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Abstract
We consider multi-objective optimization problems where the decision maker (DM) has
equity concerns. We assume that the preference model of the DM satisfies properties related
to inequity-aversion, hence we focus on finding nondominated solutions in line with the
properties of inequity-averse preferences, namely the equitably nondominated solutions. We
discuss two algorithms for findinggood subsets of equitably nondominated solutions. Thefirst
approach is an extension of an interactive approach developed for finding the most preferred
nondominated solution when the utility function is assumed to be quasiconcave. We find the
most preferred equitably nondominated solution when the utility function is assumed to be
symmetric quasiconcave. In the second approach we generate an evenly distributed subset
of the set of equitably nondominated solutions to be considered further by the DM. We show
the computational feasibility of the two algorithms on equitable multi-objective knapsack
problem, in which projects in different categories are to be funded subject to a limited budget.
We perform experiments to show and discuss the performances of the algorithms.

Keywords Equitable preferences · Equitable efficiency · Equitable dominance ·
Generalized Lorenz dominance · Multi-objective knapsack problem · Convex cones ·
Fairness · Multiobjective integer programming · Interactive algorithm

1 Introduction

Multi objective optimization problems (MOP) have been studied for many years. Differ-
ent techniques have been used to successfully solve and analyse these problems in a wide
range of application areas such as engineering design, medical treatments, logistics, resource
allocation and facility location (Deb 2014; Ulungu and Teghem 1994; White 1990). In a
typical MOP, multiple objective functions that correspond to decision criteria are simultane-
ously optimized over a feasible region. There are trade-offs between the multiple objectives
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considered, hence, usually no single solution optimizes all of the objective functions simul-
taneously. Due to these trade-offs, the concept of optimality is replaced with the concept of
Pareto optimality (nondominance).

General approaches to find non-dominated points for variousmultiobjective programming
problems (multi-objective linear programming (MOLP), multi-objective integer program-
ming (MOIP), multi-objective mixed integer programming (MOMIP) and multi-objective
combinatorial optimization (MOCO) problems) have been proposed in the literature (see
e.g. Antunes et al. 2016; Kirlik and Sayın 2014; Lokman and Köksalan 2013; Sylva and
Crema 2004; Mavrotas and Diakoulaki 1998; Köksalan 2008).The solution methods can be
classified as exact and approximate according to the type of solutions generated. Some of
these works address the problem of finding all the non-dominated points while others suggest
interactive approaches to find preferred points. Further works have been done in Mavrotas
and Florios (2013), Zhang and Reimann (2014), Ozlen et al. (2014) and Özlen and Azizoğlu
(2009) to reduce the computational times and number of models solved in previous algo-
rithms. Surveys on the interactive and non-interactive solution approaches to some of these
problems can be found in Alves and Clímaco (2007), Clímaco et al. (1997) and Ehrgott and
Gandibleux (2000).

We consider problem settings where equity concerns over multiple categories/entities are
involved. Hence the problems we consider are different in the sense that all objectives are
of the same type (a single type of benefit), and it is the concern of maximizing the benefit
received by each category (entity) that makes the problem a multi-objective one. We call
this problem multi-objective optimization problem with equity concerns (E-MOP). Unlike a
classical MOP, in E-MOP the values of the objective functions are comparable. Furthermore,
the criteria are considered impartially, which makes the distribution of the criteria values
more important than the assigned outcome to a specific criterion.

Equity concerns arise in various real life problems and it is vital to address them for
the proposed solutions to be acceptable. Therefore, researchers have started to consider
extensions of several classical problems like knapsack, assignment and location problems
to incorporate equity concerns. The notion of equity is usually studied in allocation settings
where one tries to attain a “fair” allocation of the resources or outcomes by treating the
involved entities in an impartial manner.

In general, any system servingmultiple userswhere the service quality for every individual
user is taken into consideration can be assessed with equity concerns. The users or entities
involved can be departments of an organization, people of different social classes, customers
at different locations, etc. For example, public service location models strive to provide
equitable access to different demand points (customers). The need for inequity averseness
naturally occurs in various operational research (OR) applications, including but not limited
to vehicle routing problems during disaster relief Beamon and Balcik (2008), workload allo-
cation, queuing systems, bandwidth allocation and healthcare service provision (see Karsu
and Morton 2015 and the references therein).

Incorporating equity concerns into the preference model makes some solutions which are
non-dominated (in classical dominance sense) unattractive. Therefore, rather than focusing
on the Pareto efficient (non-dominated) set of solutions, we focus on the more relevant set
of equitably efficient solutions. Equitable efficiency was defined in Kostreva and Ogryczak
(1999) and an approach to find non-dominated points for MOP with equity concerns by
aggregating the objective functions has been studied in Kostreva et al. (2004). A two-step
method to find equitably efficient solutions for MOP was developed in Baatar and Wiecek
(2006).
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Motivated by the observation that it may be computationally too expensive to find the
whole set of equitably efficient solutions, we propose two algorithms that find subsets of it for
equitable multiobjective integer programming problems. We exemplify their use for project
portfolio selection problems where decision makers have fairness concerns. One example
is the investment decision problem, in which projects that will provide different benefits to
different beneficiary groups (different population groups or different geographical zones) are
considered. Each project is associated with an output vector, showing the amount of benefit
it provides to these different groups, which we call entities throughout the text. In such cases,
a typical concern for decision makers is ensuring an equitable benefit allocation over the
multiple entities and a total benefit maximizing approach is usually considered inapplicable
as it may result in extreme inequity in the benefit distribution. Another example occurs
when project proposals that belong to different categories are evaluated and it is important to
ensure a balanced funding over the multiple categories involved. A total value maximizing
approach may result in imbalanced funding decisions in the sense that the majority of the
funded proposals might belong to a single category (Karsu and Morton 2014). Hence, we
structure these problems as multiobjective programming problems, the objective functions
of which correspond to the total benefit each entity receives.

This paper is structured as follows. In Sect. 2 we discuss the concepts of equitable domi-
nance and equitable efficiency, alongside the underlying assumptions on the decisionmaker’s
preference model. We also provide mathematical models that can be used to find the set of
equitably nondominated solutions. In Sect. 3we propose an interactive approach that finds the
most preferred equitably non-dominated point for a DM. This approach is based on a novel
extension of the convex cones method to a symmetric environment. In Sect. 4 we discuss an
approach to generate evenly distributed equitable non-dominated points. Finally, in Sect. 5
we provide the summary of our computational experiments, in which we demonstrate the
performance of the algorithms using an equitable knapsack problem. In Sect. 6, we conclude
our discussion and list some future research directions.

2 Equitable dominance (efficiency)

Consider a generic multiobjective integer programming model with p objectives:

Model 1

Max“z1(x), z2(x), · · · , z p(x)
′′

s.t . x ∈ X (1)

x denotes the vector of decision variables, which are all integer, andX is the feasible decision
space. In the problems we consider, each objective function, z j (x), denotes the total output
received by entity j in a feasible solution x . Z ⊂ Z

p := z(X ) is the feasible set in the
objective (criterion) space.

Note that the “max ′′ operator used in these settings is not a well-defined operator. Hence,
solving these models refers to finding the most preferred solution or a set of “good” solu-
tions that are candidates to be the most preferred solution. The solution concepts applied in
multiple criteria decision making literature rely mainly on three ideas, namely: aggregating
the multiple objectives into one and maximizing this aggregate function; using interactive
methods that take preference information from the DM and reduce the solution space based
on her responses; and finding the non-dominated frontier (or a subset of it) and presenting it
to the DM for further consideration.
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Unlike a classical multiobjective programming setting, we assume that the preference
model of the DM reflects inequity-aversion, therefore we are interested in finding the set of
equitably nondominated points. We now explain the equitable dominance relation that we
use in this study.

The following dominance relation is used for a rational decision maker whose preferences
can bemodelledwith aweak preference relation, which is reflexive, transitive andmonotonic.

Definition 1 (Weak Classical (Rational) Dominance) Consider two solutions to Model 1
with output vectors z, z′ ∈ Z. z rationally dominates z′ (z′ �r z) if and only if z is preferred
to z′ by all rational decision makers. i .e

z′ �r z ⇐⇒ z′j ≤ z j , f orall j ∈ P = {1, 2, . . . , p}.
An output vector z is non-dominated (x : z = z(x) is efficient) if there is no z′ that

dominates it. Note that any rational decision maker’s preference relation is assumed to be in
line with the classical dominance.

However, in our problem setting, we assume that the DM has equity concerns. To reflect
these concerns, we assume two more properties for the preference model, namely: symmetry
and Pigou-Dalton principle of transfers.

1. Symmetry This property states that the decision maker is indifferent between a feasible
solution with an output vector z and any other feasible solution whose output vector is a
permutation of the vector z. For example, the DM is indifferent among feasible solutions
with output vectors (3, 5, 8), (5, 3, 8) and any other permutation of these.

2. Pigou-Dalton principle of transfers This property states that for any two solutions that
have same total output, if one solution is obtained by transferring output from a better-off
entity to a worse-off one in the other solution, then it is considered better. For example,
the DM prefers (5, 5, 6) to (3, 5, 8).

A rational preference relation, which additionally satisfies symmetry and Pigou-Dalton
principle of transfers properties, is called an equitable preference relation (Kostreva and
Ogryczak 1999).

Definition 2 Consider two solutions to model 1 with output vectors z, z′ ∈ Z. z equitably
dominates z′ (z′ �e z) if and only if z is preferred to z′ by all decision makers with equitable
preference relations.

A feasible output vector z is equitably nondominated (x : z = z(x) is equitably efficient)
if there is no z′ that equitably dominates z. Note that equitable dominance is the generalized
Lorenz (GL) dominance discussed in the economics literature (Shorrocks 1983). Hence we
will refer to z as equitably non-dominated (meaning nondominated in the GL sense).

Theorem 1 [Kostreva and Ogryczak (1999)] z′ �e z ⇐⇒
k∑

j=1

−→
z′ j ≤

k∑

j=1

−→z j for all k ∈ P.

The vector −→z is the ordered permutation of z with elements ordered in a non-decreasing
fashion i .e −→z j is a vector whose elements express respectively: the minimum outcome, the
second minimum outcome, the third minimum outcome, etc. of the outcome vector z.

Utilizing Theorem 1, finding equitably nondominated solutions to Model 1 is equivalent
to finding nondominated solutions to Model 2 below.
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Model 2

Max “−→z 1,
−→z 1 + −→z 2, · · · ,

p∑

j=1

−→z j "

s.t . x ∈ X
z j = z j (x)

Model 2 is not linear due to the use of the ordering operator
−→
(.). However, it has been

shown in Ogryczak and Śliwiński (2003) that for any given output vector z, the cumulative

ordered elements
∑k

j=1
−→z j for any k ∈ P can be found by solving the model below:

Model 3

k∑

j=1

−→z j = Max krk −
p∑

j=1

dkj

s.t . rk − dkj ≤ z j ∀ j ∈ P (2)

dkj ≥ 0 ∀ j ∈ P (3)

An optimal solution to Model 3 is as follows; Let r∗
k = −→z k and

d∗
k j =

{−→z k − z j , i f −→z k ≥ z j
0, i f −→z k < z j

Hence the optimal value is kr∗
k −∑p

j=1 d
∗
k j = k−→z k −∑

j :−→z k≥z j (
−→z k −z j ) = ∑k

j=1
−→z j .

Note that alternative optimal solutions can be found by making r∗
k = −→z k + c where c is a

positive constant. Consequently, we have d∗
k j = −→z k + c − z j for j : −→z k ≥ z j .

Model 2 can be re-formulated as follows:

Model 4

Max“y1, y2, · · · , yp"

s.t . yk −
(
krk −

p∑

j=1

dkj
)

= 0 ∀k ∈ P

x ∈ X
z j = z j (x) ∀ j ∈ P

ineq. (2), (3) (4)

Here yk is the sum of the “k" smallest components of any output vector z. For simplicity,
let the feasible set of such y vectors in Model 4 be represented by {y ∈ R

p : y ∈ Y}. The
model transforms the criteria space into cumulative ordered criteria space. Finding the non-
dominated solutions to this model is equivalent to finding equitably nondominated solutions
to Model 1 (implied by Theorem 1). Such a transformation is illustrated in Fig. 1.

Figure 1a shows eight non-dominated points in the classical dominance sense plotted
in the criteria space (in terms of the variables zk). These points are Pareto optimal points
in the rational dominance sense. However, we are interested in finding the equitably non-
dominated points among these. To achieve this, we transform the space into the cumulative
ordered criteria space (in terms of the variables yk) and find the non-dominated cumulative
ordered vectors (ys) as shown in Fig. 1b. It can be seen that the number of non-dominated
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Fig. 1 Non-dom. points in criteria and cum. ordered criteria space

points in Fig. 1b is less than that of Fig. 1a (the set of equitably non-dominated points is a
subset of the set of non-dominated points, see Baatar andWiecek 2006). This is a direct result
of the symmetry and Pigou-Dalton principle of transfers properties of the equitable preference
relation.Thepoints (1, 15) and (15, 1) in Fig. 1a correspond to the point (1, 16) in Fig. 1b.The
points (5, 7) and (3, 10) in Fig. 1a correspond to the points (5, 12) and (3, 13) respectively, in
the cumulative ordered space. These points are dominated by (6, 12) and (4, 13) respectively.
Moreover, it can be seen from Fig. 1b that for the case when p = 2 the transformed points
lie in y2 ≥ 2y1 region of the space.

Note that the algorithms developed to generate all non-dominated points for classical
MOP can be used to find equitably non-dominated solutions. However, any such algorithm
should be modified so that one works on the cumulative space, leading to the equitable MOP
(Model 4). This modification is not always trivial due to the ordering operator.

There are many non-dominated points (both in the classical and equitable dominance
sense) in large MOPs and it may not be practical or useful to generate them all. One way
of handling this computational challenge would be finding the solutions that are of interest
to the DM by incorporating her preferences into the solution procedure. We could employ
interactive approaches that take the DM’s preferences into account and use the information to
converge to a single most preferred equitably non-dominated point. Another approach could
be generating an evenly distributed subset of the equitably non-dominated points and present
them to the DM. In this paper, we discuss two such algorithms.

We first develop an interactive algorithm that finds the most preferred solution for an
inequity averse DM. In this approach, we assume that the social welfare function, which is
a function of the allocation vectors (z) is symmetric quasiconcave (and hence in line with
the properties of inequity-averse preference models). In the second approach, we work on
the cumulative ordered space since finding nondominated points in this space is equivalent
to finding equitably nondominated points in the original space. The second approach aims to
generate evenly distributed equitably non-dominated points and can be used in cases where
the DM is not available for interaction.

3 An interactive algorithm

In this section we discuss the algorithm we propose for finding the most preferred equitably
nondominated point in equitable multiobjective optimization settings. The algorithm is based
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on theoretical results that extend previous works both in the classical multiobjective program-
ming settings and equitablemulticriteria decisionmaking settings. It extends the results in the
classical settings, which rely on the classical dominance concept, by incorporating symmetry
and Pigou-Dalton principle of transfers assumptions. Unlike the assumption in a classical
setting that the utility function is quasiconcave, we assume that it is symmetric quasiconcave,
which increases complexity since the DM is indifferent between all permutations of a given
allocation vector. To the best of our knowledge there is no interactive algorithm designed for
equitable multiobjective programming problems. The algorithm extends previous work on
interactive approaches in equitable multicriteria decision making settings since the problems
considered so far in that area are not optimization problems. They assume that the alternatives
(allocation vectors) are explicitly given rather than being implicitly defined by constraints.
In this work we consider optimization problems.

The interactive algorithm gets preference information in terms of pairwise comparisons
and at each iteration it generates an equitably nondominated point that is not inferior to
the convex cones generated based on preference information. We first briefly introduce the
convex cones concept in the multicriteria decision making settings: both the classical settings
where there is no symmetry assumption (see Korhonen et al. 1984; Hazen 1983; Karsu 2013
for more information) and the symmetric setting where the alternatives are explicitly given
(see Karsu et al. 2018). We then discuss use of convex cones in the classical optimization
settings, where the underlying preference relation is rational. We finally provide our results
that help us to extend these ideas to equitable optimization settings and present an interactive
algorithm.

3.1 Convex cones inmulticriteria evaluation settings

Assume that the DM has provided a pairwise comparison of the form zm � zk , i.e. “the DM
prefers distribution zm to zk”. Distribution zm is referred to as the upper generator of the
cone (and polyhedron) and zk as the lower generator. The corresponding cone C(zm, zk) and
its dominated region CD(zm, zk) are as follows.

C(zm, zk) = {z|z = zk + μ(zk − zm), μ ≥ 0}
CD(zm, zk) = {z|z ≤ z′ for some z′ ∈ C(zm, zk)}

Theorem 2 (Korhonen et al. 1984) For any z ∈ CD(zm, zk), u(z) ≤ u(zk) ∀u(.) such that
u(.) is increasing and strictly quasiconcave.

An example case is illustrated in Fig. 2a. The figure shows the region of points that are
dominated by (2, 6) in the absence of preference information (the region filled with diagonal
lines) and the cone dominated region given information that (3, 4) is preferred to (2, 6) (The
gray area). When the alternatives are given explicitly, for any alternative z, one can check
whether z ∈ CD((3, 4), (2, 6)) by solving systems of linear inequalities and if so, eliminate
it from further consideration.

A direct application of Theorem 2 to the symmetric case would lead to computational
intractability since symmetry would necessitate checking a set of conditions with respect to
every possible combination of all permutations of a set of distributions ((3, 4) and (2, 6)).
Moreover, the underlying dominance relation is equitable dominance. In particular, given
zm � zk , the cone dominated region in the symmetric case is defined as follows:
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CDSymm(zm, zk) = {z| z e z
′ for some z′ ∈ C(�r (zm);�s(zk))

for some permutations �r (zm) and

�s(zk) of zmandzk or z′ ∈ C(�r (zk);�s(zk)) for some permutations �r (zk) and

�s(zk) of zk}.
Figure 2b shows the cone dominated regions with and without preference information,

in the symmetric case where the dominance is equitable dominance. Note that (2, 6) is
considered equally good as (6, 2), by symmetry, and so there are now two dominated regions.
Symmetry also dictates that any of (3, 4) or (4, 3) is preferred to any of (2, 6) and (6, 2) and
so the dominated regions increase. For any distribution z such that z falls within any of the
two (dotted) enlarged dominated regions we can again infer that z  zk by the same DM.

The definition of the cone dominated region implies that we need to perform checks
by taking into account every permutation of the distributions over which preferences are
provided, which may lead to prohibitively large computational effort. Karsu et al. (2018)
provide a compact characterization of the cone dominated region which avoids the need for
considering all permutational checks, and in some cases avoid them altogether, thus affording
tractability by proving the following:

Theorem 3 Consider a distribution z ∈ R
p. Define ¯CDSymm(zm, zk) = {z| z e

z′ for some z′ ∈ C(
−→
zm;−→

zk )} The following are equivalent:

(i) z ∈ CDSymm(zm, zk).
(ii) z ∈ ¯CDSymm(zm, zk).

This reduces the computational burden since it shows that using the ordered vectors
−→
zm

and
−→
zk is sufficient instead of permutational calculations. They use these results and design

a ranking algorithm for a problem where the set of alternatives is explicitly given.
The theoretical results provided in the next section extend the previous work of Karsu

et al. (2018), who considered the use of convex cones for multicriteria evaluation setting,
to the multiobjective optimization setting. The results are also an extension of the work of
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Lokman et al. (2016), where cone dominance concept is used for the multiobjective integer
programmingproblemswhere rational dominance holds, hence there is not issue of symmetry.
They prove the following theorem and suggest an effective interactive algorithm based on it.

Theorem 4 Lokman et al. (2016) Given zm, zk such that zk  zm, an alternative z is domi-
nated by C(zm, zk) if and only if the following conditions are satisfied:

zkj − z j ≥ 0 ∀ j ∈ P : zmj ≥ zkj (5)

(zi − zki )(z
m
j − zkj ) ≤ (zkj − z j )(z

k
i − zmi ) ∀ j ∈ P : zmj ≥ zkj ∀i ∈ P : zmi < zki (6)

In the next section we provide our results that help us to extend the analysis to equitable
optimization settings.

3.2 Extension for the equitable optimization settings

Based on Theorem 3, to check whether an alternative lies in the cone dominated region in

the symmetric case, one should check whether there exists z′ such that z′ ∈ C(
−→
zm,

−→
zk ) and

z e z′. Let P = {1, 2, . . . , p} be the set of entities.
Theorem 5 Let z and z′ be in R

p. Let K t be the set of t-subsets of P.
Then z e z′ if and only if the following holds:∑t

i=1
−→zi ≤ ∑

j∈a z′j ∀t,∀a ∈ K t .

Proof From Theorem 1, we know the following:

z e z′ if and only if
∑t

i=1
−→zi ≤ ∑t

i=1

−→
z′i ∀t ∈ P . Note that

∑t
i=1

−→
z′i is the minimum

value over all t-sums of z′, i.e. Mina∈K t
∑

j∈a z′j . Hence for any t the following holds:
∑t

i=1
−→zi ≤ ∑

j∈a z′j ∀t,∀a ∈ K t . ��

Example 1 Let p = 3. Then P = {1, 2, 3}, K 1 = {1, 2, 3} , K 2 = {(1, 2), (1, 3), (2, 3)} and
K 3 = {(1, 2, 3)}.

Consider z = (2, 3, 6) and z′ = (2, 4, 5). For t = 1, we have: 2 ≤ 2, 2 ≤ 4, 2 ≤ 5. For
t = 2, we have: 2 + 3 ≤ 2 + 4, 2 + 3 ≤ 2 + 5, 2 + 3 ≤ 4 + 5 and for t = 3 we have
2+ 3+ 6 ≤ 2+ 4+ 5, hence z e z′. Now consider z = (2, 3, 6) and z′ = (2.5, 3.5, 4) the
conditions are violated for some t and some a. For example, t = 3, 2+3+6 > 2.5+3.5+4
, hence z′ does not equitably dominate z.

Definition 3 Consider
−→
zm and

−→
zk . For any t-subset of the set P = {1, . . . , p}, let K t

mk be the

set of t-subsets of P such that
∑

i∈b
−→
zki ≤ ∑

i∈b
−→
zmi ∀b ∈ K t

mk . That is, these are the criteria

sets of size t such that the sum of the criteria values of
−→
zm is at least as large as those of

−→
zk .

Similarly, let K t
km be the sets of t criteria such that

∑
i∈c

−→
zmi <

∑
i∈c

−→
zki ∀c ∈ K t

km .

Example 2 Consider a case where
−→
zm = (2, 3, 6) and

−→
zk = (2.5, 3.5, 4). Then K 1

mk = {3}
since

−→
zm3 ≥ −→

zk3 (6 ≥ 4). K 2
mk{(1, 3), (2, 3)} since

−→
zm1 + −→

zm3 ≥ −→
zk1 + −→

zk3 (2+ 6 ≥ 2.5+ 4) and
−→
zm2 + −→

zm3 ≥ −→
zk2 + −→

zk3 (3+ 6 ≥ 3.5+ 4). K 3
mk = {(1, 2, 3)} as −→

zm1 + −→
zm2 + −→

zm3 ≥ −→
zk1 + −→

zk2 + −→
zk3

(2 + 3 + 6 ≥ 2.5 + 3.5 + 4). Therefore, K 1
km = {1, 2}, K 2

km = {(1, 2)} and K 3
km = ∅.

123



976 Annals of Operations Research (2022) 311:967–995

Theorem 6 Given zm, zk such that zk  zm, z ∈ ¯CDSymm(zm, zk) (it is equitably dominated

by C(
−→
zm;−→

zk )) if and only if the following conditions are satisfied:

∑

j∈b

−→
zkj −

t∑

i=1

−→zi ≥ 0 ∀t ∈ P,∀b ∈ K t
mk (7)

(
t2∑

i=1

−→zi −
∑

l∈c

−→
zkl

) ⎛

⎝
∑

j∈b
(
−→
zmj − −→

zkj )

⎞

⎠ ≤
⎛

⎝
∑

j∈b

−→
zkj −

t1∑

i=1

−→zi
⎞

⎠
(

∑

l∈c
(
−→
zkl − −→

zml )

)

∀t1 ∈ P, ∀t2 ∈ P, b ∈ K t1
mk, c ∈ K t2

km (8)

The proof of the Theorem is provided in “Appendix A”. The theorem implies that for an
outcome vector z to be not cone dominated at least one of these two conditions should be
violated. In the next section we discuss the interactive algorithm we designed based on this
observation.

3.3 The algorithm

The algorithm starts with finding an initial incumbent. Then a challenger to the incumbent
is generated (another equitably nondominated point) and the decision maker is asked about
her preferences on the pair. This will lead to eliminating the inferior one in the pair and
declaring the superior one as the current incumbent (zinc). Given preference information of
the DM, another equitably nondominated point is generated solving a scalarization model
with additional constraints restricting the alternative frombeing conedominated, i.e. not being
in the cone dominated areas. The generated alternative is compared to the incumbent and new
preference information is obtained. This loop is repeated until there is no feasible equitably
nondominated alternative that is not dominated by the cones so far (i.e., the scalarization
model becomes infeasible.)

The scalarization model that aims to find a new equitably nondominated solution that is
not cone dominated is as follows (Pre f is the set of pairs of alternatives over which the DM
provided preference information):

(Scalari zation Model)

Max
∑

t∈P

wt

t∑

i=1

−→zi

s.t.

x ∈ X
zi = zi (x) ∀i ∈ P (9)
⎛

⎝
∑

j∈b

−→
zkj + ε

⎞

⎠ ymk
tb ≤

t∑

i=1

−→zi ∀(zm, zk) ∈ Pre f ,∀t ∈ P,∀b ∈ K t
mk (10)

⎡

⎣
∑

j∈b

−→
zkj

(
∑

l∈c
(
−→
zkl − −→

zml )

)
+

∑

l∈c

−→
zkl

⎛

⎝
∑

j∈b
(
−→
zmj − −→

zkj )

⎞

⎠ + ε

⎤

⎦ hmk
t1t2bc ≤
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t2∑

i=1

−→zi
⎛

⎝
∑

j∈b
(
−→
zmj − −→

zkj )

⎞

⎠ +
t1∑

i=1

−→zi
(

∑

l∈c
(
−→
zkl − −→

zml )

)

∀(zm, zk) ∈ Pre f ,∀t1 ∈ P , ∀t2 ∈ P , b ∈ K t1
mk , c ∈ K t2

km (11)
∑

t∈P

∑

b∈K t
mk

ymk
tb +

∑

t1∈P

∑

t2∈P

∑

c∈K t2
km

∑

b∈K t1
mk

hmk
t1t2bc = 1 ∀(zm, zk) ∈ Pre f (12)

(
t∑

i=1

−→
zinci + ε

)
at ≤

t∑

i=1

−→zi ∀t ∈ P (13)

∑

t∈P

at = 1 (14)

ymk
tb ∈ {0, 1}∀(zm, zk) ∈ Pre f ,∀t ∈ P,∀b ∈ K t

mk (15)

hmk
t1t2bc ∈ {0, 1}∀(zm, zk) ∈ Pre f ,∀t1 ∈ P , ∀t2 ∈ P , ∀b ∈ K t1

mk,∀c ∈ K t2
km (16)

at ∈ {0, 1} ∀t ∈ P (17)

Constraint sets 10 and 11 control whether conditions 7 and 8 are satisfied through the use
of binary variables ymk

tb and hmk
t1t2bc

. Constraint 12 ensures that at least one of the conditions
is violated for each pair of solutions in Pre f , so that the solution is not in the corresponding
cone dominated region. To guarantee that at least one of conditions 7 and 8 is violated,
ensuring that one such binary variable ymk

tb and hmk
t1t2bc

for each pair takes a value of one is
sufficient, hence constraint 12 is an equality constraint. This is because, even if there exist
points that violate more of the conditions, one of the binary variables will take a value of one
(ensuring nondominance) and the other binary variables (ymk

tb or hmk
t1t2bc

) can take values of
zero, making the corresponding constraints (in sets 10 and 11) redundant.

Constraints 13 and 14 are used to ensure that the solution will not be equitably dominated
by the current incumbent. That is, they ensure that the new solution will be strictly better than
the incumbent in at least one component when their cumulative ordered maps are compared.
Note that formulating 14 as an equality constraint does not leave out solutions that are
better than the incumbent in multiple components. If the solution is better in more than one
component, then allat variables except onewill be zero, thiswill onlymake the corresponding
constraints redundant. Hence, constraint 14 is sufficient for the model to return an equitably
nondominated point (if it exists). The ε parameter used in constraint sets 10 and 11 is a
sufficiently small number such that conditions 7 and 8 are violated and ε in constraint set 13
is a sufficiently small number such that the newly found point is strictly better than the current
incumbent in one component.

Note that the model requires the cumulative ordered map of the decision variable vector
zi (

∑t
i=1

−→zi values for all t), which requires it to be ordered endogenously. This can easily
be ensured by adding the auxiliary variables rt and dts as follows. Here,

∑t
i=1

−→zi term is
replaced with trt − ∑

s∈P dts and additional constraints are added to make sure that the
replacement works (Recall Model 3).

Lineari zed Scalari zation Model (LSM)

Max
∑

t∈P

wt

(
trt −

∑

s∈P

dts

)

s.t.

x ∈ X
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zi = zi (x) ∀i ∈ P
⎛

⎝
∑

j∈b

−→
zkj + ε

⎞

⎠ ymk
tb ≤

(
trt −

∑

s∈P

dts

)
∀(zm, zk) ∈ Pre f ,∀t ∈ P,∀b ∈ K t

mk

⎡

⎣
∑

j∈b

−→
zkj

(
∑

l∈c
(
−→
zkl − −→

zml )

)
+

∑

l∈c

−→
zkl

⎛

⎝
∑

j∈b
(
−→
zmj − −→

zkj )

⎞

⎠ + ε

⎤

⎦ hmk
t1t2bc ≤

(
t2rt2 −

∑

s∈P

dt2s

) ⎛

⎝
∑

j∈b
(
−→
zmj − −→

zkj )

⎞

⎠ + (t1rt1 −
∑

s∈P

dt1s)

(
∑

l∈c
(
−→
zkl − −→

zml )

)

∀(zm, zk) ∈ Pre f ,∀t1 ∈ P , ∀t2 ∈ P , b ∈ K t1
mk , c ∈ K t2

km(
t∑

i=1

−→
zinci + ε

)
at ≤ trt −

∑

s∈P

dts ∀t ∈ P

rt − dts ≤ zs ∀t ∈ P,∀s ∈ P

rt ≥ 0 t ∈ P

dts ≥ 0 t, s ∈ P

Constraint sets 12, 14, 15, 16, 17.

Note that any weight vector w ∈ R
p : w > 0 can be used in the scalarization model.

We, however find a (potentially new) w at each iteration using the preference information
provided so far by solving the following model:

Weight estimation model (WEM)

Max ε

s.t.

∑

t∈P

wt

t∑

i=1

(
−→
zmi − −→

zki ) ≥ ε ∀(zm, zk) ∈ Pre f

∑

t∈P

wt = 1

wt ≥ ε

Note that this model finds weights of a linear value function over the cumulative ordered
vectors that is in linewith the given preference information. However, since the value function
is not necessarily linear, the model may turn out to be infeasible. We use equal weights in
that case.

The algorithm is as follows:

Step 1: Initialization: Set zinc = 0, Pre f = ∅ and wt = 1/p ∀t .
Solve LSM. If the model is infeasible, go to Step 4.
Otherwise let the solution be the incumbent, zinc. Solve LSM. Let the solution be
zch (This is a challenger solution).

Step 2: Present zinc and zch to the DM. Let the preferred one be zm and the less preferred
one be zk . Pre f = Pre f ∪(zm, zk). Set zinc = zm . SolveWEM and let the solution
be w.
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Fig. 3 Hyperplane fitted using point with maximum total outcome value

Step 3: Solve LSM.
If the model is infeasible, go to Step 4.
Otherwise let the solution be the zch . Go back to Step 2.

Step 4: Stop and return zinc.

The interactive algorithm can be used whenever the DM is available for providing pref-
erence information. If not, we propose another algorithm that generates an evenly spread
subset of the set of equitably nondominated points.

4 Algorithm for generating evenly distributed equitably
nondominated points (The GEND algorithm)

This approach focuses on finding an evenly distributed subset of nondominated points to
model 4, which are equitably nondominated solutions to the original problem (model 1). The
approach is based on fitting a hyperplane function that is close to the nondominated frontier
in the cumulative ordered space (hence nondominated frontier in the equitable dominance
sense). We then select representative points on the hyperplane, generate regions around those
points and search those regions for non-dominated points. This way, we generate a subset of
the set of equitably non-dominated solutions that is well spread.

The hyperplane could be placed at different positions relative to the non-dominated fron-
tier. Figure 3 below shows the hyperplane placed above the non-dominated frontier for a
maximization setting.

In the next two subsections we explain the three main parts of the algorithm, fitting the
hyperplane, defining the regions to be explored and finding the solutions within the specified
regions.

4.1 Fitting the hyperplane and defining the regions

The hyperplane we fit is of the form
∑p

k=1
yk = T . We explore the strategy of fitting

a hyperplane that passes through the solution that has the maximum total outcome value.

Hence, we set T = {max
∑p

k=1
yk : y ∈ Y} to fit the hyperplane above the frontier.

We define well spread regions in the cumulative ordered criteria space around some
selected representative points on the hyperplane fitted. As shown in Fig. 1b, in R

2, the
non-dominated points in the cumulative ordered space are restricted to the region defined
by the polyhedron Q = {y ∈ R

2 : y2 ≥ 2y1}. A similar analogy can be made for higher
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dimensional real spaces. For example, in R
3 the region is defined by Q = {y ∈ R

3 : y2 ≥
2y1, y3 ≥ 3y1, 2y3 ≥ 3y2}. In general, we can state the proposition below:

Proposition 7 For any real space R
p, let P = {1, 2, · · · , p}. The non-dominated points

in the cumulative ordered space are restricted to the polyhedron Q = {y ∈ R
p : j yk ≥

ky j f orall j, k ∈ P : k > j}.

The proof of Proposition 7 is provided in “Appendix B”. To define the regions, we select a
number of representative points yr from the restricted polyhedron Q that lie on the hyperplane
defined above since Proposition 7 implies that there is no need to focus on the region outside
Q.
Any representative point yr ∈ R

p on the fitted surface will most likely be an infeasible or
dominated point, so we use it as a reference point only to define a region around it and then
generate feasible non-dominated points in the region. Note that the region defined around yr
may or may not contain any non-dominated points in it, depending on the size of the region.
In order to guarantee obtaining a set of non-dominated points in the region, we first find the
non-dominated points yrt ∈ R

p and yrl ∈ R
p , that are at minimum Tchebycheff and linear

distance from the ideal point y I P in the direction of the reference point yr by solving the
problems Mchev and Mlinr , respectively:

(Mchev)

Min ρmax − ε1 ∗
p∑

k=1

yk

s.t . ρmax ≥ λk(y
I P
k − yk) ∀k ∈ P

y ∈ Y

(Mlinr )

Min
p∑

k=1

λk(y
I P
k − yk)−ε1

p∑

k=1

yk

s.t . y ∈ Y,

where ε1 is a sufficiently small positive constant. The weight vector λ ∈ R
p , corresponds to

the diagonal direction for the reference point yr from the ideal point y I P as follows (Steuer
1986, p. 425):

λk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
(y I Pk −yrk )

[ p∑

j=1

1

(y I Pj − yr j )

]−1

if yrk �= y I Pk ∀k ∈ P

1 if yrk = y I Pk
0 if yrk �= y I Pk but ∃ j ∈ P : yr j = y I Pk

For any reference point yr , let yrt and yrl be the optimal solutions obtained from solving
Mchev and Mlinr respectively. We determine the region by defining upper and lower bounds
(UB and LB) as follows: UBk = max(yrtk, yrlk) LBk = min(yrtk, yrlk)∀k ∈ P (see
Fig. 4). Note that we have multiple reference points, hence there is a possibility of generating
intersecting regions. However, the size of the intersecting areas of the regions can bemitigated
if the reference points are chosen in an appropriate manner. Furthermore, we could unify the
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Fig. 4 Generating regions around reference points

intersecting regions in order to eliminate the possibility of generating the same solution from
two or more generated regions.

In the next section, we explain the algorithmwe used to generate the non-dominated points
in the regions.

4.2 Generating non-dominated points in the defined regions

The method we use to generate equitably nondominated points in the defined regions is
based on the epsilon-constraint scalarization (see Lokman and Köksalan 2013, 2014). The
algorithm generates non-dominated points in evenly distributed subsets of the feasible set, i.e.
the regions generated around reference points. To explore each region, we solve scalarization
models with additional constraints LBk ≤ yk ≤ UBk k = 1, 2, . . . , p.

We initialize the algorithm by arbitrarily choosing a region, r to begin with and a criterion,
n. We then find the point that maximizes the nth criterion value in the region by solving

(M0
n )

Max yn + ε1
∑

k �=n

yk

s.t .

yk ≥ LBk ∀k ∈ P (18)

yk ≤ UBk ∀k ∈ P

y ∈ Y (19)

where ε1 is as in Sect. 4.1 and the augmented part of the objective function (term with ε1)
is used to make sure the model returns a non-dominated point in the region. The optimal
solution to the model (M0

n ) above, denoted by ŷ0 ∈ R
p , may or may not be dominated by

a feasible point outside the region. We solve the (MDω
n ) model below with ω = 0 to check

whether the point ŷ0 is dominated or not.

(MDω
n )

Max yn + ε1
∑

k �=n

yk

s.t

yk ≥ ŷw
k ∀k ∈ P

y ∈ Y (20)
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Let the optimal solution to (MD0
n) be y0 ∈ R

p . If y0k = ŷ0k ∀k ∈ P , then there does not
exist a feasible point dominating ŷ0. Then ŷ0 is placed in the set of non-dominated points�r

that are in this region. We repeatedly generate new points in this region and check whether
every obtained point is dominated or not. At every iteration ω, we use the epsilon constraint
scalarization to find a new point yω. To make sure that the scalarization model provides a
new solution, we utilize additional constraints that ensure that the new solution is different
from (and not dominated by) the previously found nondominated solutions, including the
ones generated outside the region.

At every iteration ω of the algorithm (for ω > 0) a new non-dominated point is generated
solving model (Mω

n ), until it becomes infeasible.

(Mω
n )

Max yn + ε1
∑

j �=n

y j

s.t .

yk ≥ (ŷτ
k + 1)hτk − BM(1 − hτk) ∀τ = 0, · · · , ω ∀k �= n (21)

∑

k �=n

hτk = 1 ∀τ = 0, · · · , ω (22)

hτk ∈ {0, 1} ∀τ = 0, · · · , ω ∀k �= n,

y ∈ Y
ineq. (18), (19) (23)

If (Mω
n ) is feasible, the solution found, ŷω is a non-dominated point in this region and it

is not identical to any of previously generated non-dominated points from this region (in set
�r ). This is guaranteed by using auxiliary binary variables hτk and constraints 21 and 22,
which ensure that the solution is better than the previously found solutions in at least one
criterion. Then MDω

n is solved to see if ŷω is a nondominated solution of the original model
and if so, it is added to �r . BM in condition 21 is a sufficiently large number.

We implement the algorithm in every region and generate the non-dominated points in the
regions. The set� = �1∪�2∪· · ·∪�m is the set of generated non-dominated points. Hence,
we obtain subsets of the non-dominated frontier that lie on different parts of the frontier.

In a nutshell, the GEND algorithm is as follows:

Step 1: Fit a hyperplane to the frontier.
Step 2: Select m reference points on the fitted surface.
Step 3: Generate non-dominated solutions in the neighbourhood of the selected points. For

each reference point, find the non-dominated points yrt and yrl and define a region
with its upper and lower bound vectors.

Step 4: Generate non-dominated points in the regions defined in step 4 above.

a: (Initialization). Enumerate them regions. Select the first region (set r = 1) to explore
and a criterion, n, to maximize. Set ω = 0,� = ∅ and �1 = ∅.

b: (Generating a new point). Solve the (Mω
n ) model. If (Mω

n ) is feasible, denote the
optimal point as ŷω ∈ R

p and go to step 4c. Otherwise, go to step 4d .
c: (Checking for dominance). Solve (MDω

n ) to check whether ŷω is non-dominated.
Let the optimal solution be yω. If yω

k = ŷω
k ∀k ∈ P , then �r ∪ ŷω → �r . Go to step

4b.
d: Stop. �r is the entire set of non-dominated points in region r .
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e: If r = m, stop, � = �1 ∪ �2 ∪ · · · ∪ �m . Else, set r + 1 −→ r , set ω = 0, �r = ∅
and go to Step 4b.

5 Computational experiments

In this section, we illustrate the two approaches on equitable multi-objective knapsack
problems.The classicalmulti-objective binary knapsackproblem is an extension of the single-
objective binary knapsack problem (Silvano and Paolo 1990; Kellerer et al. 2003) where each
item is associated with a vector of outputs instead of a single output value. There have been
recent attempts to develop fast and efficient exact and approximate solution algorithms to
multi(bi)-objective knapsack problems (Visée et al. 1998; Klamroth and Wiecek 2000; Baz-
gan et al. 2009; Figueira et al. 2013; Mansour and Alaya 2015; Mansour et al. 2018, 2019).

We will consider multi-objective binary knapsack problems where the decision maker has
equity concerns (E-MOBKP). We assume that the preference model of the decision maker
satisfies properties related to inequity-aversion and try to find the set of equitably efficient
portfolios that result in equitably non-dominated output vectors.

Consider a setting where there are n project proposals that provide outputs to p entities.
Let P = {1, 2, · · · , p} be the set of entities and N = {1, 2, · · · , n} be the set of proposals.
Every project i is expected to generate an output value of oi j for entity j and consumes ci
units of resource. Assume that the decision maker would like to select and fund a portfolio
of these projects, which results in an equitable distribution of outputs across the p entities.
The total amount of available resource is denoted by B, which is generally not enough to
initiate all the projects. The decision to be made here, is whether to initiate a project or not,
i.e. partial funding is not possible. The decision variables are as follows:

xi =
{
1, i f project i is ini tiated

0, otherwise

The aim is finding equitably nondominated solutions to the following problem:

Max “z1, z2, · · · , z p"

s.t .
n∑

i=1

ci xi ≤ B (24)

z j −
n∑

i=1

oi j xi = 0 ∀ j ∈ P (25)

xi ∈ {0, 1} ∀i ∈ N (26)

Note that in GENDwe work in the cumulative ordered space and aim to find the nondom-
inated solutions to the following problem:

Max “y1, y2, · · · , yp"

s.t . yk −
(
krk −

p∑

j=1

dkj
)

= 0 ∀k ∈ P (27)

rk − dkj − z j ≤ 0 ∀ j, k ∈ P (28)

dkj ≥ 0 ∀ j, k ∈ P (29)

constraints 24, 25, 26 (30)
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Fig. 5 Selected weight values in Qμ

We performed experiments to see whether the proposed algorithms provide satisfactory
results. The experiments were conducted on randomly generated multi-objective knapsack
problemswith three objectives (entities (p)). In these instances, the cost and the output values
are generated randomly using uniform distributions.

The algorithms are coded in Visual C++ and solved by a computer with an Intel Xeon E5
3.60 GHz processor and 32 GB RAM. The solution times are expressed in central processing
unit (CPU) seconds. All mathematical models are solved with CPLEX 12.7.

We created three sets of problem instances by generating integer ci and oi j values in
the ranges [1, 10], [1, 50] and [1, 1000], respectively. Different values are used for the total
number of items n. For each n, 10 problem instances are generated. For every instance, the

total budget B is set as
n∑

i=1

ci/2.

For the interactive algorithm, we simulated the responses of the inequity-averse deci-
sion maker by using a symmetric quasi-concave function of the following form: u(z) =∑p−1

j=1

∑
k∈P:k> j min(z j , zk). That is, the utility score is assumed to be equal to the sum of

pairwise minima.
We implemented the GEND algorithm with a set of five reference points in the polyhe-

dron Q that have a total benefit of T . For the tri-objective case, the points are in the set
{yr1, yr2, yr3 ∈ R+ : yr1 + yr2 + yr3 = T , yr3 ≥ 3yr1, 2yr3 ≥ 3yr2, yr2 ≥ 2yr1}.
Moreover, we can define each element of the reference point yrk as a fraction of T , i.e, we

define a weight vector μ ∈ R
3 where yrk = μkT ,

m∑

k=1

μk = 1 and μk ≥ 0 ∀k ∈ P . In R
3,

the problem reduces to that of finding μ values that lie in the polyhedron Qμ = {μ ∈ R
3 :

3∑

k=1

μk = 1, μ3 ≥ 3μ1, 2μ3 ≥ 3μ2, μ2 ≥ 2μ1, μk ≥ 0 ∀k ∈ P}. We chose five weight

values in Qμ that are spread. Figure 5 below shows Qμ and the selected points.
We use these points as the reference points to generate regions as shown in Sect. 4.1.

Moreover, we scale the regions by a factor α in the interval [0, 1] to enlarge the generated
region. For any given regionwe scale it bymaking its lower bound and upper bound (1−α)LB
and (1 + α)UB respectively. We set α = 0.005.

Tables 1 and 2 summarize the results of the approaches for Set 1 and Set 2 instances whose
parameters are generated in the ranges [1, 10] and [1, 50], respectively. We first generated
the whole equitably non-dominated frontier for these problem instances using the epsilon
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constraint method in the cumulative ordered space (Laumanns et al. 2006). It shows the
average and the maximum values for the number of equitably non-dominated solutions, and
the time it takes to generate these solutions. As for the interactive approach, we report the
average and maximum values for the number of questions asked and the solution time. The
results of the GEND algorithm are also summarized.

5.1 Discussion

It is observed that the interactive algorithmprovides promising results since it returns themost
preferred solution of theDM in significantly less time compared to the time it takes to generate
the whole set and after asking a relatively small number of pairwise comparison questions
for Set 1 instances. The GEND algorithm performs comparably to the epsilon-constraint
approach in terms of the solution time but the advantage is not that clear as in some instances
the solution times of the algorithm are closer to those of the epsilon constraint approach. In
Set 2 instances, the computational advantage of the GEND algorithm is more clear. It is seen
that, solution time of the interactive algorithm exceeds that of the epsilon constraint approach,
especially in instanceswith very large number of equitably nondominated solutions.However,
one should note that the interactive approach guides the DM to her most preferred solution
while epsilon constraint and GEND only present a (sometimes quite large) set of solutions
to the DM.

Tables 3 and 4 summarize the results of the approaches for the randomly generated
instances where ci and oi j are generated in the range [1, 1000] (Set 3 instances). For each
combination of p and n, 10 problem instances are generated.

The results for the GEND algorithm are shown in Table 3. It is seen that the average
number of solutions found and hence the computational effort increases significantly as the
number of projects (n) increases. In the case where n = 200, there is a problem instance with
2143 solutions. Removing this instance will reduce the average solution times to 1764.82 and
915.45 seconds for the epsilon constraint method and the GEND algorithm respectively. We
can observe that on average we generate a significant portion of the equitably non-dominated
set using GEND approach in a fraction of the average time it takes to generate the whole set.

The interactive algorithm involves relatively large parameters derived frommultiplication,
therefore in these instances where the parameters of the original knapsack problem is large,
numerical issues might arise. We resolve this issue by dividing the problem parameters ci
and oi j by 100, hence the parameters are not integer any more.

Table 4 presents the results of the interactive algorithm. We report the average and max-
imum values for the number of questions asked and the solution time for ε values of 0.09
and 0.9. We report the number of questions asked and the solution times for the ε value of
0.09 where the most preferred solution of the DM is always returned. However, the solution
times and number of questions asked are significantly increasing as the number of projects
(n) increases and significantly higher than in the case where ε is 0.9. Increasing the value of
ε to 0.9 leads to fewer number of questions albeit may not lead to the most preferred solution
of the DM. Hence we may consider solving the interactive approach with higher ε values to
obtain meaningful heuristics.

We evaluate the quality of the solutions generated by the GEND algorithm by three
performance measures namely, the coverage error Sayın (2000), coverage gap Ceyhan et al.
(2019) and another spread measure.

We use a Tchebycheff distance-based coverage error and coverage gap to measure how
well the set of solutions generated by the GEND algorithm (G ⊆ Y) covers the whole set of
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Table 3 Results of the epsilon-constraint approach and GEND: Set 3

n Epsilon constraint approach GEND algorithm

Solution time (s) # of solutions Solution time (s) # of solutions

Avg Max Avg Max Avg Max Avg Max

50 13.66 62.4 19.9 58 0.91 1.98 9.2 18

100 89.2 257.02 44.5 105 3.6 7.79 17.8 43

150 180.71 1222.12 47.6 205 18.22 93.92 22.2 84

200* 44535.85 429475.14 363.9 2143 2441.88 16179.78 76.2 291

*The GEND algorithm for these instances was implemented with α = 0.003

Table 4 Results of the interactive approach: Set 3

n Interactive approach ε = 0.09 Interactive approach ε = 0.9

# of questions Solution time (s) # of questions Solution time (s)

Avg Max Avg Max Avg Max Avg Max

50 9.9 20 2.187 5.79 5.6 12 0.863 2.72

100 12.1 25 15.809 50.91 6.2 15 2.389 7.89

150 7.5 22 9.821 69.65 4 10 1.327 4.28

200 36.1 92 1998.093 7961.11 11.8 30 317.617 2880.13

solutions. Let r ∈ R
p be a solution such that r /∈ G, the measure of how well G covers r

is given by βCE (r) = ming∈G{maxi∈P |ri − gi |} and βCG(r) = ming∈G{maxi∈P (ri − gi )}
for coverage error and coverage gap respectively. Then the coverage error (gap) of G, βCE

(βCG ), given by theworst covered point is βCE = maxr∈YβCE (r) (βCG = maxr∈YβCG(r)).
We report the average and standard deviation of the scaled coverage error (gap) values for
every n. For every instance, we calculate the efficient ranges of the objective functions and
take the ratio between the coverage value and the maximum of the efficient ranges as the
scaled coverage error (gap) value.

To have further information on the spread of the solutions found by the GEND algorithm,
we divided the cumulative criteria space into 125 boxes of equal dimensions. As expected,
only some of the boxes contain equitably non-dominated points. We report the percentage
of the non-empty boxes that at least one solution is found by the GEND algorithm. Tables 5
and 6 below report results of the GEND algorithm for Set 1 and Set 2 instances. As seen in
the Tables the scaled coverage gap values are satisfactory. Moreover, the algorithm is able to
find representative solutions in 40% to 50% of the non empty boxes on average.

As seen in Table 7 the algorithm is able to find representative solutions in 35% to 60% of
the non empty boxes on average for the set 3 instances. The percentages tend to drop as the
problem gets larger.

We also performed experiments for the five objectives (p = 5) setting.We generated three
sets of problems, sets 4, 5 and 6 whose parameters were generated as in that of sets 1, 2 and
3 respectively. We use three reference points generated with weights (0, 0, 0, 0.22, 0.78),
(0, 0, 0.33, 0.25, 0.42) and (0.05, 0.1, 0.15, 0.2, 0.5) in Qμ. Table 8 below summarizes the
results of the GEND algorithm on these sets of problems. It is observed that for problems
with the same number of items (n), the solution times increase as p increases from 3 to 5,
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Table 5 Quality of solutions returned by GEND: Set 1

n Scaled Scaled Spread (% of )
Max range coverage error coverage gap boxes with GEND soln.

Avg Avg Std Dev. Avg Std Dev. Min Avg Max

250 24.10 0.22 0.15 0.14 0.10 14.29 49.39 100

300 37.20 0.29 0.12 0.14 0.07 20.83 48.70 100

350 34.40 0.32 0.10 0.14 0.07 16.67 35.64 52.38

400 28.30 0.26 0.13 0.12 0.06 22.73 52.06 100

450 19.60 0.19 0.13 0.10 0.09 18.52 62.78 100

500 37.89 0.20 0.11 0.10 0.06 27.59 52.54 100

Table 6 Quality of solutions returned by GEND: Set 2

n Scaled Scaled Spread (% of )
Max range coverage error coverage gap boxes with GEND soln.

Avg Avg Std Dev. Avg Std Dev. Min Avg Max

50 70.90 0.22 0.15 0.17 0.13 15.38 53.60 100

100 86.70 0.34 0.17 0.21 0.11 15.38 38.59 100

150 95.60 0.30 0.10 0.14 0.05 28.00 41.28 70

200 515.50 0.37 0.25 0.14 0.07 15.00 38.01 53.3

250 160.10 0.27 0.11 0.13 0.04 20.00 32.92 50

Table 7 Quality of solutions returned by GEND: Set 3

n Scaled Scaled Spread (% of )
Max range coverage error coverage gap boxes with GEND soln.

Avg Avg Std Dev. Avg Std Dev. Min Avg Max

50 1401.00 0.27 0.14 0.14 0.08 31.25 51.63 100

100 2060.20 0.30 0.16 0.17 0.11 24.00 48.44 100

150 1835.50 0.24 0.18 0.10 0.07 26.32 62.18 100

200 3482.20 0.28 0.08 0.15 0.06 20.83 35.39 71.43

as expected. We put a time limit of 18000 seconds (5 hours) and do not increase n if 3 out
of 10 instances can not be solved within this time limit. Nevertheless, the results show that
GEND algorithm still returns solutions in reasonable amount of time for most instances.

Note that even the single objective binary knapsack problem is NP-hard. Hence generat-
ing the equitably non-dominated frontier of the multi-objective version is computationally
challenging (as seen in Table 3). The algorithms we propose aim to tackle this challenge.
In settings where the DM is available to provide preference information, one can utilize the
interactive approach and guide her to her most preferred solution. The sample results that
we provide in Tables 1, 2 and 4 show that it is possible to detect the most preferred solution
by asking a small number of comparison questions to the DM. If the DM is not available for
providing preference information, one can generate a good subset of the equitably nondom-
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inated points. We observe that the GEND algorithm generates a good representative subset
in only a fraction of the time it takes to generate the whole frontier.

6 Conclusion

We consider multi objective optimization problems where the decision maker is inequity
averse, hence she is interested infinding equitably efficient (nondominated) points.Wediscuss
two solution approaches that differ in terms of the timing of preference articulation.

The first approach is interactive and relies on input from the DM during the solution
process. This algorithm is based on the assumption of a symmetric quasiconcavity utility
function, which is a widely accepted form in the literature focusing on fair allocations (Sen
andFoster 1997). The assumption of symmetry, however,makes the problem computationally
very challenging as permutational calculations are involved. We extend the current results in
the literature so as to provide an algorithm for such problems. To the best of our knowledge,
this is the first study proposing such an interactive approach for equitable multi-objective
programming problems. Equitable problems are highly relevant in operational research appli-
cations, especially in public sector, hence thiswork is expected to contribute both to the theory
and practice of OR.

In the second approach, we aim to generate an evenly spread subset of the set of equitably
non-dominated solutions to be presented to the DM for further consideration. We analyse
the cumulative criteria space and fit a simple function close to the Pareto in the cumulative
ordered criteria space. We then select reference points on the fitted function and generate
regions around these points. Finally, we generate the equitably non-dominated points in these
regions.

We illustrate the computational feasibility of the algorithms on equitable knapsack prob-
lems inwhich one funds projects that benefitmultiple entities subject to a limited budget. Such
problems are especially relevant in public service provision as entities may correspond to
various population groups benefiting from the service. The experiments demonstrate that the
proposed algorithms are computationally very efficient compared to the epsilon-constraint
approach that finds the whole set of equitably non-dominated solutions.

The GEND algorithm can still be used to find a representative subset of the set of equi-
tably nondominated points when the number of entities increases. However, the interactive
approach involves permutational calculations, which could lead to exponentially growing
number of constraints in the models when the number of objectives increases. One can han-
dle this issue by grouping the entities so as to obtain a smaller number of objectives. It is
well-known that even the classical MOP problems become computationally intractable when
the number of objectives increases. To the best of our knowledge, there is still relatively lim-
ited work on finding exact solutions to multiobjective integer optimization problems with
more than three objective functions (see Kirlik and Sayın 2014; Holzmann and Smith 2018
and the references therein for some recent work in this area). As in the classical multi-
objective optimization problems, designing computationally efficient exact and interactive
solution algorithms for equitable optimization problems with more than three objectives is
a very promising future research area. Specifically, future research can address the techni-
cal challenges involved in dealing with the large number of t-subsets for larger number of
objectives.

This study can also be extended byworking on developing faster algorithms for generating
non-dominated points in the defined regions for larger problem instances (in terms of p and
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n) in reasonable time.We can also investigate the application of some evolutionary andmeta-
heuristic approaches in approximating the equitably non-dominated frontier and generating
diverse solutions.

Appendices

A Proof of Theorem 6

Proof PART 1: We will show that if z ∈ ¯CDSymm(zm, zk) (it is equitably dominated by

C(
−→
zm;−→

zk )) then Eqs. 7 and 8 hold. Let z be cone dominated, i.e. ∃ μ ≥ 0 : z′ = −→
zk +

μ(
−→
zk − −→

zm) and z e z′. Then by Theorem 5,
∑t

i=1
−→zi ≤ ∑

j∈a z′j ∀t,∀a ∈ K t . That is:

t∑

i=1

−→zi ≤
∑

j∈a
(
−→
zkj + μ(

−→
zkj − −→

zmj )) ∀t,∀a ∈ K t (31)

Note that K t = K t
km ∪ K t

mk and K t
km ∩ K t

mk = ∅ ∀t . Then:
t1∑

i=1

−→zi ≤
∑

j∈b
(
−→
zkj + μ(

−→
zkj − −→

zmj )) ∀t1 ∈ P,∀b ∈ K t1
mk (32)

t2∑

i=1

−→zi ≤
∑

l∈c
(
−→
zkl + μ(

−→
zkl − −→

zml )) ∀t2 ∈ P,∀c ∈ K t2
km (33)

Since
∑

j∈b(
−→
zkj − −→

zmj ) ≤ 0 by definition, Eq. 32 can be rewritten as:

μ
∑

j∈b
(
−→
zmj − −→

zkj ) ≤
∑

j∈b

−→
zkj −

t1∑

i=1

−→zi ∀t1 ∈ P,∀b ∈ K t1
mk (34)

Since μ ≥ 0 and
∑

j∈b(
−→
zmj − −→

zkj ) ≥ 0,
∑

j∈b
−→
zkj − ∑t1

i=1
−→zi ≥ 0 ∀t1 ∈ P , ∀b ∈ K t1

mk
should hold. That is, Eq. 7 holds.

Equation 33 can be rewritten as:

t2∑

i=1

−→zi −
∑

l∈c

−→
zkl ≤ μ

∑

l∈c
(
−→
zkl − −→

zml ) ∀t2 ∈ P,∀c ∈ K t2
km (35)

Since
∑

l∈c(
−→
zkl − −→

zml ) > 0 and
∑

j∈b(
−→
zmj − −→

zkj ) ≥ 0, from Eqs. 34 and 35 we have the

following (by multiplying Eq. 34 by
∑

l∈c(
−→
zkl − −→

zml ) and Eq. 35 by
∑

j∈b(
−→
zmj − −→

zkj )):

(
∑t2

i=1
−→zi − ∑

l∈c
−→
zkl )(

∑
j∈b(

−→
zmj − −→

zkj )) ≤ μ(
∑

l∈c(
−→
zkl − −→

zml ))(
∑

j∈b(
−→
zmj − −→

zkj )) ≤
(
∑

j∈b
−→
zkj − ∑t1

i=1
−→zi )(∑l∈c(

−→
zkl − −→

zml ))∀t1 ∈ P,∀t2 ∈ P,∀b ∈ K t1
mk,∀c ∈ K t2

km
PART 2: Now suppose that Eqs. 7 and 8 hold. We will show that z is cone dominated, i.e.

∃μ ≥ 0 : z e (
−→
zk + μ(

−→
zk − −→

zm)). Note that K t1
mk consists of two subsets K t1

strict_mk and

K t1
equal_mk as follows:

∑
j∈b

−→
zmj >

∑
j∈b

−→
zkj for all b ∈ K t1

strict_mk and
∑

j∈b
−→
zmj = ∑

j∈b
−→
zkj

for all b ∈ K t1
equal_mk .

123



Annals of Operations Research (2022) 311:967–995 993

Since forb ∈ K t1
strict_mk wehave

∑
j∈b(

−→
zmj −−→

zkj ) > 0 and for c ∈ K t2
km

∑
l∈c(

−→
zkl −−→

zml ) > 0
, Eq. 8 implies the following:

(
∑t2

i=1
−→zi − ∑

l∈c
−→
zkl )

∑
l∈c(

−→
zkl − −→

zml )

≤ (
∑

j∈b
−→
zkj − ∑t1

i=1
−→zi )

∑
j∈b(

−→
zmj − −→

zkj )
∀t1 ∈ P,∀t2 ∈ P, b ∈ K t1

strict_mk , c ∈ K t2
km

(36)

We will find a μ ≥ 0 that makes z equitably dominated by
−→
zk + μ(

−→
zk − −→

zm)). One can
define

μ̄ = min
t1∈P,b∈K t1

strict_mk

(
∑

j∈b
−→
zkj − ∑t1

i=1
−→zi )

∑
j∈b(

−→
zmj − −→

zkj )
. (37)

Since (
∑

j∈b
−→
zkj −

∑t
i=1

−→zi ) ≥ 0 (seeEq. 7) and
∑

j∈b(
−→
zmj −−→

zkj ) > 0 for allb ∈ Kstrict_mk

, μ̄ ≥ 0 holds.
Note that the following holds for this μ̄:

(
∑t2

i=1
−→zi − ∑

l∈c
−→
zkl )

∑
l∈c(

−→
zkl − −→

zml )

≤ μ̄ ≤ (
∑

j∈b
−→
zkj − ∑t1

i=1
−→zi )

∑
j∈b(

−→
zmj − −→

zkj )

∀t1 ∈ P,∀t2 ∈ P, b ∈ K t1
strict_mk , c ∈ K t2

km (38)

∑t2
i=1

−→zi ≤ ∑
l∈c

−→
zkl + μ̄

∑
l∈c(

−→
zkl − −→

zml ) ∀t2 ∈ P , ∀c ∈ K t2
km(From the left side of

Eq. 38)
∑t1

i=1
−→zi ≤ ∑

j∈b
−→
zkj + μ̄

∑
j∈b(

−→
zkj − −→

zmj ) ∀t1 ∈ P , ∀b ∈ K t1
strict_mk(From the right side

of Eq. 38).
∑t

i=1
−→zi ≤ ∑

j∈b
−→
zkj + μ̄

∑
j∈b(

−→
zkj − −→

zmj ) = ∑
j∈b

−→
zkj ∀t ∈ P , ∀b ∈ K t

equal_mk (From
condition 7).

Note that K t = K t
strict_mk ∪ K t

equal_mk ∪ K t
km . Therefore the conditions of Theorem 5

are satisfied, making z equitably dominated by
−→
zk + μ̄(

−→
zk − −→

zm). ��

B Proof of Proposition 7

For P = {1, 2, · · · , p}:
y1 = −→z 1

y2 = −→z 1 + −→z 2

...

yp = −→z 1 + −→z 2 + · · · + −→z p

and −→z 1 ≤ −→z 2 ≤ · · · ≤ −→z p

We will prove Proposition 7 by induction. The base case is at p = 2 where P = {1, 2}. To
show that Proposition 7 holds for the base case, we need to show that y2 ≥ 2y1.
Since by definition y1 = −→z 1 and y2 = −→z 1+−→z 2 where

−→z 2 ≥ −→z 1, then y2 = −→z 1+−→z 1+
ε ≥ 2−→z 1 = 2y1 where ε ≥ 0. Hence y2 ≥ 2y1.
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Hypothesis 1 Assume that Proposition 7 holds for p = s.

To complete the proof, we need to show that Proposition 7 holds for p = s + 1. Due to
Hypothesis 1, we just have to show that Proposition 7 holds for all ( j, s + 1) : 1 ≤ j ≤ s.
j ys ≥ sy j for all 1 ≤ j ≤ s (Due to Hypothesis 1)

−→z s+1 ≥ −→z j = y j − y j−1

j ys + j−→z s+1 ≥ sy j + j−→z j

j ys + j−→z s+1 ≥ sy j + j(y j − y j−1).

j(ys + −→z s+1) ≥ (s + 1)y j + ( j − 1)y j − j y j−1︸ ︷︷ ︸
≥0, Due to Hypothesis 1

.

Hence j ys+1 ≥ (s + 1)y j .

Therefore, Proposition 7 holds for any p.
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