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Abstract
Fairness is one of the primary concerns in resource allocation problems, especially 
in settings which are associated with public welfare. Using a total benefit-maximiz-
ing approach may not be applicable while distributing resources among entities, and 
hence we propose a novel structure for integrating balance into the allocation pro-
cess. In the proposed approach, imbalance is defined and measured as the deviation 
from a reference distribution determined by the decision-maker. What is considered 
balanced by the decision-maker might change with respect to the level of total out-
put distributed. To provide an allocation policy that is in line with this changing 
structure of balance, we allow the decision-maker to change her reference distribu-
tion depending on the total amount of output (benefit). We illustrate our approach 
using a project portfolio selection problem. We formulate mixed integer mathemati-
cal programming models for the problem with maximizing total benefit and mini-
mizing imbalance objectives. The bi-objective models are solved with both the epsi-
lon-constraint method and an interactive algorithm.

Keywords  Bi-objective resource allocation problem · Fairness · Knapsack problem · 
Balance · Equity · Convex cones approach · Epsilon-constraint approach

1  Introduction

Allocating resources across multiple entities is a problem encountered in many real-
life settings, hence resource allocation problems are widely studied in the opera-
tional research (OR) literature (Luss 2012). Various decision support systems have 
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been proposed to help the decision-makers allocate resources so that the total output 
of the system is maximized.

Typically, resources are allocated so that the entities will enjoy benefits (out-
puts), i.e., any resource allocation to entities is associated with an output alloca-
tion. Resources and outputs can change based on the problem type: For example, 
in a healthcare resource allocation problem, resource can be budget and benefit can 
be measured with the number of people who benefit from a healthcare project or 
it can be measured by the quality adjusted life years1 (QALYs) gained by the tar-
get population. Even if in some situations where there could be projects which have 
some negative impacts (e.g., inadvertent adverse consequences due to treatments in 
healthcare projects), we assume that the projects generate a single output, and this 
represents benefits. Hence, throughout this paper, we use the terms output and ben-
efit and also resource and input interchangeably.

The one widely used approach in resource allocation is total output maximiza-
tion, also known as the utilitarian approach. This method focuses on maximizing the 
total output regardless of how it is distributed across the entities. It achieves the best 
result in terms of the total output; however, it may fail to sustain fairness (balance) 
in the allocation. This is because this approach may ignore allocating resources to 
entities that are not as good as the others at converting resources to output. Con-
sider a healthcare project selection problem, where projects are categorized by target 
patients’ ages; resource usage is measured with the cost of a project and benefit is 
the resulting QALYs for a patient group. In this case, the utilitarian approach can 
result in a highly unfair resource distribution among categories. Elderly patients may 
not receive any resource, since these patient groups obtain relatively less benefit per 
unit resource devoted to them. Hence, using a utilitarian approach could be consid-
ered a highly controversial decision.

One approach to ensure fairness can be equally dividing the resources among 
entities, if possible. However, such an allocation may also be inapplicable, since it 
may result in a high efficiency loss (sacrifice from the best level of the total output). 
In the same healthcare resource allocation problem, a policy maker may also find a 
completely equal resource allocation to infants and elderly unfair or unacceptable on 
the grounds that the society should provide more resources to younger generations. 
Between these two extremes (a total output maximizing allocation and fairness max-
imizing allocation), there are other allocations, i.e., the problem is a bi-objective 
decision-making problem.

Moreover, as the example shows, fairness itself is a subjective concept, and hence 
it does not have a de facto definition. Depending on the problem setting and deci-
sion-maker, several different criteria can be listed to describe a “fair” allocation. In 
this study, we suggest an approach that will accommodate these differences while 
incorporating balance concerns into the resource allocation process. The proposed 
method enables decision-makers to define a perfectly balanced allocation (reference 
allocation) differently at different levels of output. In order to achieve this structure, 

1  QALY is a measure of health combining length and quality of life. It is widely used in studies focusing 
on evaluations of healthcare programs (Drummond et al. 2015)
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a bi-objective mixed integer mathematical programming formulation is used. In 
addition, we engage both a posteriori and interactive solution approaches, which dif-
fer in terms of decision-maker’s participation throughout the solution process.

In recent years, fairness has become an important criterion in many OR appli-
cations. It is almost a mandatory criterion in decisions affecting social welfare as 
in public sector decision-making (see, e.g., (Butler and Williams 2002; Kelly et al. 
1998; Smith et al. 2013; Mestre et al. 2012; Heitmann and Brüggemann 2014; Karsu 
and Morton 2015 and the references therein for a review of such applications).

Equity-related concerns can be categorized as equitability and balance (Karsu 
and Morton 2015). Equitability aims to achieve an even distribution of the resources 
or outputs, since it assumes that the entities are indistinguishable, i.e., the identities 
of the entities do not affect the decision. Balance concerns, however, are relevant in 
cases, where the entities have different characteristics. They may, for example, differ 
in terms of productivity, need or claims. In such cases, a completely equal allocation 
may be undesirable and the decision-maker may want to allocate the resource in dif-
ferent proportions.

For the case where resource allocation across entities with different character-
istics is considered, Karsu and Morton (2014) propose a bi-criteria framework to 
handle balance and total benefit maximization concerns. They suggest using a refer-
ence distribution approach to measure how balanced a given distribution is. Simi-
larly, Stewart (2016) uses a reference point approach to solve a real-life multi-objec-
tive resource allocation problem where quantity, quality and balance are the main 
concerns.

In this paper, we follow this line of research and provide a methodology to help 
decision-makers to trade balance off against total benefit in resource allocation set-
tings. We assume that the decision-maker has balance concerns for the output dis-
tribution and extend the idea of balance measurement in Karsu and Morton (2014) 
to a piecewise linear concept, which allows the decision-maker to change her refer-
ence proportion depending on the total output. The main contribution of this work in 
comparison with the previous work, especially the one by Karsu and Morton (2014), 
is the changing reference approach. This extension is a generalization of the previ-
ous work and would provide more flexibility in real-life applications. This gener-
alization significantly changes the structure of the bi-objective programming models 
solved, as will be discussed in Sect. 2.

The rest of the paper is as follows: In Sect.  2 we first introduce the imbalance 
measurement approach with changing reference proportions at different total output 
intervals. We exemplify the use of the approach on knapsack-type discrete resource 
allocation problems and provide the corresponding mathematical models. In Sect. 3, 
we discuss a further extension of the approach, which uses interpolation of threshold 
reference proportion vectors to assign a unique reference proportion vector to each 
total output value as opposed to using a fixed reference proportion for the whole 
interval. In Sect. 4, we demonstrate the feasibility of the approach by solving exam-
ple problems using the epsilon-constraint method and providing the results of our 
computational experiments. For settings where the decision-maker (DM) is willing 
to provide preference information, we discuss an interactive approach and report on 
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its performance. We conclude the discussion in Sect. 5 by summarizing our results 
and pointing out some further research directions that could be pursued.

2 � Problem definition

2.1 � Changing reference proportions in resource allocation

We measure balance with respect to desired proportions of the decision-maker 
and allow her to change these proportions as the total output or the total input 
changes. In this section, we discuss this idea of changing reference proportions in 
detail.

The underlying idea is similar to that of the well-known allocation rule from 
Babylonian Talmud, which divides a given resource in different proportions, 
changing with respect to the total amount of resource and demand (see Young 
1995 for a detailed description). The story is as follows: A man dies leaving a 
heritage and credits to three different creditors with amounts of 100, 200, and 
300 units. According to Talmud’s rule, if the heritage is 100 units, each creditor 
gets 33.3 units (equal amounts); if heritage is 200 units then creditors receive 50, 
75, 75 units, respectively, and if it is 300 units, they receive 50, 100, 150 units, 
respectively. In this allocation policy the received shares change depending on 
the total amount of heritage. When heritage is small, each creditor receives equal 
proportions; however, as the amount on hand increases their shares become pro-
portional to their credits. If the decision-maker keeps the equal proportion policy 
in the third scenario, 100% of creditor one’s credits will be paid, while only 33.3% 
of creditor three’s credit will be covered. From creditor three’s perspective, this 
allocation may not be acceptable, and therefore in such situations, shifting the 
distribution from equal amounts may improve fairness.

A similar situation may also be seen in investment planning. Armbruster and 
Delage (2015) and Eeckhoudt and Schlesinger (2006) state that investors may 
become more risk tolerant when the potential output is higher. As the expected 
benefit gets higher, the investor becomes more prudent to invest in more risky 
projects, and hence the reference allocation changes.

We will explain the novel approach that we suggest for imbalance measure-
ment in resource allocation settings using a small example as follows:

Assume that a local healthcare provider is planning the annual budget allot-
ment for a set of proposed projects, each of which targets a different population 
group. For simplicity, consider a case with two population groups, which are sig-
nificantly different with respect to their life styles. Let us assume that the first and 
second groups represent people who are negligent and cautious about their health, 
respectively. (Such behavioral differences could emerge due to other attributes of 
the groups such as income.) The provider measures health gain in terms of the 
total scores based on QALYs.

If the total score that would result from the allocation decisions is relatively 
low, the policy makers may prefer to use the resources such that benefit is evenly 
distributed across population groups. Making the allocation in favor of the group 
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that returns more benefit per unit resource (in our example this corresponds to the 
second group) would create a significant gap between their healthcare status; thus 
it may not be appropriate for ethical reasons. Conversely, if total score is relatively 
high (e.g., between 70 and 100), the overall community health may be consid-
ered to be above standards. Since the overall health state is already good, having 
a more uneven distribution between population groups may be more acceptable. 
Both groups already have above satisfactory health status; hence, when benefit 
distribution shifts toward one of the groups, the difference would not be as strik-
ing as the first case. Therefore the policy maker may prefer an allocation where 
the second population group has higher returns in order to increase total health 
score. To summarize, distributing a good in a fair manner may be more important 
when the total welfare is already low. As the total welfare increases, the allocator 
may want to shift resources to more productive entities.

We illustrate the changing reference proportions in the example in Figure  1a, 
where there are two categories (population one and population two). The two axes 
represent the total benefit enjoyed by the categories, i.e., the total health score of 
each population. As long as the total benefit is below 40 units, decision-maker uses 
reference proportion �1 . This reference proportion is a vector showing the desired 
benefit percentages for each group, in this example �1 = (0.5, 0.5) , i.e., if the total 
benefit is below 40 units, the policy makers would like to distribute it evenly across 
the two groups. When the total benefit exceeds 40 units, he/she changes the refer-
ence distribution vector from �1 to �2 = (0.4, 0.6), and in this representation, he/she 
prefers to see that the bigger portion of the benefit is in category 2. As the output 
increases, reference distribution becomes less even between categories.

This methodology can be applied to incorporate balance concerns in various 
resource allocation environments which can be formulated as: continuous knapsack 
problems, where benefits are obtained with respect to some production function, dis-
crete knapsack problems, where costs and benefit parameters are explicitly given, 
or in assignment problems with capacity limitations. We illustrate the proposed 
approach using a discrete knapsack problem. Knapsack problem is a well-known 
combinatorial optimization problem, which has various real-life applications and is 
in the class of NP-hard problems (Kellerer et al. 2004). The problems that we for-
mulate will trade balance off against total benefit, and hence they are bi-objective 
knapsack problems (see Carazo 2015 for a discussion on multi-criteria knapsack 
problems).

2.2 � Mathematical model with interval‑based reference proportions

We consider a bi-objective discrete knapsack problem to illustrate our resource allo-
cation mechanism. In the problem setting, suppose there are N proposed projects 
and each project incurs a cost of ci units and returns a benefit of bi units. Projects 
are divided in different categories such that each project belongs to one (and only 
one) category. Let K be the number of categories and let K ≤ N . We assume that 
the decision-maker has a limited budget B, which is not enough to fund all of the 
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projects ( 
∑N

i=1
ci > B ). Benefit and cost values of each project are assumed to be 

known, and hence productivity of each project is known a priori to the investments 
decision.

We define the binary variables � = (x1,… , xN) as follows: xi = 1 if project i is 
selected in the portfolio and 0 otherwise. We assume that the degree of imbalance 

Fig. 1   Changing Reference 
Proportion Setting
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of any distribution is measured by its distance to a reference allocation, which dis-
tributes the benefit according to DM’s desired (reference) proportions. We allow the 
DM to determine different reference proportions for different levels of total benefit 
distributed. Assume that there are M threshold values defining (M − 1) intervals 
(interval m is defined by threshold levels Tm and Tm+1 ). Reference proportion �mk 
is the desired proportion of total benefit allocated to category k = 1,… ,K if the 
total benefit is in interval m = 1,… , (M − 1) . Reference proportion can increase/
decrease as we move along on the intervals to shift the allocation in favor of particu-
lar categories.

Recall our health benefit example with two population groups. Assume that the 
groups are constructed based on the individuals’ smoking habits (group 1: smok-
ers and group 2: nonsmokers). For simplicity, assume that there are two healthcare 
project portfolios: Portfolio 1 would result in 50 units of benefit to group 1 and 10 
units of benefit to group 2 while Portfolio 2 provides 5 and 15 units to these two 
groups, respectively. Consider the reference proportions of (0.5, 0.5) when the total 
benefit is less than 40 and (0.4, 0.6) when it is more than 40 (for higher total benefit 
levels the DM would rather encourage the nonsmokers by allocating more benefit 
to that group). Then, at portfolio 1’s total benefit level, the DM would rather have 
(60*0.4, 60*0.6)=(24,36). We call this reference allocation and actual allocation of 
(50,10) the realized allocation. Similarly, at Portfolio 2’s total benefit level (20), the 
DM would rather distribute the benefit equally so its reference allocation vector is 
(20*0.5, 20*0.5)=(10,10) while the realized allocation is (5, 15).

Imbalance of a realized allocation is measured as the total component-
wise deviation from reference distribution of that allocation. That would be 
(|50 − 24| + |10 − 36|) = 52 for Portfolio 1 and (|5 − 10| + |15 − 10|) = 10 for 
Portfolio 2. As seen, Portfolio 2 is more in line with the DM’s allocation preferences 
in terms of balance but it has less total benefit than the first one.

Figure  1b shows the component-wise deviations of two realized allocations 
from their reference allocation vectors. Realized allocations are represented with 
real1 , real2, and �1 , �2 are the corresponding decision variable vectors. These 
two realized allocations have total benefits lying in different intervals, and their 
imbalance level will be calculated with respect to their own reference propor-
tion vectors. By using the corresponding � values, we calculate reference dis-
tributions as follows; ref1

k
= �1k

∑N

i=1
bix

1
i
 and ref2

k
= �2k

∑N

i=1
bix

2
i
 , k = 1, 2 . 

Component-wise deviation from reference distribution can be measured as 
dev

j

k
= |realj

k
− ref

j

k
| j = 1, 2 k = 1, 2 . Then, imbalancej =

∑K

k=1
dev

j

k
j = 1, 2.

Notations used throughout the paper for the mathematical formulations are intro-
duced below:

Problem parameters

N:	� Number of projects
K:	� Number of categories
M:	� Number of thresholds
B:	� Total budget
ci:	� Cost of project i = 1,… ,N
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bi:	� Benefit of project i = 1,… ,N

Tm:	� Threshold values defining intervals for total benefit values m = 1,… ,M

�mk:	� Reference (desired) proportion for category k in interval m
	� k = 1,… ,K    m = 1,… , (M − 1) ( �m ∈ RK , 

∑K

k=1
�mk = 1)

gik =	�
{

1, if project

0, otherwise

TB:	� Total benefit of all the proposed projects 
∑N

i=1
bi

�Tm:	� Difference between two consecutive threshold values, Tm+1 − Tm , 
m = 1,… , (M − 1)

Decision variables

xi =	�
{

1, if project i is accepted, i = 1,… ,N

0, otherwise

Xm:	� Amount of benefit gained within the interval m = 1,… , (M − 1)

ym =	�
{

1, if

0, otherwise

�k:	� Selected reference proportion for each category k = 1,… ,K , 
( 
∑K

k=1
�k = 1)

Imbalance:	� Imbalance indicator of the benefit distribution

The proposed bi-objective interval-based reference proportion model (IRPM) is 
provided below:

(1)max

N∑

i=1

bixi, min Imbalance

(2)
N∑

i=1

cixi ≤ B

(3)
N∑

i=1

bixi =

(M−1)∑

m=1

Xm

(4)X1 ≤ �T1

(5)Xm ≥ �Tmym m = 1,… , (M − 2)

(6)Xm ≤ �Tmym−1 m = 2,… , (M − 1)

(7)�k = �1k(1 − y1) +

M−3∑

m=1

�m+1k(ym − ym+1) + �M−1kyM−2 k = 1,… ,K
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Constraint (2) ensures that the budget is not exceeded. Constraint (3) is used to cal-
culate the total benefit of the projects which are selected in the portfolio. Constraints 
(4)–(6) are used to identify the interval of total benefit. If total benefit corresponds 
to interval m then 

{
yj = 1 ∀j < m

}
 and 

{
yj = 0 ∀j ≥ m

}
 . An example setting 

with three intervals and four threshold points is presented in Fig. 2. Initial and last 
threshold values are set to the lower and upper bounds of total benefit value, respec-
tively. In solutions where total benefit value ( 

∑N

i=1
bixi ) is smaller than T2 ; X1 < 𝛥T1 , 

y1 = y2 = 0 and reference proportion vector �1 is used. When total benefit distrib-
uted exceeds T2 , X1 is exactly equal to �T1 , y1 = 1 and reference proportion vec-
tor �2 is used. Lastly, if the solution has a total benefit value greater than T3 , then 
both interval indicators; y1 and y2 take value 1, and reference proportion vector �3 is 
assigned to the allocation.

The reference proportions change at the thresholds, and at each threshold, 
one of the two consecutive proportion vectors should be used. Without loss of 
generality, we assume that at each threshold Tm , �m will be used. If total ben-
efit can only have integer values, subtracting a small value, 0 < 𝜖 < 1 , from the 
threshold values restrains any solution from achieving a threshold value. If the 
total benefit does not necessarily have integer values, one can introduce binary 
variables to control whether total benefit distributed is equal to a threshold value 
and additional constraints to indicate which reference proportion vector should be 
assigned in such cases.

(8)
K∑

k=1

�k = 1

(9)Imbalance =

K∑

k=1

||||||
�k

N∑

i=1

bixi −

N∑

i=1

gikbixi

||||||

(10)xi ∈ {0, 1} i = 1,… ,N

(11)Xm ≥ 0, m = 1,… , (M − 1)

(12)ym ∈ {0, 1} m = 1,… , (M − 2)

T1 = 0 T2 T3

Interval 1 - α1

X1 ≤ T2 − T1

y1 = 0

y2 = 0

Interval 2 - α2

X2 ≤ T3 − T2

y1 = 1

y2 = 0

X1 = T2 − T1

Interval 3 - α3

X3 ≤ T4 − T3

y1 = 1

y2 = 1

X1 = T2

X2 = T3 − T2

T4 = TB

Fig. 2   Indicating intervals
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Constraint (7) makes sure that � is equal to the reference proportion vector of the 
corresponding interval. Imbalance is measured in (9), and it is calculated as the total 
deviation from the reference benefit distribution. The desired (reference) and actual 
benefits in category k are �k

∑N

i=1
bixi and 

∑N

i=1
gikbixi , respectively, for k = 1,… ,K . 

We add up the absolute difference between desired and realized benefits over all 
categories.

Constraint (9) involves nonlinear terms. We linearize them using additional auxil-
iary variables: wki and dk . We delete constraint (9) and add the following:

Constraints (13)–(15) are used to linearize the product of �k (continuous) and xi 
(binary) decision variables such that wki is equal to this product ( wki = �kxi).

With constraints (16)–(17) and the auxiliary variables dk , we rewrite the abso-
lute deviation value term with linear inequalities. New variable dk is the deviation 
in category k from the reference distribution. This linearization works when dk s are 
minimized in the objective function. If one has another model in which this is not 
the case, alternative linearization techniques should be used.

In the linearized model, there are 3KN + 2M + 2K + 2 constraints (excluding 
the set constraints) and N + 2M + 2K + NK − 2 variables, N +M − 2 of which are 
binary.

There is a well-known alternative approach to model such piecewise problems 
(Williams 2013). However, we use an incremental formulation that is computation-
ally more efficient. We provide the alternative formulations and compare these for-
mulations in terms of solution times in Appendix A. The results also justify our 
modeling choice.

In this formulation, each project is assumed to yield benefits that are relevant 
to one category only. The proposed approach can be easily extended for the more 

(13)wki ≤ xi k = 1,… ,K i = 1,… ,N

(14)wki ≤ �k k = 1,… ,K i = 1,… ,N

(15)wki ≥ �k − (1 − xi) k = 1,… ,K i = 1,… ,N

(16)
N∑

i=1

biwki −

N∑

i=1

gikbixi ≤ dk k = 1,… ,K

(17)
N∑

i=1

gikbixi −

N∑

i=1

biwki ≤ dk k = 1,… ,K

(18)Imbalance =
∑

k

dk

(19)wki ≥ 0 k = 1,… ,K i = 1,… ,N
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general case in which each project generates benefits in several categories. This is 
possible, for example, by apportioning the projects’ total benefits to different catego-
ries by using fractional amounts. Such an extension could be built by relaxing the 
binary parameter gik such that gik ∈ [0, 1] and 

∑
k gik = 1 , ∀i ∈ {1,… ,N}.

3 � Moving reference proportion model (MRPM)

In IRPM, there are multiple reference proportion vectors and the model assigns an 
�k based on the interval of the total benefit. The same reference distribution is used 
for the entire interval between two thresholds, regardless of its distance from the 
threshold points. Although this may seem reasonable, in some cases, it may result 
in abrupt changes in the solutions, especially for the ones with total benefit closer to 
the thresholds.

Let us consider the allocation policy in Fig.  3 with two categories. Until total 
benefit reaches T2 = 100 units, �1 is (0.4, 0.6) and afterward it changes to (0.3, 0.7). 
Suppose that there are two Pareto solutions with total benefit values 96 and 102 
units. In the first solution, with 96 units of benefit, benefits are distributed as (38,58) 
units between categories. In the second solution, total benefit is in the second 
interval, and hence reference proportion vector shifts to (0.3,0.7) and benefit dis-
tribution becomes (31,71) units. In the second solution, the benefit of category 1 
decreases by 18% while benefit of category 2 increases by 22% . Even though total 
benefits are close to each other, these two distributions have significant differences. 
It may be expected that as the total benefit increases, each categories’ benefit will 
also increase; however, in the neighborhood of thresholds, results do not coincide 
with this expectation. For a fact, these increases/decreases are inevitable due to the 
selected reference distribution coefficients, while one category’s share is increas-
ing, other’s have to decrease. Thus in the threshold neighborhoods, there are sudden 
jumps from one distribution to the other, which may be undesired.

In order to address this drawback, we enhanced our model to move �k values from 
one threshold point to the other by using interpolation. For each total output value, 
the reference proportion vector is calculated uniquely by taking convex combination 
of two adjacent reference proportion vectors. This way, benefits of entities will grad-
ually increase/decrease as the total benefit changes. In the previous example; where 
we have 96 units of benefit the corresponding reference proportion will be calcu-
lated using equation �k = X1

(�2k − �1k)

T2 − T1
+ �1k , in this example it is equal to 

(0.304,0.696). In the second solution, with 102 units of benefit, reference proportion 

T1 = 0 T2 = 100 T3 = 200 T4 = 300α1 = (0.4, 0.6) α2 = (0.3, 0.7) α3 = (0.2, 0.8)

Fig. 3   Example Setting
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becomes (0.298,0.702). Consecutively, benefit distributions are (29,71) and (30,70), 
respectively. By moving the reference proportion vector from one threshold to the 
other, we can achieve a more moderate change in distributions.

We modify IRPM to formulate this change. Reference proportion constraint (7) is 
reformulated as below, and this adjusted model is referred as the moving reference 
proportion model (MRPM).

This term is nonlinear due to the product of variables ym (binary) and Xm (continu-
ous). We linearize it with the additional decision variable tmm, and the new formu-
lation contains the constraints of the IRPM models except constraint (7) with the 
following:

�k = (1 − y1)

[
X1(�2k − �1k)

�T1
+ �1k

]
+

M−2∑

m=2

(ym−1 − ym)

[
Xm(�m+1k − �mk)

�Tm
+ �mk

]
+ yM−2�M−1k k = 1,… ,K

(20)

�k =

[
X1

(�2k − �1k)

�T1
+ �1k

]
−

[
t11

(�2k − �1k)

�T1
+ y1�1k

]

+

M−2∑

m=2

[(
tm−1m(�m+1k − �mk)

�Tm
+ ym−1�mk

)

−

(
tmm

(�m+1k − �mk)

�Tm
+ ym�mk

)]
+ yM−2�M−1k k = 1,… ,K

(21)tmm ≤ X
UB

m
ym m = 1,… , (M − 2)

(22)tmm ≤ Xm m = 1,… , (M − 2)

(23)Xm − X
UB

m
(1 − ym) ≤ tmm m = 1,… , (M − 2)

(24)tm−1m ≤ X
UB

m
ym−1 m = 2,… , (M − 2)

(25)tm−1m ≤ Xm m = 2,… , (M − 2)

(26)Xm − X
UB

m
(1 − ym−1) ≤ tm−1m m = 2,… , (M − 2)

(27)tmm ≥ 0 m = 1,… , (M − 2)
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In linearization, upper and lower bounds on Xm are set to �Tm and 0, respectively 
(The upper bound is denoted as X

UB

m
 ). This model has 3KN + 8M + 2K − 13 con-

straints and N + 4M + 2K + NK − 7 decision variables.
It is possible to make improvements to the formulations by introducing sim-

ple valid inequalities. Recall the binary variable ym , which is used as the interval 
indicator as follows: When total benefit is in interval m, 

{
yj = 1 ∀j < m

}
 and {

yj = 0 ∀j ≥ m
}
 . Hence, whenever ym = 1, we have yj = 1∀j ≤ m − 1 and we 

tighten the models by adding the following constraints:

Models IRP and MRP represent the general formulation of the proposed bi-objective 
resource allocation problem. We conducted preliminary experiments to analyze the 
effect of improvements suggested. We have observed that the percentage improve-
ment in solution time is positive in most instances, and hence we use the model vari-
ants with these improvements in our main experiments for both IRPM and MRPM. 
From now on, IRPM and MRPM will refer to their variants with the improvements.

In Appendix A, we provide alternative formulations for this problem as discussed 
before and show that the formulation we suggest outperforms these alternative for-
mulations in most instances.

4 � Computational experiments

4.1 � An illustrative example

As an example, we solve IRPM for a real-life R&D project selection problem of a 
public sector agency, where the projects belong one of the three sector-based cat-
egories (this problem is considered from an input-oriented aspect and with a single 
reference allocation in Karsu and Morton 2014). There are 39 projects, whose cost 
and benefit (output) values are assumed to be known. The budget is taken as 45% of 
the total cost of all the projects available. We determine four thresholds and solve 
the bi-objective problem using the epsilon-constraint approach (see Appendix B  
for a pseudocode of the approach). In the example, without loss of generality, it is 
assumed that as total benefit distributed increases DM prefers more uneven distribu-
tions that encourage more productive categories (Category 3). Figure 4 shows the 
set of all nondominated solutions, and Fig. 5 shows the realized and the reference 
benefit distributions of five example solutions. 

Figure  4 shows some example portfolios from different parts of the frontier 
and the � vectors used to assess imbalance for these portfolios. In Fig. 5 we also 
see how the output would be distributed if it were possible to realize the desired 
proportions. On the left hand side of the Pareto front, we have an example bal-
anced allocation, Portfolio6 , with 42.45 units of total benefit which uses reference 

(28)tm−1m ≥ 0 m = 2,… , (M − 2)

(29)ym ≥ ym+1 m = 1,… ,M − 3



310	 Ö. Karsu, H. Erkan 

1 3

proportion vector � = �1 = (0.33, 0.33, 0.33) . This solution ensures an even ben-
efit allocation across the three categories, as desired. Two solutions in the mid-
dle, Portfolio7 and Portfolio8 have higher total benefit than Portfolio6 . The realized 
distributions in these portfolios slightly deviate from their reference distributions, 
but they are still close. Portfolio11 is another example that has higher total benefit 
than the previous portfolios. On the other extreme, there is the total benefit-max-
imizing solution, Portfolio17 , with 59.32 units of benefit and a higher imbalance 
value. In this portfolio, one can see that the realized distribution notably deviates 
from the reference. However, it is the best solution given this total benefit level 
since the model ensures that for any total benefit level, a maximally balanced 
solution is returned. As we move toward the maximum total benefit extreme, out-
puts of category 3 are significantly higher than those of the first two categories 
in the reference distributions and hence in the realized distributions. By present-
ing such Pareto solutions, we allow DMs to extensively understand the trade-off 
between the total benefit maximizing and most balanced solutions and to which 
extent their desired (reference) allocations can be realized in each interval. The 
DM can choose from the given set of alternatives based on her preferences. More-
over, such visualizations help to structure discussions and negotiations between 
different parties that might be affected by allocation decisions.

Throughout the paper, we make the analysis assuming that DM encourages 
more productive categories in higher output levels. However, it is also possible to 
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implement a reversed policy meaning that, in certain problem settings, DM may pre-
fer more even distributions when total benefit is higher. Such a change in the policy 
would not require any adjustments in the model other than changing �mk parameters.

4.2 � Data generation

In this part, we discuss the computational experiments that we performed to demon-
strate the feasibility of the approach. We generated problem instances and engaged 
the epsilon-constraint method to solve the resulting bi-objective programming prob-
lems. We first discuss the details of our data generation scheme and then report the 
results of our computational tests.

In different decision-making environments, parameters may have certain charac-
teristics; for instance, relation between cost and benefit values can vary or produc-
tivity of projects may differ depending on the category of each project. In order to 
reflect special properties of different problem settings we performed computational 
experiments on different problem instances.

In order to mimic different types of project portfolio selection problems that 
could be encountered in real life and to analyze the effect of parameters on solution 
times, we considered three different problem types. In all problem types, cost values 
have discrete uniform distribution with integer parameters 1 and R, R ∈ {30, 100} , 
( ci ∼ discrete uniform (1, R) i = 1,… ,N ). Benefit values are generated with a differ-
ent policy in each problem type. In type A instances, benefit is generated randomly, 
while in types B and C, it is generated using a linear function of cost. Problem types 
are described below.

Uncorrelated Instances (Type A): Benefit values are also randomly distributed 
between [5, R], i.e. bi ∼ discrete uniform (5, R) i = 1,… ,N . In this type, there is 
no correlation between cost and benefit values, i.e., productivity of the projects are 
randomly determined.

Strongly Correlated Instances (Type B): In this type, benefit values are positively 
correlated with the cost values. bi = tci + a i = 1,… ,N where t ∈ ℝ

+ and a ∼ dis-
crete uniform (0, R/10). t is an indicator of productivity and a is used to have some 
diversity among projects. In our experiments, we set t as 1.2.

Category-Based Strongly Correlated Instances (Type C): In this type, each 
category has a different level of productivity, and hence tk is used instead of t. 
bi =

∑K

k=1
giktkci + a i = 1,… ,N (Recall that gik is 1 if project i belongs to cat-

egory k and 0 otherwise). In our experiments we set t1 = 1.2 , t2 = 1.5 , t3 = 1.8 when 
K = 3 and additionally t4 = 2.0 when K = 4.

In all of the generated instances budget, B, is set to ⌊
∑N

i=1
ci

2
⌋ . We generated prob-

lem instances with 3 and 4 categories and assumed there are 5 intervals defined by 6 
threshold points. The threshold levels defining the intervals are determined as a 
function of TB =

∑N

i=1
bi . The �m and T values are provided in Table 1. The thresh-

old levels and �m values used are for illustrative purposes. In real life, other levels 
could be used for these parameters.
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The algorithms are coded in Java and the computational studies are performed on 
Eclipse. All mathematical models are solved using CPLEX 12.8. All of the instances 
are solved in a computer with Intel Xeon CPU E5-1650 3.6 GHz processor and 32 
GB RAM. Computation times are given in central processing unit seconds (CPU).

4.3 � Epsilon‑constraint method results

We first used the epsilon-constraint method (Haimes et al. 1971) to find the set of 
nondominated solutions (A solution is nondominated if it is not possible to find 
another solution which is at least as good as it with respect to both total benefit and 
balance). Starting from the nondominated solution that has the minimum imbalance 
value, in each iteration it finds a new solution by minimizing imbalance and restrict-
ing total benefit by a constraint. In each iteration, two single objective models are 
solved ( min imbalance and max 

∑N

i=1
bixi ) to ensure that a nondominated solution 

is found. At each iteration, the solution of the first model is feasible for the second 
model, which maximizes total benefit fixing the imbalance to the value found in the 
first one. We use this solution as an initial solution to the second model. Moreover, 
some of the interval-defining variables ( yms ) can be fixed since the total benefit in 
the second model will be at least as much as the total benefit found by solving the 
first model.

Similarly, in the models where the total benefit level is restricted via an epsilon-
constraint, some information on potential intervals is also available, e.g. some of 
the lower intervals are not possible anymore. Therefore, we fix the values of several 
variables in the model that are used to select the interval (see the algorithm descrip-
tion in Appendix B). We performed our main computational experiments exploiting 
this problem specific property when using the epsilon-constraint method.

Any algorithm that is designed for bi-objective integer programming problems 
can be used to find the set of nondominated points (see, e.g., Chalmet et al. 1986; 
Ralphs et al. 2006 for algorithms based on weighted sum and Tchebycheff scalariza-
tions, respectively. See also Boland et al. 2015 for a recent solution algorithm and 
the references therein for further examples.)

Details of the epsilon-constraint algorithm are provided in Appendix B. All 
benefit parameters are integer in our problem instances, therefore it is possible to 

Table 1   Reference �
m
 and corresponding T values

Interval (m) �
m

T
m

K = 3 K = 4

1 (0.33, 0.33, 0.33) (0.25,0.25,0.25,0.25) 0–0.3TB
2 (0.30, 0.30, 0.40) (0.20,0.21,0.26,0.33) 0.3TB–0.45TB
3 (0.20, 0.25, 0.55) (0.15,0.18,0.27,0.40) 0.45TB–0.6TB
4 (0.15, 0.20, 0.65) (0.12,0.15,0.30,0.43) 0.6TB–0.75TB
5 (0.10, 0.15, 0.75) (0.10,0.12,0.33,0.45) 0.75TB–TB
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generate the whole set of nondominated solutions. Presenting the set of all nondomi-
nated solutions is useful for the DM to see the trade-off between the two criteria 
considered. It informs the DM on the effect of changing the portfolio from one effi-
cient solution to the other.

We solve five instances for each problem type, N, K and R combinations, and 
report the average and maximum values of the solution time and number of exact 
nondominated solutions obtained, |NS|, for the IRP and MRP models, respectively.

Results of the IRPM and MRPM are provided in Table 2. We use a time limit of 
3 h as follows: If an instance cannot be solved within 3 h, that is, if the whole set of 
Pareto solutions cannot be returned, we terminate that instance and its values are not 
included in the performance metrics. Number of instances that cannot be completed 
within the time limit is reported in parenthesis in the column reporting the average 
CPU time. If, for a set of instances, at least 3 out of 5 instances could not be solved 

Table 2   IRP and MRP model results

N R K Type IRPM MRPM

CPU time |NS| CPU time |NS|

Mean Max Mean Max Mean Max Mean Max

30 30 3 A 9.2 16 84.8 152 448.8 844 100.4 164
B 6.8 13 9.2 13 326.6 589 16.4 20
C 7.4 10 29 37 643.4 1247 30.8 50

4 A 28.4 58 62 99 49.6 71 79 135
B 14 21 17.4 31 55.8 93 24 41
C 22.6 30 46.4 65 67.4 133 42.8 59

100 3 A 7.2 12 75 101 450 823 97.2 122
B 14.2 22 31.6 79 350.8 504 51 104
C 15.8 22 59.4 97 628.4 1128 59.6 99

4 A 26.4 51 57.4 99 50.6 66 77.4 140
B 36.2 74 36 66 241.6 969 71.6 247
C 80.8 169 129.4 197 284.2 649 113.4 199

50 30 3 A 911 2431 130 177 – – – –
B 9.8 14 8.6 12 – – – –
C 61.8 128 45.4 68 – – – –

4 A – – – – – – – –
B – – – – – – – –
C 941.6 3672 69.4 76 – – – –

100 3 A 1266.8 4291 129.6 188 – – – –
B 318.6 993 61.2 224 – – – –
C 97.25 (1) 120 138.25 200 – – – –

4 A – – – – – – – –
B 2984.2 7703 63.8 213 – – – –
C 1164.25 2983 178.25 223 – – – –
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within the time limit, we do not report the results of the set. Such cases are indicated 
with “-” in the table.

Due to the additional constraints and binary variables, MRPM’s solution 
times are significantly higher than IRPM. |NS| values also tend to increase in this 
approach, with exceptions in Type C problems. None of the larger MRPM instances 
with N = 50 could be solved within the time limit, and hence we do not provide 
results for these cases.

Type A problem instances lead to relatively larger solution sets, making the total 
solution time higher than the other types in most cases. On the other hand, Type 
B problems have the least number of nondominated solutions, indicating a rela-
tion between the correlation structure and the number of nondominated solutions 
obtained.

There are two factors that affect the total computational time: the number of 
nondominated points ( |NS| ), which dictates the number of single objective mod-
els solved in the algorithm, and the time required for solving each single objective 
model. Knapsack problems’ solution times highly depend on the characteristic of 
parameter set. Some parameter sets are observed to be harder to solve. Pisinger 
(2005) analyses the performance of different algorithms on a variety of randomly 
generated knapsack problem instances, which differ in terms of the correlation 
between cost and benefit values of projects. He concludes that the easiest problem 
instances usually have uncorrelated benefit and cost values and the hardest prob-
lem instances have strongly correlated benefit and cost values. Our observations 
are in line with these conclusions: the time required per model is smallest in Type 
A instances and highest in Type B instances. Again, this seems to be because in 
Type B problems, cost and benefit values are correlated with a constant parameter t. 
When we set t category-specific as in Type C instances, we change the correlation 
structure between cost and benefit and obtain an intermediate setting between the 
two extremes of Type A (uncorrelated) and Type B (strongly correlated) instances. 
With a few exceptions, the number of nondominated solutions and time per model 
nondominated solution (time per single objective model) of Type C instances are 
between those of Type A and Type B instances.

Increasing the problem size (N) makes the corresponding problems significantly 
more difficult to solve, as expected. Increasing the number of categories (K) how-
ever has opposite effects in IRPM and MRPM. The MRPM becomes easier to solve 
when the number of categories is increased from 3 to 4, ceteris paribus. Moreover, 
it is observed that problems with a higher range parameter (R) tend to have larger 
Pareto sets and higher solution times.

4.4 � Interactive approach

In the epsilon-constraint method, two models are solved to find each nondomi-
nated solution and many instances cannot be solved in reasonable time due to the 
high number of iterations required and rapidly increasing solution times. One way 
of handling this challenge is using metaheuristic algorithms that return a set of 
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approximate Pareto solutions. Such algorithms are computationally very efficient; 
however, the solutions are neither exact nor with a quality guarantee.

Whenever possible, one can use preference information from the DM and focus 
only on nondominated solutions that could be of interest to him/her. We now discuss 
such an interactive approach that could be used to guide the DM to his/her most pre-
ferred solution, without generating all the nondominated solutions beforehand. This 
approach requires less time as it does not generate the nondominated solutions that 
would not be of interest to the DM. It also helps the DM by guiding him/her to the 
most preferred solution as opposed to just presenting him/her the set of nondomi-
nated solutions, which may be too large.

The interactive algorithm we use is based on the approach proposed in Lokman 
et al. (2016) to find the most preferred alternative of a DM for multi-objective inte-
ger programming settings. We adjust this method to our bi-objective mixed integer 
programming problems.

The fundamental assumption of the algorithm is that the DM has a non-decreas-
ing quasiconcave utility function, which is unknown. Given this assumption and 
preference information from the DM (mostly in terms of pairwise comparisons of 
alternative solutions), one can infer that some parts of the feasible criteria space 
would not contain the most preferred solution and hence can eliminate them from 
further consideration. The method is called the convex cone method and such areas 
are called (convex) cone-dominated areas (Korhonen et al. 1984).

The algorithm keeps an incumbent, which is the most preferred nondominated 
solution so far. At each iteration, a challenger is generated for the incumbent by 
solving scalarization model (a weighted sum model) and preference information 
between a new pair of solutions is obtained from the DM. Let zm and zk be such two 
nondominated solutions in the Pareto front. Then either zm ≻ zk or zk ≻ zm , where 
≻ denotes the binary relation “is preferred to”. Given this pairwise comparison, a 
2-point cone is defined as follows: C(zm, zk) =

{
z ∶ z = zk + �(zk − zm),� ≥ 0

}
 

if zm ⪰ zk . Korhonen et al. (1984) prove that if the DM has a quasiconcave utility 
function, a point in the cone cannot be better than the cone generators, which are 
zm and zk , in our example. Moreover, the corresponding cone-dominated region 
CD(zm, zk) =

{
z� ∶ z� ≤ z for some z ∈ C(zm, zk)

}
 (assuming both objectives are of 

a maximization type) cannot contain the most preferred solution for the DM and 
hence is eliminated from the criterion space. When there are multiple such pairwise 
comparisons, all the corresponding cone-dominated regions are eliminated. These 
steps are repeated until the most preferred solution is the only feasible solution to 
the problem. For the sake of simplicity, we formulate the problem such that both 
objectives are of maximization type by defining Balance = ImbUB − Imbalance , 
where ImbUB is an upper bound on imbalance. Let z1(x) be the balance value of a 
solution x and z2(x) be the total benefit value of a solution x (both to be maximized).

Figure 6 demonstrates a two-point cone and the corresponding cone-dominated 
region for our bi-objective problems. Assuming zm ≻ zk and zm

2
> zk

2
 , it directly fol-

lows that zm
1
< zk

1
 (since zk is nondominated). As shown by Lokman et  al. (2016), 

any point z that is not cone-dominated has to satisfy at least one of the conditions 
(i),  (ii), as otherwise it is in the cone-dominated region (shaded). The algorithm 
guarantees that a newly found nondominated solution is not dominated by any of the 
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cones generated so far, by using binary variables in the scalarization model. These 
variables enforce any new nondominated solution found by the scalarization model 
to satisfy at least one of the two conditions (i) and (ii). The pseudocode of the algo-
rithm is provided in Appendix B.

We re-solved the problem instances with the interactive algorithm, using a quad-
ratic function to represent DM’s underlying utility function, max

∑2

i=1
−w2

i
(zI

i
− zi)

2 
where w = (0.7, 0.3) and zI denotes the ideal point zI

i
= maxx∈X zi(x), i = 1, 2 . This 

utility function is only used to simulate the answers of the DM to the pairwise com-
parison questions asked by the algorithm. The algorithm would work for any DM 
whose preference model is in line with a quasiconcave utility function. The most 
preferred solution and the performance of the interactive algorithm, in terms of 
the number of questions asked, is expected to change as the underlying preference 
model changes.

The results of these experiments are summarized in Tables 3 and 4. Instead of 
|NS|, we report the average values for the percentage of nondominated solutions 
found until determining the most preferred alternative. This percentage is calculated 
as follows:

The number of solutions found is equal to the number of pairwise questions asked 
to the DM. Compared to the epsilon-constraint approach, in most of the cases this 
approach solves the problems in considerably less CPU time and number of itera-
tions. This effect is even more prominent in Type C problems, where only a small 
portion of the set of nondominated solutions needs to be generated before identify-
ing the most preferred solution. There are, however, exceptions to this observation: 
for example, for IRPM, in most problems with N = 50 , the interactive algorithm 
requires more time than the epsilon-constraint approach. A similar situation occurs 
in MRPM for Type B instances with R = 100,K = 4 . This may be due to the extra 
constraints preventing any newly found solution to be cone-dominated, making the 
models harder to solve.

We observe the effect of problem size in the performance of the interactive algo-
rithm, too. As N increases, the solution time increases, making some of the problems 

%NS =
Number of solutions found in the interactive algorithm

|NS| × 100

Balance (ImbUB − Imbalance)

TotalBenefit

zk

zm

zk2 < z2 (i)

zk1 zm2 − zk2 zm1 < z2(zk1 − zm1 ) + z1(zm2 − zk2 ) (ii)

Fig. 6   Cone-dominated region when zm ≻ z
k (shaded)
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unsolvable within the time limit of 3 h. “-” sign indicates that 3 out of 5 instances 
could not be solved within the time limit. Nevertheless, the interactive algorithm 
is able to solve more of the problem instances that could not be solved using the 
epsilon-constraint approach. This shows the value of using preference information, 
whenever possible.

5 � Conclusion

We consider resource allocation problems, in which an indivisible resource 
is allocated across multiple entities so that they will enjoy benefits. Motivated 
by the fact that a pure total benefit-maximizing approach may not be appropri-
ate in terms of balance, we suggest a bi-objective framework that trades balance 

Table 3   IRPM-interactive 
approach performance 
comparison

N R K Type Epsilon-con-
straint approach

Interactive approach

CPU time CPU time %NS

Mean Max Mean Max Mean

30 30 3 A 9.2 16 1.4 6 11.79
B 6.8 13 0.8 1 21.74
C 7.4 10 1.4 2 10.34

4 A 28.4 58 4.4 16 19.35
B 14 21 3.8 13 26.44
C 22.6 30 1.6 2 6.90

100 3 A 7.2 12 0.6 2 12.53
B 14.2 22 2.8 7 32.28
C 15.8 22 1.8 3 7.74

4 A 26.4 51 6.6 18 24.74
B 36.2 74 3.2 7 13.33
C 80.8 169 41.2 180 20.40

50 30 3 A 911 2431 4796.25 12,106 49.04
B 9.8 14 30 93 18.29
C 61.8 128 2022 9961 7.27

4 A – – 712.75 1164 –
B – – 105.66 (2) 205 –
C 941.6 3672 52 122 5.67

100 3 A 1266.8 4291 1159.33 (3) 2780 45.88
B 318.6 993 25 42 4.24
C 97.25 (1) 120 102 223 5.91

4 A – – 2006.66 (2) 4347 –
B 2984.2 7703 48.75 86 6.40
C 1164.25 2983 215 718 3.45
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off against total benefit. We capture the cases where the decision-maker’s under-
standing of balance changes as the total amount distributed changes. We exem-
plify the proposed method on project portfolio selection problems, where the pro-
jects belong to different categories and there is a concern for ensuring a balanced 
allocation of the benefit as well as maximizing total benefit. We solve the result-
ing bi-objective optimization problems using the epsilon-constraint method and 
also implement an interactive algorithm that finds the most preferred solution of 
a DM.

In real-life decision-making settings, some pragmatic challenges may be encoun-
tered in implementing the approach. We list some of these and potential ways to 
address these challenges: The proposed recommendation depends on the threshold 
levels. If these are not already available, they can be defined as a function of some 
problem dependent parameter (such as proportions of total benefit of the considered 
projects as we did in the computational experiments or proportions of the maximum 
attainable total benefit). If specific threshold values are difficult to obtain, one can 
perform sensitivity analysis by solving the problem multiple times, each time with 
a different choice of these parameters. One can then determine the winner portfo-
lios in the sense that they are nondominated in most scenarios (different choices of 
parameters).

In some real-life problems arising in public domain, the benefits can be hard to 
ascertain in ways that are incontestable (given that there may be a need to make 
scoping choices concerning direct vs. indirect benefits, or benefits which are real-
ized in the short vs. long term); thus, the elicitation of reference proportions could 
prove challenging in practice. Some of these challenges can still be addressed using 
the same structure by extending the problem dimensions. When multiple types of 

Table 4   MRPM-interactive 
approach performance 
comparison, N = 30

R K Type Epsilon-con-
straint method

Interactive approach

CPU time CPU time %NS

Mean Max Mean Max Mean

30 3 A 448.8 844 9.2 37 10.96
B 326.6 589 5.4 16 12.20
C 643.4 1247 2.4 4 6.49

4 A 49.6 71 5.2 15 12.15
B 55.8 93 21.2 56 30.00
C 67.4 133 21 86 14.02

100 3 A 450 823 3.2 10 9.05
B 350.8 504 9.6 38 6.67
C 628.4 1128 56.4 253 15.77

4 A 50.6 66 5.2 24 8.53
B 241.6 969 – – –
C 284.2 649 5.8 19 2.12
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quantifiable benefits exist (such as long term versus short term benefits), a multi-
objective programming extension of the structure could be used, showing the trade-
off between total benefit and balance in the allocations of multiple benefits. This 
would, of course, make the mathematical models more difficult to solve. In a prob-
lem where there are p benefits (e.g. short term and long term), the resulting models 
will have 2p objective functions.

In this study, we suggested formulations and solution approaches for a setting 
where balance on the output distribution is sought. Balance could also be defined 
with respect to the resource devoted to the entities. Although it is very relevant and 
desirable to define balance with respect to the input in some settings, in some oth-
ers it may not provide an agreeable solution. Especially in cases where the entities’ 
productivities (i.e., their ability to convert resources to outputs) are very different, 
indirectly controlling the output allocation by managing the resource allocation 
may not be straightforward. However, whether one should ensure balance in the 
resource allocation or output allocation is context-specific. Observing and reporting 
on the difference between these two approaches is an interesting direction for future 
research and applications.

Considering balance concerns explicitly in the decision support systems will 
provide useful insights to the decision-makers on the alternative allocation options 
and the trade-off between total benefit and balance concerns. Further research can 
be performed on the multi-objective version of the problem, in which relationship 
among different balance and efficiency measures can be examined.
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Appendix A: Alternative formulations

Recall the alternative formulations mentioned in Sect. 2.2. These are provided in this 
section.

IRP alternative formulations

For IRP, alternative formulation 1 is a standard formulation that writes any total ben-
efit value as a convex combination of the threshold values with the help of continuous 
variables ( � ) showing these coefficients and a binary variable vector � indicating the 
interval that the total benefit value belongs to. Alternative formulation 2 is similar to 
Alternative 1 but without the � variables. Finally, we provide alternative formulation 3, 
which is similar to the proposed variant, but handles the interval fixing variables ( ym s) 
in a different way.
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IRPM alternative formulation 1

Figure 7 shows how the decision variables are set in these formulations.
IRPM alternative formulation 2:  This formulation is the similar to Alternative 1 

but without the � variables.

(30)

max

N∑

i=1

bixi, min Imbalance

(2), (8), (10), (13) − (19)

N∑

i=1

bixi =

M∑

m=1

�mTm

(31)�1 ≤ �1

(32)�m ≤ �m−1 + �m m = 2,… ,M − 1

(33)�M ≤ �M−1

(34)
M−1∑

m=1

�m = 1

(35)
M∑

m=1

�m = 1

(36)�k =

M−1∑

m=1

�m�mk ∀k ∈ K

(37)�m ∈ {0, 1} m = 1,… , (M − 1)

(38)0 ≤ �m ≤ 1 m = 1,… ,M

T1 = 0 T2 T3 T4 = TB

Interval 1
δ1 = 1

δ2 = 0

δ3 = 0

λ1 ≥ 0

λ2 ≥ 0

Interval 2
δ1 = 0

δ2 = 1

δ3 = 0

λ2 ≥ 0

λ3 ≥ 0

Interval 3
δ1 = 0

δ2 = 0

δ3 = 1

λ3 ≥ 0

λ4 ≥ 0

Fig. 7   Indicating intervals in alternative models 1 and 2
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IRPM alternative formulation 3:  This formulation is a variant of the proposed 
formulation, where the ym variables are set differently. We replace constraints 
(3)–(6) and 11 in the proposed formulation with constraints (41) and (42) and obtain 
the following model:

where BigM = maxm{Tm+1, TB − Tm+1}.

MRP alternative formulations

MRPM alternative formulation 1
MRP alternative formulation 1 is the modified version of Alternative 1 for the 

IRPM, for the moving reference case. For MRP, � is also a convex combination of 
threshold proportions. Hence the same coefficient variables ( � ) are used to deter-
mine � . Alternatives 2 and 3 are the modified versions of IRP Alternatives 2 and 
3 for the moving reference setting, respectively.

(39)

max

N∑

i=1

bixi, min Imbalance

(2), (8), (10), (13) − (19), (34), (36), (37)

M−1∑

m=1

�mTm ≤

N∑

i=1

bixi

(40)
N∑

i=1

bixi ≤

M−1∑

m=1

�mTm+1

(41)

max

N�

i=1

bixi, min Imbalance

(2), (7), (8), (10), (12) − (19)

ym ≤ 1 −
Tm+1 −

∑N

i=1
bixi

BigM
m = 1,… , (M − 2)

(42)
∑N

i=1
bixi − Tm+1

BigM
≤ ym m = 1,… , (M − 2)
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MRPM alternative formulation 2

To linearize the multiplication: Define new continuous variables: hmi = �m × xi for 
all m = 1,… ,M − 2 and i = 1,… ,N . Add the following constraints:

MRPM Alternative Formulation 3

Tables 5 and 6 show the comparisons of alternative formulations in terms of average 
and maximum solution times, for IRP and MRP models, respectively. In Table 5, it 
is observed that all formulations have very close solution times for smaller instances 
of IRP. As the problems get larger, the proposed formulation performs notably better 
in most settings but there is no clear winner. For N = 50 , R = 100 , K = 4 instances, 
the alternative formulations failed to return solutions to some of the type B and C 
instances, while with the proposed formulation it was possible to solve them within 
the time limit. It is also clearly seen in Table 6 that alternative formulations 1 and 2 
perform significantly worse than MRPM. The performances of MRPM and alterna-
tive 3, which is actually quite similar to MRPM, are comparable.

(43)

max

N∑

i=1

bixi, min Imbalance

(2), (8), (10), (13) − (19), (30) − (35), (37), (38)

�k =

M−1∑

m=1

(�m�mk) + �M�M−1k ∀k = 1,… ,K

max

N�

i=1

bixi, min Imbalance

(2), (8), (10), (13) − (19), (34), (37), (39), (40)

�k =

M−2�

m=1

�m

�
(
∑

i bixi − Tm)(�m+1k − �mk)

�Tm
+ �mk

�
+ �M−1�M−1k ∀k ∈ K

(44)hmi ≥ xi + �m − 1 m = 1,… ,M − 2, i = 1,… ,N

(45)hmi ≤ �m m = 1,… ,M − 2, i = 1,… ,N

(46)hmi ≤ xi m = 1,… ,M − 2, i = 1,… ,N

(47)hmi ≥ 0 m = 1,… ,M − 2, i = 1,… ,N

max

N∑

i=1

bixi, min Imbalance

(2), (8), (10), (12) − (28), (41), (42)
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Appendix B: Solution methods

We used the well-known epsilon-constraint method to obtain exact Pareto front. 
Additionally, we used an interactive approach to find the most preferred solution. 
Both methods are provided below.

Let the generic model be:

where x and X denote the decision variable vector and the feasible region, 
respectively.

min Imbalance, max

N∑

i=1

bixi

x ∈ X

Table 5   CPU time comparison among alternative IRP models

N R K Type IRPM Alternative 1 Alternative 2 Alternative 3

Mean Max Mean Max Mean Max Mean Max

30 30 3 A 9.2 16 9.75 21 8.8 16 8.6 19
B 6.8 13 5 8 4.8 7 7.4 17
C 7.4 10 7.75 11 7.2 10 7.4 10

4 A 28.4 58 25.5 37 25.8 36 28.8 46
B 14 21 15.5 22 17.2 26 16 23
C 22.6 30 23.5 31 23.6 27 23.2 28

100 3 A 7.2 12 7 12 6.6 12 6.6 12
B 14.2 22 15.5 25 12.6 21 12.4 18
C 15.8 22 18.5 25 16.8 22 16.2 22

4 A 26.4 51 26.25 43 26.4 43 28.8 60
B 36.2 74 38 73 36.8 84 39.6 85
C 80.8 169 77.25 163 74 148 81.6 163

50 30 3 A 911 2431 731.25 2793 1183 4184 890.4 3673
B 9.8 14 56 149 173.4 645 33 97
C 61.8 128 677.25 2163 238.8 495 381.6 964

4 A – – – – – – – –
B – – – – – – – –
C 941.6 3672 1059.5 3173 486.6 1372 2420.8 6374

100 3 A 1266.8 4291 584.5 1781 1285.2 2609 2451.6 8756
B 318.6 993 1517.5 5971 1882.8 8750 547.2 2491
C 97.25 (1) 120 117 (1) 151 93.5 (3) 110 103 (1) 118

4 A – – – – – – – –
B 2984.2 7703 147.25 (1) 278 143.5 (1) 229 2467.25 (1) 9470
C 1164.25 2983 615.25 (1) 1435 400.75 (1) 10,834 1051 (1) 3286
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Algorithm 1 Epsilon Constraint Method

Initialize: Set = 0, f = 1, step size = 1, NS = ∅. NS is the set of nondominated vectors. ML = 1;
while f=1 do

min Imbalance
s.t

N
i=1 bixi ≥
x ∈ X
ym = 1 m = 1, ...,ML− 1

if the problem is infeasible then
f = 0

else
objective value vector=(Imbalance*, N

i=1 bixi*).
ML = maxm : N

i=1 bix
∗
i > Tm. Solve

max
N
i=1 bixi

s.t Imbalance ≤ Imbalance∗

x ∈ X
ym = 1 m = 1, ...,ML− 1

objective value vector=(Imbalance**, N
i=1 bixi**)

NS = NS ∪ (Imbalance**, N
i=1 bixi**).

Set = N
i=1 bix

∗∗
i + step size.

ML = maxm : N
i=1 bix

∗∗
i + step size > Tm

end if
end while

We use variable fixing rules depending on the information that we obtain at 
each iteration on the possible total benefit levels. We provide these rules for the 
original formulation. Using the same idea on alternative formulations using �m 
variables instead of ym variables is straightforward.

As another variant of the epsilon-constraint algorithm, one could fix the inter-
vals fully at each iteration, by setting an upper bound on the total benefit defined 
by the next interval threshold. Then all �k variables can be fixed in the model. In 

Table 6   CPU time comparison among alternative MRP models, N = 30

R K Type MRPM Alternative 1 Alternative 2 Alternative 3

Mean Max Mean Max Mean Max Mean Max

30 3 A 448.8 844 1049.6 2377 2582.2 4956 349.4 751
B 326.6 589 668.2 1243 1811 2714 227.4 381
C 643.4 1247 1159.4 2329 3370.4 6865 596.8 718

4 A 49.6 71 83 119 215 338 54.8 84
B 55.8 93 84 152 292.6 558 55.4 112
C 67.4 133 89.4 152 344 844 69.8 124

100 3 A 450 823 1080.2 2300 3229.2 6679 381.8 810
B 350.8 504 638.8 915 2106.8 3282 501.6 749
C 628.4 1128 1082.4 2210 4393.4 5924 820.2 1560

4 A 50.6 66 81.4 123 233.8 314 56.4 79
B 241.6 969 321 1267 1591.4 6721 255 998
C 284.2 649 369.6 796 1432.2 3369 292.2 691
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this case, the resulting solution may not be Pareto-optimal. Hence, at the end of 
the algorithm, a solution set guaranteed to include the Pareto set is found. This 
issue, however, could be easily handled by post-processing.

For the interactive algorithm we formulate both objectives as maximization type. 
Let the generic model be:

where x and X denote the decision variable vector and the feasible region, respec-
tively. ImbUB is an upper bound on the imbalance value, we set ImbUB =

∑
i bi.

Algorithm 2 Interactive Algorithm

Initialize: T = ∅, C = ∅, f = 1 and h = 1. (Arbitrarily) select weights λi > 0, i = 1, 2, ( 2
i=1 λi =

1). Solve the initial model. T is a set representing available preferences of DM and C is the set of
nondominated points found so far except the current incumbent.

max λ1z1(x) + λ2z2(x)
x ∈ X , where z1(x) and z2(x) are the balance and efficiency objectives, respectively.

if the problem is infeasible then
Stop.

else
z1 = (z11 , z

1
2) is the initial incumbent, zinc = z1.

end if
while f = 1 do
Set h = h+1. Select new arbitrary weights λi and solve the model with additional cone domination
constraints defined over set T .
if the problem is infeasible then
Set f = 0. The incumbent point, zinc = (zinc1 , zinc2 ), is the most preferred solution of the DM.

else
Denote optimal solution as challenger, zh = (zh1 , z

h
2 ).

Compare the incumbent zinc and the challenger zh.
if zinc zh then
T = T ∪ (zinc, zh)
C = C ∪ zh.

else
C = C ∪ zinc.
for zk : zk ∈ C do
T = T ∪ (zh, zk)

end for
zinc = zh

end if
end if

end while

max z1(x) ∶ Balance, max z2(x) ∶

N∑

i=1

bixi

x ∈ X

Balance = ImbUB − Imbalance



326	 Ö. Karsu, H. Erkan 

1 3

References

Armbruster B, Delage E (2015) Decision making under uncertainty when preference information is 
incomplete. Manag Sci 61(1):111–128

Boland N, Charkhgard H, Savelsbergh M (2015) A criterion space search algorithm for biobjective inte-
ger programming: the balanced box method. INFORMS J Comput 27(4):735–754

Butler M, Williams HP (2002) Fairness versus efficiency in charging for the use of common facilities. J 
Oper Res Soc 53(12):1324–1329. https​://doi.org/10.1057/palgr​ave.jors.26014​56

Carazo AF (2015) Multi-criteria project portfolio selection. In: Handbook on project management and 
scheduling, Vol. 2, Springer, pp 709–728

Chalmet L, Lemonidis L, Elzinga D (1986) An algorithm for the bi-criterion integer programming prob-
lem. Eur J Oper Res 25(2):292–300

Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW (2015) Methods for the economic 
evaluation of health care programmes. Oxford University Press, Oxford

Eeckhoudt L, Schlesinger H (2006) Putting risk in its proper place. Am Economic Rev 96(1):280–289. 
http://www.jstor​.org/stabl​e/30034​365

Haimes Y, Lasdon L, Wismer D (1971) On a bicriterion formation of the problems of integrated sys-
tem identification and system optimization. IEEE Trans Syst Man Cybern 1(3):296–297. https​://doi.
org/10.1109/TSMC.1971.43082​98

Heitmann H, Brüggemann W (2014) Preference-based assignment of university students to multiple 
teaching groups. OR Spectrum 36(3):607–629. https​://doi.org/10.1007/s0029​1-013-0332-9

Karsu Ö, Morton A (2014) Incorporating balance concerns in resource allocation decisions: a bi-criteria 
modelling approach. Omega 44:70–82

Karsu Ö, Morton A (2015) Inequity averse optimization in operational research. Eur J Oper Res 
245(2):343–359

Kellerer H, Pferschy U, Pisinger D (2004) Introduction to NP-completeness of knapsack problems. In: 
Knapsack problems. Springer, Berlin, pp 483–493

Kelly FP, Maulloo AK, Tan DKH (1998) Rate control for communication networks: shadow prices, pro-
portional fairness and stability. J Oper Res Soc 49(3):237–252. https​://doi.org/10.1057/palgr​ave.
jors.26005​23

Korhonen P, Wallenius J, Zionts S (1984) Solving the discrete multiple criteria problem using convex 
cones. Manag Sci 30(11):1336–1345

Lokman B, Köksalan M, Korhonen PJ, Wallenius J (2016) An interactive algorithm to find the most pre-
ferred solution of multi-objective integer programs. Ann Oper Res 245(1–2):67–95

Luss H (2012) Equitable resource allocation: models, algorithms and applications, vol 101. Wiley, New 
York

Mestre AM, Oliveira MD, Barbosa-Póvoa A (2012) Organizing hospitals into networks: a hierarchical 
and multiservice model to define location, supply and referrals in planned hospital systems. OR 
Spectr 34(2):319–348. https​://doi.org/10.1007/s0029​1-011-0272-1

Pisinger D (2005) Where are the hard knapsack problems? Comput Oper Res 32(9):2271–2284
Ralphs T, Saltzman M, Wiecek M (2006) An improved algorithm for solving biobjective integer pro-

grams. Ann Oper Res 147:43–70
Smith HK, Harper PR, Potts CN (2013) Bicriteria efficiency/equity hierarchical location models for pub-

lic service application. J Oper Res Soc 64(4):500–512. https​://doi.org/10.1057/jors.2012.68
Stewart TJ (2016) Multiple objective project portfolio selection based on reference points. J Bus Econ 

86(1–2):23–33
Williams HP (2013) Model building in mathematical programming. Wiley, London
Young HP (1995) Equity: in theory and practice. Princeton University Press, Princeton

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1057/palgrave.jors.2601456
http://www.jstor.org/stable/30034365
https://doi.org/10.1109/TSMC.1971.4308298
https://doi.org/10.1109/TSMC.1971.4308298
https://doi.org/10.1007/s00291-013-0332-9
https://doi.org/10.1057/palgrave.jors.2600523
https://doi.org/10.1057/palgrave.jors.2600523
https://doi.org/10.1007/s00291-011-0272-1
https://doi.org/10.1057/jors.2012.68

	Balance in resource allocation problems: a changing reference approach
	Abstract
	1 Introduction
	2 Problem definition
	2.1 Changing reference proportions in resource allocation
	2.2 Mathematical model with interval-based reference proportions

	3 Moving reference proportion model (MRPM)
	4 Computational experiments
	4.1 An illustrative example
	4.2 Data generation
	4.3 Epsilon-constraint method results
	4.4 Interactive approach

	5 Conclusion
	Acknowledgements 
	References




