounds computed

sing both selection methods as well as the time required to com-

ute both bounds and the gaps. We also report the optimality gaps

iven by the solver in the same amount of time. Additionally, in

he last column, we report the gaps for the solver with a time limit

f one hour. 

We see that the quality of bounds computed using both selec-

ion methods are very similar. However, the half-and-half selection

equires a smaller amount of time to compute the bounds. The av-

rage gap for the half-and-half method is 0.51% and the average

omputation time is 82 seconds. The solver stops with an average

ap of 12.37% in the same amount of time. When given the com-

utation times of the consecutive method, the gap of the solver de-

reases to 10.92%. After one hour, this gap drops to 5.93%, which is

ignificantly larger than the gap of the scenario groupwise decom-

osition approaches. 

As the half-and-half method gives smaller computation times,

e use it to compute bounds for larger instances. In Table 4 , we

eport the results for instances from datasets 1 and 2, respectively,

ith eight stages (128 scenarios) under different threshold values

hen each group contains four scenarios, the decisions in the first

hree stages are fixed and optimal solutions of four randomly se-

ected group subproblems are used in computing upper bounds.

e also report the optimality gaps given by the solver in the same

mount of time scenario groupwise decomposition approach com-

utes both bounds. 

The results show that the decomposition approach is able to

ompute high quality solutions in reasonable computation times

hereas the solver stops with significantly larger gaps in the same

mount of time. We also observe that instances from dataset 2

ith a smaller threshold are more challenging. 

Based on the results of this experiment, we can conclude that

he stochastic demand response optimization problem is very dif-

cult to solve exactly using a general purpose solver. Even the in-

tances with six stages are not solved to optimality in an hour. 

.3. Gains due to demand response optimization 

In our second experiment, we investigate the gains of demand

esponse optimization for residents with different price sensitiv-

ty. To this end, we use instances with four stages (eight scenar-

https://github.com/DemandResponseOptimization/datasets
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os), which are all solved to optimality. We set the threshold value

o 1.8 for the rest of the experiments. To model different levels

f price sensitivity, we vary the disutility weight φ as 0.1, 0.5, 1,

. The value 0.1 models a resident who is very sensitive to price

hereas the value 5 models a resident who is not sensitive to price

nd values his/her comfort. 

In Table 5 , we report the improvements in the electricity cost

nd the weighted sum of electricity cost and disutility (our ob-

ective function) when we use optimization for four types of res-

dents. For the case without optimization, we schedule the appli-

nces in two ways. First we minimize the discomfort: the continu-

us appliances use electricity uniformly over the day. The temper-

ture is set to its comfortable value and interruptible and uninter-

uptible appliances are used in the middle of their desired time in-

ervals. No battery is used, hence the renewable energy is utilized

hen available. In the case of optimization, we solve our model.

e report the average results over ten instances. 

We observe that there is significant gain for all types of resi-

ents. There is clearly a big difference between the improvements

n the electricity cost for residents that are very sensitive and in-

ensitive to price. In the case of price insensitive residents, opti-

ization still reduces the electricity cost by 17% with a little in-

rease in the disutility. 

In the second approach, we schedule the appliances in a greedy

ay to minimize cost. The continuous appliances operate at max-

mum energy level during the required number of periods with

he lowest electricity price and operate at the remaining energy

evel at the period with the next lowest electricity price to provide

otal energy requirement. They operate at minimum energy level

or the rest of the day. If the inside temperature is in the allowed

ange without heating or cooling, the temperature appliance does

ot operate. Otherwise, the temperature is set to its minimum or

aximum comfortable value depending on the outside tempera-

ure. Interruptible and uninterruptible appliances are used in time

eriods that provide the lowest total electricity cost to complete

heir tasks in their desired interval. No battery is used. We report

he average results over ten instances in Table 6 . 

We observe that even if there is an increase in the electricity

ost, the overall gain is significant for all types of residents as in

he previous case. While improvement in disutility is more than

5% for all types of residents, it is above 99% for less price sensitive

nd price insensitive residents. 

These results show that important gains are possible using op-

imization in demand response for all types of residents. 

Next, we are interested in the tradeoff between the electric-

ty cost and the distutility as well as the amount of electricity

onsumption exceeding threshold value for different types of resi-

ents. In Table 7 , we report the average results over ten instances.

ince keeping the temperature close to the comfortable value re-

uires more energy than keeping it in the comfortable interval,

otal electricity consumption increases as price sensitivity of res-

dents decreases. When appliances are used in their most desir-

ble time intervals, the threshold value is exceeded more often and

he electricity is charged at the higher price. Consequently, resi-

ents who are insensitive to price pay 43.37% more than the ones

ho are very sensitive to price while decreasing their disutilities

y 86.78%. Almost half of the energy consumption of the price in-

ensitive residents is charged at the higher price whereas the per-

entage is less than 18% for residents who are very sensitive to

rice. 

.4. Gains due to battery and renewable energy 

In our third experiment, we investigate the impact of battery

nd renewable energy on the electricity costs and disutilities of

esidents. 
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Table 4 

Results for instances with eight stages. 

dataset 1 dataset 2 

u sol time (s) opt gap (%) CPLEX opt gap (%) sol time (s) opt gap (%) CPLEX opt gap (%) 

1.8 1962.65 0.58 9.87 2056.24 1.80 12.53 

2128.24 0.34 7.95 2491.96 1.43 7.8 

2129.39 0.72 8.96 2126.88 0.60 9.47 

2210.99 0.96 10.68 2206.33 0.85 8.08 

2012.08 0.33 9.22 3594.08 0.98 7.14 

1092.17 0.51 11.56 2247.10 0.92 7.62 

avg 1922.59 0.57 9.71 2453.76 1.10 8.77 

2.2 618.54 0.40 6.38 807.89 1.71 8.91 

53.95 0.10 1.63 721.89 0.78 16.07 

51.32 0.23 1.59 1468.1 1.11 15.02 

86.14 0.59 2.34 1156.85 0.85 8.83 

44.23 0.10 1.67 120.59 0.39 2.19 

1163.25 0.63 10.52 1009.09 0.89 15.13 

avg 336.24 0.34 4.02 880.73 0.95 11.02 

Table 5 

The average gains of optimization compared to a schedule that minimizes disutility. 

very price sensitive 

resident 

price sensitive 

resident 

less price sensitive 

resident 

price insensitive 

resident 

gain in cost (%) 41.25 26.58 22.42 17.05 

loss in disutility 18.65 9.49 6.72 1.73 

total gain (%) 32.45 22.15 19.24 16.22 

Table 6 

The average gains of optimization compared to a greedy schedule with cost objective. 

very price sensitive 

resident 

price sensitive 

resident 

less price sensitive 

resident 

price insensitive 

resident 

loss in cost (%) 3.08 22.38 26.64 32.89 

gain in disutility (%) 87.91 98.60 99.43 99.98 

total gain (%) 49.17 81.88 89.85 97.74 

Table 7 

Results on electricity consumption above the threshold, cost and disutility. 

very price sensitive 

resident 

price sensitive 

resident 

less price sensitive 

resident 

price insensitive 

resident 

electricity consumption exceeding the threshold value 6.81 14.63 16.80 21.10 

total net electricity consumption 37.87 43.79 44.77 45.67 

total cost 117.71 146.77 155.61 168.76 

total disutility 17.77 10.34 8.12 2.35 

Table 8 

Results of gains due to battery and renewable energy. 

very price sensitive 

resident 

price sensitive 

resident 

less price sensitive 

resident 

price insensitive 

resident 

gain due to battery (%) 3.16 3.48 3.67 4.21 

gain due to renewable energy (%) 25.31 25.10 24.82 24.84 

gain due to battery and renewable energy (%) 27.11 28.34 28.66 28.74 
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We present average results over ten instances in Table 8 . With-

ut the renewable energy, the use of batteries already results in

ignificant improvements in the objective function for all types of

esidents. The gain due to renewable energy is similar for all res-

dent types and it is a remarkable amount. But even further im-

rovements are possible when the renewable energy is combined

ith batteries. 

To see the impact of the renewable energy and the battery on

lectricity consumption during a day, we plot the consumption due

o different types of appliances for an instance over a scenario in

ig. 5 . Low and high price values and the temperature and avail-

ble renewable energy over a day are depicted in (a) and (b), re-

pectively. From (c) and (d), it can be deduced that using a bat-

ery decreases the electricity consumption in time periods with
igher prices (between 5 and 10 P.M.). In (c), battery stores elec-

ricity when the price is low. While the battery feeds the system

hen interruptible appliance operates, it stores electricity when

t does not operate or when the amount of renewable energy is

igh. This flexibility enables the appliances to work during their

esirable time intervals while keeping total consumption under the

hreshold value. When the battery is not used, in (d), although the

ninterruptible appliance moves away from its desirable time in-

erval, total consumption exceeds the threshold value in a time

eriod with a relatively higher price. The comparison of (c) and

e) shows that when renewable energy is not available, consump-

ion shifts to hours with cheaper price. In addition to the increase

n the number of time periods in which electricity is charged at

he higher price, the amount charged at this price also increases
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Fig. 5. Effect of battery and renewable energy on the daily consumption. 

Table 9 

EVPI and VSS for instances with four stages. 

scenario groupwise decomposition method 

z SP z WS EVPI EVPI (%) EEV rolling VSS VSS (%) lower bound upper bound gap between lower and upper bound (%) opt gap (%) 

137.97 137.84 0.13 0.09 146.74 8.77 6.36 137.94 137.98 0.03 0.01 

175.72 175.51 0.21 0.12 185.47 9.75 5.55 175.64 175.74 0.05 0.01 

136.95 136.80 0.15 0.11 145.74 8.79 6.42 136.86 136.96 0.08 0.01 

187.44 186.78 0.66 0.35 196.34 8.90 4.75 187.26 187.51 0.13 0.04 

162.33 161.61 0.72 0.44 174.28 11.95 7.36 162.19 162.33 0.09 0.00 

166.24 165.97 0.27 0.16 176.69 10.45 6.29 166.12 166.25 0.08 0.01 

avg 0.21 6.12 0.08 0.01 
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without renewable energy. Figures (e) and (f) show that the bat-

tery provides savings even when renewable energy is not available.

While the periods in which the threshold is exceeded are gener-

ally those with lower electricity price in (e), when the battery is

removed, we encounter also periods with high consumption at rel-

atively higher prices in (f). 

5.5. Value of information and stochastic solution 

In our final experiment, we compare the performances of

stochastic and deterministic solutions via expected value of per-

fect information ( EVPI ) and value of stochastic solution ( VSS ). To

calculate VSS , we solve the problem in a rolling horizon updating

the revealed information in each stage as in Escudero et al. (2007) .

At the first step, we solve a deterministic problem where all un-

certain parameters are replaced with their expected values. In the

next step, we are interested in the expected cost that the deci-

sion maker will incur if s/he implements the optimal first stage

solution of the previous step without considering the uncertainty

of future stages. Since the uncertainty related to the second stage
s revealed in the second step, all the uncertain parameters other

han the ones corresponding to the second stage are set to their

xpected values. Then the values of the first stage decision vari-

bles are fixed to the optimal first stage solution of the previous

tep and the resulting problem is solved. This procedure is re-

eated until the last stage and the optimal value of the problem

olved at the last stage (step) is called as EEV rolling . We report the

esults in Table 9 for six instances. For each instance, we report the

ptimal value of stochastic problem ( z SP ), wait-and-see value ( z WS ),

VPI and VSS . Here, the VSS is the difference between EEV rolling and

 

SP . We also report the results of scenario groupwise decomposi-

ion method when each group contains two scenarios and the de-

isions in the first stage are fixed. 

It can be seen that the decision maker may incur on the av-

rage 6.12% increase in the objective function value by using the

olling horizon approach instead of solving the stochastic problem

xactly. Therefore, solving the stochastic problem is valuable for

he decision maker. Furthermore, the optimality gap of our solu-

ion method is 0.01% on the average. Therefore, even our method

oes not guarantee to find an exact solution, it provides a so-
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ution much better than the one given by the rolling horizon

pproach. 

For the instances tested in Table 9 , EVPI value is small, imply-

ng that the solution of our stochastic model is close to the one

btained with perfect information. 

. Conclusion 

In this study, we presented a model for demand response op-

imization in which we considered all types of appliances already

entioned in the literature as well as renewable energy and bat-

eries. We also incorporated the uncertainty in temperature and

he availability of renewable energy using multi-stage stochas-

ic programming. We provided a decomposition scheme that pro-

uced good quality bounds for large instances. We also conducted

 detailed experiment that provided insights about the gains in

ost and utility for residents with different price sensitivity. We

bserved that optimization can provide significant improvements

oth in cost and utility for all types of residents. The same is also

rue for renewable energy and batteries. With these three tools

ombined, the peak demand can be reduced significantly, provid-

ng savings for residents, flexibility for the electricity providers and

ess damage to the environment. 

One of the major limitations of our study is that we consider

nly the power flow from utilities to customers. Investigating the

mpact of bidirectional power flow is an important future research

irection. It may be interesting to compare the amount of energy

ent to the grid by residents with different price sensitivities in

ifferent pricing schemes. 

Another promising direction of future work is to investigate the

ntegration of the electric vehicles in the power grid. Although they

an be modelled in the same way as appliances with battery, con-

idering the uncertainty in the availability of vehicle may be inter-

sting. 

From the computational point of view, as a future work, parallel

omputing may be exploited to compute lower and upper bounds

o shorten the required computational time. 
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